3,159 research outputs found

    Digital curation and the cloud

    Get PDF
    Digital curation involves a wide range of activities, many of which could benefit from cloud deployment to a greater or lesser extent. These range from infrequent, resource-intensive tasks which benefit from the ability to rapidly provision resources to day-to-day collaborative activities which can be facilitated by networked cloud services. Associated benefits are offset by risks such as loss of data or service level, legal and governance incompatibilities and transfer bottlenecks. There is considerable variability across both risks and benefits according to the service and deployment models being adopted and the context in which activities are performed. Some risks, such as legal liabilities, are mitigated by the use of alternative, e.g., private cloud models, but this is typically at the expense of benefits such as resource elasticity and economies of scale. Infrastructure as a Service model may provide a basis on which more specialised software services may be provided. There is considerable work to be done in helping institutions understand the cloud and its associated costs, risks and benefits, and how these compare to their current working methods, in order that the most beneficial uses of cloud technologies may be identified. Specific proposals, echoing recent work coordinated by EPSRC and JISC are the development of advisory, costing and brokering services to facilitate appropriate cloud deployments, the exploration of opportunities for certifying or accrediting cloud preservation providers, and the targeted publicity of outputs from pilot studies to the full range of stakeholders within the curation lifecycle, including data creators and owners, repositories, institutional IT support professionals and senior manager

    Pattern-based software architecture for service-oriented software systems

    Get PDF
    Service-oriented architecture is a recent conceptual framework for service-oriented software platforms. Architectures are of great importance for the evolution of software systems. We present a modelling and transformation technique for service-centric distributed software systems. Architectural configurations, expressed through hierarchical architectural patterns, form the core of a specification and transformation technique. Patterns on different levels of abstraction form transformation invariants that structure and constrain the transformation process. We explore the role that patterns can play in architecture transformations in terms of functional properties, but also non-functional quality aspects

    Impliance: A Next Generation Information Management Appliance

    Full text link
    ably successful in building a large market and adapting to the changes of the last three decades, its impact on the broader market of information management is surprisingly limited. If we were to design an information management system from scratch, based upon today's requirements and hardware capabilities, would it look anything like today's database systems?" In this paper, we introduce Impliance, a next-generation information management system consisting of hardware and software components integrated to form an easy-to-administer appliance that can store, retrieve, and analyze all types of structured, semi-structured, and unstructured information. We first summarize the trends that will shape information management for the foreseeable future. Those trends imply three major requirements for Impliance: (1) to be able to store, manage, and uniformly query all data, not just structured records; (2) to be able to scale out as the volume of this data grows; and (3) to be simple and robust in operation. We then describe four key ideas that are uniquely combined in Impliance to address these requirements, namely the ideas of: (a) integrating software and off-the-shelf hardware into a generic information appliance; (b) automatically discovering, organizing, and managing all data - unstructured as well as structured - in a uniform way; (c) achieving scale-out by exploiting simple, massive parallel processing, and (d) virtualizing compute and storage resources to unify, simplify, and streamline the management of Impliance. Impliance is an ambitious, long-term effort to define simpler, more robust, and more scalable information systems for tomorrow's enterprises.Comment: This article is published under a Creative Commons License Agreement (http://creativecommons.org/licenses/by/2.5/.) You may copy, distribute, display, and perform the work, make derivative works and make commercial use of the work, but, you must attribute the work to the author and CIDR 2007. 3rd Biennial Conference on Innovative Data Systems Research (CIDR) January 710, 2007, Asilomar, California, US

    MARACAS: a real-time multicore VCPU scheduling framework

    Full text link
    This paper describes a multicore scheduling and load-balancing framework called MARACAS, to address shared cache and memory bus contention. It builds upon prior work centered around the concept of virtual CPU (VCPU) scheduling. Threads are associated with VCPUs that have periodically replenished time budgets. VCPUs are guaranteed to receive their periodic budgets even if they are migrated between cores. A load balancing algorithm ensures VCPUs are mapped to cores to fairly distribute surplus CPU cycles, after ensuring VCPU timing guarantees. MARACAS uses surplus cycles to throttle the execution of threads running on specific cores when memory contention exceeds a certain threshold. This enables threads on other cores to make better progress without interference from co-runners. Our scheduling framework features a novel memory-aware scheduling approach that uses performance counters to derive an average memory request latency. We show that latency-based memory throttling is more effective than rate-based memory access control in reducing bus contention. MARACAS also supports cache-aware scheduling and migration using page recoloring to improve performance isolation amongst VCPUs. Experiments show how MARACAS reduces multicore resource contention, leading to improved task progress.http://www.cs.bu.edu/fac/richwest/papers/rtss_2016.pdfAccepted manuscrip

    Advancing Healthcare Security: A Cutting-Edge Zero-Trust Blockchain Solution for Protecting Electronic Health Records

    Get PDF
    The effective management of electronic health records (EHRs) is vital in healthcare. However, traditional systems often need help handling data inconsistently, providing limited access, and coordinating poorly across facilities. This study aims to tackle these issues using blockchain technology to improve EHR systems' data security, privacy, and interoperability. By thoroughly analyzing blockchain's applications in healthcare, we propose an innovative solution that leverages blockchain's decentralized and immutable nature, combined with advanced encryption techniques such as the Advanced Encryption Standard and Zero Knowledge Proof Protocol, to fortify EHR systems. Our research demonstrates that blockchain can effectively overcome significant EHR challenges, including fragmented data and interoperability problems, by facilitating secure and transparent data exchange, leading to enhanced coordination, care quality, and cost-efficiency across healthcare facilities. This study offers practical guidelines for implementing blockchain technology in healthcare, emphasizing a balanced approach to interoperability, privacy, and security. It represents a significant advancement over traditional EHR systems, boosting security and affording patients greater control over their health records.Ā Doi: 10.28991/HIJ-2023-04-03-012 Full Text: PD

    Patterns for Providing Real-Time Guarantees in DOC Middleware - Doctoral Dissertation, May 2002

    Get PDF
    The advent of open and widely adopted standards such as Common Object Request Broker Architecture (CORBA) [47] has simpliļ¬ed and standardized the development of distributed applications. For applications with real-time constraints, including avionics, manufacturing, and defense systems, these standards are evolving to include Quality-of-Service (QoS) speciļ¬cations. Operating systems such as Real-time Linux [60] have responded with interfaces and algorithms to guarantee real-time response; similarly, languages such as Real-time Java [59] include mechanisms for specifying real-time properties for threads. However, the middleware upon which large distributed applications are based has not yet addressed end-to-end guarantees of QoS speciļ¬cations. Unless this challenge can be met, developers must resort to ad hoc solutions that may not scale or migrate well among different platforms. This thesis provides two contributions to the study of real-time Distributed Object Computing (DOC) middleware. First, it identiļ¬es potential bottlenecks and problems with respect to guaranteeing real-time performance in contemporary middleware. Experimental results illustrate how these problems lead to incorrect real-time behavior in contemporary middleware platforms. Second, this thesis presents designs and techniques for providing real-time QoS guarantees in DOC middleware in the context of TAO [6], an open-source and widely adopted implementation of real-time CORBA. Architectural solutions presented here are coupled with empirical evaluations of end-to-end real-time behavior. Analysis of the problems, forces, solutions, and consequences are presented in terms of patterns and frame-works, so that solutions obtained for TAO can be appropriately applied to other real-time systems

    Design and Implementation of a Time Predictable Processor: Evaluation With a Space Case Study

    Get PDF
    Embedded real-time systems like those found in automotive, rail and aerospace, steadily require higher levels of guaranteed computing performance (and hence time predictability) motivated by the increasing number of functionalities provided by software. However, high-performance processor design is driven by the average-performance needs of mainstream market. To make things worse, changing those designs is hard since the embedded real-time market is comparatively a small market. A path to address this mismatch is designing low-complexity hardware features that favor time predictability and can be enabled/disabled not to affect average performance when performance guarantees are not required. In this line, we present the lessons learned designing and implementing LEOPARD, a four-core processor facilitating measurement-based timing analysis (widely used in most domains). LEOPARD has been designed adding low-overhead hardware mechanisms to a LEON3 processor baseline that allow capturing the impact of jittery resources (i.e. with variable latency) in the measurements performed at analysis time. In particular, at core level we handle the jitter of caches, TLBs and variable-latency floating point units; and at the chip level, we deal with contention so that time-composable timing guarantees can be obtained. The result of our applied study with a Space application shows how per-resource jitter is controlled facilitating the computation of high-quality WCET estimates
    • ā€¦
    corecore