463 research outputs found

    MSUO Information Technology and Geographical Information Systems: Common Protocols & Procedures. Report to the Marine Safety Umbrella Operation

    Get PDF
    The Marine Safety Umbrella Operation (MSUO) facilitates the cooperation between Interreg funded Marine Safety Projects and maritime stakeholders. The main aim of MSUO is to permit efficient operation of new projects through Project Cooperation Initiatives, these include the review of the common protocols and procedures for Information Technology (IT) and Geographical Information Systems (GIS). This study carried out by CSA Group and the National Centre for Geocomputation (NCG) reviews current spatial information standards in Europe and the data management methodologies associated with different marine safety projects. International best practice was reviewed based on the combined experience of spatial data research at NCG and initiatives in the US, Canada and the UK relating to marine security service information and acquisition and integration of large marine datasets for ocean management purposes. This report identifies the most appropriate international data management practices that could be adopted for future MSUO projects

    On the spectral-energy efficiency and rate fairness tradeoff in relay-aided cooperative OFDMA systems

    Get PDF
    In resource constrained wireless systems, achieving higher spectral efficiency (SE) and energy efficiency (EE), and greater rate fairness are conflicting objectives. Here a general framework is presented to analyze the tradeoff among these three performance metrics in cooperative OFDMA systems with decode-and-forward (DF) relaying, where subcarrier pairing and allocation, relay selection, choice of transmission strategy, and power allocation are jointly considered. In our analytical framework, rate fairness is represented utilizing -fairness model and the resource allocation problem is formulated as a multiobjective optimization (MOO) problem. We then propose a cross-layer resource allocation algorithm across application and physical layers, and further devise a heuristic algorithm to tackle the computational complexity issue. The SE-EE tradeoff is characterized as a Pareto optimal set, and the efficiency and fairness tradeoff is investigated through the price of fairness (PoF). Simulations indicate that higher fairness results in a worse SE-EE tradeoff. It is also shown imposing fairness helps to reduce the outage probability. For a fixed number of relays, by increasing circuit power, the performance of SE-EE tradeoff is degraded. Interestingly, by increasing the number of relays, although the total circuit power is increased, the SE-EE tradeoff is not necessarily degraded. This is thanks to the extra degree of freedom provided in relay selection

    The cgml: a xml language for mobile cartography

    Get PDF
    Increasing processing power and storage capabilities encourage systematic adoption of high-end mobile devices, such as programmable cellular phones and wireless-enabled PDA to implement new exciting applications. The performances of modern mobile devices are bringing innovative scenarios, based on position awareness and ambient intelligence paradigms. The market is moving from old 'Wireless Applications' approach to Mobile Computing, which aims to exploit mobile host capabilities. This paper presents the compact Geographic Markup Language (cGML), an XML-based language defined to enable design and development of LBS applications specific for mobile devices, and an example of client-server architecture using it

    Compact gml: merging mobile computing and mobile cartography

    Get PDF
    The use of portable devices is moving from "Wireless Applications", typically implemented as browsing-on-the-road, to "Mobile Computing", which aims to exploit increasing processing power of consumer devices. As users get connected with smartphones and PDAs, they look for geographic information and location-aware services. While browser-based approaches have been explored (using static images or graphics formats such as Mobile SVG), a data model tailored for local computation on mobile devices is still missing. This paper presents the Compact Geographic Markup Language (cGML) that enables design and development of specific purpose GIS applications for portable consumer devices where a cGML document can be used as a spatial query result as well

    XML Encoding and Web Services for Spatial OLAP Data Cube Exchange: an SOA Approach

    Get PDF
    XML and Web Services technologies have revolutionized the way data are exchanged on the Internet. Meanwhile, Spatial OLAP (SOLAP) tools have emerged to bridge the gap between the Business Intelligence and Geographic Information Systems domains. While Web Services specifications such as XML for Analysis enable the use of OLAP tools in Service Oriented Architecture (SOA) environments, no solution addresses the exchange of complete SOLAP data cubes (comprising both spatial and descriptive data and metadata) in an interoperable fashion. This paper proposes a new XML grammar for the exchange of SOLAP data cubes, containing both spatial and descriptive data and metadata. It enables the delivery of the cube schema, dimension members (including the geometry of spatial members) and fact data. The use of this XML format is then demonstrated in the context of a Web Service. Such services can be deployed in various situations, not limited to traditional client-server platforms but also ubiquitous mobile computing environments

    Developing Android Mobile Map Application with standard navigation tools for pedestrians

    Get PDF
    Advanced features of modern mobile devices have made it possible to develop and use maps and map based applications for navigation purposes. Since most mobile map applications nowadays are developed for motor vehicles, there is a demand for portable pedestrian navigation applications. In this thesis the Android mobile map application with standard navigation tools for pedestrian navigation was developed, as a platform for facilitating the Lund Challenge location based demonstrator of the HaptiMap project. The pivotal aim of the Lund Challenge demonstrator is to make the sights of Lund city more accessible. The mobile phone application is being designed as a touristic, historical location based game which will also assist tourists to navigate themselves in the city. To enable exploration of historical and current sites of Lund the demonstrator should contain basic components of exploring and way finding. Prior to the development the OpenStreetMap (OSM) road network data and Swedish National Road Database (NVDB) were introduced. The main advantage of using the OSM data over the NVDB dataset is the completeness of the OSM data in terms of pedestrian paths. The datasets were imported to PostgreSQL spatially extended PostGIS database, where different routing algorithms provided by pgRouting were used for routing calculations. As the Lund Challenge demonstrator is intended not only for general users but also for visually impaired users, the problem of user navigation in the parks and open areas were also discussed and the feasibility study was performed. The limitation of the developed application was the problem of the user navigation in the parks and open areas. It is therefore necessary to upgrade the road database with possible path in the open areas and parks in order to implement this application.Advanced features of modern devices have made it possible to develop and use maps and map-based applications for navigation purposes. Since most mobile map applications are currently developed for motor vehicles, there is a demand for portable pedestrian navigation applications. In this thesis, a mobile map application was developed with standard navigation tools for pedestrians, which can be used with mobile phones running Android Operating System. The application will be used as a platform for facilitating the Lund Challenge location based demonstrator. Lund Challenge location based demonstrator is designed to make historical and actual maps of Lund more accessible and is a part of the HaptiMap project. This project aims to create maps and develop location-based services for all users, including elderly and visually impaired. The goal of the Lund Challenge location based demonstrator (also known as The Lund Time Machine) is to minimize the efforts of pedestrians, especially tourists, with finding interesting sites around the city. Initially, it is being designed as a historical location based game which will assist tourists to navigate themselves around the city. In order to further explore historical and current sites, the Lund Challenge should be enhanced with the basic features of exploration and navigation included in this thesis. The road network data was chosen from two available sources: 1) data from OpenStreetMap (OSM) project which provides free geographic data, and 2) The Swedish National Road Database (NVDB) authorized by the Swedish government, which includes all Swedish road network and selected cycle paths. For this thesis, analysis was performed on the datasets using different shortest path algorithms for routing calculations. A primary advantage of using OSM over NVDB is the completeness of data relating to pedestrian paths. As a result, the determination was made that the OSM option was more appropriate for the purpose of this thesis. Since the Lund Challenge location based demonstrator is intended for both general and visually impaired users, the problem of user navigation in parks and open areas was also discussed and a feasibility study was performed. This study revealed a limitation in the application with user navigation in parks and open areas. To resolve this, it is necessary to upgrade the road network with all possible pedestrian paths for parks and open areas

    Uplink Secure Receive Spatial Modulation Empowered by Intelligent Reflecting Surface

    Get PDF
    With the emergence of the fifth generation (5G) era, the development of the Internet of Things (IoT) network has been accelerated with a new impetus, making it imperative to strive for a more reliable and efficient network environment. To accomplish this, we introduce and investigate a novel proposal for the intelligent reflecting surface (IRS) enabled uplink secure receive spatial modulation (SM), named IRS-USRSM, to resolve the security issues arising from the open wireless transmission environment in the 5G IoT network. In the IRS-USRSM scheme, we assume that the passive eavesdropper is directly connected to the uplink user and occasionally connected to the IRS. To achieve enhanced secrecy with finite alphabet inputs, a joint transmitter perturbation and IRS reflection design for physical layer security is proposed to guarantee secure and reliable transmission of IRS-USRSM. Specifically, two categories of IRSbased random phase compensation strategies, namely, random perturbation compensation and random path synthesize, along with maximum likelihood detection and suboptimal detection are proposed to meet the variant design requirements between achieved performance and system cost. Furthermore, in order to evaluate the performance limits of the IRS-USRSM, the closedform results of average bit error probabilities and discrete-input continuous-output memoryless channel capacities are derived using the method of moment generating function. Simulation results are presented to verify the correctness of our theoretical analyses, as well as to demonstrate the efficiency and superiority of the proposed IRS-USRSM scheme
    corecore