
ABSTRACT
Increasing processing power and storage capabilities
encourage systematic adoption of high-end mobile
devices, such as programmable cellular phones and
wireless-enabled PDA to implement new exciting
applications. The performances of modern mobile
devices are bringing innovative scenarios, based on
position awareness and ambient intelligence paradigms.
The market is moving from old “Wireless Applications”
approach to "Mobile Computing", which aims to exploit
mobile host capabilities. This paper presents the
compact Geographic Markup Language (cGML), an
XML-based language defined to enable design and
development of LBS applications specific for mobile
devices, and an example of client-server architecture
using it.

1 INTRODUCTION
As Internet services become pervasive in both for
consumers and businesses, people ask for mobile access
to e-mail, Web, instant messaging and multimedia
delivery systems. Increasing processing power and
storage capabilities encourage systematic adoption of
high-end mobile devices, such as programmable cellular
phones and wireless-enabled Personal Digital Assistant
(PDA), to implement new exciting applications. Early
mobile applications had been designed as downscaled
browsers, which tried to port the desktop experience to
the constrained device of the mobile phone. However,
performances of modern mobile devices are bringing
new innovative scenarios, based on active agents,
position awareness and ambient intelligence paradigms.
The market is moving from old “Wireless Applications”
approach to "Mobile Computing", which aims to exploit
mobile host capabilities. Basically, Mobile Computing
refers to the ability of applications to run locally on the
mobile device even without continuous network
connection. Access to remote server is required to get
updated information or to store data gathered on the
move.

Position awareness is a key element for query data
which strictly depends on user geographical context.
The offer of navigation systems and electronic tourist
guides is growing and market results show that mobile
users look for geographic information and location-
aware services, mobile cartography applications and
context-sensitive data provisioning. Location Based

Services (LBS) promise to be the basis for next year
killer application for mobile devices. LBS
implementation requires careful selection of standards
and protocols, in order to guarantee interoperability and
reuse of large existing databases. From the developer’s
point of view, there are three main enabling
technologies for LBS: connectivity, localization and
visualization. Connectivity comprises remote and local
resource access. Widely adopted GPRS infrastructure
and upcoming UMTS network provide reliable yet fast
wireless IP connectivity, so that designer can find a
effective tradeoff between fully independent local data
storage and browsing-oriented remote data access. At
the same time, standards such as USB OTG (On the Go)
and Bluetooth allow modularity and interconnection of
small and inexpensive modules (phones, storage,
multimedia). Localization is a key factor for LBS
implementation, because it imposes main constraints for
data filtering. Positioning systems like GPS, AGPS and
cell-based are getting cheaper and easily embeddable in
consumer devices. Finally, high resolution color
displays provide effective visualization for images,
maps and complex data.

On top of these enabling technologies, software
frameworks support application development, by means
of standard interfaces and protocols. Mobile devices
running Symbian and Windows Mobile operating
systems are widely supported by developer communities.
On top of these systems, Java2 MicroEdition is market
leader cross-platform runtime environment, especially
on mobile phones area. Although hardware and software
framework technologies can be considered mature and
ready to implement mobile side of LBS applications, a
standard language for geographical information
encoding tailored for mobile devices is still missing.

2 LOCATION BASED SERVICE
An important business is focused onto provide to mobile
users the right information, at the right position, at the
right time, for the right context and therefore specific
services are requested for specific purposes. In
particular, two aspects must be considered: the
functionalities and the market of niche product [1]. They
are the objectives of LBS. In fact, it is a service able to
handle geographical or geographical related information
based on position.

The cGML: a XML language for mobile cartography.

Roberto Demontis, Emanuela de Vita, Andrea Piras, Stefano Sanna
CRS4, Center for Advanced Studies, Research and Development in Sardinia

Edificio 1, Loc. Piscinamanna, Polaris
09010, Pula (CA), Italy

Tel.: +39-070-92501
{ demontis, emy, piras, gerda}@crs4.it

The spread of PDAs and smartphones stimulates the
development of LBS tailored on them. A lot of them
have or will have a GPS module that let to automatically
gather the user position without specify area, street, city
names.

Figure 1. A possible mobile LBS structure.

The use of the user position to determine the “right
information” introduces the biggest topic for LBS: the
lack of privacy security system that guarantees the
protection of personal data. The solution is the use of
user position inside the mobile devices and to provide it
outside only when required. In this case, it is not
possible to use a Location Server to provide the user
position, by using cell sector triangulation or other
techniques, to requiring applications. Regarding to the
“right time”, it is usually considered the instant when
the user makes his request but LBS capable to predict
future locations and prepare information are under
development [2]. Finally, the “right context” is referred
to the user context (device constraints, user’s task).
There are mechanisms available to fit the system to the
current usage situation adapting it to the changing
context [3].

To improve the LBS performance, the number of
functionalities processed on mobile devices is increased
but device constraints influence the service
functionalities such as data format specification, data
transferring and its visualization on client.

In last year, standards based on XML language for LBS
were defined. Examples of them are the specification of
the GeoMobility Server and the XML for Location
Service (XLS) proposed by OpenLS [4]. The last one is
derived from the concept of interoperability in GIS
application based on the Geographic Markup Language
(GML), the Web Features Server (WFS) and the Web
Map Server (WMS). But the most relevant field of study
for LBS is how the right information has to be showed.
Usually, the response is delegated to the mobile
cartography.

3 MOBILE CARTOGRAPHY AND DEVICES
Visualization properties of a cartographic application
depend on data subset to represent and user expectations.
By means of (implicit) user profile and (explicit) device
profile, nomadic users can collect all pieces of
information they need to make decisions regarding their
activities (i.e. during tourism vs. work traveling) with
reference to proximity of area of interest (AOI) and
points of interest (POIs). The quantity and quality of the
information provided to mobile devices depend on
hardware capabilities. This section provides a brief
overview about the LBSs, the mobile device constraints
and some approaches to provide maps in mobile devices.

3.1 Device and runtime environments
The design and development of mobile applications are
different from standard desktop approaches. Hardware
and software constraints influence overall architecture
and programmers have to balance performance
requirements with actual limitations of host device.
Hardware constraints are in terms of processing power,
memory, user interface and connectivity. Processing
power is strictly related to power consumption and
battery life, and it determines what kind of computation
can be performed locally. CPU-intensive algorithms
may lock the device or come to an out-of memory error
before completing task. On the other hand, although
memory modules become small and cheaper, memory
allocation has to be carefully managed. In fact, new
multimedia extensions, such as cameras and video
recorders, require the device to store large amount of
data and keep it until the user will download it to a PC.

The user interface imposes other limitations that
developers have to deal with:

• Display size and resolution are a fraction of
modern PC screens, with reduced color palette;

• Most devices lack a (even reduced) QWERTY
keyboard; user interaction is based on numeric
keypad with multi-tapping character selection
or, sometimes, on pen pointing.

The user himself imposes limitations. In fact, mobile
devices are being used by non technical people and a
“typical customer” can be hardly defined. Moreover:

• Predictive text assistant (for faster text input on
numeric keypad) can be difficult to learn and
use for senior people;

• GUIs must address the non-homogeneous users
experience.

Mobile device connectivity is based on wireless
networks and on-the-field operations are usually
performed by means of packet switching cellular
networks. Connectivity performances depend on
network technology in use (GPRS, EDGE, and UMTS)
and network coverage (inland or urban area). Moreover,
wireless connectivity is often discontinued and network
congestion may affect performances. Therefore,
application designers try to limit the data size

transferred using compression and data splitting
techniques.

To split data over a wireless discontinued channel
means “to split information”, in order to transform
information in an aggregate of small, atomic and self-
contained items. For instance, considering one map as
one single object, it can be split in small sets of bytes
and recomposed to be able to process its information
(“byte packaging”) or it can be split in small map items,
that can be separately processed and each one contains a
part of the information of the whole map (“information
packaging”). This approach is a valid solution for
discontinued connection issues: since every data
fragment is atomic and self-contained, there is no need
to have a continuous network connection; any network
failure will affect only current data item, while
previously received items can be processed and shown
to the user.

Software constraints reflect hardware limitations. More
devices are equipped with low consumption processors,
which provide poorer performance than desktop CPUs.
Runtime memory is usually limited to 10 MB, which is
shared with multimedia applications and messaging
utilities.

Other constraints are being introduced by portability
requirements. There two main software layers involved
in application design and development: operating
systems and runtime environments. Mobile device
market leaders are PalmOS, Windows Mobile and
SymbianOS. They provide state-of-the-art native
development environments, based on C++ programming
language and a code library tailored for mobile
applications. However, the application programming
interfaces (APIs) provided by runtime environments for
mobile devices are poorer than their desktop counterpart
and focused on the requirements for working on small
displays and on the different strategies about GUI
usability. System independent runtime environments
such as Java2 MicroEdition (J2ME), In-fusio, Ewe are
widely adopted for both consumer and business
applications.

In our work, we chose J2ME platform because it is
cross-platform, it does not require agreement to deploy
applications and it is not related to a specific
implementer. Mobile Information Device Profile (MIDP)
is the leading technology for enhanced programmable
mobile phones and provides a rich API for connectivity,
visualization and localization modules.

3.2 Approaches
There are mainly three approaches to mobile
cartography people can find in commercial products:
one based on stand-alone architecture and two on
client/server architecture.

The first approach requires installing a native
application and related data, generally defined in a
proprietary format, on the client device. Such an
approach does not require any Internet connection and it

is able to show only maps based on preloaded data (i.e.
maps, points of interest).

The second approach can be defined “Mobile Browsing”.
The user needs to have a mobile device with an Internet
browser to access raster and vectorial maps. However,
interactivity implies a new connection with the remote
server, because no computation is expected to be
performed locally. Such an approach requires a
permanent Internet connection to submit queries (zoom,
path) and get results but it could be expensive.

The last one is defined “Mobile Computing”, where
increasing performances of upcoming mobile devices
permit to run smart applications locally on cellular
phones and PDAs. The client is able to use the device to
both visualize a map and manage and elaborate data
locally. In this case the client does not need a permanent
connection.

cGML research activity fits into mobile computing area
and it has been designed to be part of web services
technology and XML-based languages.

4 THE GEOGRAPHY MARKUP LANGUAGE
The Geography Markup Language (GML) has been
adopted as “de facto” standard based on XML language
for encoding geographic information. It has been
defined by the Open GIS Consortium to encode vector
geographical information together with metadata on
spatial and non-spatial resources.

The GML defines a set of concrete and abstract element
but not a root element. To use GML data in a valid
XML document, it is required to develop a GML
application schema that fixes a vocabulary for a
particular domain by defining and describing the terms
of such vocabulary. An application schema declares new
elements and attributes in its own namespace using
types, attributes and elements defined by GML to give
vocabulary-specific names to their content models.

There are three main GML releases and other three
subversions: GML 1.0 [5], GML 2.0 [6], GML 2.1.1 [7],
GML 2.1.2 [8], GML 3.0 [9] and GML 3.1[10].

The first two main releases and related subversions are
based on the OpenGis Abstract Specification [11] and
have the objective to encode geographic information in
XML format in way to make possible modeling, storage
and transport using simple geographic features defined
as features containing geometric properties. Each
geometric property contains a set of two-dimensional
coordinates of its vertexes.

Version 3.0 introduces several new features and
concepts to improve and extend the GML capabilities.
The GML is not only based on the OpenGIS Abstract
Specification but also on the ISO 19100 Series of
Geographic Information Standards [12] specification
and it becomes from an XML encoding to an XML
grammar for the manipulation of geographic
information. The set of geometric primitives is enriched
by new numerous one- and two-dimensional primitives

and by the introduction of the three-dimensional ones.
Examples of new one- and two-dimensional geometric
objects are curves and their segments, arcs, Bezier
curves, geodesic curves, triangles, rectangles, surfaces
and gridded surfaces like spheres, cones and cylinders.
We have solids in the three dimensional geometry.

New sets of geometric elements allow defining
aggregations and composite geometries. The new
primitives let available a wide set of items to have as
much as possible close representation of the real world.

Same interesting features included in GML 3.0 and
GML 3.1 are:

• The definition of coordinate reference systems
and coordinate operations; topology; temporal
information (including temporal reference
systems, temporal topology and geometry);

• Dynamic features representation;

• The possibility to insert definitions and
dictionaries, unit of measure, measuring
systems, direction (orientation, direction,
heading, bearing or other directional aspects of
geographic features);

• Observation feature to describe the information
related to a capture event and the value for the
result of the observation, coverage model and
representations.

Although several default styles are defined for top-level
elements, such as Feature, Geometry, Topology and
Label, the styling description may be completely
ignored because GML has the strict separation of data
and presentation and the internal styling mechanism is
been though as a separate model that can be “plugged-
in” to a GML data set.

The common mechanism to obtain a map from GML
data is to convert it into an XML graphical format such
as VML [13], X3D [14], SVG [15] or Mobile SVG [16],
using standard XML transformation facilities (XSLT
[17]). Usually, the GML is translated in SVG for
desktop applications (see [18] e [19]) and Mobile SVG
for mobile devices ones. Mobile SVG is a subset of
SVG’s elements, attributes and events selected for being
used in mobile devices.

There are commercial and open source tools to translate
GML in SVG and for SVG/Mobile SVG rendering.
Some renders are natively embedded into web browser
(i.e. Mozilla [20]), some distributed as plug-ins for
many browsers (i.e. Adobe [21] and Corel [22] SVG
Viewer) and some available as stand-alone viewers (i.e.
Apache Squiggle [23]).

4.1 Some drawbacks to use GML in mobile
devices

The direct use of GML for mobile devices is not
possible. In fact, processing and saving GML data
require a considerable memory space which cannot be
provided by the major part of mobile devices.

Furthermore, the transfer of GML documents of
hundreds of kilobytes through unreliable wireless
connection is expensive and boring for users. Thanks to
the spread of UMTS in Europe, the bandwidth for
smartphone is at least of 358 Kbps, so it could be
possible to download data as the same speed as the first
releases of ADSL connections. But the UMTS has not
the same geographic coverage of the GSM network: it is
available only in city areas. To be used on the mobile
network slower then UMTS, the GML document could
be compressed before the transfer but the decompressing
process in mobile device requires considerable
processing power and extra memory capabilities.

Another drawback is related to the coordinate format.
The coordinates express geographic locations with high
definition and with more details respect to actual user
needs and visualization capabilities of device.

Finally, projecting and scaling geographic data can be
impracticable on small appliances, since many devices
(i.e. all MIDP-compliant mobile phones) have not a
native support for floating-point math.

5 THE COMPACT GEOGRAPHIC MARKUP
LANGUAGE

The considerations exposed in previous paragraph and
the wish to eliminate the translation from GML to SVG
in favor to draw directly the geometric data and keep the
geographic information that disappear with that
translation, driven us to define the compact Geographic
Markup Language (cGML).

5.1 Language features
First of all, it is important to say the cGML is inspired
by GML 2.1.2 so all the references of GML items in
these sections must be considered related to this version
and the features introduced by versions 3 are not
included in the current cGML release.

The word “compact” in the cGML definition
summarizes some its key aspects. We consider the
cGML a compact version of the GML because it uses
shorter elements names, removes elements without
attributes that have only the target to contain other
elements, reduces the number of available attributes.
Although the cGML elements names are shorter than
GML ones, they preserve the human-readability feature
of the XML documents because their names are chosen
in way to make possible to guess their related words
(see Table 1).

To make possible that a cGML document could be a
stand-alone XML document, we have introduced the
cGML root element and defined concrete elements based
on several GML’s abstract ones.

The correct sequence of cGML children elements starts
with Head followed by features and/or feature
collections elements.

Head and its children elements define the spatial
reference system (SRS) and the viewport size where the

geometric information will be drawn. The SRS provides
indication regarding coordinates transformation from the
real world to the cartographic data and it is specified by
the value of the srsName attribute in the RealBox
element. Respect to GML, the SRS is unique in the
cGML and it is applied to all geometry primitives. The
RealBox value is the coordinates of the interest area
expressed by integers.

Figure 2. Structure of a cGML document.

The View element contains the view size of the device
screen. Its zoom attribute is the scale factor between the
real box and the view and represents the inverse of the
number of units expressed in the SRS associated to one
pixel.

In the following example of cGML document, the Head
block is contained in rows 3 – 8. The value of the
srsName attribute is EPSG:32632 and it is the
European Petroleum Survey Group coordinate reference
system code [24] for the UTM (WGS84) Zone 32 North
CRS.

The information in the Head element allows
determining the scale factor between the geographic
coordinates of the AOI and the coordinates expressed in
pixels of the view area. Furthermore, for obtaining the
real coordinates of one point of the view, it is necessary
to consider that the plotting plane is mirrored respect to
horizontal axis respect to the real plane. Defining the
view area as (0, 0, width, height) and the real box area
as (bx1, by1, bx2, by2), the real coordinates Preal(x, y)
of a point Pview(xv, yv) in the view are defined by the
rules:

x = round(zoom * xv) + bx1

y = round(zoom * (height - yv)) + by1

Using the values in the following example of the Head
code, one pixel represents approximately 3.75 meters
and the real coordinates Preal(x, y) for the point
Pview(103, 211) of the view are:

x = round(0.2667 * 103) + 510775 = 510803

y = round(0.2667 * (400 - 211)) + 4339616 = 4339666

 1: <?xml version="1.0
 encoding="UTF-8"?>

 2: <cGML

 xmlns:xsi="http://www.w3.org/

 2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation=

 "cgml_base.xsd"

 version="1.0">

 3: <Head>

 4: <RealBox
 srsName="EPSG:32632">

 5: <cds>510775,4339616

 512275,4341116</cds>

 6: </RealBox>

 7: <View zoom="0.2667">

 400,400</View>

 8: </Head>

 9: <FtCl id="stuffA"
 name="figures">

10: <Ft id="x100" name="zxwy">

11: <LnSt>

12: <cds>267,39
 276,42</cds>

13: </LnSt>

14: <info>info for feature
 x100 in stuffA</info>

15: </Ft>

16: <Ft id="z54">

17: <LnSt>

18: <cds>326,64 353,78

 396,102</cds>

19: </LnSt>

20: <info>info for feature
 z54 in stuffA</info>

21: </Ft>

22: </FtCl>

23: <Ft id="target" name="peak">

24: <Point>

25: <cds>84,55</cds>

26: </Point>

27: </Ft>

28: </cGML>

Code 1. Example of cGML document. Rows are numbered
to simplify references.

Starting from the abstract GML feature and feature
collection elements (_Feature and
_FeatureCollection), cGML defines concrete
and simpler features (Ft and FtCl respectively), while
the featureMember element has been removed. The
optional attribute fid of the GML feature is substituted
by the required id attribute. The optional child element
description is renamed in info, while name becomes

an optional attribute of Ft and FtCl. In the following
example of cGML document, there is one feature
collection, with the id equals to stuffA (rows 9 – 22),
containing two features, with the id attributes are x100
(rows 10 – 15) and z54 (rows 16 – 21), and another
feature having the id attribute equal to target (rows
23 – 27).

GML cGML Characters
saved

_FeatureCollection FtCl 78%

_Feature Ft 75%

Description Info 64%

LineString LnSt 60%

LinearRing LnRn 60%

Polygon Plgn 43%

MultiGeometry MlGeo 62%

MultiPoint MlPoin
t 30%

MultiLineString MlLnSt 60%

MultiLinearRing MlLnRn 60%

MultiPolygon MlPlgn 50%

outerBoundaryIs ex 87%

innerBoundaryIs in 87%

Coordinates cds 73%

Table 1. Comparison between some GML and cGML tags.

The cGML feature elements contain the elements for
defining the geometries. They are defined in two-
dimensional SRS and use linear interpolation between
coordinates. The primitive and aggregate geometry
elements are the same for cGML and GML 2.1.2 except
for the GML Box and the cGML Arc, MlArc (multi-
arc) and MlLnRn (multi-linear ring). The names of
geometry elements are compacted in shorter ones,
following the cGML philosophy, and the GML
geometry members are not used.

GML allows defining the coordinates of the vertexes of
the geometries in two manners:

• A sequence of coord elements (that
encapsulate the X, Y and Z elements)

• A single string contained within a
coordinates element.

For cGML, the second encoding system has been chosen:
it allows reducing the number of characters for
expressing the same coordinate list. The name
coordinates is modified in the shorter cds and its
value is one sequence of tuples separate by one or more
spaces. Each tuple is composed from one to four
integers separated by commas. Furthermore, the cGML
coordinates are related to the screen device. Rows 5, 12,
18, 25 of previous cGML document are examples of
cds values.

5.2 The XML Schemas
The cGML is defined by three XML Schema files:
cgml_base.xsd, cgml_feature.xsd and
cgml_geometry.xsd. The first file contains the
specification of the cGML root element, the sub-tree
related to the Head element and defines the sequence of
features and feature collections. It is the file name
specified in the
xsi:noNamespaceSchemaLocation attribute of
the cGML documents. Row 3 of the previous example
of cGML document depicts the start tag of the root
element. cgml_feature.xsd file defines the
structure for Ft and FtCl while
cgml_geometry.xsd specifies the list of geometry
primitives and the coordinates. The files are
downloadable from the cGML support site [25].

The cGML is thought to be able to work as a stand-
alone XML document and so its three XML Schema
files are required for defining one cGML instance.
Thanks to its modularization in three base schemas, it is
possible to define application schemas that use only
cGML geometries or cGML features and geometries
importing the required subsets. The modularization is a
feature common to the cGML and the GML.

Figure 3. cGML schema dependencies.

5.3 Advantages for application
development

The compact notation and the deletion of some elements
produce make concrete to have cGML documents an
average of about 64% shorter then corresponding GML
ones. It provides several advantages in the data
manipulation on mobile devices:

• The document transfer on wireless networks
requires less time and it is cheaper for user;

• Using a static and well-known vocabulary
allows the development of optimized parsers;

• No compression on server side and
decompression on client side are required. The
second one is an operation power processing
consuming in device with limited capabilities;

• Decrease the depth of Document Object Model
(DOM) tree allowing reducing the memory
space required by cGML parser for their
processing and it can work in entry-level
smartphones too.

6 A USE CASE
 In this part of the paper we describe a service that
exports geographic data, encoded in cGML format,
provided from a server powered by a Web Feature
Server to a Java client.

6.1 The scenario
The service is a task-centered LBS which gives
information about pressure and water flow of the
conduits in the aqueduct system of Cagliari city. The
scenario’s actors are mobile workers and the control
center.

The goal of the service is to serve real-time information
to the workers through their mobile phone in order to
solve emergency situations due to breakdowns. The
mobile worker can communicate with the control center
by phone call, SMS, or using the client application
installed in his device. Furthermore, the worker is able
to move in the working area and the application does not
require a continuous connection with the server: it
downloads information only when necessary and uses
the last data received between a request and the
following.

The same cGML data is used to describe the situation on
worker phone and on PCs of the control center. The data
showed in the client side includes static and dynamic
information. The static data refers to the Cagliari city
viability and permits to calculate minimal path between
locations. The dynamic data is the conduit path and its
values in terms of pressure and flow. These real-time
data is used by the worker to locate the breakdown.

6.2 The server side
The server gathers various kinds of data divided in
geographical feature and their no-geographical attributes.
All of these data items are referenced by name and
contains planar coordinates.

Data processing is performed by means of a predefined
GML model stored in the GeoServer [26], a full
transactional Java implementation of the WFS
specifications. The data returned by the WFS are in the
GML format and refers to the UTM (WGS84) Zone 32
North CRS.

A client can work with the server using the HTTP
protocol through GPRS connection. Each request

contains the specification of the new features context
based on device screen size (the View element) and on
the AOI (the RealBox element) and the SRS name.

 <?xml version="1.0"

 encoding="UTF-8"?>

 <Request>

 <RealBox srsName="EPSG:32632">

 <cds>510505,4339272

 512871,4341638</cds>

 </RealBox>

 <View>400,400</View>

 </Request>

Code 2. An example of client request.

When the server receives a request, it performs the
following transformation operations on data model
items:

• Clipping. The server sends a request to the
WFS which contains the AOI and its response
is a selection of the data in the database. This
response is composed by generic XML data for
the non-geographical attribute and GML data
for the geographical attribute.

• Translation. The XML data returned by the
WFS is translated to cGML through XSLT
processing. The result of such a transformation
is used to define cGML geometric elements
and their attributes. Final cGML document is
completed by adding the Head block. Each
geographic feature is related to one cGML
feature element by the value of their id
attribute.

• Scaling. The real coordinate values are adapted
for plotting in the viewport deleting collapsed
or overlapped lines. The selected geographic
data items are projected and scaled by the
server because the runtime environment for
smartphones has not a native support for
floating-point mathematical operations.

The several parts of the server side are developed in
Java.

Figure 4. The architecture implementing the scenario.

6.3 The cGML viewer
Java technology allows next-generation devices to offer
new capabilities such as enhanced interactivity, rich user
interface, off-line processing, local data storage, and
networking. J2ME provides an application environment
that specifically addresses the needs of cellular phones,
thanks to its MIDP.

The viewer composes a request (like Code 2) specifying
the AOI based on the current user position. Such a
position is retrieved by a Bluetooth GPS hardware
connected to the device. The request is sent to server
establishing an HTTP connection and it returns the
cGML map file. The viewer performs calculations and
display information locally reducing interaction over the
wireless network. It parses the cGML document using
the kXML SAX parser [27] and instances objects to
manage the Header, Ft and FtCl elements and
geometry information. These objects are the input of the
plotting routines. Plotter has been optimized to reduce
allocation of new objects: double buffering and
flyweight pattern to share a common set of elementary
components.

The viewer exposes the common set of operations for
managing maps. For example: map saving/loading
in/from device memory or downloading from a server;
zooming; panning; searching a point of interest by name;
marking POIs by means of virtual cursor; the
visualization of the minimum path and the distance (by
meters). Other features have been implemented to
improve user accessibility. One of them consists of
writing the label related to selected object (i.e. locations
name) in the upper corner of the display with horizontal
text, providing good experience even in bad light
conditions. The application can process these operations
in offline modality without downloading other cGML
documents, according to the mobile computing
paradigm.

(a) (b)

(c)

Figure 5. The viewer running on Nokia 6630. The three
images show how finding a street by name. Image (a)
shows the list of available functionalities. Image (b)
displays the GUI where inserting the name of the street.
While image (c) shows the map with the street highlighted.

(a) (b)

(c)

Figure 6. Three images about the minimum path between
two POIs. Image (a) shows the two points (red and blue)
selected by the virtual cursor. In Image (b) is selected
“Minimum Path” item. Image (c) shows the minimum path
(green) and the distance by meters.

The design of viewer GUIs keeps special attention on
the accessibility because smartphones have not a
pointing system such as mouse or a touch-screen. To
provide simple user interface we: add a virtual cursor,
reduce the amount of information displayed on the
device; make input sequences concise in way to
minimize the number of clicks; offer the user selection
lists; use colors with high contrast.

Another important issue is related to limit the memory
usage and to reduce the number of time-consuming
operations. We kept in account optimization techniques
applying design patterns with little changes (trusted, i.e.,
for the accessor methods to the private fields) and some
common properties of the single elements have been
delegated to the objects collecting them (i.e., the object
related to feature collection collects the common
properties of the contained features).

7 CONCLUSIONS
The GML has been adopted as “de facto” standard to
exchange geographical data for state-of-the-art LBS
([28], [29]). Its richness and complexity make it not
suitable for mobile devices. In this paper, we have
proposed the cGML, a compact version of GML 2.1.2,
based on short tags and encoded with pre-projected and
pre-scaled coordinates.

Our work has been focused on finding a tradeoff
between requirements of geographic information
encoding and visual representation on mobile devices
equipped with J2ME runtime environment. Since target
platform has stronger limits than high-end native
environments, such as frameworks provided by
SymbianOS or WindowsCE operating systems, design
phase has required investigation of device limits and
extensive tests on commercial products. This phase has
shown that models running on emulator where totally
impracticable on real devices.

The result of this process is cGML 1.0 and an
application prototype. cGML acts as both model and
view. The geographic information can be totally
transferred to client device for drawing, caching, and
local operations without a permanent connection to the
server, keeping some XML key features (platform
independent, easily extensible, human readable).

Other works [30] have shown that map provisioning for
mobile devices requires implementing a complex
infrastructure. cGML enable to simplify application
implementation and deployment, by means of XML-
based language and web services infrastructure.

In the field of User-Adaptative Maps [31], it has been
shown device adaptation does not cover all aspects of
mobile provisioning of cartographic data, since maps
dynamically generated depend on too many variables.
cGML enables on-the-fly generations of model, leaving
to the client application the responsibility of data
visualization and it can also be tailored according to any
other user (or device) property specified in the request to
the server.

cGML and Mobile SVG share the same objective: they
are designed to be used in applications for mobile
devices. However, cGML and Mobile SVG keep the
same main scope of languages they come from: cGML
encodes geographic information, even if it could be
directly showed, and Mobile SVG encodes vector
graphics.

8 REFERENCES
[1] D. H. Williams: It’s the (LBS) applications, stupid!

URL:
http://www.wirelessdevnet.com/features/williams_lb
s01
Retrieved: 31 March 2005

[2] H.A. Karimi, X. Liu: A Predictive Location Model
for Location-Based Services. In Proceedings of
GIS’03, pp. 126 – 133, April 2003.

[3] T. Reichenbacher: Adaptive methods for mobile
cartography. In Proceeding of ICC 2003, August
2003.

[4] OpenGIS Location Services (OpenLS).
URL:
http://www.opengeospatial.org/functional/?page=ols
Retrieved: 31 March 2005

[5] Geography Markup Language (GML) v1.0.
URL: http://www.opengis.org/docs/00-029.pdf
Retrieved: 31 March 2005

[6] Geography Markup Language, v2.0.
URL: http://www.opengis.org/docs/01-029.pdf
Retrieved: 31 March 2005

[7] Geography Markup Language, v2.1.1.
URL: http://www.opengis.org/docs/02-009.pdf
Retrieved: 31 March 2005

[8] OpenGIS® Geography Markup Language (GML)
Implementation Specification, version 2.1.2.
URL: http://www.opengis.org/docs/02-069.pdf
Retrieved: 31 March 2005

[9] Geography Markup Language (GML)
Implementation Specification, Version 3.0.
URL:
https://portal.opengeospatial.org/files/?artifact_id=7
174
Retrieved: 31 March 2005

[10] Geography Markup Language (GML)
Implementation Specification, Version 3.1
URL:
http://portal.opengis.org/files/?artifact_id=4700
Retrieved: 31 March 2005

[11] OpenGis® Abstract Specification.
URL:
http://www.opengeospatial.org/specs/?page=abstract
Retrieved: 31 March 2005

[12] International Standard Organization, Technical
Committee 211-Geographic information/Geomatics.
URL:
http://www.iso.org/iso/en/stdsdevelopment/tc/tclist/
TechnicalCommitteeDetailPage.TechnicalCommitte
eDetail?COMMID=4637
Retrieved: 31 March 2005

[13] Vector Markup Language (VML).
URL: http://www.w3.org/TR/NOTE-VML
Retrieved: 31 March 2005

[14] X3D.
URL: http://www.web3d.org/x3d/
Retrieved: 31 March 2005

[15] Scalable Vector Graphics (SVG) 1.1 Specification.
URL: http://www.w3.org/TR/SVG/
Retrieved: 31 March 2005

[16] Mobile SVG Profiles: SVG Tiny and SVG Basic.
URL: http://www.w3.org/TR/SVGMobile12/
Retrieved:

[17] XSL Transformations (XSLT) Version 1.0.
URL: http://www.w3.org/TR/xslt
Retrieved:

[18] R. Lake: Making Maps With Geography Markup
Language (GML). Galdos Systems Inc., 2000.

[19] Z. Guo, S. Zhou, Z. Xu, A. Zhou: G2ST: A Novel
Method to Transform GML to SVG. In Proceedings
of ACM, pp. 161 – 168, ACM Press, 2003.

[20] Mozilla SVG Project.
URL: http://www.mozilla.org/projects/svg
Retrieved: 31 March 2005

[21] Adobe SVG Zone.
URL: http://www.adobe.com/svg/
Retrieved: 31 March 2005

[22] Corel® SVG Viewer.
URL :
http://www.corel.com/servlet/Satellite?pagename=C
orel2/Products/Content&pid=1047023276653&cid=
1047023286996
Retrieved: 31 March 2005

[23] Apache Squiggle – the SVG Browser.
URL: http://xml.apache.org/batik/svgviewer.html
Retrieved: 31 March 2005

[24] EPSG Geodesy Parameters database of geodetic
parameters and Coordinate Reference Systems.
URL: http://ocean.csl.co.uk
Retrieved: 31 March 2005

[25] cGML.
URL: http://www.crs4.it/nda/cgml
Retrieved: 31 March 2005

[26] GeoServer Project.
URL: http://geoserver.sourceforge.net
Retrieved: 31 March 2005

[27] kXML Project.
URL: http://kxml.enhydra.org/
Retrieved: 31 March 2005

[28] J. Chang-Won, Y. Suk-Dae, K. Myung-Sam, C.
Yeong-Jee, L. Joon-whoan: Development of LBS
Application using GML. In Proceedings of
GMLDays 2004, July 2004.

[29] M. Kyoung-Wook, J. In-Sung, C. Dae-Soo, H. Eun-
young: The GML Data Processing in Open LBS
Platform. In Proceedings of GMLDays 2004, July
2004.

[30] A. Zipf: User-adaptive maps for location-based
services (lbs) for tourism. In Proceeding of ENTER
2002, June 2002.

[31] T. Reichenbacher: The world in your pocket towards
a mobile cartography. In Proceedings of ICC’01,
June 2001.

