4,364 research outputs found

    Performance Evaluation of the Labelled OBS Architecture

    Get PDF
    A comparison of three different Optical Burst Switching (OBS) architectures is made, in terms of performance criteria, control and hardware complexity, fairness, resource utilization, and burst loss probability. Regarding burst losses, we distinguish the losses due to burst contentions from those due to contentions of Burst Control Packets (BCP). The simulation results show that as a counterpart of an its additional hardware complexity, the labelled OBS (L-OBS) is an efficient OBS architecture compared to a Conventional OBS (C-OBS) as well as in comparison with Offset Time-Emulated OBS (E-OBS)

    J-MOD2^{2}: Joint Monocular Obstacle Detection and Depth Estimation

    Full text link
    In this work, we propose an end-to-end deep architecture that jointly learns to detect obstacles and estimate their depth for MAV flight applications. Most of the existing approaches either rely on Visual SLAM systems or on depth estimation models to build 3D maps and detect obstacles. However, for the task of avoiding obstacles this level of complexity is not required. Recent works have proposed multi task architectures to both perform scene understanding and depth estimation. We follow their track and propose a specific architecture to jointly estimate depth and obstacles, without the need to compute a global map, but maintaining compatibility with a global SLAM system if needed. The network architecture is devised to exploit the joint information of the obstacle detection task, that produces more reliable bounding boxes, with the depth estimation one, increasing the robustness of both to scenario changes. We call this architecture J-MOD2^{2}. We test the effectiveness of our approach with experiments on sequences with different appearance and focal lengths and compare it to SotA multi task methods that jointly perform semantic segmentation and depth estimation. In addition, we show the integration in a full system using a set of simulated navigation experiments where a MAV explores an unknown scenario and plans safe trajectories by using our detection model

    Statistical analysis of chemical computational systems with MULTIVESTA and ALCHEMIST

    Get PDF
    The chemical-oriented approach is an emerging paradigm for programming the behaviour of densely distributed and context-aware devices (e.g. in ecosystems of displays tailored to crowd steering, or to obtain profile-based coordinated visualization). Typically, the evolution of such systems cannot be easily predicted, thus making of paramount importance the availability of techniques and tools supporting prior-to-deployment analysis. Exact analysis techniques do not scale well when the complexity of systems grows: as a consequence, approximated techniques based on simulation assumed a relevant role. This work presents a new simulation-based distributed tool addressing the statistical analysis of such a kind of systems, which has been obtained by chaining two existing tools: MultiVeStA and Alchemist. The former is a recently proposed lightweight tool which allows to enrich existing discrete event simulators with distributed statistical analysis capabilities, while the latter is an efficient simulator for chemical-oriented computational systems. The tool is validated against a crowd steering scenario, and insights on the performance are provided by discussing how these scale distributing the analysis tasks on a multi-core architecture

    Getting routers out of the core: Building an optical wide area network with "multipaths"

    Full text link
    We propose an all-optical networking solution for a wide area network (WAN) based on the notion of multipoint-to-multipoint lightpaths that, for short, we call "multipaths". A multipath concentrates the traffic of a group of source nodes on a wavelength channel using an adapted MAC protocol and multicasts this traffic to a group of destination nodes that extract their own data from the confluent stream. The proposed network can be built using existing components and appears less complex and more efficient in terms of energy consumption than alternatives like OPS and OBS. The paper presents the multipath architecture and compares its energy consumption to that of a classical router-based ISP network. A flow-aware dynamic bandwidth allocation algorithm is proposed and shown to have excellent performance in terms of throughput and delay

    Adaptive Real-Time Scheduling for Legacy Multimedia Applications

    Get PDF
    Multimedia applications are often executed on standard Personal Computers. The absence of established standards has hindered the adoption of real-time scheduling solutions in this class of applications. Developers have adopted a wide range of heuristic approaches to achieve an acceptable timing behaviour but the result is often unreliable. We propose a mechanism to extend the benefits of real-time scheduling to legacy applications based on the combination of two techniques: 1) a real-time monitor that observes and infers the activation period of the application, and 2) a feedback mechanism that adapts the scheduling parameters to improve its real-time performance
    • 

    corecore