16 research outputs found

    Definition study for photovoltaic residential prototype system

    Get PDF
    A site evaluation was performed to assess the relative merits of different regions of the country in terms of the suitability for experimental photovoltaic powered residences. Eight sites were selected based on evaluation criteria which included population, photovoltaic systems performance and the cost of electrical energy. A parametric sensitivity analysis was performed for four selected site locations. Analytical models were developed for four different power system implementation approaches. Using the model which represents a direct (or float) charge system implementation the performance sensitivity to the following parameter variations is reported: (1) solar roof slope angle; (2) ratio of the number of series cells in the solar array to the number of series cells in the lead-acid battery; and (3) battery size. For a Cleveland site location, a system with no on site energy storage and with a maximum power tracking inverter which feeds back excess power to the utility was shown to have 19 percent greater net system output than the second place system. The experiment test plan is described. The load control and data acquisition system and the data display panel for the residence are discussed

    Overview of biogas technology

    Get PDF
    Baltic Manure WP6 energy potentialsvo

    Future of maritime education in Egypt in light of maritime activities

    Get PDF

    Director's Discretionary Fund Report for Fiscal Year 1996

    Get PDF
    Topics covered include: Waterproofing the Space Shuttle tiles, thermal protection system for Reusable Launch Vehicles, computer modeling of the thermal conductivity of cometary ice, effects of ozone depletion and ultraviolet radiation on plants, a novel telemetric biosensor to monitor blood pH on-line, ion mobility in polymer electrolytes for lithium-polymer batteries, a microwave-pumped far infrared photoconductor, and a new method for measuring cloud liquid vapor using near infrared remote sensing. Also included: laser-spectroscopic instrument for turbulence measurement, remote sensing of aircraft contrails using a field portable imaging interferometer, development of a silicon-micromachined gas chromatography system for determination of planetary surface composition, planar Doppler velocimetry, chaos in interstellar chemistry, and a limited pressure cycle engine for high-speed output

    Aeronautical engineering: A continuing bibliography with indexes (supplement 203)

    Get PDF
    This bibliography lists 449 reports, articles and other documents introduced into the NASA scientific and technical information system in July 1986

    Socio-Technical Challenges of Large Scale CI

    Full text link
    In 2007 the National Science Foundation awarded a grant to the University of Michigan, School of Information to evaluate the George E. Brown Jr. Network for Earthquake Engineering and Simulation (NEES). The objective of the evaluation is to understand how NEES is working in its first years of operation. Although NEES is a huge technological undertaking, this evaluation uses qualitative and quantitative data collection methods to consider the social and organizational aspects of NEES as well. It is a formative evaluation intended to provide guidance for the second phase of the NEES operation and to inform current cyberinfrastructure (CI) initiatives that are underway. As a precursor to the current CI initiatives, NEES is not merely an innovation in how to do EE research, but an innovation in how to do research generally. NEES has shown that useful CI can be developed on a large scale to serve a scientific and engineering research community. Its capabilities have encouraged researchers to propose and conduct more innovative experimental research that spans disciplines and research methods. As an early initiative with few examples to draw upon, NEES has also shown that developing CI on such a scale can be a difficult process that does not always go as planned. This study reports the successes and challenges NEES has experienced in the context of five major findings.National Science Foundationhttp://deepblue.lib.umich.edu/bitstream/2027.42/61845/1/Unrealized_Potential_The_Socio-Technical_Challenges_of_a_Large_Scale_CI_Initiative_Feb_2009.pd

    Batch Control and Diagnosis

    Get PDF
    Batch processes are becoming more and more important in the chemical process industry, where they are used in the manufacture of specialty materials, which often are highly profitable. Some examples where batch processes are important are the manufacturing of pharmaceuticals, polymers, and semiconductors. The focus of this thesis is exception handling and fault detection in batch control. In the first part an internal model approach for exception handling is proposed where each equipment object in the control system is extended with a state-machine based model that is used on-line to structure and implement the safety interlock logic. The thesis treats exception handling both at the unit supervision level and at the recipe level. The goal is to provide a structure, which makes the implementation of exception handling in batch processes easier. The exception handling approach has been implemented in JGrafchart and tested on the batch pilot plant Procel at Universitat Politècnica de Catalunya in Barcelona, Spain. The second part of the thesis is focused on fault detection in batch processes. A process fault can be any kind of malfunction in a dynamic system or plant, which leads to unacceptable performance such as personnel injuries or bad product quality. Fault detection in dynamic processes is a large area of research where several different categories of methods exist, e.g., model-based and process history-based methods. The finite duration and non-linear behavior of batch processes where the variables change significantly over time and the quality variables are only measured at the end of the batch lead to that the monitoring of batch processes is quite different from the monitoring of continuous processes. A benchmark batch process simulation model is used for comparison of several fault detection methods. A survey of multivariate statistical methods for batch process monitoring is performed and new algorithms for two of the methods are developed. It is also shown that by combining model-based estimation and multivariate methods fault detection can be improved even though the process is not fully observable

    Space Station Furnace Facility Preliminary Project Implementation Plan (PIP). Volume 2, Appendix 2

    Get PDF
    The Space Station Furnace Facility (SSFF) is an advanced facility for materials research in the microgravity environment of the Space Station Freedom and will consist of Core equipment and various sets of Furnace Module (FM) equipment in a three-rack configuration. This Project Implementation Plan (PIP) document was developed to satisfy the requirements of Data Requirement Number 4 for the SSFF study (Phase B). This PIP shall address the planning of the activities required to perform the detailed design and development of the SSFF for the Phase C/D portion of this contract

    Modeling and simulation of magnetic components in electric circuits

    No full text
    This thesis demonstrates how by using a variety of model constructions and parameter extraction techniques, a range of magnetic component models can be developed for a wide range of application areas, with different levels of accuracy appropriate for the simulation required. Novel parameter extraction and model optimization methods are developed, including the innovative use of Genetic Algorithms and Metrics, to ensure the accuracy of the material models used. Multiple domain modeling, including the magnetic, thermal and magnetic aspects are applied in integrated simulations to ensure correct and complete dynamic behaviour under a range of environmental conditions. Improvements to the original Jiles-Atherton theory to more accurately model loop closure and dynamic thermal behaviour are proposed, developed and tested against measured results. Magnetic Component modeling techniques are reviewed and applied in practical examples to evaluate the effectiveness of lumped models, 1D and 2D Finite Element Analysis models and coupling Finite Element Analysis with Circuit Simulation. An original approach, linking SPICE with a Finite Element Analysis solver is presented and evaluated. Practical test cases illustrate the effectiveness of the models used in a variety of contexts. A Passive Fault Current Limiter (FCL) was investigated using a saturable inductor with a magnet offset, and the comparison between measured and simulated results allows accurate prediction of the behaviour of the device. A series of broadband hybrid transformers for ADSL were built, tested, modeled and simulated. Results show clearly how the Total Harmonic Distortion (THD), Inter Modulation Distortion (IMD) and Insertion Loss (IL) can be accurately predicted using simulation.A new implementation of ADSL transformers using a planar magnetic structure is presented, with results presented that compare favourably with current wire wound techniques. The inclusion of transformer models in complete ADSL hybrid simulations demonstrate the effectiveness of the models in the context of a complete electrical system in predicting the overall circuit performance
    corecore