
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Batch Control and Diagnosis

Olsson, Rasmus

2005

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Olsson, R. (2005). Batch Control and Diagnosis. Department of Automatic Control, Lund Institute of Technology,
Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/fb1a7820-e5fb-4216-ad72-a5c889b61f9e

Batch Control and Diagnosis

Rasmus Olsson

Automatic Control

Batch Control and Diagnosis

Batch Control and Diagnosis

Rasmus Olsson

Department of Automatic Control

Lund Institute of Technology

Lund, June 2005

Till Min Mormor Britta Hillbom (1919–2004)

—som alltid undrade när jag skulle

skaffa mig ett riktigt arbete.

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 LUND
Sweden

ISSN 0280–5316
ISRN LUTFD2/TFRT--1073--SE

c© 2005 by Rasmus Olsson. All rights reserved.
Printed in Sweden by Media-Tryck.
Lund 2005

Abstract

Batch processes are becoming more and more important in the chemical
process industry, where they are used in the manufacture of specialty
materials, which often are highly profitable. Some examples where batch
processes are important are the manufacturing of pharmaceuticals, poly
mers, and semiconductors.
The focus of this thesis is exception handling and fault detection in

batch control. In the first part an internal model approach for exception
handling is proposed where each equipment object in the control system is
extended with a statemachine based model that is used online to struc
ture and implement the safety interlock logic. The thesis treats exception
handling both at the unit supervision level and at the recipe level. The
goal is to provide a structure, which makes the implementation of excep
tion handling in batch processes easier. The exception handling approach
has been implemented in JGrafchart and tested on the batch pilot plant
Procel at Universitat Politècnica de Catalunya in Barcelona, Spain.
The second part of the thesis is focused on fault detection in batch pro

cesses. A process fault can be any kind of malfunction in a dynamic system
or plant, which leads to unacceptable performance such as personnel in
juries or bad product quality. Fault detection in dynamic processes is a
large area of research where several different categories of methods exist,
e.g., modelbased and process historybased methods. The finite duration
and nonlinear behavior of batch processes where the variables change
significantly over time and the quality variables are only measured at the
end of the batch lead to that the monitoring of batch processes is quite
different from the monitoring of continuous processes. A benchmark batch
process simulation model is used for comparison of several fault detection
methods. A survey of multivariate statistical methods for batch process
monitoring is performed and new algorithms for two of the methods are
developed. It is also shown that by combining modelbased estimation
and multivariate methods fault detection can be improved even though
the process is not fully observable.

5

Acknowledgments

I would like to thank my supervisor KarlErik Årzén for all the help and
stimulating discussions during the work, which has led to this thesis.
KarlErik is always able to make things work on the fly. If you come to
him with a problem it will be solved in realtime. Thank you for the inputs
and encouragements during the hard parts of this work!

I would also like to thank all my colleagues at the Department of Auto
matic Control for making it a pleasure to go to work every day. Special
thanks to Henrik Sandberg for numerous discussions and proof reading,
Rolf Braun for all the help with hardware and practical problems, Björn
Wittenmark for proof reading the thesis, Anders Blomdell and Leif An
dersson for the help with my computer and LATEX, and the Sparta lunch
club.

This work has been supported by the Center for Chemical Process Design
and Control, CPDC, and the Swedish Foundation for Strategic Research,
SSF, which I am very grateful for. The CPDC graduate school has been
a good environment for discussions and exchange of ideas between differ
ent disciplines in chemical engineering. I would especially like to thank
Anders Björk for fruitful discussions and cooperation during the imple
mentation of the MSPC methods.

The cooperation with the Department of Chemical Engineering at Univer
sitat Politècnica de Catalunya (UPC), Barcelona, Spain, has been very
fruitful. Thanks to Jordi Canton, Diego Ruiz, Estanislao Musulin and
Professor Luis Puigjaner.

All the people outside the world of automatic control, who have con
tributed to my life in different ways, also deserve some credits. A special
thanks goes to my Mother, Father, and Sister for always being there for
me. Props go to Cia, the guys at UCPA, Ridea, and LBWS, and all my
friends in Skåne, Gbg, Val d’Isère, and the rest of the world.

7

The development of JGrafchart is funded by LUCAS – Center for Applied
Software Research at Lund Institute of Technology and the EC/GROWTH
project CHEM aimed at developing advanced decision support systems for
different operatorassisted tasks, e.g., process monitoring, data and event
analysis, fault detection and isolation, and operations support, within the
chemical process industries. The CHEM project is funded by the European
Community under the Competitive and Sustainable Growth Programme
(19982002) under contract G1RDCT200100466.

8

Contents

1. Introduction . 13
1.1 Background and Motivation 13
1.2 Research Approach . 15
1.3 Outline of the Thesis . 20

2. Batch Control . 22
2.1 Introduction and Motivation 22
2.2 S88 Batch Control Standard 24

3. Exception Handling in RecipeBased Batch Production 29
3.1 Introduction . 29
3.2 Grafchart and Batch Control 30
3.3 Unit Supervision . 35
3.4 Recipe Level Exception Handling 48
3.5 Synchronization . 58
3.6 Summary . 60

4. Exception Handling Applied to the Procel Batch Pilot

Plant . 62
4.1 Introduction . 62
4.2 CHEM Advanced Decision Support System for Chemi

cal/Petrochemical Manufacturing Processes 63
4.3 Toolboxes . 64
4.4 Procel . 68
4.5 Integration . 70
4.6 Implementation of the Coordinator 70
4.7 Information Flow in the Coordinator 76
4.8 Summary . 80

5. Process Fault Detection and Isolation 81
5.1 Introduction . 81
5.2 Quantitative ModelBased Methods 83

9

Contents

5.3 Qualitative ModelBased Methods 89
5.4 Function Based Methods 91
5.5 Process HistoryBased Methods 92

6. Multivariate Statistical Methods for Batch Process Mon

itoring . 93
6.1 Introduction . 93
6.2 Principal Component Analysis 94
6.3 Multiway Methods for Batch Process Monitoring Based

on PCA . 104
6.4 Threeway Methods for Batch Process Monitoring 118
6.5 Summary . 124

7. Batch Reactor Simulation Model 127
7.1 Introduction . 127
7.2 Model Equations . 128
7.3 Controller . 132
7.4 Recipe Implementation 133
7.5 Definitions of Faults . 135
7.6 Summary . 138

8. Monitoring of Batch Processes using Diagnostic Model

Processor and Deep Model Algorithm 139
8.1 Introduction . 139
8.2 Diagnostic Model Processor 139
8.3 Deep Model Algorithm . 143
8.4 Applying DMP and DMA for Batch Process Monitoring 145
8.5 Summary . 164

9. Comparing Multivariate Statistical Methods for Batch

Process Monitoring . 165
9.1 Introduction . 165
9.2 MPCA . 166
9.3 BDPCA . 179
9.4 Multi Model MPCA . 183
9.5 Moving Window PCA . 188
9.6 Summary . 191

10. Combining ModelBased Estimation and Multivariate Sta

tistical Methods for Batch Process Monitoring 198
10.1 Introduction . 198
10.2 ModelBased PCA . 200
10.3 Fundamental Properties of a Batch Process 202
10.4 Combining ModelBased Estimation and Multivariate Sta

tistical Methods . 206
10.5 Summary . 215

10

Contents

11. Conclusions . 216
11.1 Exception Handling in RecipeBased Batch Control . . . 216
11.2 Batch Process Fault Detection and Isolation 218

A. HigherOrder Singular Value Decomposition 221

B. Schedule in BatchML format 227

References . 230

11

1

Introduction

1.1 Background and Motivation

Batch processes are becoming more and more important in the chemical
process industry, where they are used in the manufacture of specialty
materials, which often are highly profitable. Some examples where batch
processes are important are the manufacturing of pharmaceuticals, poly
mers, and semiconductors. In continuous processes grade and product
changes, as well as startup and shutdown phases can also be seen as
batch processes. Transitions in continuous processes result in production
time loss and may result in a product which is not on specification and
may have to be reprocessed or destroyed. Techniques developed for batch
processes can be used to minimize this.
In a batch process a certain amount of material is transformed, often

in several steps, to reach a new state or form through processing in one or
several units. The formal definition of a batch process in the batch control
standard S88.01 [ANSI/ISA, 1995; IEC, 1997] is:

“A process that leads to the production of finite quantities
of material by subjecting quantities of input material to an
ordered set of processing activities over a finite period of time
using one or more equipment units.”

In this thesis the term batch process means both the production method
from raw materials to the final product and the more delimited definition
concerning the reaction in a batch reactor.
The manufacturing of products in factories using batch processes is

done almost in the same way as we prepare our dinners at home. The
manufacturing follows a recipe where one is told to use ingredients and
vessels of a specified sort, which temperatures should be used, for how

13

Chapter 1. Introduction

long, and so on. A recipe for making a batch of pharmaceuticals may
look very much the same as the one for baking bread. Of course there
are many more restrictions and regulations, which need to be considered
when producing pharmaceuticals.
From a control point of view a batch process combines the charac

teristics of continuousflow production with those of discrete, partbased
production. A batch can be viewed as a discrete entity, which during pro
duction moves between different production units. However, during the
transition phase from one unit to the next unit and during certain opera
tions within a unit, e.g., fedbatch operations, the batch is more naturally
described as a continuous process. The mixed discretecontinuous nature
and the recipedriven production of batch processes make batch control a
challenging problem. A batch control system must support a large number
of functions in addition to the basic regulatory control. Some examples are
production planning, production scheduling, recipe management, resource
arbitration and allocation, batch report generation, unit supervision, fault
detection and identification, and exception handling. A graphical approach
is convenient to illustrate the different steps of batch processes. Both
which actions could or should be taken at a certain instant in time and
which history of operations led to the current state of the process can be
depicted in a clear way.
The focus of this thesis is exception handling and fault detection in

batch control. Exception handling in recipe based batch control is a critical
element for achieving longterm success in batch production. It is reported
to constitute 4060 percent of the batch control design and implementation
effort [Christie, 1998]. Some examples of exception handling situations
could be:

• A valve that fails to respond to an Open or Close command.

• A chemical reaction that does not begin as expected after ingredients
have been added.

• The wrong amount of an ingredient has been charged to the unit.

• A recipe that requires a shared resource which is already in use.

• Fouling on heat exchanger surfaces.

• An equipment unit that is not ready for charging when the preceding
vessel expects to transfer material.

• An emergency stop that must be performed due to a potentially
hazardous situation.

Detection, identification, and correct handling of exceptions of these types
is a key element in process safety, consistent product quality, and produc
tion cost minimization.

14

1.2 Research Approach

1.2 Research Approach

The thesis has two main parts. In the first part the exception handling
strategies in [Olsson, 2002] are further developed. The strategies are im
plemented and integrated with different toolboxes to form a control sys
tem for a batch pilot plant. The implementation uses the batch control
standard S88 (IEC 61512) [ISA, 1995; ANSI/ISA, 1995; IEC, 1997] and
the BatchML standard [World Batch Forum, 2003] for communication be
tween the different toolboxes. Recently a lot of focus has been put on
standardization of the models and terminology used in batch control, e.g.,
NAMUR [NAMUR, 1992] and S88. However, so far very little has been
specified in the area of exception handling. Different discreteevent for
malisms have been used in research on the discrete nature of batch con
trol, see, e.g., [Fritz et al., 1999; Hanisch and Fleck, 1996; Tittus and
Åkesson, 1999]. However, most of this work has been concerned with
scheduling, resource allocation, and simulation. The second part of the
thesis is aimed at understanding how historical data from previously suc
cessful batches can be combined with models to improve fault detection
and diagnosis. The research tries to describe when different methods give
best results and how they can complement each other.
The first part of the thesis has been performed within the Grafchart

group at the Department of Automatic Control, Lund Institute of Technol
ogy. The aim of this group is to develop improved domainspecific graphical
programming languages for control applications, in particular applications
of a discrete and sequential nature. The aim is to extend the languages
that are commonly used for this purposes within automation, especially
Grafcet/Sequential Function Charts, with better support for structuring,
abstraction, encapsulation, reuse, and user interaction. With these exten
sions it becomes easier to implement complex applications. It is easier for
the programmers and process operators to get an overview of the applica
tion and the probability of programming errors decreases. The research
approach is complementary to the work on formal verification methods
for languages of the above type, e.g., [Brettschmeider et al., 1996; Gen
rich et al., 1994].
Recipebased batch control systems is used as the major example do

main in the work. The main reason for this is the high complexity of these
systems. The research approach is to investigate different language ex
tensions and how these language extensions simplify the development of
batch control systems and allow more and more functions in a batch con
trol system to be implemented within the same programming language
framework. As far as possible the ambition is to follow the batch control
standard S88 or to suggest additions to the standard. In previous work
on Grafchart for sequential programming [Johnsson, 1999] the focus has

15

Chapter 1. Introduction

been batch process recipe representation, recipe handling, and resource
arbitration and allocation. Here this work is extended to also include ex
ception handling on both the recipe level and the equipment level. An
internal model approach is proposed where each equipment object in the
control system is extended with a statemachine based model that is used
online to structure and implement the safety interlock logic. The excep
tion detection logic associated with a certain state is only active when the
state is active. The internal model provides a safety check to ensure that
recipe operations are performed in a correct order. An operation is only
allowed to be activated if the state of the equipment unit is within a cer
tain set of allowed states associated with the operation. The thesis treats
exception handling both at the unit supervision level and at the recipe
level. The goal is to provide a structure, which makes the implementation
of exception handling in batch process control systems easier.
The work is based on two new language features in Grafchart: MIMO

macro steps and step fusion sets. A MIMO macro step is a macro step with
multiple input ports and multiple output ports. It can be conveniently used
to represent hierarchical states in statemachine based control systems.
The functionality is similar to the superstates in Statecharts [Harel,
1987]. Step fusion sets [Jensen and Rozenberg, 1991] provide a way to
have multiple graphical representations, or views, of the same step. Us
ing step fusion sets it is possible to separate the exceptionhandling logic
from the normal operation sequences in a way that improves usability.
The proposed approach uses the MIMO macro step functionality to im
plement the state machines and step fusion sets to provide separation
between the exception handling logic and the logic for normal, faultfree
operation.
The exception handling approach has been implemented and tested

in JGrafchart, an implementation of Grafchart in Java. As a test plant
Procel, a batch pilot plant, at the Universitat Politècnica de Catalunya
(UPC) in Barcelona, Spain, has been used. Procel consists of three tanks
with agitators, heaters, and sensors. The tanks are connected in a highly
flexible way to be able to run several different types of recipes in the plant.
The second part of the thesis is focused on fault detection in batch pro

cesses. A process fault can be any kind of malfunction in a dynamic system
or plant, which leads to unacceptable performance such as bad product
quality or personnel injuries. Faults may occur either in the sensors, the
actuators, the control system, or any other components of the process. The
increasing complexity of the control systems in modern plants demands
a higher level of fault tolerance and efficient fault detection and isolation
is one part to achieve this.
The finite duration and nonlinear behavior of batch processes where

the variables change significantly over time and the quality variables are

16

1.2 Research Approach

only measured at the end of the batch lead to that the monitoring of batch
processes is quite different from the monitoring of continuous processes.
Irreversible reactions makes the process uncontrollable. There might also
be normal variation between batches, e.g, initial feed variations, ambient
temperature, and fouling, which makes the process behave differently
between different batches. Normal variations in several parameters can
make the process not fully observable, which makes it impossible to use
observer based methods. The question is how to determine if the current
batch can be classified as a normal batch, which leads to a final product
with quality according to specification.
A benchmark batch process simulation model has been used for the

comparison of different fault detection methods. The process consists of
two consecutive exothermic first order reactions taking place in a jacketed
batch tank reactor and it has been used in several papers concerning batch
process monitoring.
Fault detection and isolation is a large research area, which includes

several different categories, e.g., quantitative modelbased and process
historybased methods. In quantitative modelbased fault detection and
isolation explicit mathematical models are used for the generation of the
residuals. The models are either developed by a firstprinciples or a black
box model is identified from experiments. Most of the methods use lin
ear discrete time blackbox models, such as inputoutput and statespace
models, due to the fact that firstprinciples models are complex and that
chemical processes are often nonlinear, especially batch processes. A first
principles model is based on physical understanding of the process. Mod
els of chemical processes are usually based on heat balance equations and
mass balances with loworder reaction kinetics. In a firstprinciples model
the parameter have physical meaning while in a blackbox model this is
often not the case. Modelbased diagnosis is based on forming residuals
where the outputs from the model are compared with the measurements
from the plant. Discrepancies between these are indications of faults.
In most cases batch production is repetitive in nature. Information

from previous batches may therefore be used to improve control and
monitoring of the current and future batches. This structure is used in
multivariate statistical methods, which fall under the category of process
historybased methods, for batch process monitoring. Multivariate statis
tical methods use only historical data from successful batch runs to model
the normal behavior of the process. Historical data collected from a batch
process is three dimensional by nature with the dimensions Batch, Vari
able, and Time. The data is usually stored in a threedimensional array
X ∈ R

I�J�K , see Fig. 1.1, where I is the number of batches, J is the
number of variables, and K is the number of samples in time. Statistical
control limits from the normal batches are derived and future batches are

17

Chapter 1. Introduction

Time

Batch

Variable

I

J

K

1

1

1

X

Figure 1.1 Historical data collected from a batch process generates a three di
mensional array X ∈ R

I�J�K .

compared to these limits to classify the batches as normal or abnormal.
There exist a number of alternative approaches of multivariate statis
tical methods for process monitoring, e.g., methods based on principal
component analysis, PCA, and methods based on partial least squares
techniques, PLS. The focus in this thesis is PCAbased methods.
Modelbased diagnosis and historybased diagnosis are quite differ

ent in nature, each with its advantages and disadvantages. One aim of
this thesis is to compare and evaluate the two approaches against each
other. This has been done by applying them to the same simulated bench
mark process. The modelbased approach chosen is the diagnostic model
processor, DMP, method [Petti, 1992]. The reason for this choice is the
very general nature of DMP. In the DMP framework it is possible to in
corporate modelbased techniques of very different kinds, e.g., observer
based methods and methods based on parameter identification. The multi
variate methods evaluated include multiway principal component analy
sis, MPCA [Wold et al., 1987], using different ways of unfolding the data in
X [Nomikos and MacGregor, 1994; Wold et al., 1998], batch dynamic PCA
(BDPCA) [Chen and Liu, 2002], multi model MPCA, and moving window
PCA [Lopes and Menezes, 1998; Lennox et al., 2001b]. It is shown how
these different methods are related and when they are equivalent.
An important question is whether it is possible to combine modelbased

and historybased diagnosis methods, and through this obtain something
that has better detection and diagnosis performance than either of the
approaches alone. In the thesis an approach is proposed that uses a dy
namic model to derive additional variables, or estimates, which then are

18

1.2 Research Approach

fed to the multivariate PCA methods in addition to the plant outputs and
inputs. The idea being that adding these estimates should enable the sys
tem to detect faults earlier than by using only the original variables. One
problem, with normal variations in several parameters, is that even a very
simple batch process is not fully observable, which has the consequence
that classical estimation techniques, such as extended Kalman filters and
recursive least squares, do not give the true estimates. It is shown that
combining modelbased estimation methods and historical data using mul
tivariate statistical methods can improve the detection of faulty batches
even though the estimation of parameters and variables does not give the
true values.

Contributions

The main contributions presented in this thesis are:

• A new approach to equipment supervision in recipebased batch con
trol systems is proposed. The approach uses hierarchical state ma
chines represented in JGrafchart to model the equipment status and
the status of the procedures executing in the equipment.

• A new approach for representing exceptionhandling logic at the
recipelevel is proposed. The approach gives a clear separation be
tween exception handling logic and the logic for normal operation.

• Different possibilities for combining the two above approaches is sug
gested and implemented in JGrafchart. The combined approaches
are experimentally verified on a realistic batch pilot plant.

• An extensive survey of methods available for batch process moni
toring using multivariate statistical methods is performed. The per
formance of the methods is evaluated using a benchmark simulated
batch process.

• New algorithms are proposed for the multivariate statistical meth
ods BDPCA and DPARAFAC for batch process monitoring.

• A new way of combining modelbased estimation and multivariate
statistic methods is proposed to improve fault detection of batch
processes, when normal batchtobatch variation is present.

• The methods Diagnostic Model Processor and Deep Model Algorithm
are applied to a benchmark simulated batch process.

19

Chapter 1. Introduction

Publications

The thesis is based on the following publications:

• Olsson, R. and KE. Årzén: “Exception Handling in RecipeBased
Batch Control”. Proc. of ADPM2000 The 4th International Confer
ence on Automation of Mixed Processes, Dortmund, Germany, 2000.

• Olsson, R., H. Sandberg and KE. Årzén: “Development of a Batch
Reactor Laboratory Process”, Reglermötet 2002, Linköping, Sweden,
2002.

• Olsson R. and KE. Årzén: “Exception Handling in S88 using Graf
chart”. Proc. of World Batch Forum North American Conference
2002, Woodcliff Lake, NJ, USA, 2002.

• Årzén, KE., R. Olsson and J. Åkesson: “Grafchart for Procedural
Operator Support Tasks”. Proc. of the 15th IFAC World Congress,
Barcelona, Spain, 2002.

• Olsson, R.: “Exception Handling in RecipeBased Batch Control”.
Licentiate thesis, Department of Automatic Control, Lund Institute

of Technology, Sweden, 2002.

• Olsson R. and KE. Årzén: “A Modular Batch Laboratory Process”.
International Symposium on Advanced Control of Chemical Pro

cesses ADCHEM 2003, Hong Kong, Jan, 2004.

• Musulin, E., M. J. Arbiza , A. Bonfill, L. Puigjaner, R. Olsson, and
KE. Årzén: “Closing the Information Loop in RecipeBased Batch
Production”. 15th European Symposium on Computer Aided Process
Engineering (ESCAPE 15), Barcelona, Spain, 2005.

1.3 Outline of the Thesis

In Chapter 2 batch control in general is discussed and parts of the batch
control standard S88 are described. Chapter 3 describes the previous work
on Grafchart for batch control and the statemachine based approach to
exception handling in recipebased batch control. The topic of Chapter 4 is
the testing and verification of the exception handling approach on the Pro
cel pilot plant. An introduction to existing fault detection and diagnosis
methods is found in Chapter 5. In Chapter 6 several multivariate statis
tical methods for fault detection are described. The benchmark simulated
batch process is described in Chapter 7. The use of the diagnostic model
processor method for batch process monitoring is presented in Chapter 8.
A comparison of the multivariate statistical methods developed for batch

20

1.3 Outline of the Thesis

processes is given in Chapter 9. Chapter 10 contains a discussion and
new results on how to combine modelbased estimation and multivari
ate statistical methods. The last chapter of the thesis, Chapter 11, gives
conclusions and suggestions for future research.

21

2

Batch Control

2.1 Introduction and Motivation

The control of a batch process is quite different from the control of a
continuous process. A continuous process usually operates at a certain
operating point and the control system tries to keep the process at that
point despite disturbances acting on the process. A batch process involves
both continuous and sequential parts. For example, when filling a tank,
see Fig. 2.1, to a certain level the flow to the tank is continuous. When
the desired level is reached the flow is turned off and the next sequential
control part can take place, e.g., heating of the tank. The mixed discrete
continuous nature and recipedriven production of batch processes make
batch control a challenging problem. A batch control system must support
a large number of functions in addition to the basic regulatory control. The
batches need to be scheduled to meet the production plan, recipes should
be developed and maintained, shared resources need to be allocated during
processing, production reports of batches should be generated and stored,
and faults and exceptions need to be detected and taken care of.
Why use automatic control for batch processes? On the surface it seems

easy to control the sequential part of batch processes manually. The task
is just to fill a tank and then start to heat it as in the example above. The
procedure is just to wait until a certain goal is reached and then start the
next part. However, once there is more than one option of which unit to
use, there are common resources to be shared between different units, or
operations need to be synchronized, the task becomes unmanageable. One
of the benefits of automatic control is that the routine operations become
fewer for the operators so they can concentrate on more important issues,
e.g., exception handling and optimization of the process. Controlling a
batch process also leads to repeatability (i.e. consistent product quality

22

2.1 Introduction and Motivation

L2

L1

T

Figure 2.1 Single tank.

between batches) and flexibility (i.e. manufacturing of different products
and different grades). Other reasons are the properties of feedback as
such and its capabilities of handling disturbances and uncertainties in
the process.
The most complex batch process structure is a networkstructured,

multiproduct plant, see Fig. 2.2. In these kind of plants it is possible to
produce multiple products at the same time using a finite set of equip
ment units. The units are organized in a network structure with a high
degree of connectivity. The information about the sequential ordering of
the operations, the equipment requirements for the different operations,
and the product specific parameters for the manufacturing of a certain
product are captured in a recipe. To execute an operation in an equip
ment unit, the batch control system must allocate the resource that the
equipment unit constitutes. A control system for recipebased batch pro
duction must, hence, include substantially more functions than what is
needed in a control system for continuous production. There are a number
of books on the subject of control of batch processes, e.g., [Fisher, 1990]
and [Rosenhof and Ghosh, 1987].

23

Chapter 2. Batch Control

Figure 2.2 Scheme of a networkstructured, multiproduct plant.

2.2 S88 - Batch Control Standard

During the last decade there have been several initiatives with the aim to
standardize batch control systems. The most successful of these attempts
is the S88 batch control standard initiated by ISA [ISA, 1995]. The stan
dard is divided into three parts: Part 1 [ANSI/ISA, 1995] deals with mod
els, terminology, and functionality, Part 2 [ANSI/ISA, 2001] deals with
data structures and language guidelines, and Part 3 [ANSI/ISA, 2003]
deals with general and site recipe models and representation guidelines.

24

2.2 S88 Batch Control Standard

S88 is also known under the committee name SP88 and is equivalent to
the international standard IEC 61512 [IEC, 1997; IEC, 2001a]. A book
that from the user’s perspective describes how to implement S88 for an
icecream factory is [Parshall and Lamb, 2000].
The S88 standard describes batch control from two different view

points: the process view and the equipment view. The process view corre
sponds to the view of the chemists, and is modeled by the process model.
The process model is hierarchically decomposed into the following layers:
process, process stage, process operation, and process action. The equip
ment view corresponds to the view of the production personnel and is
represented by the physical model. The physical model is also a four
layer hierarchical model containing the following four layers: process cell,
unit, equipment module, and control module. A process cell contains one
or several units. A unit performs one or several major processing activi
ties. The unit consists of equipment modules and/or control modules. An
equipment module carries out a finite number of minor processing activ
ities, i.e. phases (described below). In addition to being a part of a unit,
an equipment module can also be a standalone, shared, or exclusive us
age entity within a process cell. The control module, finally, implements
a basic control function, e.g., a PIDcontroller or the logic for handling a
valve battery.
The process model and the physical model are linked together by

recipes and equipment control. S88 specifies four different recipe types:
general, site, master, and control recipes. In this thesis only master and
control recipes are considered. Both types of recipes contain four types
of information: administrative information, formula information, require
ments on the equipment needed, and the procedure that defines how a
batch should be produced. The master recipe is targeted towards a spe
cific process cell. It includes almost all information necessary to produce
a batch. Each batch is represented by a control recipe. It can be viewed as
an instance or copy of the master recipe, that has been completed and/or
modified with scheduling, operational, and equipment information.
The procedure in a recipe is structured according to the procedural

model in S88. The model is hierarchical with four layers: procedure, unit
procedure, operation, and phase. A procedure is decomposed into unit
procedures, i.e., sets of related operations that are performed within the
same unit. The unit procedures are decomposed into operations, which in
turn are decomposed into phases. The phase is the smallest element that
can perform a processoriented task, e.g. open a valve or set an alarm
limit.
The procedural model on the recipe level is mirrored by the same model

on the equipment control level, see Fig. 2.3. The dashed levels could ei
ther be contained in the recipe or in the equipment control. The linkage

25

Chapter 2. Batch Control

Control Recipe
 Procedure

Equipment
 Control

 Recipe
Procedure

Procedure

Operation

Phase

 Unit
Procedure

Equipment
 Phase

Figure 2.3 Control recipe/Equipment control separation.

between an element in the recipe procedure (unit procedure, operation, or
phase) and the corresponding element in the equipment control (equip
ment unit procedure, equipment operation, or equipment phase) can be
viewed as a method call to the equipment unit object that has been al
located to execute the specific recipe procedure element. S88 offers great
flexibility concerning at which level the linkage should take place. It is
also possible to collapse one or several levels.

Exception Handling in S88

Surprisingly enough S88 mentions very little about exception handling
and how this should be integrated with recipes and equipment control.
The only thing that is briefly discussed is that modes and states may be
affected.
Equipment entities and procedural elements may have modes, which

determine how they respond to commands and how they operate. Procedu
ral elements have three modes: automatic, semiautomatic, and manual,
and equipment entities have two modes: automatic and manual. For pro
cedural elements, in the automatic mode the transitions take place as
soon as the transition conditions are fulfilled. In semiautomatic mode,
the procedure requires manual approval to proceed after the conditions

26

2.2 S88 Batch Control Standard

are fulfilled, and in manual mode the execution of the procedural ele
ments is determined manually. One important issue is how mode changes
will propagate. An open question is, e.g., if a unit procedure goes to man
ual mode should all the lowerlevel procedural elements within the unit
also go to manual mode? The standard does not specify propagation rules.
Propagation may be from higher to lower level or vice versa.
Procedural elements and equipment entities may also have states. As

an example the following twelve procedural states are mentioned: idle,
running, complete, pausing, paused, holding, held, restarting, stopping,

stopped, aborting, and aborted, see Fig. 2.4. If a procedure is in the idle
state, i.e., it is available, it may be started, and the state will change to
running. From the running state the procedure may be stopped, aborted,
held, and paused or the procedure will reach its end and return to the
idle state through the complete state. The state of, e.g., a valve can be:
open, closed, and error. The error state would be reached if the valve fails
to respond to an open or close command from the control system.
In S88 an exception is defined as an event that occurs outside the nor

mal or desired behavior of batch control. A few examples of events that
might need exception handling are stated: control equipment malfunc
tion, fire or chemical spills, or unavailability of raw materials or plant
equipment. Exception handling may occur at all levels in the control sys
tem. However, how this should or could be done is not mentioned. The
exception handling can be incorporated in any part of the control system.
Although there are no specific safety standards for batch processes,

general process industry safety standards, such as IEC 61508 [IEC, 1998]
and IEC 61511 [IEC, 2003], also apply to batch processes. A Safety In
strumented System1 (SIS) [ANSI/ISA, 2004] of a batch process need a
number of additional functionalities, which are different from an SIS of a
continuous process. For more information on process safety issues specific
to batch reaction systems see [American Institute of Chemical Engineers
– AIChE, 1999].

1The instrumentation, controls, and interlocks provided for safe operation of the system.

27

C
h
a
p
ter
2
.
B
a
tch
C
o
n
tro
l

RestartingComplete Held Holding

RunningIdle Pausing

PausedStoppingAborting

Aborted Stopped

Reset

Start

Restart

Hold

Pause

Resume
StopAbort

Reset

Reset

F
ig
u
r
e
2
.4
T
h
e
states

of
a
procedu

ral
elem

en
t
as
described

in
S
88

28

3

Exception Handling in

Recipe-Based Batch

Production

3.1 Introduction

An exception is an event that occurs outside the normal or desired behav
ior of the process. Exception handling is a critical element for achieving
longterm success in batch production. It is reported to constitute 40–60
percent of the batch control design and implementation effort [Christie,
1998]. Correct handling of exceptions is a key element in process safety,
consistent product quality, and production cost minimization. In short,
there is money to be made with well structured and automated exception
handling.
In this chapter the work on Grafchart for batch process recipe handling

and resource allocation described in [Johnsson and Årzén, 1998a; Johns
son and Årzén, 1998b; Johnsson, 1999], is extended to also include ex
ception handling. An internal model approach is proposed where each
equipment unit object is extended with a state machinebased model that
is used online to structure and implement the safety interlock logic, and
to provide a safety check to ensure that recipe operations are performed
in a correct order. The goal of this work has been to make the exception
handling easier to design and maintain.
As mentioned is Section 2.2 there is no specific safety standard for

batch processes, although a number of problems arise especially for these
kinds of processes. Some of these problems are stated in [van Beurden
and Amkreutz, 2002]:

29

Chapter 3. Exception Handling in RecipeBased Batch Production

• Separation between the basic process control system (BPCS) and
the safety instrumented system (SIS)

• Synchronization of the process steps between the BPCS and the SIS

• Operator interaction

• Implementation of variable (recipe dependent) alarm levels

• Frequent operational state changes

• Frequent recipe changes

How these kind of problems can be solved using Grafchart is discussed
in this chapter. In Section 3.2 an overview is given of Grafchart and how
it can be used for recipe handling. This is the basis for the proposed
exception handling scheme. Exception handling at the equipment unit
level is described in Section 3.3. The corresponding exception handling at
the recipe level is described Section 3.4. Section 3.5 discusses the problem
with synchronization between units, e.g., in connection with transfers of
batches and, finally, Section 3.6 summarizes the proposed schemes.

3.2 Grafchart and Batch Control

Grafchart is a graphical programming language for sequential control
applications. It is based on Grafcet, or Sequential Function Charts (SFC),
together with ideas from Petri nets, Statecharts [Harel, 1987], highlevel
programming languages, and objectoriented programming. A thorough
presentation of Grafcet and Petri Nets is given in [David and Alla, 1992].
Grafcet/SFC is one of the languages specified for PLC (Programmable
Logic Controller) programming in the standard IEC 611313 [IEC, 1993],
and it is widely used as the representation format for the sequential part
of supervisory control. Grafchart has been developed at the Department
of Automatic Control at Lund Institute of Technology since 1991 [Årzén,
1991; Årzén, 1993; Årzén, 1994].
JGrafchart is an implementation of Grafchart written in Java and

Swing [Sun Microsystems, Inc, 2005]. JGrafchart consists of an integrated
graphical editor and runtime system. In the graphical editor the user
creates Grafchart function charts by copying language elements from
a palette using draganddrop. The language elements are placed on a
workspace and connected together graphically. After compilation the func
tion charts are executed by the runtime system within the JGrafchart ed
itor. Storage to file is provided in the form of XML using the Java API for
XML Processing (JAXP) [Sun Microsystems, Inc, 2002]. For the complete
description of JGrafchart, see the home page:
http://www.control.lth.se/∼grafchart.

30

3.2 Grafchart and Batch Control

Figure 3.1 Step with actions

The main language elements are steps, transitions, macro steps, proce
dures, procedure steps, and process steps. A step represents a state where
actions are performed. Five types of actions are supported. Stored actions
are executed when the step becomes active. The syntax for stored actions
is:

S "variable" = "expression";

Exit actions are executed immediately before a step becomes deactivated.
The syntax is:

X "variable" = "expression";

Periodic actions are executed periodically while the step is active. The
rate depends on the rate of the execution thread. The syntax is:

P "variable" = "expression";

Abort actions are executed when the execution of a step is aborted due to
the firing of an exception transition. The syntax is:

A "variable" = "expression";

Finally, normal actions are used to associate the truth value of a boolean
variable with the activation status of the corresponding step. The syntax
is the following:

N "boolean_variable";

The variables can be references to internal variables or to I/O variables.
The expressions may contain standard boolean and numerical operators.
A step together with some step actions are shown in Fig. 3.1.
Transitions contain a boolean condition and/or event expression that

decides when the transition should be fired. The grammar for transition
expressions and step actions is defined formally using the Java parser
generator JavaCC [Sun Microsystems, 2004]. A parser generator is a tool
that reads a grammar specification and converts it to a Java program that
can recognize matches to the grammar.

31

Chapter 3. Exception Handling in RecipeBased Batch Production

The following special notation can be used for transitions: step.t re
turns the number of scan cycles since the step last was activated, step.s
returns the time in seconds since the step last was activated, step.x re
turns true if the step is currently active, and /BoolVar returns true if
the current value of the boolean variable BoolVar is true and the previ
ous value was false, i.e., it represents a raising edge event. Falling edge
events are handled in a corresponding way.
Grafchart contains three hierarchical abstractions: macro steps, pro

cedures, and workspace objects. Macro steps are used to represent steps
that have an internal structure. The internal structure of the macro step
is encapsulated within the macro step. A new feature of the macro step
is that it may have more than one enter and exit port.
To reuse sequences in a function chart, a sequence can be placed on

the subworkspace of a procedure. Procedures can be standalone enti
ties or methods of objects. For example, an object representing a batch
reactor could have methods for charging, discharging, agitating, heating,
etc. A method is called through a procedure step. The method that will
be called is determined by an object reference and a method reference.
The procedure is active as long as the procedure step is active. A process
step is similar to a procedure step. The difference is that the procedure is
started as a separate execution thread and will continue to execute until
it reaches its exit step even though the process step has become inactive.
To easier organize programs one can use workspace objects. A work

space object contain a subworkspace that can be used in the same way
as a toplevel workspace, i.e., place language elements on to form function
charts. Using workspace objects it is possible to create complex variables,
e.g., structs.
An open problem in Grafcet is how the logic for the normal operat

ing sequence best should be separated from the exception detection and
exception handling logic and sequences. Grafchart contains a number of
assisting features for this. An exception transition is a special type of tran
sition that may only be connected to macro steps and procedure steps. An
ordinary transition connected after a macro step will not become active
until the execution has reached the last step of the macro step. An ex
ception transition is active all the time when the macro step is active. If
the exception transition condition becomes true while the corresponding
macro step is executing the execution will be aborted, abortive actions, if
any, are executed, and the step following the exception transition will be
come active. Macro steps “remember” their execution state from the time
they were aborted and it is possible to resume them from that state using
a special enter port. Exception transitions have proved to be very useful
when implementing exception handling.
Using connection posts, it is possible to break a graphical connection

32

3.2 Grafchart and Batch Control

Local Control Level

Grafchart for sequential

control

Supervisory Control Level

Grafchart for recipe structuring,

monitoring, diagnosis,

and exception handling

Process

Actions

Measurements

Events

Alarms

Figure 3.2 Supervision of a sequential process

between, e.g., a step and a transition. In this way it is possible to sepa
rate a large function chart into several smaller parts that may be stored
on different workspaces. This enhances the readability of the chart. The
connection post can be used to separate the normal operating sequence
from the exception detection and exception handling logic and sequences.
A new language element to separate function charts is the step fusion

set. Steps in a step fusion set represents different views of the same step.
All the steps in a step fusion set become active when one of the steps
becomes active.

Grafchart and Recipe Handling

Grafchart has been used for batch control, recipe handling, and resource
allocation, e.g., [Johnsson and Årzén, 1998a; Johnsson and Årzén, 1998b;
Johnsson, 1999]. In the work different possibilities for representing recipes
and combining recipe execution with resource allocation have been ex
plored. Grafchart can be used at all levels in the hierarchical procedure
model, from the programmable logic controller (PLC) level sequence con
trol to the representation of recipes. Grafchart makes it possible to use
the same language both at the local control level and at the supervisory
control level, see Fig. 3.2.

33

Chapter 3. Exception Handling in RecipeBased Batch Production

Process
 Cell

Unit

Equipment
 Module

Control
Module

Must contain

May contain

May
contain

May contain

May
contain

Figure 3.3 The physical model in S88 (left) and in JGrafchart (right)

Physical Model

The physical model in S88 describing the hierarchical relationships be
tween the physical objects involved in batch control can be modeled us
ing workspace objects in JGrafchart. The structure is shown in Fig. 3.3.
Each unit is represented by a workspace object. The subworkspace of a
unit contains the equipment modules associated with the unit. Also the
equipment modules are represented by workspace objects, which inter
nally contain the associated control modules.

Procedural Model

The hierarchical structure of the S88 procedural model is straightforward
to model in Grafchart using macro steps, see Fig. 3.4. The recipe procedure
is represented as a function chart. Each unit procedure is represented
by a macro step that contains the operations of the unit procedure. The
operations are also modeled as macro steps that internally contain phases,
also these represented by macro steps. Finally, the phase macro steps
contain ordinary steps and transitions modeling the phase logic.

Recipes

Recipes can be represented by procedures or workspace objects in JGraf
chart. The procedures can be called from procedure steps or process steps

34

3.3 Unit Supervision

Procedure

Unit procedure

Operation

consists of an

ordered set of

consists of an

ordered set of

Phase

consists of an

ordered set of

consists of an

ordered set of

Step

Function chart =
Procedure

Subworkspace

Subworkspace

Subworkspace

Step

Macro Step
Operation Macro Step

Phase

Macro Step
Unit Procedure

Figure 3.4 S88 Procedural Model (left) and its representation in Grafchart
(right).

and workspace objects can be copied to become control recipes after com
pleting the recipe with specific parameters.
The linking between the control recipe and the equipment control is

implemented using methods and message passing according to Fig. 3.5.
The element in the control recipe where the linking should take place is
represented by a procedure step. Depending on at which level the linking
takes place, the procedure step could represent a recipe procedure, recipe
unit procedure, recipe operation or recipe phase. The procedure step calls
the corresponding equipment control element, which is stored as a method
in the corresponding equipment object. A number of different ways to
represent recipes in Grafchart were proposed in [Johnsson, 1999].

3.3 Unit Supervision

The proposed method for unit supervision is based on augmenting each
equipment object (unit, equipment module, control module, etc) with a
finite state machine as shown for a reactor unit in Fig. 3.6. The reactor
unit contains three parts: a set of attributes, Grafchart procedures, and
an equipmentstate machine.

35

Chapter 3. Exception Handling in RecipeBased Batch Production

Grafchart for representingGrafchart for representing

the recipe procedures equipment sequence logic

Figure 3.5 Control Recipe/Equipment Control linking.

The attributes could either be attributes of simple types, e.g., max
capacity, or they could be objects, e.g., representing the equipment/control
modules within the equipment unit. In the latter case the proposed struc
ture applies recursively, i.e., the equipment/control modules also contain
the same three parts as the unit. The Grafchart procedures represent
equipment unit operations or phases for, e.g., heating, charging, and mix
ing as in Fig. 3.5. The equipmentstate machine is used to model the
behavior of a physical object, i.e., there are states for normal operation
and there are states for faults. See Fig. 3.7 for the equipmentstate ma
chine of a valve, with the states Opening, Open_OK, Closing, Closed_OK,
Error_Open, and Error_Closed.
The equipmentstate machine could either be a single automaton mod

eling, e.g., the behavior of a unit and all its equipment modules, or con
sist of several smaller parallel automata describing each of the equipment
modules in the unit. If the parallel automata are composed they will form
the single automaton, see Fig. 3.8. Several smaller parallel automata are
probably easier to overview and more userfriendly. This is the approach
used in the rest of this chapter. Hierarchical state machines, where each
state can contain a whole state machine recursively, can be used to get a
better overview of the model.
When using multiple parallel equipmentstate machines the state of

an equipment/control module will propagate up to the equipment state
machine of the unit, e.g. if a level sensor breaks the state of the unit
should go to an error state to indicate there is something wrong within
the unit.
The normal execution of an operation causes the equipmentstate ma

36

3.3 Unit Supervision

Recipe

Recipe
Phase

Equipment Phases Model

Attributes:

Reactor
Equipment Unit

Method
 call

Control Recipe Level Equipment Logic level

Equipment Phases
Model

Attributes:

Simple attributes:

Object attributes:

Figure 3.6 Equipment unit with finite state machine modeling its state.

chine to change state, see Fig. 3.9. For example, when the control system
sends a signal to a valve to open, the equipmentstate machine of the
valve will go from the state Closed to the state Open.
The equipmentstate machine serves two purposes. The first purpose

is to be able to check that all the equipment objects are in a consistent
state when a method is invoked. For example, it should not be allowed to
open a valve if the valve already is open, and it should not be allowed to
fill an equipment vessel that is already full. In a properly designed batch
control system, which always executes in automatic mode, one could ar
gue that consistency checking of this type is already performed through
offline validation and verification of recipes, equipment logic, and pro
duction schedules. However, in practice batch processes are often run in
manual mode for substantial parts of time. Then, it is the operator that
manually invokes different equipment phases and a consistency check of
the proposed type could be very useful. The consistency check is realized
by associating a set of allowed states (or one state if a single state machine
is used) with each operation in the equipment control. It is only allowed
to start the execution of an operation if the state of the equipment unit

37

Chapter 3. Exception Handling in RecipeBased Batch Production

Closed

close open

ok

ok ok

ok

timeout

timeout

Error_Closed

Open

Error_Open

Closing

Opening

Closed_OK

Open_OK

Error

Figure 3.7 The equipmentstate machine of a valve.

belongs to the allowed set of states. The consistency check is implemented
using a startstate machine associated with each operation, see Fig. 3.10.
In the figure the startstate machine, named Start, is in the Not_OK state,
which means that the operation that the startstate machine belongs to
is not allowed to start if it is called at this time. For example, if the op
eration is a heating operation, the reason that it is not allowed to start
might be that the temperature of the unit is too high.
The second purpose of the equipmentstate machine is to provide a

structure for organizing the safety and supervision logic at the equipment
control level. This is done by implementing the safety logic as transitions
or guards in the equipmentstate machine, as in Fig. 3.11. The safety
logic expressed in a transition is only enabled when its preceding state
is active. If a fault occurs, the safety logic causes a state transition from
a normal state to a fault state. For example, when the valve in Fig. 3.7
receives a signal from the control system to open, the state changes to

A1

A2B2A2B1

A1B2A1B1
A2

B2B1

Figure 3.8 Two automata composed to a single automaton.

38

3.3 Unit Supervision

Figure 3.9 The execution of an operation, implemented with a Grafchart proce
dure, changes the state of an equipmentstate machine.

Opening. The error transitions of this state will become active. One of
these error transition conditions is that the valve does not respond to the
control signal within a given time. If a signal is not sent back that the
valve is physically open within this time, the equipmentstate machine of
the valve will go to the Error_Closed state, representing that the valve is
stuck in the closed position. There might be a large difference if the valve
fails to respond to a command when it is in the Open state compared to if
the same problem occurs when it is in the Closed state. Which is the most
severe error depends on the process, e.g., if the valve is for the cooling
water of a jacketed exothermic reactor a failure in the Closed state is
probably worse than a failure in the Open state and in a different process
the opposite would be true instead.
The state machines can be implemented in several ways. In the imple

mentation in this thesis multiple input multiple output (MIMO) macro
steps have been used, see Fig. 3.12. A MIMO macro step have several
input and output ports, similar to the superstate in Statecharts [Harel,
1987]. Using the MIMO functionality of the macro step it is possible and
convenient to model hierarchical state machines of the proposed type in
JGrafchart.

Not_OKOK

Start

Figure 3.10 The startstate machine of an operation for the consistency check for
the start of the operation.

39

Chapter 3. Exception Handling in RecipeBased Batch Production

Normal
condition

Error condition

Error condition

Fault
state

Fault
state

Normal
 state

Normal
 state

Figure 3.11 State machine with safety and supervision logic.

A hierarchical state machine is convenient to use when modeling the
errors of an equipment object. For example, when producing a product
in a reactor it might be important not to exceed a given temperature to
maintain quality. The reactor tank also has hard constraints on what its

Figure 3.12 Equipmentstate machine of a valve implemented in JGrafchart using
MIMO macro steps.

40

3.3 Unit Supervision

DangerQuality

High

Normal

Figure 3.13 Equipmentstate machine of a temperature sensor

operating range is, e.g., maximum pressure and temperature. This results
in different levels of severity of exceptions. A bad product is not nearly as
important as the risk of causing human injury. The different error states
would typically result in different alarms to the operator. If there is a risk
that the quality will go out of the specifications there will be a warning to
the operator, but if the unit is going to a safetycritical state the unit needs
to immediately be taken to a safe state by the exception handling. The
equipmentstate machine of a temperature sensor would typically look as
in Fig. 3.13. The High state of the state machine contains the two states
Quality and Danger, which corresponds to the states described above. The
same equipmentstate machine for the temperature sensor implemented
in JGrafchart is shown in Fig. 3.14. The conditions in the transitions
of the state machines are dependent on the recipe. How the conditions
can be set is described in Section 3.4. The equipmentstate machine of a
temperature sensor may also have many other error states, but they are
not part of this example.

Figure 3.14 Equipmentstate machine of a temperature sensor (T1) implemented
in JGrafchart using a macro step.

41

Chapter 3. Exception Handling in RecipeBased Batch Production

Exception Handling Structure

In the proposed structure for exception handling most of the functionality
is associated with the equipment operations and phases. Each equipment
operation, e.g., Charge, Heat, and Clean, is implemented in JGrafchart
using a workspace object on the workspace of a unit, see Fig 3.15. Also on
the unit workspace are the equipment/control modules, the equipment
state machine of the unit, and attributes describing if the unit is available
or if any error has occurred in the unit.
Each operation workspace object contains a procedure (i.e. the sequen

tial control), the procedurestate machine describing the state of the pro
cedure according to Fig. 2.4, the startstate machine (for the consistency
check), and an exception handling workspace, see Fig 3.16.
The procedure of an equipment operation holds not only the equipment

sequential control, but also contains several checks, which need to be
performed when a procedure is called from a recipe. First it checks if the
unit is available (in S88 only one operation at a time is allowed to be

Figure 3.15 The workspace of a unit with equipmentstate machine, equipment
operations/phases, equipment/control modules, and unit exception handling. At
tributes describing if the unit is available or if any error has occurred in the unit
are also shown.

42

3.3 Unit Supervision

Figure 3.16 Equipment operation workspace.

active in a unit) by checking the state of the equipmentstate machine of
the unit or the attribute Available. It reserves the unit if it is available
and then checks if the procedurestate machine of the procedure itself is
in the Idle state and if so changes the state to Running. The check if the
unit is in a consistent state at the start of the operation is also performed
here using the startstate machine. This could be implemented in several
ways, one example is to implement it in JGrafchart according to Fig 3.17.
In the figure the operation called is Charge, the signal to reserve the unit
is reserve, SM is the name of the equipmentstate machine describing the
state of the unit, LT1 is a level sensor, EV1 is a valve, and the check if the
unit is in a consistent state when starting the operation is a startstate
machine named Start. The implementation of the startstate machine in
JGrafchart is shown in Fig 3.18. The startstate machine consists of only
two steps, OK and Not_OK. The two states are mutually exclusive and if the
OK state is active the operation is allowed to start. In this small example
the unit is not allowed to be full and the invalve (EV1) is not allowed to
be open for the operation Charge to start.
The procedurestate machine of the operation can be implemented in

the same way as the state machine of an equipment object using MIMO
macro steps. The procedurestate machine can be used by an operator
to, e.g., pause the execution of the operation or just as a display ob
ject to depict in which state an operation is. The following twelve pro
cedural states from S88 described in Fig 2.4 are modeled in Fig 3.19:
idle, running, complete, pausing, paused, holding, held, restarting,
stopping, stopped, aborting, and aborted.
In this implementation a large part of the exception handling is specific

43

Chapter 3. Exception Handling in RecipeBased Batch Production

Figure 3.17 Examples of checks and control in a charge operation implemented
in JGrafchart. The operation checks if the operation is in the Idle state, changes
the state of the operation to Running by sending the signal start. It reserves the
unit if it is available, checks if the start of the operation is allowed by the state
of the unit and then opens the invalve EV1. When the level is above the specified
height the valve is closed, the state of the procedurestate machine is set to Idle,
and the unit is released.

to an operation. The exception handling workspace of the operation holds
both the recipe level, and the equipment level exception handling logic,
see Fig 3.20. Both of these would be running in the Safety Instrumented
System in a control system implementation for a real plant. The recipe
level exception handling logic will be further discussed in Section 3.4.
In the equipment level exception handling logic, two types of opera

tions can be identified:

• Detection logic, based on the equipmentstate machines of the unit
and the equipment/control modules.

44

3.3 Unit Supervision

Figure 3.18 The startstate machine of the Charge operation. The two states im
portant to the start of this operation is that the unit is not full and that the invalve
(EV1) is not already open.

• Logic to handle the exceptions. Implemented much like a recipe
where appropriate actions are taken depending on the specific ex
ception detected.

Both kinds of operations will be called from the recipe level exception
handling logic. The detection logic, Detection in this example, checks the
state of the unit by looking at either only the unit’s equipmentstate ma
chine, or at the equipment objects’ individual equipmentstate machines
depending on how the states of the equipment objects propagate to the
unit. One way to implement the propagation of exceptions is to let the
unit’s equipmentstate machine only consist of the states OK and Error,
and let the detection logic be trigged by the unit’s equipmentstate ma
chine, see Fig. 3.21.
The operations to handle the exceptions in Fig. 3.20 are:

• StartExc the sequence, which takes the unit back to a state where
the operation is allowed to start.

• Emergency emergency shutdown (could be the same for all opera
tions in a unit).

• Exc1-Exc2 handling of exceptions 1 and 2, which can be any ex
ceptions specified.

Not all of the exception handling is associated with the execution of op
erations. The unit exception handling is running all the time, see Fig. 3.22.
There is, e.g., exception detection logic checking the state of the equipment
modules even though there is not any operation running in the unit. The
unitspecific exception handling and the operationspecific exception han
dling logic need to be synchronized to avoid false alarms.

45

Chapter 3. Exception Handling in RecipeBased Batch Production

Figure 3.19 The states of an equipment operation modeled with MIMO macro
steps.

46

3.3 Unit Supervision

Figure 3.20 Exception handling associated with an operation.

ErrorOK

Statemachine

Reactor Detection Procedure

Figure 3.21 Implementation of detection logic for an operation in a reactor unit.

47

Chapter 3. Exception Handling in RecipeBased Batch Production

Figure 3.22 Unit detection and exception handling logic. Three different
workspace object for the exceptions Exc1-Exc3 are shown. ExcCond3 is the condi
tion that triggers the exception handling for Exc3. The detection is based on the
equipmentstate machines for the equipment/control modules in the unit.

3.4 Recipe Level Exception Handling

In the proposed approach the main responsibility for fault detection and
exception handling lies at the equipment control level. However, exception
handling is also needed at the recipe level. For example, an exception that
has occurred must be fed back to the control recipe, recorded in the batch
report, and appropriate actions must be taken. If a batch is aborted the
scheduler needs to reschedule the batch for a later time.
An important consideration is how to separate the recipe information

from the exception handling logic and operations. If the latter is included
in the recipe, it becomes difficult to develop, maintain, and use. The ex
ception handling would probably be several times larger than the recipe
itself. There is only one correct way to produce a batch, but the process
may fail in almost an infinite number of ways. Grafchart provides several
features that simplify the representation of exception handling logic at
the recipe level.
It is possible to use exception transitions for recipe level exception

handling. An exception transition is a special type of transition that may

48

3.4 Recipe Level Exception Handling

Figure 3.23 An exception transition connected to the macro step M1.

be connected to a macro step or a procedure step. The exception transition
is connected to the left hand side of the macro (procedure) step. An or
dinary transition connected to a macro (procedure) step does not become
enabled until the execution of the macro (procedure) step has reached the
exit step. An exception transition, however, is enabled all the time while
the macro (procedure) step is active. When the transition is fired the
execution inside the macro (procedure) step is aborted and the step suc
ceeding the exception transition becomes activated. Exception transitions
have priority over ordinary transitions in cases where both transitions are
fireable at the same time. An exception transition connected to a macro
step is shown in Fig. 3.23. The exception transition will fire when M1 has
been active longer than 5 seconds.
In the recipelevel exception handling the exception transitions are

connected to the procedure steps representing the control recipe opera
tions, see Fig. 3.24. At least two extra graphical objects, an exception
transition and a connection post, are needed for each procedure step in
the control recipe. This makes the control recipe become very much larger
than compared to when it is only holding the logic for normal operation.
The detection logic of the recipe level exception handling is in the control
recipe itself while the handling of the exception can be stored somewhere
else.
Another possibility, to avoid the extra graphical objects in the recipe,

is to use step fusion sets [Jensen and Rozenberg, 1991]. Step fusion sets
make it possible to have different graphical representations of the same

49

Chapter 3. Exception Handling in RecipeBased Batch Production

ErrorOK

Statemachine

Reactor Control Recipe

Figure 3.24 Exception transitions for recipe level exception handling.

step. The steps in a step fusion set can be seen as different views of the
same step, which are separated and put at different locations as shown
in Fig. 3.25. This way sequences can be divided into smaller, easier to
read, parts. The steps in a step fusion set do not have to be of the same
kind, e.g, a macro step and a procedure can be in the same step fusion
set. When one of the steps in the set become active, all the steps in the
set become active.
A step fusion set can be either abortive or nonabortive. If the step

fusion set is abortive an exit transition of a step becomes enabled when
the step reaches its exit step. If the transition condition becomes true
the transition fires and all the steps in the step fusion set becomes inac
tive. Procedure and macro steps will abort their execution and the steps’
abortive actions will be executed. The abortive actions have to be taken in
to account when designing macro steps and procedures. If the step fusion
set is nonabortive all the steps in the step fusion set have to reach their
exit step before the exit transitions become enabled.
The step fusion set approach is based on letting the procedure step

that calls an operation in the control recipe be in the same step fusion set
as the procedure step that calls the detection logic of the operation, i.e.,
the procedure step named Detection in Fig 3.20. Consider a control recipe
consisting of a sequence of procedure steps (I) making procedure calls to
different equipment operations (II), see Fig. 3.26. The transition after
the procedure step in the control recipe (III) becomes enabled when the
execution of the corresponding operation is finished. The procedure step
in the control recipe has a corresponding procedure step in the recipe level
exception handling logic (IV), these two steps are in the same step fusion
set. The procedure step in the recipe level exception handling logic calls
the detection operation at the equipment level (V). If an exception occurs
before the operation in the control recipe is finished, the equipment level
exception handling logic detects it. The detection of an exception enables

50

3.4 Recipe Level Exception Handling

Figure 3.25 Step S2 separated into S2a andS2b using a step fusion set. If the
transition after S2b fires S2a and S2b becomes inactive and S4 becomes active. If
the transitions after S4 and S4 become true, S2a and S2b become active again.

the transitions connected to the outport of the detection procedure step
(VI Error Exits). The transition associated with the specific exception
that has occurred becomes true, and the operation for the handling of the
specific exception starts. If the step fusion set is abortive the execution of
the operation called from the control recipe is aborted and the abortive
actions of the procedure step in the control recipe are executed.
The first two error exits would typically be the exit for emergency shut

down of the unit (VII) and the exit for when the starting state is not a
member of the allowed starting states (VIII). Other error exits would be

51

Chapter 3. Exception Handling in RecipeBased Batch Production

for the malfunction of a valve, a sensor, or any other equipment belong
ing to the unit. A default operation, which takes the unit to a failsafe
state if an unspecified exception occurs should also be implemented. The
operations would generate alarms for the operator and other information
during the execution of the exception handling logic. The operations for
the exception handling may be automatic, semiautomatic, or manual.
The nature of the actions that must be taken depends on the applica

tion. In a few very special cases it might be possible to “undo” an opera
tion and rollback the execution of the recipe to a safe execution point, and
from there continue the execution using, e.g., a new unit. This is similar
to the checkpointing and rollback employed in faulttolerant realtime
systems [Jalote, 1994]. One situation where it would be natural to be able
to rollback the execution is when an operation is called and the equipment
object is not in a allowed state for the operation to start. When the state
of the equipment object is changed to one of the allowed states, the oper
ation would be restarted and the execution of the recipe would be able to
continue.
If Fig. 3.26 is used as an example, the steps of the exception handling

would be:

• The detection logic in Detection (V) is triggered by that the state
of the unit is inconsistent with the start of the operation.

• The condition of the error exit for the start exception would become
true and the StartExc (VIII) operation is called from the recipe
level exception handling.

• The StartExc (VIII) operation takes the unit to an allowed state
for the start of the original operation, called from the control recipe,
and the step ALL_OK (IX) will become active.

• The exception recipe would make a Rollback (X) and restart the
detection operation and the operation in the control recipe, since
the two steps are in the same step fusion set.

However, due to the nature of chemical batch processes a rollback
is in most cases not a viable alternative. For example, it is very seldom
possible to undo a chemical reaction. Also in the more common case where
the batch cannot be produced as intended there are several alternatives.
In certain situations it might be possible to still make use of the batch
to produce a product of a different grade or quality. In other situations it
is possible to recirculate the batch ingredients for later reuse. Also in the
case where the batch cannot be used as a product, special actions must
be taken. Due to environmental regulations the partly produced batch

52

3.4 Recipe Level Exception Handling

Figure 3.26 Step fusion sets for exception handling: control recipe and exception
handling.

53

Chapter 3. Exception Handling in RecipeBased Batch Production

must be taken care of in an appropriate way. This may include further
processing to separate or destroy the batch ingredients.
One problem, which occurs when an operation is restarted after an

exception is taken care of, and the normal execution should continue, is
that in the implementation described above the operation will start from
the beginning. It will try to reserve the unit again, etc, as described in
Fig. 3.17. Since the unit is already reserved by the operation itself the
check needs to be overridden and some manual control by the operator is
necessary. One way to take care of this problem is to change the linking
between the recipe and the equipment logic to a lower level. The recipe
operation is divided into several recipe phases or even smaller parts (e.g.
the reservation of the unit), see Fig. 3.27. Each of the recipe phases makes
a procedure call to the corresponding phase at the equipment control level.
In this approach, since the number of phases are increased the number

of workspaces containing exception handling is increased. One workspace
for each phase is needed, each only containing the exception handling
needed for the specific phase. For example, it is not necessary to have
exception handling logic that deals with the reservation of a unit once
it is reserved. The detection procedure becomes more specific and the
number of errors to be handled in each exception handling workspace is
decreased. If the operations are divided into smaller parts some of the
phases can be reused by other operations. For example, the procedures
for reserving and releasing a unit are unit specific and could be reused by
all the operations belonging to the same unit.
In the implementation described above the separation between the

recipe level and the equipment control level exception is at the operation
level using procedure steps and procedures in JGrafchart. The separation
of the exception handling is at the same level as the separation in the
procedural control and follows the S88 standard. The separation could be
at any level specified in S88, see Fig. 2.3.
Another way to implement the exception handling is to have the ex

ception detection logic in the equipment operations, see Fig. 3.28. If an
exception occurs it will be detected by the exception conditions in the op
eration. The exception conditions are specific to which step is active in the
operation and are based on the equipmentstate machines of the unit and
the equipment/control modules. The normal execution of the operation
is aborted and the operation will finish using a different path. Since an
exception has occurred the transition after the procedure in the control
recipe will not be fireable. Instead the error exit corresponding to the ex
ception is fired and the exception handling will try to recover from the
exception, see Fig. 3.29, where this is implemented using nonabortive
step fusion sets. In this approach the recipe level and equipment con
trol level exception handling are no longer separated in the same way as

54

3.4 Recipe Level Exception Handling

Figure 3.27 A recipe operation divided into phases and smaller parts. Each of the
procedure steps calls a procedure at the equipment control level.

the normal procedural control, i.e, the control recipe and the equipment
control.

Recipe Dependent Conditions

Units are usually used for the manufacturing of several different prod
ucts and different grades of the products. The recipe parameters, e.g.,
size, temperature of reaction, duration of mixing, and catalyst, are there
fore changed according to the specifications of the product. However, it
is equally important to change the parameters of the exception handling,
i.e., the conditions in the equipment state machines of the different equip

55

Chapter 3. Exception Handling in RecipeBased Batch Production

Figure 3.28 Exception detection logic in an equipment operation. If an exception
occurs the execution of the operation will finish but by following the normal path.
The condition of transition after the procedure step in the control recipe will not
be true. Instead the error exit in Fig. 3.29 corresponding to the error, which has
occurred is fired.

ment/control modules. For example, what was considered a normal tem
perature when producing one product might lead to a runaway reaction
when producing another product. The conditions of the transitions can
easily be changed by using stored actions in the procedure step, which
calls an operation, to change the variables used in the conditions of the
transitions in the state machine. In the same way exit actions can set
the variables to, e.g., the default values of the unit, when a procedure is
finished. When the procedure step in Fig. 3.30 is activated the variable
QualMax in the state machine will get the value 90.0. This means that
if the temperature is not changed the state will go to Normal, since the
value of the temperature sensor is less than the value of QualMax.

56

3.4 Recipe Level Exception Handling

R
e
c
o
v
e
r

R
e
c
o
v
e
r

fr
o
m

 E
x
c
1

fr
o
m

 E
x
c
2

Figure 3.29 A procedure step (I) calls the operation (II) with the detection
logic, see Fig. 3.28. The transition (III) after the procedure step will only fire if no
exception is detected. If an exception is detected the corresponding error exit (IV)
will fire and the exception handling will try to recover from the exception.

57

Chapter 3. Exception Handling in RecipeBased Batch Production

DangerQuality

SM

TemperatureSensor

High

Normal

QualMax

Value <= QualMax

UnitMax

Value

70.0 100.0

83.4

Procedure:

Actions: S TemperatureSensor.SM.QualMax = 90.0;

"Operation_A"

X TemperatureSensor.SM.QualMax = 70.0;

Figure 3.30 Conditions in state machine set by a procedure step.

3.5 Synchronization

One important part that is often hard to implement in batch control sys
tems is the synchronization between units. In the recipe, two operations
seem to be simultaneous, but at the equipment control level synchroniza
tion is needed. For example, to make sure that valves and pumps are
opened/closed and started/stopped in the correct order during a trans
fer from one unit to another, the units need to perform a handshake. If
the pump used for the transfer is a displacement pump and it is started
before the valve is opened, there is a risk that the pipe will burst. The
handshake works as an interlock to make sure the actions are taken in
the right order. In Fig 3.31 an implementation of a handshake between a
transfer operation and a receive operation in two different units is shown.

The task of synchronization becomes even harder when also the recipe
level exception handling should be synchronized with the normal parallel
recipe operations, i.e. concurrent operations in the recipe. In Fig 3.32 the

58

3.5 Synchronization

Figure 3.31 Synchronization using handshake between operations in two units.

transfer operation of Unit1 and the receive operation of Unit2 are shown
at the recipe level as well as the procedure step representing the detection
operations in the recipe level exception handling in both units. The four
procedure steps in the figure will be activated at the same time instance. If
an exception occurs in Unit1 during the execution, the exception handling
for Unit1 will be activated. If Unit2 does not receive this information it
will continue to try to transfer material. Unit2 needs to know which kind
of fault has occurred in Unit1. The two units need to perform a controlled
abortion of the two operations in a handshake manner just like when
starting and stopping the normal execution of the two operations. The
result is that the exception logic for the errors in the receive operation
must mirror the exception handling logic for the corresponding transfer
operation (and the other way around) to perform a controlled abortion
of the two operations. Exception handling logic for exceptions occurring
in Unit1 must be part of the exception handling logic of Unit2 and vice
versa.

59

Chapter 3. Exception Handling in RecipeBased Batch Production

Figure 3.32 Transfer and receive operations in a recipe with exception handling.

3.6 Summary

A new approach to structure exception handling in recipebased batch
control has been described in this chapter. The structure is based on aug
menting units, equipment, and procedural elements with a statemachine
based model. The state machine models the current state of the object
and also organizes which new states the object can reach from the cur
rent state. The models describe both normal operation states and faulty
states. This makes it easy to model that certain faults can only occur from
specific states and at specific times during operation. A new language ob
ject, the MIMO macro step, has been added to Grafchart to be able to
easily implement hierarchical state machines. The MIMO macro step can
have several inputs and outputs and encapsulate a sublevel in the state
machines.
State machines have been used to model different kinds of behavior

in the batch control system. Startstate machines are used to decide if
the unit is in a state where an operation is allowed to start. The deci
sion is based on both measurements of and the availability of auxiliary
equipment needed for the operation. The consistency checks are realized
by associating an allowed set of states with each operation in the control
system. Procedurestate machines model the state of an operation, i.e.,
if the operation, e.g., is running, stopped, or idle. Equipmentstate ma
chines are modeling the state of each equipment module, such as a valve,
a pump, or the whole unit.
During the manufacturing of a batch the development of the recipe

is dependent on the state of the unit. If an operation is not allowed to
start or if it has to be aborted the recipe needs to act accordingly to

60

3.6 Summary

inform the operators and ensure safety. This logic taking care of problems
arising during execution is normally hidden from the operators during
normal operation and separated from the normal recipe. Information to
higher levels such as production planning and scheduling is also needed.
This is described in the next chapter. Several ways of separating normal
recipe execution from exception handling logic at the recipe level have
been discussed in this chapter. One way is to use exception transitions, a
special transition that can fire at any time and abort the execution of any
kind of step. A new language object, step fusion sets, is added to Grafchart
to allow for a new way of making this separation easier. The step fusion set
holds several steps representing different views of the same step. If one of
the steps are activated all the steps in the step fusion set becomes active.
The step fusion set can be either abortive or nonabortive. A recipe can
easily set the conditions in the state machines to be enable logic to detect
recipe dependent exceptions and to change normal operating regions and
limits.
The described structures and language elements in JGrafchart should

make the development, maintenance, and use of the exception handling
logic both at the unit level and at the recipe level an easier task. The new
structures and concepts described in this chapter also fits nicely into the
S88 batch control standard.

61

4

Exception Handling

Applied to the

Procel Batch Pilot Plant

4.1 Introduction

In this chapter the implementation of a batch control system for the Procel
batch pilot plant is described. The EC/GROWTH project CHEM has de
veloped toolboxes for batch control, which are used in the control system.
A closedloop framework is presented that integrates decision support
tools required at the different levels of a hierarchical batch control sys
tem [Musulin et al., 2005]. The proposed framework consists of a reactive
batch scheduler (MOPP) and a fault diagnosis system (ExSitM) devel
oped by the Department of Chemical Engineering at Universitat Politèc
nica de Catalunya (UPC), Barcelona, Spain, and a S88recipebased co
ordinator implemented in JGrafchart, see Chapter 3.2. The tools need to
exchange information to obtain optimal utilization of the production plant.
The complete integrated system is built using the S88 batch control stan
dard [ANSI/ISA, 1995].
The integration of a fault diagnosis system (FDS) aims to timely pro

vide the process state information to the different levels in the decision
making hierarchical structure, thus reducing the risk of accidents and
improving the efficiency of the reactive scheduling in the most effective
way. To handle unit supervision, exception handling, and recipe execu
tion a coordinator is implemented in JGrafchart. The unit supervision
is based on modeling the state of each equipment object and procedural
element using finite state machines as described in Chapter 3. A closed

62

4.2 CHEM Advanced Decision Support System

loop framework for online scheduling of batch chemical plants integrat
ing both robustness considerations, fault diagnosis, recipe coordination,
and exception handling is proposed in this work. This online integration
leads to a fast execution of the recovery procedures and the rescheduling.
The work in this chapter is a continuation of the case study presented
in [Olsson, 2002].

4.2 CHEM - Advanced Decision Support System for
Chemical/Petrochemical Manufacturing Processes

The aim of the CHEM project was to develop and implement an advanced
Decision Support System (DSS) for process monitoring, data and event
analysis, and operation support in industrial processes. The system is an
integration of software tools, which improve safety, product quality, and
operation reliability as well as reduce economic loss due to faulty states
in refining, chemical, and petrochemical processes.
Advanced methods and software tools based on statistical, system theo

retic, and artificial intelligence methods for process monitoring, detection,
diagnosis, and decision have been developed within the CHEM project.
These tools have been integrated into the DSS in a modular fashion. The
DSS is developed to be able to interface with commercial plant database
and process control software. The DSS environment was developed and
tested at pilot plants and industrial sites.
The main motivations for the CHEM project were as follows:

• The great amount of information collected at industrial plants should
be used to improve efficiency and productivity, to avoid unscheduled
shutdowns and abnormal situations. Considering the economic loss
and the potential damages, a system with the capability to handle
those situations will have big impact for the economics as well as
for safety and environment protection.

• The complexity of control systems makes it more and more difficult
to make the right decisions at the right time. By giving easy to
use tools to the operators they will more easily be able to make
the right decisions during operation of the plant. The tools should
provide explanations, thus increasing the level of knowledge of the
process.

• A lot of work has been conducted in similar fields: process trend
analysis, fault diagnosis and decision support systems, but many
methods still work separately and it remains difficult for developers

63

Chapter 4. Exception Handling Applied to the Procel Batch Pilot Plant

of supervision systems to build applications for new plants. There
fore, it is necessary to join the efforts of specialists with a wide
spectrum of expertise area to be able to build a comprehensive su
pervision system.

The DSS demonstrator is built around G2 [Gensym Corporation, 1995],
a commercial software, from Gensym, widely used in chemical and petro
chemical industry. G2 is used as the integration tool even though some
toolboxes are developed in other languages.

4.3 Toolboxes

In this section the different toolboxes that have been integrated for the
Procel control system are described. In Fig. 4.1 an overview of the different
toolboxes and the flow of information can be found.

CHEM Integration Platform

The CHEM integration platform is developed in G2. The platform con
sists of two layers, CHEM Communication Manager (CCOM) and a Data
Manager (DTM) described below, see Fig. 4.1.

CHEM Communication Manager CCOM allows other toolboxes to
communicate through the exchange of messages. It is based on a public

CCOM

COORDINATORSCHEDULER

DTMFDS

PROCEL

Figure 4.1 Overview of and the information flow between the different toolboxes
in the Procel control system.

64

4.3 Toolboxes

domain Message Oriented Middleware (MOM) software, xmlBlaster [xml
Blaster.org, 1999], that provides Publish/Subscribe and PointtoPoint
message communication. CCOM acts as a server that clients, e.g., a tool
box, can connect to. A client API has been developed on top of the MOM
interface to provide additional functionality and hide the aspects of trans
port protocols to the clients. The messages are in the XML format.

Data Manager To make the exchange of data between the compo
nents/toolboxes easier a Data Manager (DTM) has been developed. The
DTM is used to store and retrieve data produced or requiered by the
different toolboxes. It is a selfcontained component that is seen by the
other components as an application offering a number of services, which
are accessed through CCOM, see Fig. 4.1.

Scheduler

MOPP is a scheduler package developed at UPC [Cantón Padilla, 2003;
Graells et al., 1998; Ruiz et al., 2001; Arbiza et al., 2003a; Bonfill et al.,
2004]. The scheduler uses Event Operation Networks (EON) to model
the system. EON models have proved to be an efficient way to describe
time constraints between operations in complex production structures.
The EON model is built using a general recipe description and other
guidelines from the batch control standard S88.
MOPP has a library of different dispatching rules to determine a fea

sible schedule. The dispatching rules available can be classified in three
sets: priority rules that determine a list of recipes to be sequenced and
assigned to specific units, assignment rules that determine which equip
ment should be used for each batch, and sequencing rules that determine
the sequence of batches and the sequence of operations for each unit.
It also has a library containing a variety of heuristic and rigorous

optimization algorithms, such as rulebased and genetic algorithms, to
determine an initial optimum schedule. The objective function can be
specified to optimize for, e.g., use of resources and cost of changeovers.
The scheduler generates a first batch sequence based on the present state
of the plant, the predicted start and end times of the operations, and
the orders of products. It generates a list of control recipes, which are
sent to the coordinator, via the DTM, using the Batch Markup Language
(BatchML) [World Batch Forum, 2003] format. BatchML provides a set
of XML schemas based upon the S88 family of standards. BatchML may
be used to design interfaces in control systems as well as the basis for
documenting requirements, designs, and actual product and process data.
The time for performing a certain operation may increase over time

due to, e.g., fouling or catalyst degeneration, and it may decrease when
the heat transfer areas are cleaned or the catalyst is regenerated. Such

65

Chapter 4. Exception Handling Applied to the Procel Batch Pilot Plant

time trends can be used to predict future operation times based on the
feedback of the real execution times for the process operations from the
coordinator. The coordinator also sends back information about the state of
the plant, such as equipment availability and exceptions. Large deviations
from the original schedule and information about equipment breakdowns
may trigger a rescheduling of the batches based on the new information.
If the new schedule differs from the recipe being executed in the batch
control system it is sent to the process coordinator to replace the current
one. This kind of rescheduling is called reactive scheduling. A simplified
description of the rescheduling algorithm [Arbiza et al., 2003b] consists of
the following steps in the scheduler.

1. Create an initial schedule.

2. Send the schedule to the process coordinator.

3. Receive the actual executed schedule from the process coordinator.

4. Generate a new optimal schedule.

5. If the new schedule significantly differs from the schedule executed
by the coordinator go to 2, else go to 3.

The abortion of a batch due to an exception also leads to the generation
of a new schedule.
The rescheduling system is configurable and customizable considering

the manager objectives. It allows selecting different dispatching rules, op
timizers, and objective functions according to the process knowledge. The
alternative rescheduling techniques (recalculate a new robust schedule,
recalculate a schedule without robustness considerations, reassignment,
etc.) are evaluated and the system selects the best suited one according
to the objective function being used. Optimization algorithms may be in
cluded depending on the interest of the decision maker and the required
reaction time.
MOPP publishes the schedules of batches to be processed and sub

scribes to the actual progress of the scheduled batches published by the
coordinator.

Fault Detection System

A fault diagnosis system (FDS), called ExSitM, has been developed at
UPC. It consists of an artificial neural network (ANN) structure together
with a fuzzy system in a blockoriented configuration. The FDS combines
the adaptive learning diagnostic procedure of the ANN with the transpar
ent deep knowledge representation using a structured form of knowledge
based expert systems. In the rest of this chapter it is assumed that the
FDS correctly detects and isolates the faults when they occur.

66

4.3 Toolboxes

Coordinator JGrafchart

DTM

Figure 4.2 Outline of the modules in the coordinator. Schedule/recipe manage
ment, operator interface, equipment control, IO, and alarm manager

ExSitM subscribes to measurement data from the plant and actua
tor data from the coordinator and it publishes alarms to the DTM when
abnormalities are detected.

Coordinator

The coordinator is implemented in JGrafchart. The control system in the
coordinator includes management of scheduled batches, recipe execution,
unit supervision, alarm propagation, and exception handling and it follows
the batch control standard S88. The coordinator consists of a number
of different modules in: schedule/recipe management, operator interface,
equipment control, IO, and alarm manager, see Fig. 4.2.
The schedule manager unpacks the schedule from BatchML to objects

in JGrafchart. Each batch is started as a control recipe in the recipe
manager. The unit supervision is based on modeling the state of each
equipment object and procedural element using finite state machines as
described in Chapter 3. The exception handling takes place at both the
recipe and the equipment level.
The coordinator subscribes to the schedules published by MOPP, mea

surement data from the Procel plant, and alarms from the FDS toolbox.
The coordinator publishes actuator data and the actual progress of the
recipes.

67

Chapter 4. Exception Handling Applied to the Procel Batch Pilot Plant

4.4 Procel

The Department of Chemical Engineering at UPC has developed a batch
pilot plant called Procel, see Fig. 4.3. The plant consists of three tanks
of glass equipped with agitators, heaters, level sensors and temperature
sensors. The tanks are connected in a highly flexible way using pumps,
pipes, and magnetic valves, see Fig. 4.4. The plant also has a system of
heat exchangers for heating and cooling. Currently these are only used
when the plant is running in continuous mode. However, they could be
used during the transfer of a batch from one tank to another or during
circulation within a unit. The physical plant is located in Barcelona, but
there also exist a realistic simulation model of the plant implemented in
MATLAB/Simulink. The simulation model has been used to develop the
batch control system for the real plant, see [Olsson, 2002].
Procel has been used as a test pilot plant in the research of monitoring,

control, online fault diagnosis and reactive scheduling of batch processes,
see [Ruiz et al., 2001; Cantón et al., 1999] for some of this work. Here the

Figure 4.3 Photo of the Procel plant.

68

4.4 Procel

Figure 4.4 A schematic overview of the Procel plant, from [Ruiz et al., 2001].

pilot plant is used as a realistic example to test the exception handling
scheme and to integrate the different toolboxes to close the information
loop within the plant.
During operation Procel connects to the DTM as a client like the tool

boxes. It publishes measurement data and it subscribes to the actuation
signals from the coordinator.

Control System

The original control system for the Procel plant is implemented in ABB
Sattline [Johanneson, 1994], which is still running underneath the new
control system. Sattline is used as a safety net and has several safety and
equipment interlocks, which would have been necessary to reimplement
otherwise. In this way safety is achieved and the use of the coordinator
becomes more flexible. The coordinator sends commands to Sattline, which
changes the states of the physical equipment within the process. In the
rest of this report Sattline is considered as a part of the Procel plant
instead of a part of the control system.

69

Chapter 4. Exception Handling Applied to the Procel Batch Pilot Plant

4.5 Integration

The proposed and implemented framework for the integration can be seen
in Fig. 4.5. The scheduler sends an initially generated schedule to the coor
dinator and the FDS, (1). The coordinator starts control recipes according
to the schedule and sends control actions to the plant and the FDS, (2).
During the execution of the recipes the coordinator sends the actual start
and finishing times of the phases and operations of the control recipes
to the scheduler and the FDS, (4). The FDS and the exception handling
logic in the coordinator detect deviations from the original schedule and
the scheduler can update the average duration of the operations/phases
in its library based on this data. Procel sends measurements to the coordi
nator and the FDS to be used for the control and fault detection, (3). If an
exception (fault) occurs an alarm is sent from the FDS to the coordinator,
(5). The coordinator takes the appropriate control actions depending on
the fault. The exception is reported back to the scheduler, (6). Depending
both on the duration of the executed schedule and on the severity of the
exception the scheduler makes a decision if a new schedule should be sent
or if the original schedule should continue. If a batch has to be aborted
the batch needs to be rescheduled and a new schedule is needed.

4.6 Implementation of the Coordinator

In this section the implementation of the coordinator is described. The
different parts: management of scheduled batches, recipe execution, unit
supervision, alarm propagation, and exception handling are described.
The exception handling structure described in Chapter 3 is used in the
Procel implementation. The internal model approach where each equip
ment object is extended with a state machinebased model is used for unit
supervision.

Schedule Management

As mentioned above the scheduler publishes a schedule of batches in the
DTM as an XML object following the BatchML standard. The coordinator
receives the schedule through its subscription to the DTM. It then un
packs the batches one at a time and starts a control recipe for each batch
by making a procedure call to the appropriate procedure containing the
control recipe. The control recipe is started with the parameters given
in the XML object sent from the scheduler. The recipe procedure is im
plemented as a Grafchart function chart, e.g., according to Fig. 4.6. The
recipe waits for its requested start time before it tries to start to execute.

70

4.6 Implementation of the Coordinator

SCHEDULER

PROCEL

COORDINATOR

FAULT DIAGNOSIS

CCOM/DTM

1. Schedule

1. Schedule

1. Schedule

4. Executed Schedule

4. Executed Schedule

4. Executed Schedule

6. Recipe Alarm

6. Recipe Alarm

2. Control Actions

2. Control Actions

2. Control Actions

3. Process Data

3. Process Data

3. Process Data

5. Process Alarm

5. Process Alarm

Figure 4.5 Overview of the information flow in the integrated system.

The top level of a schedule contains a list of batches. Each batch con
tains the following information from the BatchML standard:

• Status

• Recipe ID

• Batch ID

• Product ID

• Order ID

• Batch Priority

• Requested Batch Size

• Actual Batch Size

• A number of Unit Procedures

71

Chapter 4. Exception Handling Applied to the Procel Batch Pilot Plant

Each Unit Procedure contains:

• Unit Procedure ID

• Status

• Requested Equipment ID

• Actual Equipment ID

• A number of Operations

Each Operation contains:

• Operation ID

• Status

• Requested Start Time

• Actual Start Time

• Requested End Time

• Actual End Time

The schedule information of the recipe in Fig. 4.6 in BatchML format can
be found in Appendix B.

Recipe Management

Several different recipes can be run in the Procel plant. Each recipe is
implemented as a procedure in JGrafchart. The implementation of the
test recipe in JGrafchart is shown in Fig. 4.6. This is the recipe mainly
used during the testing of the integration and it contains the following
sequential operations:

• Wait for the start time of the batch according to the schedule.

• Reserve the second unit, U2.

• Charge U2.

• Hold the content in U2 for X time units.

• Reserve the first unit, U1, and the fourth unit, U4.

• Transfer the content in U2 to U1 using pump B2 in U4.

• Release U2 and U4.

• Heat the content of U1.

• Empty out the content of U1.

72

4.6 Implementation of the Coordinator

Figure 4.6 The test recipe for the Procel plant implemented in JGrafchart. The
first column of procedure steps concern operations in U2, the second column concerns
operations in U1, and the last column concerns operations in U4.

73

Chapter 4. Exception Handling Applied to the Procel Batch Pilot Plant

• Clean U1.

• Release U1.

Since each batch is a control recipe carrying all the information about
the execution of the batch a report can be sent back to the scheduler every
time a new phase is started during normal operation. As described earlier,
if an exception occurs and a batch has to be canceled this information
is sent back to the scheduler. The scheduler is then able to reschedule
the batches online. The historical data from every batch is stored in the
DTM for documentation and optimization of the process and to update the
timing trends in the scheduler. The historical database is important to be
able to detect frequently occurring problems and to be able to concentrate
resources to eliminate these.

Equipment Control

The plant is considered to be a process cell and it is divided into four
units according to the physical model in S88. For the operator interface
and the names of the equipment, see Fig. 4.8. The first three units, U1-U3,
represent the three tanks with the associated equipment and the fourth,
U4, consists of auxiliary equipment not part of any of the other units and
should maybe not be considered as a unit at all, but as shared resources.
The valves and sensors, i.e. flow meters and temperature sensors, used
in the heat exchanger network are part of U4. The pump B2 is also in U4

since it is used in different ways during different operations and it is not
directly part of any of the other units. Since B2 is used to pump from both
U2 and U3 it contains its own operation for pumping.
Each of the units consists of equipment and control modules such as

agitators, valves, level, and temperature sensors. In the control system the
equipment modules and control modules are stored on subworkspaces of
the unit’s workspace. The units also contain the equipment control logic.
In the Procel control system implementation the recipe/equipment control
separation is on the operation level in S88. This means that the recipe
makes a procedure call from a procedure step representing a recipe oper
ation to a procedure representing the corresponding equipment operation
belonging to a unit.
The operations, e.g., charge, heat, clean, transfer, and discharge are

stored on subworkspaces located on the unit’s subworkspace according to
Fig. 3.15. The equipment/control modules representing the valves, heater,
agitator, and sensors are also stored on subworkspaces located on the
unit’s subworkspace. In the Procel implementation the reservation and
release of units take place at the recipe level, i.e., the recipe makes a
procedure call to the operations ReserveUnit and ReleaseUnit to reserve

74

4.6 Implementation of the Coordinator

Figure 4.7 Workspace of the equipment module EV8, a valve in U2.

and release the unit, see Fig. 4.6. The complete control system for Pro
cel in JGrafchart consists of 4 units, 39 equipment/control modules, 27
operations/phases, and 111 statemachines.

Unit Supervision

The workspace of a valve contains its state machine and three boolean
variables Open, OpenS, and Error, see Fig. 4.7. The Open variable is the
current control signal to the valve. The OpenS variable is the current
state of the valve according to the measurements from Procel. The Error
attribute becomes true if the error detection logic in the FDS detects any
error with the valve, e.g., if it fails to respond to an open command within
a certain time. On the IO Logic subworkspace object is a function chart,
which reads from and writes to the IO module connected to the DTM.
The equipmentstate machines of the units, which are modeling the

state of the units, are located on the different unit’s workspace. The state
machines have the states Available, Reserved, and Error. The state ma

75

Chapter 4. Exception Handling Applied to the Procel Batch Pilot Plant

chines reach the Error state if any of the equipment/control modules
reach their Error state.

Equipment Level Exception Handling

The exception handling for the Procel plant at the equipment level is im
plemented according to Section 3.3. Checks and control are implemented
in the fashion of Fig. 3.17 and the startstate machines as in Fig. 3.18.

Recipe Level Exception Handling

In the Procel plant implementation the step fusion sets are abortive, which
allows the transition to immediately fire before the execution of the pro
cedure called from the recipe is finished. The execution of the operation
called from the control recipe is aborted and the abortive actions of the
procedure step in the control recipe are executed. The transition associ
ated with the specific exception that has occurred becomes true, and the
logic for handling the specific exception starts.

Graphical User Interface

The graphical operator interface implemented in the coordinator can be
seen in Fig. 4.8. The interface displays the current values of the sensors,
the state of the different equipment objects, and alarms. This could be
extended with dialogs to make it more interactive, e.g., the graphical
interface could link to the workspaces of the different equipment units.

4.7 Information Flow in the Coordinator

The information flow between the modules in the coordinator is different
depending on if an exception occurs during the execution of an operation or
not. First the execution of an operation in a batch without any exceptions
is described and in the next section the execution of a faulty batch is
described. During the execution of the operation in both of the scenarios
the IO reads the measurements and writes the actuator data in the DTM
at a specified sampling rate.

Normal Processing Scenario

The execution of a normal batch without any exceptions is much less
complicated than if an exception occurs. The steps of the recipe execution
for a normal batch are as follows. The numbers are references to Fig. 4.9.

• When the Scheduler Manager in the Coordinator receives a sched
ule (1) from the scheduler a control recipe is started in the recipe
manager for each batch (2).

76

4.7 Information Flow in the Coordinator

Figure 4.8 Operator interface for the Procel plant in JGrafchart

77

Chapter 4. Exception Handling Applied to the Procel Batch Pilot Plant

DTM

Alarm Manager

IO Equipment
Control

Operator

Interface

Control

Recipe

Schedule Recipe
ManagerManager

Coordinator

JGrafchart

1,8

3b,7

4

2

3a 6

5

Figure 4.9 Information flow to/from and within the Coordinator during the exe
cution of a normal and a faulty batch.

• The normal execution of the control recipe takes place through pro
cedure calls from the control recipe to the Equipment Control (3a),
e.g. Fill, Transfer, and Heat. The execution of the batch is contin
uously reported back to the scheduler MOPP (3b) by posting data
in the DTM about the actual start and end times of the operations.

Exception Handling Scenario

The recipe in Fig. 4.6 is used as an example of the exception handling.
The exception chosen for this test is that the heater R1 in unit U1 is not
responding to a command from the Heat operation. The steps of the recipe
execution and the exception handling for a faulty batch are as follows. The
numbers are references to Fig. 4.9.

• The Schedule Manager receives a schedule from MOPP (1) and
starts a control recipe (2) for each of the scheduled batches. The
recipe calls operations in the Equipment Control (3a) according to
normal execution, described above, until it reaches the step where
the Heat operation is called. The evolution of the batch is sent back
to MOPP via the DTM (3b).

• The state of U1 is checked to be consistent with the start of the Heat
operation.

• The procedurestate machine of the Heat operation goes from the
Idle state to the Running state.

78

4.7 Information Flow in the Coordinator

• The Heat operation sends a command to the R1 equipment module
and sets the control signal to 50% of the capacity.

• The control signal of R1 is written to the IO, which sends the control
signal to Procel via the DTM.

• When R1 is not heating the toolbox for Fault Detection and Diagno
sis, ExSitM, detects this and publishes the alarm in DTM (4). The
alarm is unpacked by the Alarm Manager and sent to the Equip
ment Control (5). This causes the state machine of R1 to go to the
Error state.

• The Error state propagates to the state machine of the unit and the
recipe level exception handling logic detects it (6).

• The Error Exit, in the recipe level exception handling, correspond
ing to that the heater is not responding is fired.

• The Heat operation is aborted and its procedural state machine goes
to the Held state. The abortion of the recipe is sent to MOPP (7).

• The exception handling operation for the heater tells the operator
that the heater is not responding by displaying the alarm in the
Operator Interface.

• The heater R1 is repaired and the state machine of R1 is reset from
the Error state.

• If no actions were taken that prevents the operations from being
restarted, the recipe level exception handling makes a rollback and
the exception detection and the Heat operation are restarted. If on
the other hand the recipe cannot be restarted appropriate actions
must be taken, e.g. the reactants must be disposed in a safe way.
The recipe is aborted and the scheduler makes a rescheduling and
sends a new schedule to the Schedule Manager to make a new batch
(8).

• The procedurestate machine of the Heat operation goes from the
Held state to the Running state via the Restarting state and the
heating of the batch continues.

• When the specified temperature is reached the Heat operation sends
a command to R1 to stop heating.

• The procedural state of the Heat operation goes to the Idle state
when R1 has stopped heating.

• The recipe continues according to normal operation.

79

Chapter 4. Exception Handling Applied to the Procel Batch Pilot Plant

4.8 Summary

In this chapter the development of a batch control system for the Pro
cel pilot plant at UPC is described. The control system is an integration
of scheduling, fault detection and diagnosis, and a recipe coordinator in
cluding exception handling. The different parts are integrated using the
CHEM Communication Manager (CCOM) and a Data Manager (DTM).
A small number of exceptions have successfully been implemented to

test the structure of the exception handling in the control system. To
find solutions for different scenarios and plants the proposed approaches
should be further tested and implemented in larger batch control systems.
The suggested methods need to be tested on industrial plants to determine
the practical aspects of the proposed structure.
During the development of the control system online tests was per

formed by running the coordinator in JGrafchart at the Department of
Automatic Control in Lund while the other parts was running at UPC
in Barcelona. The developers communicated with different chat programs
during the tests. For a demonstration at a CHEM meeting in Lille in
France, the development team from UPC brought laptops to run their
different parts there. The control system was demonstrated on the real
process online from Lille together with the coordinator running in Lund
and the Procel plant of course in Barcelona.

80

5

Process Fault Detection and

Isolation

5.1 Introduction

A process fault can be any kind of malfunction in a dynamic system or
plant, which leads to unacceptable performance such as personnel injuries
or bad product quality. Faults may occur either in the sensors, the actu
ators, the control system, or any other components of the process. The
increasing complexity of the control systems in modern plants demands
a higher level of fault tolerance and an efficient fault detection and isola
tion is one part to achieve this. The three steps: detection, i.e., detect that
something abnormal has occurred in the process, isolation, i.e., isolate and
find the source for the malfunction, and correction, i.e., the actions taken
to take the process back to a normal state are here summarized in the
term diagnosis. Automation of fault detection and isolation for dynamic
systems is a large research area where a lot of work have been performed
over the last decades. Some good surveys and reviews that summarize
this work are [Frank, 1990; Venkatasubramanian et al., 2003b; Venkata
subramanian et al., 2003a; Venkatasubramanian et al., 2003c], where the
aim is to give a systematic and comparative study of various diagnostic
methods from different perspectives.
The product quality in a chemical plant is maintained by controlling

the state of the process. Often the quality variables cannot be directly
measured and the quality is indirectly controlled by other variables. When
the operating condition varies outside the design limits, not only product
quality is at risk, but also the personnel and the environment may be
affected in a serious way. Diagnosis of process faults is difficult even for
well trained and motivated operators since the faults may be sudden and,

81

Chapter 5. Process Fault Detection and Isolation

hopefully, infrequent. Since the time from the occurrence of a fault to the
detection of the fault and the time to when the actions are taken to correct
the fault are critical factors, hesitation as well as erroneous actions may
lead to serious situations. Automation of fault detection and isolation, if
properly designed and implemented, is a support to operators in stressful
situations and could reduce the risk for the personnel as well as save
money.
Faults may influence the process in a multiplicative or an additive

manner. Faults can have different types of causes such as parameter
changes, e.g., input concentration and heat transfer coefficients, or hard
ware failures, e.g., breakdown of sensors, actuators, and controllers. They
can be abrupt, e.g., sudden stop of a pump, or incipient, e.g., fouling slowly
developing in a heat exchanger. An overview of how noise, disturbances,
and failures can enter in a feedbackcontrolled dynamic system can be
found in Fig. 5.1.
When comparing different types of diagnosis methods it is good to have

well defined criteria to be able to list the pros and cons. Some desirable
characteristics of an automated fault diagnosis system are [Venkatasub
ramanian et al., 2003b]:

• Fast detection.

• Good isolation properties, determine which fault has occurred.

• Robust to uncertainties and noise.

yu vyref

Controller

Controller

Actuator

Actuator Plant

Process disturbancesInput

Sensor

Sensor

Diagnosis

Measurement

& faults

failures

failuresfailures noise

noise

−1

ΣΣ

Figure 5.1 Overview of noise, disturbances, and failures in a feedbackcontrolled
dynamic system.

82

5.2 Quantitative ModelBased Methods

• Adaptation to changes of the process design and operation.

• Low development and maintenance cost.

• Ability to identify multiple faults occurring at the same time.

Different methods have drawbacks as well as advantages compared to
others. Often there is a tradeoff between the criteria, e.g., fast detection
may make the system sensitive to noise.
In the review paper [Venkatasubramanian et al., 2003b] the meth

ods are divided into three categories, quantitative modelbased, qualita
tive modelbased, and process historybased methods. A summary of these
three categories is given here.

5.2 Quantitative Model-Based Methods

Models of dynamical systems are used for different purposes, e.g., simula
tions and control design. A very general description of a model is [Minsky,
1965]

“To an observer B, an object A∗ is a model of an object A to
the extent that B can use A∗ to answer questions that interest
him about A.”

Different models can capture different type of information, e.g., structure
and topology: ‘Which components are present?’, ‘How are they related?’,
geographical properties: ‘Where is a component located?’, ‘How large is
it?’, behavior: ‘What do the signals look like?’, ‘What is the value of the
variable x?’, and means and ends, i.e., functions and goals: ‘How is this
task performed?’, ‘What does this component do?’. This section deals with
behavioral models, i.e., dynamic mathematical models, and the use of
these for generation of residuals to conclude if a process is in a normal
state.
One way of generating residuals for a process is by duplicating the in

strumentation and sensors of the process. The residual is then calculated
as the difference between the sensors. This way one can conclude that,
e.g., one of the level sensors is malfunctioning if the two, or more, sensors
show very different values or if one of the sensors shows a much lower
signal to noise ratio. This is called physical redundancy. Another way of
generating residuals is to model the process and compare the output from
the model with the measurements from the real process. This is called
analytical redundancy. The greatest gain with analytical redundancy is
that there is no need of adding any new equipment, which may be very
expensive. Mathematical models are used to calculate the residuals using

83

Chapter 5. Process Fault Detection and Isolation

the control signal as input to the model and comparing the outputs from
the model and the process to form residuals. The wish is that the residuals
should be close to zero when no fault is present and if a fault occurs the
model should no longer be valid with large residuals as a result. The aim
is that the residuals should be robust to unknown inputs like modeling
uncertainties and measurement noise.
In quantitative modelbased fault detection and isolation explicit math

ematical models are used for the generation of the residuals. The models
are either developed by a firstprinciples or a blackbox model is identified
from experiments. Most of the methods use linear discrete time blackbox
models, such as inputoutput and statespace models, due to the fact that
firstprinciples models are complex and that chemical processes are often
nonlinear, especially batch processes. A firstprinciples model is based
on physical understanding of the process. Models of chemical processes
are usually based on heat balance equations and mass balances with low
order reaction kinetics. In a firstprinciples model the parameter have
physical meaning while in a blackbox model this is often not the case.
An overview of the generalized structure of a fault diagnosis system

based on the qualitative modelbased methods described in this section [Is
ermann, 1984] can be found in Fig. 5.2.

Parity Relations

The most common blackbox model is the linear discrete time state space
model, often identified from designed experiments to ensure persistent
excitation. Such a model, with no faults, disturbances, or noise, is given
by

x(k+ 1) = Φx(k) + Γu(k)

ŷ(k) = Cx(k) + Du(k)
(5.1)

where u(k) is the input, ŷ(k) is the model output, and x(k) is the state
vector. Φ, Γ, C, and D are matrices of appropriate size. Using the pulse
transfer operator H(q) the system can be written as

ŷ(k) =
(
C (qI − Φ)−1 Γ + D

)
u(k) = H(q)u(k) =

B(q)

A(q)
u(k) (5.2)

where q is the forwardshift operator. The primary residuals, r̃(k), are
then given by

r̃(k) = y(k) − ŷ(k) =
[
I −H(q)

] [
y(k)

u(k)

]
(5.3)

84

5.2 Quantitative ModelBased Methods

y

u

ProcessProcess Process

Process

Measurement

Disturbances

Failures
noise

Σ

Model ofModel of Model of
Nominal Observed Faulty

M
o
d
elin
g

Iso
la
tio
n

D
etectio

n

Parity

Relations

Observer

Based

Parameter

Estimation

Residual

Generation

Fault

Fault

Decision

Logic

Type Time

Location Size Cause

Interpretation

Figure 5.2 Overview of the generalized structure of a fault diagnosis system based
on the qualitative modelbased methods [Isermann, 1984].

Multiplicative faults, or parameter faults, can be modeled by adding
discrepancy matrices ∆A(q) and ∆B(q) according to

(A(q) + ∆A(q)) ŷ(k) = (B(q) + ∆B(q))u(k) (5.4)

Since A and B are functions of the v process parameters Θ = [Θ1 Θ2 . . . Θv]
T

85

Chapter 5. Process Fault Detection and Isolation

the partial derivatives become

Q j(q) =
VA(q, Θ)

VΘ j

R j(q) =
VB(q, Θ)

VΘ j

(5.5)

and thus

∆A(q) =

v∑

j=1

Q j(q)∆Θ j

∆B(q) =

v∑

j=1

R j(q)∆Θ j

(5.6)

By writing
ej(k) = Q j(q)u(k) − R j(q) ŷ(k)

E(k) = [e1(k) e2(k) . . . ev(k)]
(5.7)

Eq. (5.4) becomes

A(q) ŷ(k) = B(q)u(k) + (∆B(q)u(k) − ∆A(q) ŷ(k))

= B(q)u(k) + E(k)∆Θ
(5.8)

The additive faults can be added to this and the model becomes

A(q) ŷ(k) = B(q)u(k) + D(q)d(k) + F(q) f (k) + E(k)∆Θ (5.9)

where f (k) are the additive faults and d(k) is a disturbance. This ap
proach is what is called parity relations [Gertler and Singer, 1990; Gertler
and Kunwer, 1995; Gertler, 1998].

Isolation To isolate a fault, i.e., find the root cause, and take the appro
priate actions the generated residuals are analyzed using fault decision
logic. Eq. (5.3) is how the primary residuals are calculated. To improve
the isolation of faults the primary residuals can be transformed using
W(q).

r(k) = W(q)r̃(k) = W(q) [y(k) − H(q)u(k)] (5.10)

where W(q) needs to be a stable transfer function, which also stabilizes
H(q). This way the model does not have to be stable for the residual
generation to work.
Two different ways of choosing W(q) that gives structured residuals

and directional residuals can be found in [Gertler and Kunwer, 1995]. In
the former for a specific fault only a specific subset of the residuals become
nonzero and in the latter the residual vector will have a specific direction
associated with the occurring fault.

86

5.2 Quantitative ModelBased Methods

NonLinear Processes If the process is nonlinear the linear discrete
time model can only be used if the process is operating around a lin
earization point. Therefore this approach is not easy to use for batch pro
cesses. Some extensions of analytical redundancy methods to nonlinear
systems have been developed. The proposed methods rely on theory for
polynomial differentialalgebraic equations. The fact that the most com
monly used functions, e.g., trigonometric, exponential, and logarithmic
functions, can be written on polynomial form makes this possible. These
methods are based on elimination theory, see [Staroswiecki and Comtet
Varga, 2001; Isidori et al., 2001; Frisk, 2001].

Parameter Estimation-Based Methods

The fundamental idea of fault diagnosis based on parameter estimation [Is
ermann, 1989; Isermann, 1993] is that many faults appear as changes in
the process coefficients p, e.g., heat transfer coefficients, ambient temper
ature, and reaction coefficients. In the process model the coefficients are
contained in the parameters θ , which are assumed to be constant or time
dependent. The parameters θ are often combinations of several of the real
process coefficients p. For example, if the model is on the form of a linear
differential equation

a0 y(t) + a1 ẏ(t) + . . . + y(n)(t) = b0u(t) + b1u̇(t) + . . . + bmu
(m)(t) (5.11)

then the process parameters are given by

θT = [a0 a1 . . . an−1 b0 b1 . . . bm] (5.12)

A procedure for using parameter estimation for fault diagnosis may
consist of the following [Isermann, 1989]. First a model is developed, e.g.,
on the form

y(t) = f (u(t),θ) (5.13)

where y is the outputs, u are the inputs, and θ = [θ1 . . .θ J]. Then a
relationship between the parameters θ and the coefficients p = [p1 . . . pI]
is determined

θ = n(p) (5.14)

The parameters are estimated from measured inputs u and outputs y
during operation of the process using any suitable estimation method, e.g.,
recursive least squares, RLS, which is further described in Chapter 10. As
in all estimation techniques it is important that the system is persistently
excited to be able to get correct estimates. The physical coefficients are
then calculated from the estimated parameters

p = n−1(θ) (5.15)

87

Chapter 5. Process Fault Detection and Isolation

It is not always possible to determine all coefficients from the parameters
and sometimes it is enough to only monitor the parameters θ . The esti
mated coefficients p are compared to nominal values determined during
the modeling of the process, and if p is deviating from the nominal values
a fault is signaled. Fault signatures, i.e., how a certain fault affects the
coefficients are used to isolate the fault.

Observer-Based Methods

The perhaps most commonly used method for generating the residuals is
by using observers, or Kalman filters, to estimate the state of the pro
cess [Patton et al., 1989]. The method is based on using a set of observers,
where each observer is sensitive to a subset of the possible faults while
insensitive to the rest of the faults and to the unknown inputs. If there
are no faults all the observers should track the process perfectly and the
residuals should be close to zero. When a fault of occurs only the observers
that are sensitive to the specific fault should give a large residual while
the other remain small. The pattern of the residuals is used to isolate the
fault.
Let the true system be given by a discrete lineartime invariant state

space model

x(k+ 1) = Φx(k) + Γu(k) + Ed(k) + G f (k)

y(k) = Cx(k) + Du(k) + Fd(k) + H f (k)
(5.16)

where Ed(k) and Fd(k) models the input and output disturbances, G f (k)
models actuator and process faults, and H f (k) models sensor faults. The
initial state x(0) = x0. An observer for this process is given by [Åström
and Wittenmark, 1997]

x̂(k+ 1 h k) = Φ x̂(k h k− 1) + Γu(k) + K
(
y(k) − ŷ(k h k− 1)

)

ŷ(k h k− 1) = Cx̂(k h k− 1) + Du(k)
(5.17)

where x̂ and ŷ(k) are the estimated state and output, and K is the ob
server gain. The state estimation error is given by x̃ = x − x̂ and the
output estimation error is e = y− ŷ, with the dynamics

x̃(k+ 1 h k) = (Φ − KC) x̃(k h k− 1) + (E − KF) d(k) + (G − KH) f (k)

e(k) = Cx̃(k h k− 1) + Fd(k) + H f (k)
(5.18)

Since e is a function of d and f and not of u it can be used as a residual for
detection of faults. The design of the fault detection system is to choose a
proper observer gain. The goal is that the faults, f , should be decoupled

88

5.3 Qualitative ModelBased Methods

from each other and that the residual is invariant to the unknown inputs,
i.e., disturbances d.
The Kalman filter can also be augmented to estimate parameters of

the process. To be able to estimate states and parameters it is necessary
that the system is fully observable.

NonLinear Processes For nonlinear systems an extended Kalman
filter, EKF, can be used. The EKF is based on linearization of the non
linear system around a trajectory such that standard Kalman filter theory
can be applied. The EKF is computationally intensive compared to linear
Kalman filtering. Terms neglected in the linearization may be relatively
large and can introduce large errors, which may lead to suboptimal per
formance of the filter. The derivation of the Jacobian matrices are often
nontrivial and can lead to significant implementation difficulties. The EKF
will be further discussed in Chapter 10.

Simultaneous Design of Controller and Fault Detection

In [Tyler and Morari, 1994] an approach for designing the controller and
an observerbased fault detection is presented. It has been further devel
oped and implemented in, e.g., [Nett et al., 1988; Niemann and Stoustrup,
1997; Åkesson, 1997]. In this framework it is shown that uncertainties in
the system may result in a trade off between control performance and
diagnostic performance.
In the method the system is rewritten so that the controller and the

fault detection for the uncertain linear system can be designed using stan
dard tools for robust control, such as H∞ or µsynthesis, see, e.g., [Zhou,
1998].

Diagnostic Model Processor

The diagnostic model processor DMP [Petti, 1992] uses model predictions
and measurements to find a set of violated assumptions, i.e., likely faults.
DMP is based on that during normal operation the predictions from the
model equations are close to the measurements. The model equations are
rewritten to residual form and upper and lower limits for the residuals
are assigned to define normal operation. A thorough presentation of DMP
and its application to batch processes is found in Chapter 8.

5.3 Qualitative Model-Based Methods

In the quantitative modelbased approaches above the knowledge about
the system is in the form of dynamic relationships between the inputs

89

Chapter 5. Process Fault Detection and Isolation

and the outputs of the system. In qualitative modelbased approaches the
relationships are in the form of qualitative functions or relations describ
ing the process. The functions can describe if a process variable, e.g., is
hinh, low, increasinn, or decreasinn.
One method in this category is a knowledgebased expert system,

which contains a knowledge base, usually built with a set of ifthenelse
rules, and an inference engine that searches through the knowledge base
to conclude which events have caused the current state. An example of a
rule can be if the control signal to a valve is Open and there is no flow
then the valve is stuck is the closed position. Knowledge bases often lack
understanding of the physics of the process and cannot handle events that
are not part of the knowledge base.
Another method in this category is signed digraphs SDG, first used for

fault diagnosis in [Iri et al., 1979]. An SDG is a set of nodes representing
variables and directed arcs that describe causeeffect relations. A + or −
on the arcs represents the gains between two variables (nodes). A gain of
+1 indicates that the two variables vary in the same direction. The main
usage of digraphs is isolation. Faults are associated with, e.g., the states
Hinh or Low of a variable or introduced as separate nodes with arcs to
other nodes describing the influence of the faults. Isolation is performed
by locating which fault node that has given rise to the current state usu
ally assuming only a single root cause. An SDG model of a simple tank
from [Nilsson et al., 1992] with inflow, Fin, outflow, Fout, and the level
in the tank, L, as variables can be seen in Fig. 5.3. Three fault nodes
are also introduced representing blockage of the inflow and outflow, and
leakage in the tank. SDGs have been used in numerous ways for fault
diagnosis. The reader is referred to [Venkatasubramanian et al., 2003a]
for more information of these and references.

− − −

−

+
+

Fin FoutL

BlockageBlockage Leakage

Figure 5.3 An SDG model of a tank with three possible faults.

90

5.4 Function Based Methods

5.4 Function Based Methods

Multilevel Flow Modeling

Multilevel flow modeling, MFM [Lind, 1990; Larsson, 1992; Larsson et al.,
2004], is a technique for modeling meansend models. An MFM model is
a representation of a system’s functions in terms of what should be done,
how it should be done, and with what it should be done. The system is
decomposed in two directions, in the first the system is decomposed into
subsystems, while in the second direction the goals of the system are
related to the functions for achieving these goals. MFM can be used to
create knowledge data bases, humanmachine interfaces, and as a design
tool for both process and control system design.

Fault Tree Analysis

Fault tree analysis, FTA, consists of block diagrams that give a graphical
picture of possible means in which a fault could be generated in a design,
process, or product. FTA gets its names from the graphic construct used to
guide the process to arrive at the cause of a fault. The branching structure
resembles the structure of a tree or root system. FTA is inherently a top
down search. It starts with fault, then works its way down through all
the subsystems, components and conditions of the system which could
contribute to this fault. The tree structure is built often built up by logical
gates, i.e, And and Or gates. More than one hypothetical solution usually
results when a complex system is analyzed. FTA is defined in the standard
IEC 61025 [IEC, 1990].

Failure Mode and Effects Analysis

Another commonly used technique for risk analysis is usually identified by
the name failure mode and effects analysis, FMEA [Stamatis, 2003]. The
FMEA technique considers each item that may comprise the total system.
Analysis is made of all ways that each component or subsystem might fail.
Each of these potential faults is then ranked. The ranking process takes
into account three separate aspects of each fault. One ranking is assigned
with regard to the relative probability that the particular fault will occur.
The fault is also ranked for the relative severity of its worst potential
resulting outcome regarding safety and functionality of the system. The
third relative ranking is for the probability that the failure mode will
be detected and/or corrected by the applicable controls. One of the most
powerful aspects of FMEA is the assignment of these relative measures of
occurrence, severity and detection/correction. The three numeric rankings
are multiplied together for each failure mode to provide an overall relative

91

Chapter 5. Process Fault Detection and Isolation

risk factor for the subject failure mode. With this relative risk factor the
faults that are most likely to cause safety, reliability or quality problems
can be identified. FMEA is defined in the standard IEC 60812 [IEC, 1985]

Hazard and Operability Studies

A hazard and operability, Hazop, study identifies hazards and operability
problems. It involves investigating how the plant might deviate from the
design intent. The prime objective for the Hazop study is problem identi
fication. If during the process of identifying problems, a solution becomes
apparent, it is recorded as part of the Hazop result.
Hazop is based on that several experts with different backgrounds and

experience of the plant interact and identify problems working together.
The Hazop concept is to review the plant in a series of meetings, during
which a multidisciplinary team methodically "brainstorms" the plant de
sign, following the structure provided by the guide words and the team
leader’s experience.
In the Hazop study the plant schematic be divided into study nodes

that are addressed with the guide words. The guide words are simple
words which are used to qualify or quantify the intention of the equip
ment or process being considered in order to guide and stimulate the
brainstorming process and so discover deviations. Some often used guide
words are: No, Less, More, and Other Than. Each guide word is applied
to the study node which is being examined to figure out what would hap
pen in the node if a fault associated with the guide word occurs. Dur
ing the meeting a Hazop form is filled out where the identified problems
and possible solutions are entered. Hazop is defined in the standard IEC
61882 [IEC, 2001b].

5.5 Process History-Based Methods

In contrast to the methods described above in process historybased meth
ods no knowledge about the process is needed. Only measurements from
previously successful operation is used. This data is used to build a diag
nostic system. The most used methods are statistical process control, SPC,
and multivariate statistical process control, MSPC, based on principal
component analysis, PCA. Statistical methods deal with nondeterministic
systems. The measurements are considered to be statistical time series,
where the observations have probability distributions. The distributions
are assumed to be changing when the system is out of control. Statistical
methods are treated further in Chapter 6.

92

6

Multivariate Statistical

Methods for Batch Process

Monitoring

6.1 Introduction

This chapter contains a description of multivariate statistical methods for
process monitoring and their various extensions for handling data from
batch processes. Multivariate statistical methods have been developed in
different fields of science, e.g., psychology, biology, chemistry, and math
ematics. There exist a number of alternative approaches of multivariate
statistical methods for process monitoring, e.g., methods based on princi
pal component analysis, PCA, and methods based on partial least squares
techniques, PLS. Most of the methods described in this chapter are devel
oped from PCA. It is shown how these different methods are related and
when they are equivalent.
There exist some good tutorials and overviews on multivariate statis

tical methods for process monitoring, e.g., [Kourti and MacGregor, 1995;
Qin, 2003; Cinar and Undey, 1999; Bro, 1997; Andersson and Bro, 2000;
Piovoso and Hoo (Eds.), 2002]. The following notation will be used:

i: batch number

I: number of batches

j: variable number

J: number of variables

k: sample number

K : number of samples

d: time lag

x: vector

X : matrix

X : higherorder tensor

x jk: jkth element in a matrix

x j : jth element in a vector or

jth vector in a matrix

93

Chapter 6. Multivariate Statistical Methods for Batch Process Monitoring

6.2 Principal Component Analysis

The basis for many of the methods described in this chapter is principal
component analysis, PCA. PCA tries to explain the covariance structure
of a set of variables by finding a small number of linear combinations
of the variables. PCA linearly transforms an original set of correlated
variables into an often substantially smaller set of uncorrelated vari
ables, called principal components, that represent most of the information
in the original set of variables. The multivariate technique of principal
component analysis was first described by Pearson in [Pearson, 1901].
A first description of practical computing methods for PCA came from
Hotelling [Hotelling, 1933].
PCA assumes that the data is stored in a two dimensional matrix

X ∈ R
K�J

X =

x11 x12 . . . x1 j . . . x1J

x21 x22 . . . x2 j . . . x2J
...

...
...

...

xk1 xk2 . . . xkj . . . xkJ
...

...
...

...

xK1 xK2 . . . xK j . . . xK J

(6.1)

where J is the number of variables and K is the number of observations.
X is then decomposed into scores T and loadings P according to

X = TPT = t1p
T
1 + t2p

T
2 + . . . + tRp

T
R + ER =

R∑

r=1

trp
T
r + ER (6.2)

where R is the number of principal components selected for the model,
tr ∈ R

K , pr ∈ R
J , and ER ∈ R

K�J is the remaining error matrix. The
first principal component is the combination of the original variables that
explains the greatest amount of variation in X . The second principal com
ponent defines the next largest amount of variation and is independent
(orthogonal) to the first principal component and so on.

Algorithms

The two major algorithms for performing PCA are singular value decom
position, SVD, and nonlinear iterative partial least squares, NIPALS. The
principal components can be calculated directly or, more commonly, after
different centering and scaling operations on the data matrix X according
to

94

6.2 Principal Component Analysis

• Mean centering by subtracting the mean of the columns, i.e., X j−X j .

• Mean centering of each column and scaling by dividing each column
by its standard deviation, i.e.,

(
X j − X j

)
/s j .

where X j is a vector with the mean of the jth column, x̄ j , duplicated at
each entry to have the same dimension as X .

x̄ j =
1
K

K∑

k=1

xkj (6.3)

and the standard deviation of the jth column is the square root of the
variance of the jth column given by

s j =

√√√√ 1
K − 1

K∑

k=1

(xkj − x̄ j)
2 (6.4)

The second way of preprocessing, where the data is scaled by the stan
dard deviation of each column and the columns are mean centered is com
monly called autoscaling. This scaling gives the original variables equal
weight in the analysis. It is often the recommended scaling when no in
formation is available of the importance of the variables. If a variable
is known to have a greater impact this variable may be given a larger
weight in the analysis. For example, the signal to noise ratio in different
variables may be a basis for weighting the variables. Variables describing
the same phenomenon can be blocked together and the blocks are scaled
separately. Depending on the data in X any of the methods above may
give the best result. A discussion on the effects of centering and scaling
can be found in [Bro and Smilde, 2003].
To illustrate what happens in PCA when different scalings are used

two dependent random variables are simulated for 500 samples (J = 2
and K = 500). The original data set is plotted in Fig. 6.1. The center of
the data is clearly not at the origin and thus the data need to be mean
centered. The data has greater variation in one direction than the other.
One can choose to scale the data to unit variance (autoscaling) in the
original variables or not. If the data is only mean centered the plot will
look like in Fig. 6.2 (a), and if the data is autoscaled like in Fig. 6.2 (b). A
clear difference in the directions of the principal components, given by the
orthogonal lines in the plot, can be seen when the two plots are compared.
This makes it important to use the same scaling on any new observations
as the one used for computing the principal components. If the data is
projected onto the space spanned by the principal components the plots
look like in Fig. 6.3. In all the figures the sample number 201 is labeled
for comparison.

95

Chapter 6. Multivariate Statistical Methods for Batch Process Monitoring

−10 −8 −6 −4 −2 0 2 4 6 8 10
−5

0

5

10

15

201

Original Data

x1

x
2

Figure 6.1 Original data used in the PCA example.

Singular Value Decomposition In singular value decomposition, SVD,
the matrix X is decomposed according to Eq. 6.5 in Def. 6.2, where U and
V are unitary matrices and Σ is a diagonal matrix with the singular values
of X on the diagonal ordered from the largest to the smallest, see [Golub
and Van Loan, 1996].

DEFINITION 6.1—SINGULAR VALUES
Given a matrix X ∈ R

K�J . The singular values of X are the nonnegative
square roots of the eigenvalues of X T X .

DEFINITION 6.2—SINGULAR VALUE DECOMPOSITION
The singular value decomposition of a matrix X ∈ R

K�J is the decompo
sition

X = UΣVT (6.5)

where U ∈ R
K�K is a unitary matrix such that UUT = I, V ∈ R

J�J

is a unitary matrix such that VVT = I, and Σ ∈ R
K�J is a diagonal

matrix with the singular values of X , σ i, on the diagonal, ordered from
the largest to the smallest.

96

6.2 Principal Component Analysis

−10 −5 0 5 10

−10

−5

0

5

10

201

a: Mean centered data with principal directions

x1

x
2

−10 −5 0 5 10

−10

−5

0

5

10

201

b: Scaled data with principal directions

x1

x
2

Figure 6.2 PCA performed after mean centering (a) and after mean centering and
scaling to unit variance in the original variables (b). The directions of the principal
components are given by the orthogonal lines, having the length of 4σ , i.e., standard
deviations. 97

Chapter 6. Multivariate Statistical Methods for Batch Process Monitoring

−10 −5 0 5 10

−10

−5

0

5

10

201

a: Mean Centered Data Projected

PC 1

P
C
2

−10 −5 0 5 10

−10

−5

0

5

10

201

b: Scaled Data Projected

PC 1

P
C
2

Figure 6.3 Projection of the original variables on to the space spanned by the
principal components after mean centering (a) and after mean centering and scaling
to unit variance in the original variables (b).

98

6.2 Principal Component Analysis

The right eigenvector associated with the largest singular value, v1 in
V , has the same direction as the first principal component, p1. The right
eigenvector associated with the second largest singular value, v2 in V ,
determines the direction of the second principal component, p2, and so on.
Thus, the loadings are the first R right eigenvectors VR and the scores are
TR = URΣR. The maximum number of eigenvectors equals the number of
rows (or columns) of X .
If SVD is performed on X T and X in the covariance matrix X T X the

decomposition becomes

X T X = VΣUTUΣVT = VΣTΣVT =; X T X V = VΣTΣ (6.6)

which is the eigenvalue decomposition of X T X , since Σ is diagonal, and
the eigenvectors, i.e., the principal components, are the columns of V .
The selection of the number of principal components to keep in the

model is based on some criterion, e.g., the size of the singular values in Σ
or by cross validation. Only the first R eigenvectors, VR, are kept in the
model. The scores, TR, are then calculated according to

TR = X VR (6.7)

and the model becomes
X = TRV

T
R + ER (6.8)

Note that the computation of X T X may result in reduced numerical pre
cision, and it is therefore not recommended. Instead SVD should be per
formed on X directly.
If the singular values of X are plotted one gets a diagram where the

singular values become smaller and smaller. If there is a sharp fall off
after a certain number this may indicate that only the principal compo
nents up to this number are relevant and the last ones contain only the
noise of the data. The variance accounted for, VAF, described by the rth
principal component can then be described by

VAFr =
σ 2r

ΣTΣ
⋅ 100% (6.9)

where σ r is the rth singular value in Σ. This can also be used as a criterion
for how many principal components to keep in the model.
Cross validation is performed by dividing the data X into a number of

subsets and then build parallel models leaving out one of the subsets at a
time. The sum of squares for the difference between the data X and the
calculated data, i.e., ER = X −TRV

T
R for all the models is collected to form

the predictive sum of squares (PRESS). When adding another principal
component does not give any significant reduction of the PRESS no more
principal components are added to the model.

99

Chapter 6. Multivariate Statistical Methods for Batch Process Monitoring

Nonlinear Iterative Partial Least Squares Nonlinear iterative par
tial least squares or NIPALS [Wold, 1966; Wold, 1975] is as the name
indicates an iterative procedure used to calculate the loadings p and the
scores t in PCA. The NIPALS algorithm is as follows

1. Choose a starting t

2. p = X T t/(tT t)

3. p = p/ i p i

4. t = X p/(pT p)

5. Back to 2 if t has not converged

6. X = X − tpT

7. Back to 1

In the inner iteration, steps 2–5, the direction describing the largest vari
ation in X is calculated. Then in step 6 this direction is subtracted from
X and the search for the next direction is started.
NIPALS is efficient for large matrices and can easily handle missing

data, see, e.g., [Nelson et al., 1996]. However, it is not as robust as SVD
and if the ratio between two successive eigenvalues is close to unity the
rate of convergence is very slow. Therefore it is stated in the literature that
NIPALS should not be used unless there is missing data in the matrix X .
The NIPALS algorithm is closely related to the power method described
in [Golub and Van Loan, 1996].

Monitoring of Continuous Processes using PCA

Monitoring of processes using statistical methods is also called statistical
process control (SPC). The goal of SPC is to allow normal variations of
the measured variables of a process within certain control limits, e.g., the
temperature may vary between Thinh and Tlow during drying of some ma
terial, assuming this will lead to the specified product quality. The goal
is also to detect any anomalous variations as fast as possible without any
false alarms. SPC uses probability distributions, e.g. the normal distri
bution, to explain the normal behavior of the process and to calculate
the control limits, i.e., the alarm thresholds of the variables, e.g, three
standard deviations or 99% limits.
Different charts for supervision of the process can be used such as She

whart control charts, cumulative sum, CUSUM, charts, and exponentially
moving average, EWMA, charts, see, e.g., [Oakland, 1999]. These methods
are all univariate methods, i.e., they only consider one variable at a time.
When there is an interaction/crosscorrelation between the variables the
univariate SPC methods might fail to detect abnormal situations.

100

6.2 Principal Component Analysis

Information about such interactions can be extracted from the covari
ance matrix X T X . Methods for doing this is known under the name mul
tivariate SPC (MSPC) [Wise and Ricker, 1989; MacGregor and Kourti,
1995]. In MSPC the most commonly used method to extract independent
components is PCA as described above. Then each observation in time
x(k) ∈ R

J of the J variables is projected on to the score space tR(k) ∈ R
R

by multiplying x(k) with the loading vectors of the model.

tR(k) = PTR x(k) (6.10)

The PCA model also gives an estimate for x(k) by projecting the scores
back to the original space according to

x̂(k) = PRtR(k) = PRP
T
R x(k) (6.11)

giving the residual
x̃(k) = x(k) − x̂(k) (6.12)

where x̂ is orthogonal to x̃. The PCAmodel divides the measurements from
the process into two orthogonal subspaces, i.e., the subspace spanned by
the R first principal components with the value x̂(k) and the subspace of
the residuals with the value x̃(k). Monitoring of the process takes place
in both these subspaces using the Hotelling T2 statistics and squared
prediction error SPE as indices.
The T2 statistics is used to monitor the scores in the principal compo

nent subspace. T2 is a measure of the distance of tR(k) from the origin
and it is defined as

T2(k) = tR(k)TS−1
R tR(k) = x(k)TPRS

−1
R P

T
R x(k) (6.13)

where SR ∈ R
R�R is a matrix with the R first eigenvalues of the mean

centered X T X on the diagonal or in other words SR = ΣTRΣR from Eq. 6.5
after mean centering. If the vector tR(k) ∈ R

R of a new observation is as
sumed to be Gaussian multivariatedistributed with zero mean and unit
covariance matrix NR(0, SR

K−1) then T
2 is Fdistributed [Johnson and Wich

ern, 1998] according to

T2 ∼
(K + 1)R
K (K − R)

FR,K−R(α) (6.14)

where FR,K−R(α) is the upper 100(1− α) percentile of the FR,K−R distri
bution with R and K −R degrees of freedom. R is the number of principal
components in the model and K is the number of samples used to build
the PCA model.

101

Chapter 6. Multivariate Statistical Methods for Batch Process Monitoring

The residual subspace could in principle be monitored by a T2 statistics
using the last J−R principal components not used in the model [Johnson
and Wichern, 1998], but if there exists linear dependencies in the data
and the rank of X is not full or if the least significant singular values
are very small the matrix to be inverted will be close to singular and the
solution will be very numerically sensitive. Instead the residual space is
monitored using the squared prediction error or SPE

SPE(k) = x(k)T (I − PPT)x(k) (6.15)

which is the part of x(k) not modeled by the R principal components
squared. If x(k) is an observation from a multivariate normal distribution,
NJ(0, Σ̂), the control limits for the SPE can be approximated by [Nomikos
and MacGregor, 1995b]

SPElim(α) = nχ 2h(α) (6.16)

where n = ν/2m and h = 2m2/ν with m and ν being the sample mean
and sample variance of the SPE for the data used in the model. χ 2h(α) is
the upper 100(1 − α) percentile of the χ 2h distribution with h degrees of
freedom. Another approximation of the χ 2 distribution of the SPE can be
found in [Jackson and Mudholkar, 1979].
Monitoring using a combination of T2 and SPE has been suggested in

the literature [Yue and Qin, 2001]. The individual scores can also be moni
tored by using bivariate plots of the scores from two principal components
at a time and calculate control limits on the form of ellipses.
When the process is detected to be outside its control limits in the

scores, T2, or SPE the contribution from the original variables to the de
viations can be calculated to determine the cause [Miller et al., 1998].
Contribution plots are described below for batch process monitoring.

The steps for the monitoring of a process using MSPC are

• Gather sufficient amount of data from the process running under
normal conditions and store it in the data matrix X .

• Preprocess the data to find outliers, center, and scale the data.

• Calculate the loading vectors for X and determine how many prin
cipal components to keep in the model.

• Calculate the control limits.

• For a new sample calculate the scores, T2 and, SPE. It is important
to use the same centering and scaling as for the model data.

• If the process is outside the control limits try to determine the cause,
e.g., by using contribution plots.

102

6.2 Principal Component Analysis

Dynamic Principal Component Analysis

Applying PCA on a data matrix X gives a linear static model even though
the data might contain dynamic information, since PCA assumes there
is no correlation over time. When this is the case the exact relations be
tween the variables will not be revealed. The scores will be autocorrelated
and may also be crosscorrelated and the statistical basis is lost. To han
dle this dynamic PCA or DPCA for continuous processes was developed
in [Ku et al., 1995]. DPCA is ordinary PCA performed on the matrix
Xd ∈ R

(K−d)�J(d+1) constructed from X ∈ R
K�J by time shifting the data

d samples according to

Xd =

x(1)T x(2)T . . . x(d + 1)T

x(2)T x(3)T . . . x(d + 2)T

...
...

. . .
...

x(K − d)T x(K − d+ 1)T . . . x(K)T

(6.17)

where x(k)T = [x1(k) x2(k) . . . xJ(k)] is the measurement vector of the J
variables at time k. The idea is that the residuals from a model developed
using Xd instead of X should be less correlated and would provide a better
statistical basis. A method for determining the time lag d is proposed
in [Ku et al., 1995], which is based on singular values and auto and
crosscorrelation plots of the scores.
A criteria for determining the number of principal components, R, and

the time lag, d, is also given in [Ku et al., 1995] as a design procedure

1. Start with d = 0

2. Construct Xd

3. Perform PCA

4. Set j = J(d + 1) and r(d) = 0

5. Does the jth principal component representing a linear relation? If
not go to 7

6. j = j − 1 and r(d) = r(d) + 1. Go to 5

7. rnew(d) = r(d) −
∑d−1
l=0 (d− i+ 1)rnew(i)

8. If rnew(d) ≤ 0 Stop

9. d = d+ 1 go to 2

103

Chapter 6. Multivariate Statistical Methods for Batch Process Monitoring

The steps 4–6 are the normal decision of the number of principal compo
nents to keep in the model, e.g., test if the jth singular value is insignif
icant. r(l) is then the number of insignificant singular values, i.e., the
number of principal components kept out of the model.
The design procedure is based on that the static relations will be de

termined when applying PCA on X0 and that these will be repeated every
time the matrix is extended and so will the dynamic relations. It is also
important to examine the auto and crosscorrelation plots to determine if
the remaining scores are independent. If they are not this indicates that
more principal components should be added to the model to get better
statistical properties for the residuals and hence the SPE.
As pointed out in [Ku et al., 1995] the idea of using time shifted data

for modeling dynamic systems is not new and has been used extensively
in system identification, see, e.g., [Ljung, 1999] and that DPCA does not
identify accurate time series models. The purpose of the method is to
develop multivariate models for monitoring and the advantage is that it
is a very simple method. Monitoring of continuous processes with DPCA
is used in a similar way as PCA, described above, using T2 and squared
prediction error SPE.
In [Negiz and Cinar, 1997] it is shown that process noise greatly af

fects DPCA and a method based on canonical variate analysis is proposed
instead. Also in [Kruger et al., 2004] problems with DPCA are discussed.
It is shown that if the process variables are uncorrelated and a DPCA
model is built it will result in autocorrelated score variables. The auto
correlation will also increase if the process variables are highly correlated.
This may result in an increase of false alarms. In [Kruger et al., 2004]
the use of autoregressive moving average, ARMA, filters is introduced to
remove the autocorrelation. In [Li and Qin, 2001] an indirect dynamic
PCA method based on subspace model identification is proposed, which is
able to give consistent models in the presence of measurement noise.

6.3 Multi-way Methods for Batch Process Monitoring
Based on PCA

The finite duration and nonlinear behavior of batch processes where
the variables change significantly over time means that monitoring of
batch processes is considerably different from monitoring of continuous
processes. Therefore different methods have been developed in the multi
variate statistical field to take the differences from continuous processes
into account.

104

6.3 Multiway Methods for Batch Process Monitoring Based on PCA

Time

Batch

Variable

I

I

J

J

J

K

K

2K

X I�KJ

X IK�J

1
1

1
1

1

1

1

2J KJ

IK

X

k = 1 k = 2 k = K

i = 1

i = 2

i = I

Figure 6.4 The thirdorder tensor X can be unfolded into several two dimensional
matrices. X I�KJ and X IK�J are two of these ways.

Multi-way Principal Component Analysis

Multiway principal component analysis [Wold et al., 1987], MPCA (also
called Tucker1), is a method for performing PCA on thirdorder tensors.
The name is ambiguous since multiway principal component analysis
also means the extension of PCA to more than two dimension, therefore
MPCA is also called unfolded PCA. The name MPCA will be used here.
Measurements collected from a batch process result in a thirdorder

tensor of data X ∈ R
I�J�K , see also Fig. 6.4. In MPCA X is unfolded

into a matrix, X , and then ordinary PCA is performed on the unfolded
data. The tensor X can be unfolded in different ways to describe different
modes, or dimensions, of the data [Westerhuis et al., 1999], see Fig. 6.4.
In batch process monitoring the variation between batches is of most

interest and the unfolding of X , which describes this best is when each
of its vertical slices (I� J) are placed side by side in the twodimensional

105

Chapter 6. Multivariate Statistical Methods for Batch Process Monitoring

batchwise unfolded matrix X I�K J ∈ R
I�K J [Westerhuis et al., 1999;

Kourti, 2003b]

X I�K J =

x1(1)T x1(2)T . . . x1(k)T . . . x1(K)T

x2(1)T x2(2)T . . . x2(k)T . . . x2(K)T

...
...

. . .
...

...

xi(1)T xi(2)T . . . xi(k)T . . . xi(K)T

...
...

...
. . .

...

xI(1)T xI(2)T . . . xI(k)T . . . xI(K)T

(6.18)

where
xi(k)T =

[
xi1(k) x

i
2(k) . . . xiJ(k)

]
(6.19)

is a vector containing the measurements of the J variables at time k for
batch i. By subtracting the mean from each column in X I�K J the average
trajectory of each variable over time is removed and MPCA will model
the variation around these trajectories. The loadings calculated from this
unfolding have entries corresponding to each variable at each time with
the length of the loading vector being KJ.
MPCA on the unfolding X I�K J was first used for batch process mon

itoring by Nomikos and MacGregor in [Nomikos and MacGregor, 1994;
Nomikos and MacGregor, 1995b; Nomikos and MacGregor, 1995a]. One
drawback with the method is that it assumes that data for the complete
batch is available. If it is to be used for online monitoring future mea
surements must be estimated. In [Nomikos and MacGregor, 1995b] three
different methods for anticipating the future measurements in a new mon
itored batch are suggested. The first sets all future measurements to zero,
which is equal to assuming that the batch will follow the nominal trajec
tory if the data is mean centered. The second assumes that the current
deviation from the nominal trajectory will remain the same to the end of
the batch, i.e., it fills in the rest of the trajectories with the current val
ues of the variables. The third uses the PCA model’s ability to predict the
future deviations from the nominal trajectory by projection to the model
plane. The unknown future deviations are regarded as missing values
and the principal components of the model built from nominal batches
are used to predict these under the restriction that the already measured
values up to time k and the correlation structure described by the load
ings are kept the same. The scores at time k, t(k) ∈ R

R, of the running
batch are calculated by least squares estimation

t(k) =
(
P(k)TP(k)

)−1
P(k)T xnew(k) (6.20)

106

6.3 Multiway Methods for Batch Process Monitoring Based on PCA

where P(k) ∈ R
kJ�R consists of the first kJ rows of the loading matrix P ∈

R
K J�R from the model and xnew(k) ∈ R

kJ�1 are the measured variables of
the running batch up to time k.
Several methods for prediction of future measurements have been pro

posed in the literature. In [Arteaga and Ferrer, 2002] different methods
are described and compared, and it is shown that several of them are
equivalent. In [GarcíaMuñoz et al., 2003] also several methods are com
pared for batch process monitoring. One drawback of having to predict
future values is that the prediction does not become reliable until a cer
tain amount of the measurements for a batch have been collected. For
example, it has been reported in the literature that approximately 10% of
the batch needs to be measured for the projection to model plane method.
At the end of the batch the entire history of the batch has been taken into
account calculating the score of the batch.
The unfolding X IK�J in Fig. 6.4 was used for batch process monitoring

in [Wold et al., 1998] to overcome the problem with the need to have the
measurements for the full batch.

X IK�J =

x1(1)T

x1(2)T

...

x1(K)T

...

xI(1)T

xI(2)T

...

xI(K)

(6.21)

This unfolding preserves the direction of the variables. When the variable
wise unfolded matrix X IK�J is mean centered over its columns the grand
mean of each variable over all batches and all times is subtracted from
the trajectory of each variable in each batch. This leaves the timevarying
part of the trajectory in the data that PCA tries to model. This unfolding
also leads to that there will be J entries in the loading for each principal
component, which will remain constant over the duration of the whole
batch. It implies that the correlation among the variables is the same
during the whole batch, which necessarily does not have to be true. It may
change several times during the batch. An alternative way is to remove
the timevarying part of the trajectory by first mean centering and scaling
the variables over the batch mode, i.e., in the same way as described above

107

Chapter 6. Multivariate Statistical Methods for Batch Process Monitoring

for the batchwise unfolded X I�K J , and then unfold the tensor to X IK�J .
The problem that the directions of the loadings are constant will still
remain though. These directions will only be the true principal directions
at certain times during the batch. This subject will be further discussed
in connection to the moving window PCA method below.
A comparison of MPCA on the two different unfoldings is performed

in [Westerhuis et al., 1999] showing that unfolding X IK�J usually needs
almost as many principal components as there are original variables. An
other discussion of the two different ways of unfolding, in [Kourti, 2003b],
also states that the unfolding X I�K J is of most relevance when monitoring
batch processes. The two approaches can also be combined where X IK�J

is used online during the batch and the unfolding X I�K J is used when
the batch is finished to avoid being forced to fill in future measurements.
In [Kourti, 2003a] another drawback with the unfolding X IK�J is dis
cussed, namely that the method is not capable of handling the case when
a variable is only measured during a certain part of the batch duration.
In [Wold et al., 1998] a slightly different approach is also taken where

partial least squares, PLS, regression, see e.g., [Wold et al., 1987; Wold
et al., 2001], is performed on X IK�J and y, where y contains a measure
of the maturity of the batch, e.g., the batch duration. This method is not
treated here since the focus is on PCA based methods. Comments on the
method in [Wold et al., 1998] can be found in [Kourti, 2003a].

Control Limits To develop control limits for the T2 and the SPE when
using the unfolding X I�K J the normal batches are run through the chosen
method for estimating future measurements as if they are new batches.
The scores and SPE calculated for each batch at each time interval are
used to calculate the T2 and the confidence limits under the assumption
that they are normally distributed. T2 is calculated in the same way as
in Eq. 6.13

T2(k) = t(k)T Ŝ−1(k)t(k) (6.22)

but now t(k) are the predicted scores from Eq. 6.20 and Ŝ(k) is an estimate
calculated using the predicted scores from all the batches filled from time
k.
Since PCA is used to calculate the model the control limits will be sim

ilar to the ones calculated for a continuous process above. The difference
is that the degrees of freedom will change. T2 will now be distributed
according to

T2 ∼
(I2 − 1)R
I(I − R)

FR,I−R(α) (6.23)

SPE in MPCA is only calculated for the last sample at time instance

108

6.3 Multiway Methods for Batch Process Monitoring Based on PCA

k according to

SPE(k) =
kJ∑

l=(k−1)J+1

ek(l)
2 (6.24)

where ek is the residuals given by

ek = xnew(k) − t(k)PT (6.25)

This gives a measure of the orthogonal distance of the batch to the model
described by the R principal components at time instance k. The control
limit for the SPE is calculated using Eq. 6.16 with the mean m and vari
ance ν calculated from the normal batches. The control limits for the SPE
will change with time since the sample mean m and sample variance ν
from the normal batches change with k.
When using the unfolding X IK�J the control limits for the scores are

calculated from the standard deviation of scores from the batches used to
build the model [Wold et al., 1998]. The calculated values for each score
tr over time for each batch is reshaped to the matrix Xtr according to

Xtr =

t1r(1) . . . t1r(k) . . . t1r(K)
...

. . .
...

...

tir(1) . . . tir(k) . . . tir(K)
...

...
. . .

...

tIr(1) . . . tIr(k) . . . tIr(K)

(6.26)

where tir(k) is the value of the rth score of batch i at time k. The mean
and standard deviation from these matrices are used for the control limits
when monitoring new batches. Both the mean and the standard deviation
are changing over time. T2 and SPE can be used for this unfolding as
well.

Contribution Plots In case of a fault one of the T2 or SPE statistics,
or both, will hopefully detect it and indicate this by going outside the
limits. When a fault is detected the model can be used to determine which
of the original J variables contributed the most by using contribution
plots [Nomikos, 1996; Westerhuis et al., 2000] to determine what type of
fault has occurred. The T2 and SPE plots only indicate that the process is
not operating according to normal operation and do not give information
about what the root cause is.
If only the T2 goes out of its limits the model is still valid, but the

distance from the monitored batch to the center of the model is larger

109

Chapter 6. Multivariate Statistical Methods for Batch Process Monitoring

than normal. In this case, the contribution of each variable to the T2

should be examined. If instead SPE is higher than its control limit this
indicates that the model is no longer valid and that this behavior was not
present in the batches used for calculating the model. In this case, the
contribution of each variable to the SPE should be examined.
One way of calculating the contribution to T2 is to calculate the jth

variable’s contribution at each time instance k using [Nomikos, 1996;
Westerhuis et al., 2000]

cT
2

kj =

R∑

r=1

σ −1
r trx j(k)Pkj,r (6.27)

where σ r is the rth diagonal element in S in Eq. 6.13, tr is the rth score
for the monitored batch, x j(k) is the measurement of the jth variable at
time k, and Pkj,r is the kjth element in the rth loading vector. Eq. 6.27
assumes that the measurements for the whole batch are available to cal
culate the rth score tr for the finished batch. If future measurements are
approximated using, e.g., projection to model plane, these will also influ
ence the contribution plots and the contribution plots are therefore not
fully reliable.
Another way is to calculate contributions to scores that are out of their

individual limits [Miller et al., 1998]. For each score tr, which is outside
its limits the contribution from variable j is calculated by

ctrkj = x j(k)Pkj,r (6.28)

Both approaches assume that the loadings in the model are orthonor
mal and the scores are orthogonal, which is the case when using PCA.
Extensions to nonorthogonal cases can be found in [Westerhuis et al.,
2000].
The contribution of the jth variable at time k to the SPE can be cal

culated as
cSPEkj = (ej(k))

2 = (x j(k) − x̂ j(k))
2 (6.29)

where x j(k) is the measurement of variable j at time k from the monitored
batch and x̂ j(k) is the part described by the PCA model.
When monitoring a batch online and filling in estimates of future mea

surements these will also give contributions to the scores, T2, and SPE.
Using the projection to model plane method the scores at time k, t(k), are
used to calculate the future values x f uturenew,k ∈ R

(K−k)J�1 from time k+ 1 to
K according to

x
f uture
new,k = P f uturet(k) (6.30)

110

6.3 Multiway Methods for Batch Process Monitoring Based on PCA

where P f uture ∈ R
(K−k)J�R are the loadings associated with the future

predicted variables. The full, partially estimated, trajectories of the batch
currently being monitored can now be written using the available mea
surement up to time k, xnew,k according to

x f ull,k =
[
xnew,k x

f uture
new,k

]
(6.31)

This together with, e.g., Eq. 6.27 gives that the contribution to T2 is

cT
2

k̂ j
(k) =

R∑

r=1

σ̂ −1
r (k)tr(k)x

f ull,k
j (k̂)Pk̂ j,r (6.32)

where σ̂ r(k) is the rth diagonal element in Ŝ(k) in Eq. 6.22 and x f ull
k̂ j

(k) is

the value of the jth variable, either measured (if k̂ < k) or estimated (if
k̂ > k). Now two time indices are used, k which is the latest sample time,
i.e., how long the batch has been running, and k̂ which is the contribution
time which can take a value between 1 and K . A discussion of this can
also be found in [Meng et al., 2003].
Another way of isolating faults in multivariate statistical methods is

to use fault signatures in the scores and the residuals. This is described
in [Yoon and MacGregor, 2001a].

Batch Dynamic PCA

The batch dynamic PCA method, BDPCA, was proposed in [Chen and Liu,
2002]. A correlation matrix based on time lagged data for one batch at the
time is constructed and then an average of the matrices for all batches is
used to build a PCA model. Here a new algorithm is used and it will be
shown that instead of constructing several correlation matrices a model
can be built directly from the SVD of one matrix constructed from time
lagged data and that this method does not really result in a dynamic
model.
In [Chen and Liu, 2002] the authors claim that MPCA using the un

folding X I�K J is not taking the dynamic relationship into account as a
motivation for BDPCA. They base this claim on the calculation of the
covariance matrix SI�I ∈ R

I�I given by

SI�I =
(X I�K J)(X I�K J)T

KJ − 1
(6.33)

111

Chapter 6. Multivariate Statistical Methods for Batch Process Monitoring

where

(X I�K J)(X I�K J)T =

K∑

k=1

J∑

j=1

(x1j (k))
2

K∑

k=1

J∑

j=1

x1j (k)x
2
j (k) . . .

K∑

k=1

J∑

j=1

x1j (k)x
I
j (k)

K∑

k=1

J∑

j=1

x2j (k)x
1
j (k)

K∑

k=1

J∑

j=1

(x2j (k))
2 . . .

K∑

k=1

J∑

j=1

x2j (k)x
I
j (k)

...
...

. . .
...

K∑

k=1

J∑

j=1

xIj (k)x
1
j (k)

K∑

k=1

J∑

j=1

xIj (k)x
2
j (k) . . .

K∑

k=1

J∑

j=1

(xIj (k))
2

(6.34)
and draw the conclusion that this matrix does not describe any relation
ship between the different time instances of the batches but only relation
ship between batches.
The problem is that this is the covariance matrix associated with the

left singular vector of the SVD of X I�K J and not the right singular vec
tor, which contain the loadings in the PCA model. If instead the correct
covariance matrix SK J�K J ∈ R

K J�K J is calculated

SK J�K J =
(X I�K J)T (X I�K J)

I − 1
(6.35)

where

(X I�K J)T(X I�K J) =

S̃1,1 S̃1,2 . . . S̃1,k2 . . . S̃1,K

S̃2,1 S̃2,2 . . . S̃2,k2 . . . S̃2,K

...
...

...
...

S̃k1,1 S̃k1,2 . . . S̃k1,k2 . . . S̃k1,K

...
...

...
...

S̃K ,1 S̃K ,2 . . . S̃K ,k2 . . . S̃K ,K

(6.36)

112

6.3 Multiway Methods for Batch Process Monitoring Based on PCA

with S̃k1,k2 ∈ R
J�J equal to

S̃k1,k2 =

I∑

i=1

xi1(k1)x
i
1(k2)

I∑

i=1

xi1(k1)x
i
2(k2) . . .

I∑

i=1

xi1(k1)x
i
J(k2)

I∑

i=1

xi2(k1)x
i
1(k2)

I∑

i=1

xi2(k1)x
i
2(k2) . . .

I∑

i=1

xi2(k1)x
i
J(k2)

...
...

. . .
...

I∑

i=1

xiJ(k1)x
i
1(k2)

I∑

i=1

xiJ(k1)x
i
2(k2) . . .

I∑

i=1

xiJ(k1)x
i
J(k2)

(6.37)

then it can be seen that this covariance matrix clearly is a measure of
the relationship in time of the measurements and thus MPCA does take
dynamics into account in the same way as in BDPCA. Below it will be
shown that the two different unfolding MPCA methods described above
are special cases of BDPCA.
The method proposed in [Chen and Liu, 2002] for calculating an BD

PCA model is to order the measurements from batch i in the matrix
X id ∈ R

(K−d)�(d+1)J according to

X id =

xi(1)T xi(2)T . . . xi(d+ 1)T

xi(2)T xi(3)T . . . xi(d+ 2)T

...
...

. . .
...

xi(K − d)T xi(K − d+ 1)T . . . xi(K)T

, (6.38)

to include dynamic effects in the same way as in DPCA, described above.
The measurements from J variables of batch i at time k, xi(k)T , are
defined by Eq. 6.19. A covariance matrix, SiXdXd ∈ R

(d+1)J�(d+1)J , is then
calculated for each of the I batches according to

Si
X idX

i
d

=

(
X id

)T (
X id

)

K − d− 1
(6.39)

113

Chapter 6. Multivariate Statistical Methods for Batch Process Monitoring

where

(X id)
T(X id) =

S̄i1,1 S̄i1,2 . . . S̄i1,k2 . . . S̄i1,d+1

S̄i2,1 S̄i2,2 . . . S̄i2,k2 . . . S̄i2,d+1

...
...

...
...

S̄ik1 ,1 S̄ik1,2 . . . S̄ik1,k2 . . . S̄ik1,d+1

...
...

...
...

S̄id+1,1 S̄id+1,2 . . . S̄id+1,k2 . . . S̄id+1,d+1

(6.40)

with S̄ik1,k2 ∈ R
J�J equal to

S̄ik1 ,k2 =

K−d−1∑

k=0

xi1(k+ k1)x
i
1(k+ k2) . . .

K−d−1∑

k=0

xi1(k+ k1)x
i
J(k+ k2)

...
. . .

...
K−d−1∑

k=0

xiJ(k+ k1)x
i
1(k+ k2) . . .

K−d−1∑

k=0

xiJ(k+ k1)x
i
J(k+ k2)

.
(6.41)

Then an average covariance matrix SavnXdXd using the I covariance matrices
is calculated.

S
avn
XdXd

=
(K − d− 1)

∑I
i=1 S

i
XdXd

I(K − d) − 1
(6.42)

Finally PCA is applied to the average covariance matrix SavnXdXd to build
the model.
To determining the time lag d in BDPCA it is proposed in [Chen and

Liu, 2002] that the method for DPCA in [Ku et al., 1995] should be used.
This method is described above in the part describing DPCA in Section 6.2.

Alternative Algorithm for BDPCA To avoid having to calculate the
covariance matrix for each batch and then average over all the batches a
new algorithm is proposed. If the time lagged matrices for all I batches,
X id, are included after each other in the matrix Xd ∈ R

I(K−d)�J(d+1) ac
cording to

Xd =

X 1d
...

X Id

 (6.43)

114

6.3 Multiway Methods for Batch Process Monitoring Based on PCA

the covariance matrix, SXdXd , for all I batches can be calculated according
to

S =
X Td Xd

I(K − d) − 1
=

1
I(K − d) − 1

[
(X 1d)T (X 2d)T . . . (X Id)T

]

X 1d

X 2d
...

X Id

=

∑I
i=1(X

i
d)
T X id

I(K − d) − 1
,

(6.44)

which is the same covariance matrix as in Eq. 6.42 and thus the PCA
model can be determined from the SVD of the matrix Xd directly.

Relation to MPCA If no time lag is introduced, i.e., d = 0, in Eq. 6.43
the result becomes X0 ∈ R

IK�J , which is equivalent to unfolding X IK�J

in Fig. 6.4 and Eq. 6.21 used in MPCA. On the other hand if the time lag
reaches its maximum, i.e. d = K − 1, the result is XK−1 ∈ R

I�K J , which
is equivalent to unfolding X I�K J in Fig. 6.4 and Eq. 6.18 used in MPCA.

Mean Centering and Scaling A question not discussed in [Chen and
Liu, 2002] is how to mean center and scale the matrix Xd. The mean
of the columns and the size of the matrix Xd changes with the time lag
d. The two extremes when d = 0 and d = K − 1 are considered in the
section above describing MPCA. After correspondence with one of the au
thors [Chen, 2004] it was clarified that in [Chen and Liu, 2002] the batches
are first unfolded to X I�K J , mean centered and scaled to unit variance
over its columns, and then refolded to the dynamic structure propose in
the method. This removes the timevarying part of the trajectory in the
same way as described above for the unfolding X I�K J .

Shortcomings of BDPCA Looking at the new algorithm it becomes
clear that the generated model only models the most dominant direction
of the time lagged data over the batches since it mixes the time and
batch directions. It does not describe the changing dynamics. This is the
same problem as in MPCA using the unfolding X IK�J where the loadings
remain constant over the batch duration. BDPCA does not take the whole
batch into account when calculating the scores for a new batch, only the
last d + 1 samples are used. This also leads to that the control limits
for BDPCA have to be calculated in a similar fashion as in variablewise
unfolded MPCA. Since it here has been proven that the BDPCA method is

115

Chapter 6. Multivariate Statistical Methods for Batch Process Monitoring

quite different from the DPCA method it can be questioned if the method
for determining the time lag in [Ku et al., 1995] is a good choice. This is
however not further investigated here.

Alternative MPCA Approaches

There are two major drawbacks with the presented methods. The first is
the need to have all the measurements of the batch when using the un
folding X I�K J and the second that the unfolding X IK�J and BDPCA are
using only the most dominant direction over the batch when determining
the model. Here are two alternative methods described that avoid these
drawbacks.

Multi Model MPCA One easy way of eliminating the problem with
having to have all the measurements of a batch is to build one model at
each time instance k using the same approach as when using the unfold
ing X I�K J . This will generate K different models built on the unfolded
matrices X I�kJ , where k = 1, 2, . . . , K . This approach therefore will here
be called multi model MPCA and it uses the same theory as the batch
wise unfolded MPCA. The model includes one more measurement of all
the variables for each time instance. The problem with this method is
that a large number of models have to be both developed and also stored
to be used during the monitoring of a new batch. It could be argued that
it is too tedious having to determine the number of principal components
to use in the model at each time instance and the storage requirements
will be to large. But since only the singular values of the model batches
need to be stored at the first stage of modeling this becomes manageable.
Using plots of how the singular values change over time gives insight on
how the dynamics of the batch are changing. After choosing the number
of principal components to be used for the specific model at time k only
the loadings for the model with the dimensions R� kJ need to be stored.
A more serious problem is that the principal components will both change
direction and significance, i.e. the direction of the first principal compo
nent will become less important and it will switch place with the second
principal component. This is further discussed in Chap. 9.
If the method results in too many models a model can be calculated

at, e.g., only every tenth sample together with filling in the future mea
surement with projection to the model plane between two models just as
in the batchwise unfolded MPCA.

Moving Window PCA Another method, which produces a model spe
cific for each time instance is moving window PCA [Lopes and Menezes,
1998; Lennox et al., 2001a; Lennox et al., 2001b; Lennox et al., 2002].
Instead of as in BDPCA constructing the matrix X id according to Eq. 6.38

116

6.3 Multiway Methods for Batch Process Monitoring Based on PCA

a model is calculated for each point in time k by constructing Xd(k) ∈
R
I�(d+1)J according to

Xd(k) =

x1(k− d)T x1(k− d+ 1)T . . . x1(k)T

x2(k− d)T x2(k− d+ 1)T . . . x2(k)T

...
...

. . .
...

xI(k− d)T xI(k− d+ 1)T . . . xI(k)T

(6.45)

where k = d+ 1, . . . , K . This will give K − d different models where each
model describes the behavior at time instance k based on measurements
from d+ 1 time instances. The models are calculated from a moving win
dow thus the name moving window PCA. The length of the window d does
not have to be constant over the whole batch. The method can also easily
be used for batches with different runlengths.
If d is chosen to be constant over the whole batch duration it can be

noticed that BDPCA models the most dominant direction of the K − d
models from moving window PCA. This can be seen if the matrix Xd in
Eq. 6.43 is rearranged, by changing the rows, to

Xd =

Xd(d+ 1)
...

Xd(K)

 (6.46)

When d = 0 this gives K models where each model gives the relations
of the variables at time point k. X0(k) ∈ R

I�J is given by

X0(k) =

x1(k)T

x2(k)T

...

xI(k)T

(6.47)

If the K matrices X0(k) for k = 1, 2, . . . , K are stacked on top of each
other and the rows are reordered this will give the matrix X IK�J , and
again it can be seen that this unfolding is an average model over all time
instances.
If d = K−1 only one model can be calculated, XK−1(k) ∈ R

I�K J , given
by

XK−1(K) =

x1(1)T x1(2)T . . . x1(K)T

x2(1)T x2(2)T . . . x2(K)T

...
...

. . .
...

xI(1)T xI(2)T . . . xI(K)T

(6.48)

117

Chapter 6. Multivariate Statistical Methods for Batch Process Monitoring

where the only possible value for k is K . This equals MPCA using the
unfolding X I�K J as described above.
There is no general method for determining the value of d in the

method, e.g., in [Lennox et al., 2002] it is stated that the length of the
window has limited impact.

Other Related Methods

Other approaches for batch process monitoring include multiblock and
hierarchical PCA, see e.g., [Kourti et al., 1995; Westerhuis et al., 1998].
In multiblock PCA the data is, as the name implies, divided into blocks.
Each block is individually modeled using PCA and then the scores from
the different models are combined to a super block. This super block is
then modeled with PCA to get super scores and super weights. The dif
ference between multiblock and hierarchical PCA is if the super weight
or the super score is normalized to have unit length.
In [Rännar et al., 1998] an hierarchical PCA is used in an adaptive

manner to monitor batch processes. The blocks used in the method are
equivalent to X0(k) ∈ R

I�J in Eq. 6.47. In the algorithm a PCA model is
first built at time k = 1. Then for the next time instance a hierarchical
model is built using the scores from the first sample and from a model
built on data from k = 2, thus calculating super scores and super weights.
The data from the new time instance is weighted into the model. In the
next time step the super score from the previous time is used together with
the scores from the model built using data from the third time instance
and so on. Related to this is the recursive PCA method [Li et al., 2000]
for adaptive process monitoring.
A method for monitoring of different product grades or recipes in batch

processes is proposed in [Lane et al., 2001]. The method is based on a
multigroup model instead of using one model for each grade/recipe.

6.4 Three-way Methods for Batch Process Monitoring

Threedimensional data appears in several different fields of science, e.g,
in economy, psychology, and analytical chemistry. Thus, several methods
have been developed in these fields. Since batch process data is three
dimensional by nature some of these methods have been used for modeling
of batch processes, see [Dahl et al., 1999; Westerhuis et al., 1999; Wise
et al., 1999; Meng et al., 2003; Louwerse and Smilde, 2000; Smilde, 2001].
A brief description of some of these methods is given below.

118

6.4 Threeway Methods for Batch Process Monitoring

Time

Batch

Variable

Tucker3

I

I

J

J

K

K

A

B

C

D

E

F

1

1
1

1

1
1

1

1

1

X
G

Figure 6.5 Tucker3 model of the thirdorder tensor X with the loadings A, B,
and C, and the core tensor G.

Tucker3

Several multiway statistical methods come from the psychometrics (i.e.
the psychological science of measuring cognitive or mental capacities, such
as personality or intelligence) area where threeway or nway data com
monly exists. One of these methods is Tucker3 proposed by Tucker [Tucker,
1966], see also the book [Kroonenberg, 1983]. The structure of a Tucker3
model consists of a core cube, G, and loadings (factors) A, B, and C for
each data dimension, see Fig. 6.5.
If the thirdorder tensor X ∈ R

I�J�K is unfolded to X I�K J then the
model can be written as

X I�K J = AGD�EF (C ⊗ B)T + ẼI�K J (6.49)

where ⊗ is the Kronecker tensor product defined in Def. 6.3, GD�EF ∈

R
D�EF is the unfolded core tensor G ∈ R

D�E�F , Ẽ is the residual matrix,
and A ∈ R

I�D , B ∈ R
K�E, and C ∈ R

J�F are the loadings of the three
dimensions. The core cube G defines how the loading vectors interact with
each other. This can be compared to the batchwise unfolded MPCA and
it can be seen that A can be seen as the scores and GD�EF (C ⊗ B)T as
the loadings in MPCA.

119

Chapter 6. Multivariate Statistical Methods for Batch Process Monitoring

DEFINITION 6.3—KRONECKER TENSOR PRODUCT
For H ∈ R

n�m the Kronecker tensor product is defined as

H ⊗ L =

h11L h12L . . . h1mL

h21L h22L . . . h2mL

...
...

. . .
...

hn1L hn2L . . . hnmL

A Tucker3 model may have different numbers of components in each data
direction, i.e, A, B, and C can have different number of columns. Tucker3
also has rotational freedom like PCA. If the core is constrained to only hav
ing ones on the superdiagonal the Tucker3 model becomes the PARAFAC
model described below.

Algorithm for Tucker3 If B and C are given initial values and D,
E, and F are the specified orders of the model, an iterative algorithm for
Tucker3 is given by [Bro, 1998; Andersson and Bro, 1998]

1. X I�K J (C ⊗ B)
SVD
= UΣVT

2. A is set to the D first columns of U

3. X J�K I (C ⊗ A)
SVD
= UΣVT

4. B is set to the E first columns of U

5. X K�JI (B ⊗ A)
SVD
= UΣVT

6. C is set to the F first columns of U

7. Go to 1 until convergence

8. G = AT X I�K J (C ⊗ B)

One suggestion for the initialization of B and C is by computing X J�K I SVD=

UΣVT and setting B to the E first columns of U . Then X K�JI SVD= UΣVT

is computed and C is taken as the F first columns of U .

Monitoring using Tucker3 The scores for a new batch, anew, are cal
culated by solving the least squares problem of Eq. 6.49 [Louwerse and
Smilde, 2000] according to

anew = (GGT)−1G
[
(C ⊗ B)T(C ⊗ B)

]−1
(C ⊗ B)T xnew (6.50)

120

6.4 Threeway Methods for Batch Process Monitoring

where xnew ∈ R
K J are the measurements from the new batch. C; B, and

G = GD�EF from Eq. 6.49. The residual, enew are calculated according to

enew = xnew − (C ⊗ B)GTanew (6.51)

Then T2 and SPE can be used in the same as for MPCA. For online mon
itoring a multi model approach can be adopted where a different Tucker3
model is built for each time instance.

Parallel Factor Analysis

Parallel factor analysis, or PARAFAC also called CANDECOMP [Harsh
man, 1970; Carroll and Chang, 1970], for threeway data has instead of
one score vector and one loading vector as in PCA, one score vector and
two loading vectors (sometimes all three are called loading vectors). The
PARAFAC model does not require orthogonality to identify the model, as
opposed to PCA. In most cases PARAFAC has a unique solution and the
true relations will be found if the right number of components are used
in the model [Bro, 1998].
A PARAFAC model of the thirdorder tensor X ∈ R

I�J�K is given by
three loadings matrices A, B, and C, see Fig. 6.6 according to

X i jk =

R∑

r=1

airb jrckr + Ei jk (6.52)

where air, b jr, and ckr are elements from A ∈ R
I�I�R, B ∈ R

I�J�R, and
C ∈ R

K�I�R respectively and X i jk is the i jkth element in X and Ei jk is
the corresponding error element in E.
If the Kronecker tensor product, see Def. 6.3, is used the model can

also be written as

X I�K J =
R∑

r=1

ar
(
cTr ⊗ bTr

)
+ EI�K J (6.53)

where X I�K J is X unfolded according to Fig. 6.4 and ar ∈ R
I , br ∈ R

J ,
and cr ∈ R

K are the rth column vectors from A, B, and C respectively.
This means that PARAFAC and MPCA gives the same solution up to a
rotation.
The KhatriRao product [Rao and Mitra, 1971] is defined as

DEFINITION 6.4—KHATRIRAO PRODUCT
The KhatriRao product of two matrices with the same number of columns,
R, B ∈ R

J�R and C ∈ R
K�R

C ○ B = [c1 ⊗ b1 c2 ⊗ b2 . . . cR ⊗ bR]

= [vec(c1b
T
1) vec(c2b

T
2) . . . vec(cRb

T
R)]

121

Chapter 6. Multivariate Statistical Methods for Batch Process Monitoring

Time

Batch

Variable

PARAFAC

I

I

J

J

KK

A

B

C

R

R

R
1

1
1

1

1
1

1

1

1

X

Figure 6.6 PARAFAC model of X consisting of the three loadings A, B, and C.

where cr and br are the rth column from C and B respectively, and vec(A)
unfolds the matrix A columnwise to a column vector.

Using the KhatriRao product the PARAFAC model can be written as [Bro,
1998]

X I�K J = A (C ○ B)T (6.54)

As mentioned earlier PARAFAC can be seen as a constrained version
of Tucker3, i.e., if the core in Tucker3 model only has ones at the super
diagonal it becomes a PARAFAC model. This implies that the number of
components, R, must be the same in all directions and that a PARAFAC
model uses fewer parameters than a Tucker3 model.

Algorithm for PARAFAC By using the notation described above the
different ways of unfolding X can be written as

X I�K J = A (C ○ B)T (6.55)

X J�K I = B (C ○ A)T (6.56)

X K�JI = C (B ○ A)T (6.57)

If B and C are given initial values an alternating least squares method
[Bro, 1998] can be used by iterating the following three steps until A, B,
and C converges.

1. Z = (C ○ B), A = X I�K JZ
(
ZTZ

)−1

2. Z = (C ○ A), B = X J�K IZ
(
ZTZ

)−1

3. Z = (B ○ A), C = X K�JIZ
(
ZTZ

)−1

122

6.4 Threeway Methods for Batch Process Monitoring

The solution after convergence may be a local minimum and sev
eral methods have been proposed to overcome this. A simple solution
is, [Harshman and Lundy, 1984], to make several iterations starting with
random B and C. If the different iterations converge to the same solution
the chance that the solution is a local minimum is small.

Monitoring using PARAFAC The scores for a new batch, anew, are
calculated by solving the least squares problem of Eq. 6.54 according to

anew =
[
(C ○ B)T(C ○ B)

]−1
(C ○ B)T xnew (6.58)

where xnew ∈ R
K J are the measurements from the new batch, and C and

B are from Eq. 6.54. The residual, enew are calculated according to

enew = xnew − (C ○ B)anew (6.59)

Then T2 and SPE can be used in the same as for MPCA. For online moni
toring a multi model approach can be adopted where a different PARAFAC
model is built for each time instance.

Dynamic PARAFAC

In [Chen and Yen, 2003] yet another method for batch process monitoring
is proposed. The method is based on building a PARAFAC model of a
tensor containing timelagged data much like in BDPCA. The proposed
method takes the matrix X id ∈ R

(K−d)�(d+1)J in Eq. 6.38 and folds it to the
tensor X id ∈ R

(K−d)�J�(d+1). Then PARAFAC is used to model each batch
at a time according to

(X id)
(K−d)�(d+1)J = Ai

(
Ci ○ B i

)T
+ E(K−d)�(d+1)J (6.60)

Then an overall model is calculated by taking the average over the I
batches

B =
1
I

I∑

i=1

B i

C =
1
I

I∑

i=1

Ci

(6.61)

One problem not mentioned in the article [Chen and Yen, 2003] is
what happens when d is small and when it approaches its maximum.
When d = 0 the data tensor for one batch becomes X i0 ∈ R

K�J�1, which is
a matrix. A similar problem arises when d = K − 1, the maximum value.
X iK−1 ∈ R

1�J�K .

123

Chapter 6. Multivariate Statistical Methods for Batch Process Monitoring

Alternative Algorithm for DPARAFAC A new way of calculating the
model is if instead X id is folded to X

i
d ∈ R

(K−d)�J�(d+1) and all batches are
stacked on one another to form X d ∈ R

I(K−d)�J�(d+1), see Fig 6.7. Now
when d = 0 the tensor becomes the unfolded matrix X IK�J in Fig. 6.4 and
could be modeled with PCA. When d = K − 1 X d becomes X ∈ R

I�J�K ,
which gives the regular PARAFAC model. It can be seen that the delay
gives a constraint on how many components that can be used in the model.
Interesting issues arise from this but the method is not further analyzed
in this thesis.

Monitoring using DPARAFAC Using the new algorithm the calcula
tion of the scores becomes almost the same as for regular PARAFAC. A
new batch at time instance k is monitored by calculating the score in the
batch mode according to Eq. 6.54 with xnew = X newd (k) from Eq. 6.38 for
the new batch.

Higher-Order Singular Value Decomposition

A method which is related to PARAFAC and Tucker3 is higherorder sin
gular value decomposition, HOSVD, developed in [De Lathauwer et al.,
2000a]. The method is a generalization of SVD for matrices to higherorder
tensors using tensor notation. The work on HOSVD is briefly described
and compared to PARAFAC and Tucker3 in Appendix A.

6.5 Summary

A graphical overview of some of the different multiway statistical meth
ods is found in Fig. 6.7. The methods are PARAFAC, MPCA on the un
folded matrix X I�K J , BDPCA using the new alternative algorithm, and
DPARAFAC also using the new alternative algorithm.
In this chapter an introduction of the basics of statistical monitoring

of processes and a survey of methods for batch process monitoring from
the literature have been presented. Two new alternative algorithms for
the methods BDPCA and DPARAFAC have been presented. It is shown
that depending on the selection of the time lag the methods will turn
into the regular MPCA and PARAFAC models. In Chapter 9 the different
methods will be implemented for the simulated batch process in Chapter 7
and compared to each other.
There exist even more methods for batch process monitoring based on

multivariate statistics than described in this chapter. It is quite hard work
just to keep track of them all. Multiway PLS has been used in various
ways for batch process monitoring, see, e.g., [Kourti et al., 1995; Gregersen

124

6.5 Summary

M
P
C
A

P
C
A

P
C
A

PA
R
A
FA
C

PA
R
A
FA
C

D
PA
R
A
FA
C

B
D
P
C
A

T
im
e

B
at
ch

V
ar
ia
bl
e

I

I

I
I

J

J
J

J

J

J

K

K

A

A

B

B

C

C

1

1
1

11 1

1
1

1

1
1

1

1
1

1

1

1

1

1 1

1

11

11
1 1

1
1

1

1
1

11 1

2
J

K
J

K
J

d
+
1

d
+
1

d
+
1

(d
+
1)
J

(d
+
1)
J

(d
+
1)
J

I(
K

−
d

)

I(
K

−
d

)

I(
K

−
d

)
I(
K

−
d

)

K
−
d

K
−
d

R

R R

RR

RR

R

R R

X

X
i d

X
d

X
i d

X
d

k
=
1

k
=
2

k
=
K

Figure 6.7 Graphical overview of different multiway statistical methods.

125

Chapter 6. Multivariate Statistical Methods for Batch Process Monitoring

and Jørgensen, 1999]. Multiway PLS is closely related to batchwise
unfolded MPCA, but the model also describes the relationship between
X I�K J and the quality measurements organized in the matrix Y. Another
method that is closely related to MPCA is multiway independent com
ponent analysis (MICA) [Yoo et al., 2004]. The method is based on inde
pendent component analysis (ICA), which searches for a lowdimensional
subspace with nonGaussian components instead of Gaussian as in PCA.
The method should therefore provide more meaningful models when the
data is nonGaussian. An introduction and tutorial on ICA is found in
[Hyvärinen and Oja, 2000]. Multiway kernel principal component anal
ysis (MKPCA) [Lee et al., 2004], is based on using kernel PCA (KPCA)
[Schölkopf et al., 1998; Choi et al., 2005] to model the data in X I�K J .
KPCA computes principal components in a data set using nonlinear ker
nel functions. In function space analysis based PCA [Chen and Liu, 2001]
each process variable in each batch in X I�K J is expressed as a polyno
mial function of time. Then a matrix is formed where each variable is
represented by the coefficients of the polynomials and PCA is applied to
build a model. Due to constraints in time, none of these methods have
been considered in this work.

126

7

Batch Reactor Simulation

Model

7.1 Introduction

To test and compare the different methods described in this thesis a sim
ulation model of a batch reactor is used. The model is based on a batch
process model in [Luyben, 1973] and implemented in MATLAB/Simulink.
This model has been used as a benchmark problem in several articles con
sidering batch process monitoring, e.g., [Dong and McAvoy, 1995; Wachs
and Lewin, 1998; McPherson et al., 2002; Chen and Liu, 2002; Chen and
Yen, 2003]. The process consists of two consecutive exothermic first order
reactions.

A
k1

−→ B
k2

−→ C (7.1)

where k1 and k2 are the reaction rates of the first and second reaction.
The desired product is B and, thus, the reaction should not go on for
too long time, otherwise too much of B will react to C. If stopped early
too much of A will be left unreacted. Rapid heating of the tank to a
high temperature and then slowly cooling it down will give the optimal
yield [Luyben, 1973]. To do this the process is heated with steam and
cooled with water by a jacket using two different control valves, V1 and
V2 in Fig. 7.1. The reference trajectory can be seen in Fig 7.2.
A simplified description of the recipe for the production of one batch

is as follows:

• Reactant A is fed to the tank.

• Solvent is added to get the right volume and initial concentration of
reactant A.

127

Chapter 7. Batch Reactor Simulation Model

• The materials are mixed.

• A catalyst is added to the tank to start the reaction.

• Steam is fed to the jacket to heat the tank to the reference temper
ature as fast as possible.

• The cooling phase is initiated when the specified temperature is
reached and cooling water is fed to the jacket to keep the tempera
ture in the tank at the reference trajectory. This is crucial since the
reaction is exothermic.

• When the batch has been reacting for the specified duration an in
hibitor is added to the batch to stop the reaction.

• The batch is emptied to another tank for further processing.

• Before the next batch can be started the tank needs to be cleaned.

The reactor is equipped with sensors to measure the temperature in
the jacket, in the wall between the jacket and the reactor, and inside the
reactor. A schematic figure of the process can be found in Fig. 7.1. The
measured variables from a typical batch run as well as the control signals
can be seen in Fig. 7.2. The concentration profiles of a typical batch are
shown in Fig. 7.3.

7.2 Model Equations

The mass and heat balances used in the simulation of the reactor are
given by the following equations

dCA

dt
= −k1CA

dCB

dt
= k1CA − k2CB

dT

dt
=

−λ1
ρCP

k1CA +
−λ2
ρCP

k2CB −
QM

VρCP
dTM

dt
=
QM − QJ
ρMCMVM

QM = hiAi (T − TM)

(7.2)

where CA and CB are the concentrations of A and B in the reactor, k1 and
k2 are the reaction rates given by the Arrhenius expression

kj = α j exp
(

−Ej
R(T + 460)

)
(7.3)

128

7.2 Model Equations

TT

TT

TT
LT

FT FT

TC

V1

V2

V3 V4

V5

Figure 7.1 Schematic figure over the simulated batch process.

where α j is a constant and Ej is the activation energy for the two re
actions, j = 1, 2. R is the universal gas constant and T is the absolute
temperature in the reactor. λ1 and λ2 are the heat of reaction, ρ and ρM
are the densities of the contents of the reactor and the material of the
wall respectively, and CP and CM are the heat capacities of the contents
and the wall respectively. Ai is the heat transfer area between the reactor
and the wall, hi is the heat transfer coefficient, and V and VM are the
volumes of the contents and the wall. TM is the temperature in the wall
between the reactor and the jacket, QM is the heat transferred from the
reactor to the wall, TJ is the temperature in the jacket, and QJ is the
heat transferred from the jacket to the wall.

129

Chapter 7. Batch Reactor Simulation Model

0 20 40 60 80 100 120 140 160 180 200

100

150

200

250

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Time [min]

Time [min]

o
F

Temperature Profiles

Valve Position

Figure 7.2 Measurements from a typical batch. The upper plot shows the temper
ature profiles: inner reactor temperature solid line, wall temperature dashed line,
and jacket temperature dashdotted line. Also shown is the reference trajectory
for the reactor temperature. The lower plot shows the heating (dashed line) and
cooling valve (solid line) positions.

The equations for the jacket are different depending on the media in
the jacket. During the heating with steam they are given by

dρs
dt

=
ws −wc
VJ

ρs =
MwPJ

R (TJ + 460)

PJ = exp
(

Avp

TJ + 460
+ Bvp

)

ws = XsCVs
√
PS0 − PJ

QJ = −hosAo (TJ − TM)

wc = −
QJ

Hs − hc

(7.4)

130

7.2 Model Equations

0 20 40 60 80 100 120 140 160 180 200
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time [min]

C
on
ce
n
tr
at
io
n

[m
o
le

/
f
t3

]

Figure 7.3 Concentration profiles of a typical batch: Concentration of A (CA)
solid line, Concentration of B (CB) dashed line, and Concentration of C (CC)
dashdotted line.

where ρs is the density of the steam, ws is the steam coming into the
jacket, wc is the rate of condensation in the jacket, VJ is the volume of
the jacket, Mw is the molecular weight of water, PJ is the pressure in the
jacket, PS0 is the pressure of the steam coming into the jacket, HS is the
enthalpy of the steam coming into the jacket, and hc is the enthalpy of the
condensate leaving the jacket. Xs is the control signal to the steam valve
V1, Ao is the heat transfer area between the jacket and the wall, and hos
is the heat transfer coefficient of the steam. The equations for the jacket
during the heating are numerically solved for the absolute temperature
in the jacket TJ in the simulation.
During the filling of the jacket after stopping the heating and starting

the cooling phase the equations for the jacket are given by

Ao = VJ
Atoto
V totJ

dVJ

dt
= Fw

dVJTJ

dt
= FwTJ0 +

QJ

ρJCJ

QJ = howAo (TM − TJ)

Fw = CVwXw
√
Pw0

(7.5)

131

Chapter 7. Batch Reactor Simulation Model

Table 7.1 Simulation parameters

α 1 729.55 min−1

α 2 6567.6 min−1

E1 15,000 Btu/mole

E2 20,000 Btu/mole

Avp –8744.4 oR

Bvp 15.70

T0 80 oF

TJ0 80 oF

CVs 112 lbm/minpsi1/2

CVw 100 gal/minpsi1/2

hos 1000 Btu/hroRft2

how 400 Btu/hroRft2

hi 160 Btu/hroRft2

Atoto 56.5 ft2

Ai 56.5 ft2

V totJ 18.83 ft3

V 42.5 ft3

VM 9.42 ft3

λ1 –40,000 Btu/mole

λ2 –50,000 Btu/mole

PS0 35 psi

Cp 1 Btu/lbmoR

CM 0.12 Btu/lbmoR

CJ 1 Btu/lbmoR

ρ 50 lbm/ft3

ρM 512 lbm/ft3

ρJ 62.3 lbm/ft3

R 1.987 Btu/moleoR

CA0 0.80 mole/ft3

Hs − hc 939 Btu/lbm

where Ao is the part of the heat transfer area used for cooling, Atoto is
the total heat transfer area when the jacket is full. VJ is the volume of
cooling water in the jacket and V totJ is the total volume. Fw is the flow of
cooling water, Xw is control signal to the cooling water valve V2. TJ0 is
the cooling water temperature and Pw0 is the cooling water temperature
and pressure at the inlet. The dynamics for the jacket when it is full of
water is given by

dTJ

dt
=
Fw

V totJ
(TJ0 − TJ) +

QJ

CJV
tot
J ρJ

(7.6)

The values of the parameters used in the simulations are given in Ta
ble 7.1.

7.3 Controller

The temperature in the reactor T is controlled by a discretetime PID
controller with different parameters depending on if the batch is in the
heating or the cooling phase. The controller is implemented according

132

7.4 Recipe Implementation

to [Wittenmark et al., 2000]

P(k) = Kc (βTref (k) − T(k))

D(k) =
Td

Td + Nh
D(k− 1) −

KcTdN

Td+ Nh
(T(k) − T(k− 1))

v(k) = P(k) + I(k) + D(k)

u(k) =

1, v(k) ≥ 1

v(k), 0 < v(k) < 1

0, v(k) ≤ 0

I(k+ 1) = I(k) +
hKc

Ti
(Tref (k) − T(k)) +

h

Tt
(u(k) − v(k))

(7.7)

where Kc is the controller gain, N limits the gain for high frequencies, Td
is the derivative gain, Ti is the integral time, Tt is tracking time constant,
and β is the set point weighting. The sampling time in the controller, h,
was 12s. The values of the controller parameters are given in Table 7.2.
The parameters changes when the batch changes phase from heating to
cooling. There is no integral action during the heating phase.

Table 7.2 Controller parameters

Parameter Heating Cooling

Kc 0.02 0.02

Td 3 5

N 10 10

Ti ∞ 100

Tt ∞ 1000

β 1 1

7.4 Recipe Implementation

One of the recipes used for the production of a batch of Product B has been
implemented in JGrafchart according to Fig. 7.4. The recipe described in
the beginning of the chapter is implemented using procedure steps that
call equipment operations, also implemented in JGrafchart, according to
Fig. 3.5.

133

Chapter 7. Batch Reactor Simulation Model

Figure 7.4 Recipe for the production of one batch of the simulated process.

134

7.5 Definitions of Faults

7.5 Definitions of Faults

To be able to detect faults it is important to specify which faults may occur
and when they may occur during the execution of a control recipe. The
type of faults that may occur and the level of model complexity available
for the process to be monitored will influence the choice of method to be
used.
Usually the first thing to do when designing a fault diagnosis system

is to define the faults that may occur in the process, when they may occur,
and how the faults may influence the process. Several different methods
can be used for this, e.g., FMEA or Hazop analysis described briefly in
Chapter 5.
Faults that may be considered for the different operations during the

manufacturing of a batch in the simulated batch process in are defined
below. The definitions of the faults are structured according to the recipe
described in Fig. 7.4 and the process equipment seen in Fig. 7.1.

• Filling of A

– Bias in the flow meter

∗ Primary effect: Wrong amount of A added to the tank.

∗ Secondary effect: Wrong CA0

– Bias in the level sensor

∗ Primary effect: Wrong amount of A added to the tank.

∗ Secondary effect: Wrong CA0 and V .

– V3 is stuck closed

∗ Primary effect: No flow of A.

∗ Secondary effect: Delay of recipe execution.

– Leakage in the valve V5.

∗ Primary effect: Waste of A. Risk to personnel.

∗ Secondary effect: Low CA0.

– V3 is stuck open at the end of filling

∗ Primary effect: Too much A added.

∗ Secondary effect: A need to be emptied out, high CA0, or
high V .

• Filling of solvent

– Bias in the flow meter

∗ Primary effect: Wrong amount of solvent added to the tank.

135

Chapter 7. Batch Reactor Simulation Model

∗ Secondary effect: Wrong CA0 and V .

– Bias in the level sensor

∗ Primary effect: Wrong amount of solvent added to the tank.

∗ Secondary effect: Wrong CA0 and V .

– V4 is stuck closed

∗ Primary effect: No flow of solvent.

∗ Secondary effect: Delay of recipe execution.

– Leakage in the valve V5

∗ Primary effect: Waste of A and solvent. Risk to personnel.

∗ Secondary effect: Low CA0 since extra solvent is added dur
ing filling.

– V4 is stuck open at end

∗ Primary effect: Too much solvent added.

∗ Secondary effect: Low CA0.

• Mixing

– Poor mixing

∗ Primary effect: Lower reaction rate.

∗ Secondary effect:

– Leakage in the valve V5

∗ Primary effect: Waste of A and solvent. Low V .

∗ Secondary effect:

• Adding of catalyst

– Poor catalyst

∗ Primary effect: Higher activation energies, E1 and E2.

∗ Secondary effect:

– Leakage in the valve V5

∗ Primary effect: Waste of A and solvent. Low V .

∗ Secondary effect:

• Heating

– Low heat transfer coefficient, hi, due to fouling

∗ Primary effect: Slower heating.

∗ Secondary effect: Higher control signal.

– Low steam pressure, low steam temperature

136

7.5 Definitions of Faults

∗ Primary effect: Slower heating.

∗ Secondary effect:

– Leakage in the valve V5

∗ Primary effect: Waste of A and solvent. Low V .

∗ Secondary effect:

– Leakage in the jacket

∗ Primary effect: Less heating. Risk to personnel.

∗ Secondary effect: Higher control signal.

– Unwanted reaction pathway

∗ Primary effect: Less yield of the wanted product.

∗ Secondary effect: Product off specification.

• Cooling

– Low heat transfer coefficient, hi, due to fouling

∗ Primary effect: Less cooling.

∗ Secondary effect: Higher control signal. Runaway reaction.

– High temperature in cooling water

∗ Primary effect: Less cooling.

∗ Secondary effect: Higher control signal. Runaway reaction.

– Leakage in the valve V5

∗ Primary effect: Waste of A and solvent. Low V .

∗ Secondary effect:

– Leakage in the jacket

∗ Primary effect: Less cooling.

∗ Secondary effect: Higher control signal.

– Unwanted reaction pathway

∗ Primary effect: Less yield of the wanted product.

∗ Secondary effect: Product off specification.

• Adding of inhibitant

– Reaction not terminated

∗ Primary effect: Reaction time too long. Less yield.

∗ Secondary effect: Cooling needs to continue.

– Leakage in the valve V5

∗ Primary effect: Waste of A and solvent. Low V .

137

Chapter 7. Batch Reactor Simulation Model

∗ Secondary effect:

• Emptying

– V5 is stuck closed

∗ Primary effect: No flow of product.

∗ Secondary effect: Delay of recipe execution.

A large amount of faults may occur that are associated with the re
actions. Looking at the dynamic model in Eq. 7.2 it can be seen that the
reactions depend on a number of parameters, such as the activation en
ergies, that may vary between batches or during a batch. One way of
systematically determine how the parameters affect the system is the
diagnostic model processor, DMP, method, which is applied to the batch
process in Chapter 8.
A thorough list of expected faults and exceptions associated with a

process will make the design of the diagnosis system more structured.
This gives an indication of which faults are most severe and most impor
tant to be able to handle, and where resources should be distributed used
during the development of the system. For example, a high or low initial
concentration of A will have a large impact on the yield of the final prod
uct, while an increase of the inner heat transfer coefficient due to fouling
does not affect the reaction as long as the controller is able to control the
temperature in the reactor. Instead it is the control signals, the heating
and the cooling flow, that will be influenced. An increase of the activation
energy for reaction one will lower the amount of A reacting to B, and
thus the yield of the product, if a fixed time is used for each batch. An
increase of the initial concentration of A will increase the energy release
at the beginning of the batch and may even lead to a runaway reaction
if the cooling is not designed for such an event.
Some of the faults listed here will be considered in the implementations

and comparisons of the different methods in the following chapters.

7.6 Summary

A benchmark model have been implemented that will be used in the sub
sequent chapters to compare methods and discuss the properties of a batch
process. A simulation model makes it possible to simulate normal behav
ior as well as the influence of faults, i.e., fault signatures. A model gives
a deep knowledge about the process and can be used at different stages
for designing both the control and the diagnostic system.

138

8

Monitoring of Batch

Processes using Diagnostic

Model Processor and

Deep Model Algorithm

8.1 Introduction

In this chapter the two methods diagnostic model processor, DMP, and
deep model algorithm, DMA, are described. They were originally devel
oped for fault detection in continuous processes and here they are applied
to monitoring of faults in the simulated batch described in Chapter 7.
The underlying assumptions of these methods are that the batch process
is either operating at normal conditions where all parameters have their
nominal values and only noise is added to the measurements or that one
specific fault at the time is acting on the process.

8.2 Diagnostic Model Processor

The diagnostic model processor method, DMP, was developed at the Uni
versity of Delaware, see [Petti, 1992], for modelbased process fault di
agnosis of continuous processes. DMP is based on using model equa
tions in a knowledgebased manner and is closely related to governing
equations [Kramer, 1987], the method of minimal evidence [Fickelscherer,
1990], and parity relations [Gertler, 1998]. By examining the direction and
level of violation of the model equations and looking at the assumptions,

139

Chapter 8. Monitoring of Batch Processes using DMP and DMA

i.e., the fault possibilities that can be diagnosed, on which they depend,
the most likely fault is determined. The relations, i.e., the sensitivities
and tolerances, between the equations and the assumptions do not need
to be fixed.
A model equation em written on residual form is given by

em = Cm (P, a) (8.1)

where Cm is the mth model equation rewritten on residual form, P are
the measurements from the process, and a are the modeling assumptions.
The assumptions can, e.g., be that there is no fouling on the heat transfer
areas or that a tank is not leaking. By determining the assumptions that
are not valid, the faults are identified.
An example of a model equation is the volume balance for a tank

dV (t)

dt
= Fin(t) − Fout(t) (8.2)

which rewritten on discretized residual form becomes

e1 = L(k) − L(k− 1) −
h

A
[Fin(k− 1) − Fout(k− 1)] (8.3)

where V is the volume of the tank, L(k) is the measured level in the tank
at sample k, h is the sample time, A is the area of the tank, and Fin(k)
and Fout(k) are the flows in and out to the tank at sample k.
Associated with each model equation are upper and lower tolerances,

τH and τ L, which represent the high and low limits for which the process
is considered to operate in a normal state. The selection of τ is not of
critical importance since DMP uses a fuzzy set to classify if the equation
is violated. The tolerance is also used when calculating the sensitivity of
the model equation to an assumption. For each model equation a set of
assumptions is developed which if satisfied guarantee the satisfaction of
the equation.
Since the residuals in e have different magnitude a satisfaction vec

tor is constructed using the tolerances τ . Each satisfaction value sfm is
calculated according to

sfm =
(em/τm)η

1+ (em/τm)η sign(em) (8.4)

where sign(em) is the sign of the residual em. If em is positive it gives sfm
a positive sign and vice versa. The function sfm is a sigmoidal function
between −1 and 1, where the steepness of the function is given by the
parameter η, see Fig. 8.1.

140

8.2 Diagnostic Model Processor

em

sf
m

−3τ L −2τ L −τ L 0 3τH2τHτH

0

1

−1

Figure 8.1 Satisfaction value calculated using the sigmoidal function in Eq. 8.4,
η = 4.

Different faults may give rise to different magnitudes in the same
residual. Therefore a matrix of sensitivity values, S, which describes the
relationship between the residual equation em and the assumption an is
calculated. Where a partial derivative of the residual can be calculated
the sensitivity value is calculated according to

Smn =
VCm
Van

/
hτmh (8.5)

The larger the partial derivative of the equation is with respect to the
assumption, the more sensitive the deviation is to the assumption. If the
assumption is implicit (i.e., it is not directly related to the variables or
parameters) or no derivative can be calculated the magnitude of the sen
sitivity may be given an arbitrary value according to experience, often a
magnitude of 1 is used. The sensitivity matrix is calculated online during
operation.
The determination if the state of the process is normal is based on

combining the satisfaction vector sfm with the sensitivity matrix S to a
vector of failure likelihoods, F. The failure likelihood based on the arith
metic average of the weighted evidence for assumption (fault) n is given
by

Fn =

∑M
m=1 Smnsfm∑M
m=1 hSmnh

(8.6)

where M is the total number of modeling equations. The satisfaction val
ues that are most sensitive to fault assumption n are weighted higher

141

Chapter 8. Monitoring of Batch Processes using DMP and DMA

than those that are less sensitive. The failure likelihoods do not consider
the satisfaction values that are independent of an assumption, i.e., where
the sensitivity Smn is equal to zero. The reason for this is to be able to
detect faults of small magnitude and not discount fault possibilities at an
early stage.
Supportability [Kramer, 1987] is a method for determining if a specific

single fault has occurred. The supportability of the nth fault, qn, can be
added to DMP using the equation

qn =

[
r∏

m=1

hsfmh

] [
M∏

m=r+1

1− hsfmh

]
(8.7)

where the order of the satisfaction values have been changed so that the
r first depend on the assumption an and the last M − r do not depend
on the assumption an. The supportability can also be calculated for the
case of the assumption that no fault has occurred by letting r = 0. A
more detailed approach can also be taken by including the direction of
the satisfaction values.
The success of DMP in detecting and isolating different faults is de

pendent on the available model equations. An analysis tool to determine
if different faults give the same residuals is what is known as the compar
ison matrix in DMP. The comparison matrix is based on the significance
of each model equation in the diagnosis of each fault. The significance for
model equation m to fault n is calculated as

sigmn =
Smn∑M
m=1 hSmnh

(8.8)

A comparison matrix can also used to simulate if different faults may
give rise to the same residuals and thus make it impossible to distinguish
between the faults. The comparison matrix for each assumption an is
calculated by

Compnl =

M∑

m=1

sigmn ⋅ siglm
max (hsignh)

(8.9)

where max (hsignh) is the maximum absolute value for the significance of
assumption an. A large value of Compnl indicates that the lth fault can be
signaled as the fault even though fault n is the origin. These simulations
point out shortcomings of the diagnosis system and be used as a basis
to, e.g., add more sensors or use a more detailed model to be able to
distinguish between the two faults.

142

8.3 Deep Model Algorithm

Problems with DMP

One problem arises if two different faults affect the same residual but the
magnitudes of the residuals are very different. How should the tolerance
for the residual be chosen? If it is chosen to fit the fault giving rise to
a small residual, thus having a small value, the sensitivity to the other
fault will be very large. If it is chosen to fit the fault giving rise to a large
residual the residual will not give a contribution to the satisfaction when
the other fault occurs.
As described above the method chooses a tolerance specific only to

the residual, calculates the satisfaction, and then weights the satisfaction
with the sensitivity. If instead the sensitivity is used before the satis
faction is calculated, or in other words the tolerance is specific for each
residual and fault, this problem is circumvented. Now a matrix consist
ing of the tolerances τmn is used to calculate the satisfaction value. In the
next section a method using a tolerance specific to each residual and fault
is described. This could also be used in the DMP method to calculate the
failure likelihood.

8.3 Deep Model Algorithm

The deep model algorithm DMA [Chang et al., 1994] is a method strongly
related to DMP. In DMA a vector of satisfaction values, one for each fault,
is calculated, i.e., sfi = [sf1n sf2n . . . sfmn]T for each residual. If the resid
ual em is dependent on the fault an then the satisfaction value is calculated
as

sfmn =
(em/τmn)

η

1+ (em/τmn)
η sign(em/τmn) (8.10)

If the residual is independent of the fault the satisfaction value is instead
calculated as

sfmn =

[
1−

(em/τm,min)
η

1+ (em/τm,min)
η

]
sign∗ (8.11)

where
τm,min = min(hτmrh) (8.12)

with τmr being the tolerances in the calculation where the residual is de
pendent of the fault. This way if the residual is of such a magnitude that
it gives a high satisfaction for another fault the satisfaction for indepen
dent faults will decrease. The sign of the satisfaction value when it is
independent of the fault is given by

sign∗ =

{
sign(sf∗n) if hsf∗nh ≥ ŝfn

1 if hsf∗nh < ŝfn
(8.13)

143

Chapter 8. Monitoring of Batch Processes using DMP and DMA

where sf∗n is the largest (in absolute sense) value of the satisfaction values
dependent of the nth fault. The reason mentioned in [Chang et al., 1994]
for using the threshold ŝfn is to avoid that measurement noise changes the
sign of the satisfaction value. Another reason is that the next calculated
index, the degree of fault, dn, is not equal to zero even though the residuals
are zero. The degree of fault is defined as

dn =
1
M

M∑

m=1

sfmn (8.14)

The satisfaction value for a residual that is independent of the fault is
equal to unity when e is a zero vector. If R residuals are dependent on a
fault an, then the value of dn will be M−R

M
. Choosing ŝfn too low can make

dn flicker between plus and minus this value. If the number of residuals
M is large and R is small dn will flicker between approximately plus
and minus 1. In this case not much information is found in the degree of
fault. One more index is suggested in the method, the consistency factor,
cfn, defined by

cfn = 1−

[
sfmax,n − sfmin,n

max (hsf1nh, hsf2nh, . . . , hsfMnh)

]
(8.15)

where sfmax,n and sfmin,n are the largest and smallest satisfaction values
for the nth fault. The consistency factor tells if all the satisfaction values
are close to each other or not. If all the satisfaction values are close to
each other the consistency factor is close to 1 meaning that the fault is
probable. If the consistency factor is close to −1 the fault is an unlikely
cause of the problem.

Problems with DMA

A problem arises with the sign of the satisfaction value when a residual
is independent of a fault, described in Eq. 8.13. If s f ∗

n has a value around
−ŝfn, sign∗ will flicker between ±1. A better approach would be to instead
use a deadband with the value ±ŝfn. This would avoid the flickering.
Another problem which is related to the problem above is when a fault

only affects few of the residuals. This gives the degree of fault for this
fault a large value even though all the residuals are equal to zero. The
consistency factor would be equal to zero and that should also be taken
into consideration. If the residual which is affected by the fault approaches
−ŝfn and stays around this value the degree of fault will flicker between
two large in magnitude values. If for example the fault only affects one
of 10 residuals and this residual gives a satisfaction with values around,

144

8.4 Applying DMP and DMA for Batch Process Monitoring

e.g., −sf∗n = −0.1 the degree of fault would approximately flicker between
(1 ⋅ 9 − 0.1)/10 = 0.89 and (−1 ⋅ 9 − 0.1)/10 = −0.91. A plot of such a
flickering would hardly make an operator positive to using the diagnosis
system.

8.4 Applying DMP and DMA for Batch Process Monitoring

Different residuals can be calculated depending on the complexity of the
model equations and other information available. Here the residuals for
the simulated batch process will be stated depending on the information
available.
During the production of a batch some faults can only occur at certain

parts of the recipe, e.g., the initial concentration of A, CA0, can only be
influenced during the filling of A and of the solvent. Therefore the calcu
lation of the residuals for the batch is dependent on which phase is active
at a specific moment. There also exist faults that may occur during any
part of the recipe, e.g., leakage through the valve at the bottom of the
reactor, V5. Even though a fault may occur during the whole batch the
fault detection is dependent on the phase being active in the recipe, e.g.,
the detection logic for the above mentioned leak depend on if something
is being added to the reactor or not. The residuals will be stated for every
phase, but the monitoring will be concentrated to the cooling phase.

Nominal Design Trajectories

The lowest level of model complexity is when only the nominal reference
trajectory of the controlled variable T is available. Let us go one step
further and assume that the nominal trajectories of all the measured
variables are available in the diagnostic system. Knowing the nominal
design trajectories the following residuals can be calculated for the differ
ent phases of the recipe.

Filling of A During the filling of A the level in the reactor should
increase according to the amount of A being added to the reactor. The
measurements of both the flow into the reactor and the level in the reactor
make it possible to state the following residual

e1(kA) = L(kA) − L(kA − 1) + hFA(kA − 1) (8.16)

where L(kA) and FA(kA) are the level measurement and the flow mea
surement of A at kA samples of running the phase, and h is the sampling
time in the diagnosis system. The level in the reactor should be equal to
zero at the beginning of the phase, i.e., L(0) = 0. This residual can be

145

Chapter 8. Monitoring of Batch Processes using DMP and DMA

associated with several different faults, e.g., leakage through V5, bias in
FA, or bias in L.
If the valve for the adding of A is an on/off valve the following residual

can be used to determine if the valve is starting to get clogged or if it has
got stuck in the closed position.

e2(kA) = FA(kA) − FA (8.17)

where FA is the nominal flow through the valve.
Since the phase is repeated every batch, a residual can be calculated

for the level according to

e3(kA) = L(kA) − L(kA) (8.18)

where L(kA) is the nominal level at time kA. The total duration of the
phase can be used to update the nominal level and the nominal duration
of the phase used in the scheduler

Filling of Solvent During the filling of solvent the level in the reactor
should increase according to the amount of solvent being added to the
reactor. Again, measurements of the flow into the reactor and the level in
the reactor make it possible to state the following residual

e1(kS) = L(kS) − L(kS − 1) + hFS(kS − 1) (8.19)

where FS(kS) is the flow measurement of solvent at kS samples of running
this phase. The level in the reactor at the beginning of the phase should
be equal to the level at the end of the phase for filling A, i.e., L(kS = 0) =
L(kendA).
If the valve for the adding of solvent is an on/off valve the following

residual can be used to determine if the valve is starting to get clogged
or if it is stuck in the closed position.

e2(kS) = FS(kS) − FS (8.20)

where FS is the nominal flow through the valve.
Again, since the phase is repeated every batch, a residual can also be

calculated for the level according to

e3(kS) = L(kS) − L(kS) (8.21)

Mixing During the mixing nothing is added or taken out of the reactor
but still a residual for the level could be calculated to detect leakage
through the outvalve, V5, using

e1(kM) = L(kM) − L(kM = 0) (8.22)

where L(0) is the level at the beginning of the mixing phase and at the
of the filling of solvent, i.e., L(kM = 0) = L(kendS).

146

8.4 Applying DMP and DMA for Batch Process Monitoring

Start of Reaction In the simulation model there is no real initiation
of the reaction and the state in the recipe can be considered as a wait
step. The residual for the leakage through the outvalve, V5, can be im
plemented in the same way as in the mixing phase, see Eq. 8.22.

Heating During the heating phase the deviation from the nominal tra
jectories can be calculated for the reactor temperature, T , the wall temper
ature, TM , the jacket temperature, TJ , and the position of the steamvalve
V1, XS. The residuals are calculated by the following equations.

e1(kH) = T(kH) − T(kH) (8.23)

e2(kH) = TM (kH) − TM (kH) (8.24)

e3(kH) = TJ(kH) − T J(kH) (8.25)

e4(kH) = XS(kH) − X S(kH) (8.26)

where kH is the number of samples since the heating phase was started.
Another important information for the fault detection is when the

switch from the heating phase to the cooling phase will occur. The switch
can take place earlier or later than the nominal switching. An earlier
switching indicates that the temperature in the reactor has reached the
switching temperature earlier than the nominal time. This will happen
when the time derivative of T is higher than normal during the phase,
e.g., if the initial concentration of A, CA0, is higher than nominal, or if
the temperature sensor of T has a bias. Without a reaction model it is
not clear how a bias in the temperature sensor of T will affect the switch
ing time. A positive bias will make the switching logic detect that the
switching threshold has been reached even though the real temperature
is below. On the other hand the controller will control the temperature in
the reactor so that the real temperature is below the nominal tempera
ture, which will decrease the rate of reaction. The opposite is true for a
negative bias.
A late switching between the phases may be due to a low CA0. It can

also be the result of fouling which will decrease the heat transfer param
eter, hi, and thus the heating of the reactor will decrease. An increase in
the activation energies, E1 and E2, due to, e.g., impurities in the reactant,
will decrease the reaction rate and thus the rate of increase of the reactor
temperature T . Again the residual for the leakage through the outvalve,
V5, can be implemented in the same way as in the mixing phase, see
Eq. 8.22.

Cooling During the cooling phase the residuals for the deviation from
the nominal trajectories can be calculated similarly to the residuals during

147

Chapter 8. Monitoring of Batch Processes using DMP and DMA

the heating phase.

e1(kC) = T(kC) − T(kC) (8.27)

e2(kC) = TM (kC) − TM (kC) (8.28)

e3(kC) = TJ(kC) − T J(kC) (8.29)

e4(kC) = XW(kC) − X W(kC) (8.30)

where XW is the position of the coolingwater valve, V2, and kC is the
number of samples since the cooling phase was started.
Again the residual for the leakage through the outvalve V5 can be

implemented in the same way as in the mixing phase, see Eq. 8.22.

Stop of Reaction In the simulation model there is no real stopping of
the reaction and the state in the recipe can be considered as a wait step.
The residual for the leakage through the outvalve V5 can be implemented
in the same way as in the mixing phase, see Eq. 8.22.

Empty In this phase the product in the reactor is emptied to further
processing in another unit. If there is no flow meter for the outflow a
residual for the emptying can be calculated using a nominal value for the
outflow, FE.

e1(kC) = L(kC) − L(kC − 1) − hFE (8.31)

If the nominal level profile, L(kC), is known from earlier batches the
residual can calculated as

e2(kC) = L(kC) − L(kC) (8.32)

Reaction Model

A model of the reaction in the batch process can be utilized in several
ways. The model makes it possible to calculate more residuals to use in
DMP/DMA.
In [Petti, 1992] it was suggested to compare an estimation of the time

derivative of the measured variables and the calculated value of the time
derivative from the reactor model, i.e., the right hand side of the differ
ential equations in the model, using the current measurements and the
nominal parameters. This kind of residual is highly sensitive to noise
since both the derivative estimated with a difference approximation and
the right hand side of the differential equations in the model are calcu
lated from measurements.
For a batch process the behavior of a nominal batch is known from

the design of the process. This can be used for the calculation of more

148

8.4 Applying DMP and DMA for Batch Process Monitoring

residuals. One is the difference between a difference approximation of the
derivative and the time derivative calculated from the model for a nomi
nal batch. Another residual is the difference between the calculated value
of the time derivative from the reactor model for the batch in progress and
the time derivative from the reactor model for a nominal batch. It turns
out that these residuals are less sensitive to noise than the suggestion
from [Petti, 1992] and still contains information about the process. In the
rest of this section the following notation will be used, T(k) is a measure
ment of the variable T at time k, Ṫ(k) is a time derivative of T calculated
from the model using the nominal parameters and measurements from
time k, and Ṫ(k) is a time derivative of T calculated from the model for
a nominal batch.
To be able to use the model equations in the benchmark simulated

batch process model in Chapter 7 some estimation of the unmeasured
states CA and CB must be used. The model might make it possible to
estimate the state of the process using an Extended Kalman Filter EKF,
see, e.g., [Dochain, 2003]. For example, if the concentrations of A and
B can be estimated during the heating phase this could be used in the
cooling phase. If this is not possible the best estimation of the concentra
tions available are the nominal trajectories from the design of the process,
which are used here. More on the use of EKF for batch processes is found
in Chapter 10.
Using the suggested methods for structuring of exception handling in

Chapter 3 makes it possible to use different fault diagnosis strategies
during the different operations or phases in the recipe. For example, dur
ing the filling of reactant A and the solvent the amount that has been
added to the vessel is very important to monitor but after these opera
tions the initial concentration cannot be influenced. Since the diagnosis
during these operations might fail to detect an abnormality in the initial
concentration it is important to keep monitoring for this fault during the
heating operation but now using another strategy specific to the heating
operation. If no deviation in the initial concentration of A has been de
tected after a certain amount of time into the batch the monitoring for
this fault should probably be stopped and ruled out as a candidate when
an abnormal situation arises after this point of time.

Heating Looking at the simulation model described in Chapter 7, which
is considered to be the real plant, it can be concluded that trying to model
the steam condensate system in the jacket is not an easy task. Therefore,
during the heating phase only the dynamic model equations for the reactor
temperature and the wall temperature are used in the residuals. The new

149

Chapter 8. Monitoring of Batch Processes using DMP and DMA

residuals which could be used are

e5(kH) = T(kH) − T(kH − 1) − hṪ(kH − 1) (8.33)

e6(kH) = TM (kH) − TM (kH − 1) − hṪM (kH − 1) (8.34)

e7(kH) = T(kH) − T(kH − 1) − hṪ(kH − 1) (8.35)

e8(kH) = TM (kH) − TM (kH − 1) − hṪM (kH − 1) (8.36)

e9(kH) = Ṫ(kH) − Ṫ(kH) (8.37)

e10(kH) = ṪM (kH) − ṪM (kH) (8.38)

where Ṫ and ṪM are the time derivatives calculated from the model with
nominal parameters and measurements, and Ṫ and ṪM are the time
derivatives from the model for a nominal batch, at sample kH .

Cooling At the beginning of the cooling phase the steam from the heat
ing condensates and the jacket is filled with cooling water. This part is
also hard to model and it is assumed that no model of this is available.
Once the jacket is filled with cooling water the model for the jacket be
comes much simpler and the dynamic equation describing the jacket can
be incorporated among the residuals, i.e.,

e5(kC) = T(kC) − T(kC − 1) − hṪ(kC − 1) (8.39)

e6(kC) = TM (kC) − TM (kC − 1) − hṪM (kC − 1) (8.40)

e7(kC) = TJ(kC) − TJ(kC − 1) − hṪJ(kC − 1) (8.41)

e8(kC) = T(kC) − T(kC − 1) − hṪ(kC − 1) (8.42)

e9(kC) = TM (kC) − TM (kC − 1) − hṪM (kC − 1) (8.43)

e10(kC) = TJ(kC) − TJ(kC − 1) − hṪ J(kC − 1) (8.44)

e11(kC) = Ṫ(kC) − Ṫ(kC) (8.45)

e12(kC) = ṪM (kC) − ṪM (kC) (8.46)

e13(kC) = ṪJ(kC) − Ṫ J(kC) (8.47)

where ṪJ is the time derivative for the jacket calculated from the model
with nominal parameters and measurements, and Ṫ J is the time deriva
tives for the jacket from the model for a nominal batch, at sample kC.

Monitoring of the Cooling Phase

Here the DMP and DMA methods are implemented for the cooling phase
of the simulated batch process. A total number of 19 different residuals

150

8.4 Applying DMP and DMA for Batch Process Monitoring

for cooling phase have been tested. Not all of these could be used in the
DMP/DMA implementation because the residuals did not contain enough
information about the different faults or the noise level was too large. To
select which residuals that could be used simulations have been performed
with different levels of measurement noise.
In the end seven residuals were selected to be incorporated in the

DMP/DMA implementation for the cooling phase. These are the residuals
found in Eq. 8.27, 8.28, 8.29, 8.43, 8.44, 8.45, and the following

e14(kC) = QM (kC) − QM (kC), x (8.48)

where QM is the heat transferred to the wall calculated form the model
and measurements, and QM is the same for a nominal batch. A list of the
residuals can be seen in Table 8.1.
The choice of these residuals is based on simulations of faults using

the reaction model to generate fault signatures. The faults that have been
considered are a deviation in the initial concentration of A , CA0, a ramp
increase in the activation energy of reaction number one and two, E1 and
E2, initial deviations of E1 and E2, and a ramp decrease of the inner
heat transfer coefficient, hi. This gives a total of six different faults, see
Table 8.2.
In Fig. 8.2 the fault signature of a ramp in E1 from 90 to 125 minutes is

shown. The temperature in the reactor is controlled and does not deviate
much from its set point. To achieve this the amount of heat removed
from the reactor must be lowered, which can be seen in the decrease
of the position of the cooling valve. The temperature in the jacket will
then increase and so will the temperature in the wall. Here one can draw
the conclusion that the temperature measurements in the wall and in
the jacket can be used for the detection of this fault. The position of the

Table 8.1 Residuals used for monitoring of the cooling phase.

Residual Variable

1 Reactor temperature T e1

2 Wall temperature TM e2

3 Jacket temperature TJ e3

4 Estimated time derivative of TM e9

5 Time derivative of T e11

6 Time derivative of TM e12

7 Heat transferred to wall QM e14

151

Chapter 8. Monitoring of Batch Processes using DMP and DMA

Table 8.2 Definition of faults.

Fault Description

1 Ramp in E1
2 Ramp in E2
3 Ramp in hi
4 Initial increase in E1
5 Initial increase in E2
6 Increase of CA0

cooling valve is also a candidate. This is, however, not possible when
measurement noise is added, as can be seen in Fig. 8.3. This is due to the
aggressive tuning of the controller. The two temperature measurements
are also not as good indicators as before but they are still possible to use
in the detection.

Tolerances for the Cooling Phase One problem when choosing the
tolerances is that the level of noise in the different signals may destroy
the residual information. For example, an aggressive feedback controller
will generate a lot of random noise in the control signal and in the flow
in the jacket, which first affects the temperature in the jacket and then
the temperature in the wall, and so on. This makes it harder to use the
residuals associated with the states first affected by the feedback if it
is possible at all. Especially residuals using an approximation of a time
derivative calculated by a difference approximation is sensitive to noise.
Only when the residual is very large this can be used. Since the tolerances
must be set to avoid too many false alarms residuals of this type may not
always be applicable.
During the evaluation of the DMP methodology the approach of using

only one tolerance per residual, i.e., τm, and then calculating sensitivities
according to Eq. 8.5 did not give successful results. Instead tolerances as
sociated with both residuals and fault, i.e., τmn, were used. The selection of
the tolerances are critical for the performance of the fault detection of this
process. The fault signatures described above can be used to determine
the tolerances. From Fig. 8.3 it can be determined that the tolerance for
when the ramp has increased E1 with 1% for the two temperature mea
surements should be chosen to approximately 1oF.
For a batch process the tolerances and/or sensitivities may vary during

the duration of the batch. For example, a deviation in E2 will have a very
small influence on the process at the beginning of the batch since the

152

8.4 Applying DMP and DMA for Batch Process Monitoring

0 20 40 60 80 100 120 140 160 180 200
−5

0

5

0 20 40 60 80 100 120 140 160 180 200

−0.02

−0.01

0

0.01

0.02

Time [min]

Time [min]

o
F

Temperature Profiles

Valve Position

Figure 8.2 Influence of positive ramp in E1 from 90 to 125 minutes without mea
surement noise. The upper plot shows the deviations from the nominal batch in
the temperature profiles: inner reactor temperature T (solid), wall temperature TM
(dashed), and jacket temperature TJ (dashdotted). The lower plot shows the heat
ing (dashed) and cooling valve (solid) positions. The deviations in TJ at around 10
minutes is because of the two phase steam flow.

concentration of B is very small, but then it increases as the reaction
goes on. One way of choosing how the tolerances should vary with time is
to simulate the same fault at different times over the batch duration and
then interpolate between these time instances. In this implementation
the tolerances have only been calculated for a few specific time spans.
Probably the most correct way of calculating the sensitivity to param

eter faults is by using the sensitivity function defined in [Khalil, 2002],
where the sensitivity is calculated using a dynamic equation based on the
process equations. This sensitivity function based on the measured sig
nals and the nominal measurement trajectories gives approximations of
the partial derivatives of the states with respect to the parameters. An
other approach for adaptive threshold generation for DMP can be found

153

Chapter 8. Monitoring of Batch Processes using DMP and DMA

0 20 40 60 80 100 120 140 160 180 200
−5

0

5

0 20 40 60 80 100 120 140 160 180 200

−0.02

−0.01

0

0.01

0.02

Time [min]

Time [min]

o
F

Temperature Profiles

Valve Position

Figure 8.3 Influence of positive ramp in E1 from 90 to 125 minutes with mea
surement noise. The upper plot shows the deviations from the nominal batch in
the temperature profiles: inner reactor temperature T (solid), wall temperature TM
(dashed), and jacket temperature TJ (dashdotted). The lower plot shows the heat
ing (dashed) and cooling valve (solid) positions. The deviations in TJ from 10 to 20
minutes is because of the two phase steam flow.

in [Puig et al., 1997], where DMP is applied to a continuous process.

Results for the Cooling Phase After determining the tolerances the
implementation was tested on the faults. Two of the faults are described
in more detail here. The first is the deviation in CA0 (Fault 6) and the
second is a ramp increase of the activation energy of the first reaction E1
(Fault 1).

DMP The first index calculated is the satisfaction value. As mentioned
before the approach from DMA with a specific tolerance τmn for the mth
residual and nth fault is used. The magnitude of the sensitivities Smn are
chosen to be equal to unity.

154

8.4 Applying DMP and DMA for Batch Process Monitoring

The satisfaction values calculated from Eq. 8.10 for the batch with
a deviation in CA0, Fault 6, can be found in Fig. 8.4. The small plots
show the satisfaction value for a specific residual and fault from 20 to
200 minutes of the total batch run, i.e., the cooling phase. An empty plot
in the figure means that the residual is not sensitive to this fault.
The residuals for Fault 6, the column furthest to the right in Fig. 8.4,

all show a satisfaction value close to 1 for the first part of the plot indicat
ing a high value of CA0. The reason that the satisfaction value goes down
after a certain time is that a constant tolerance is used, which is only
valid for the first part. The reason for this is that it is not very likely that
CA0 will be a probable fault after the initial part of the batch. In fact the
monitoring of this fault should probably be excluded after the first part
of the batch not to give any false alarms.
In Fig. 8.4 it can also be seen that all the satisfaction values for Fault

1, 2, and 5 have a value close to −1. Fault 1 and 4 are related to each
other since they both concern a deviation in E1. Fault 1’s tolerance is
calibrated for a change in E1 occurring somewhere in the middle of the
batch, i.e., around 100 minutes and this is the reason this fault will get a
large negative failure likelihood at the beginning of the batch, see Fig. 8.6,
while the tolerance of Fault 4 is calculated for an initial deviation of
E1 and does not get as large negative failure likelihood. This implies
that Fault 1 should not be monitored until the time span for which the
tolerance has been calculated is reached. In the same way Fault 2 and 5
are related to each other. Fault 2 should be ignored until the middle of the
batch. Fault 5 is the initial deviation in E2 and the failure likelihood is
not able to distinguish between this fault and Fault 6, see Fig. 8.6 where
the failure likelihood is plotted.
The second fault considered is a ramp in E1 occurring after 90 minutes,

i.e, Fault 1. In Fig. 8.5 it can be seen that all the residuals concerning
Fault 1 and 2 have very similar satisfaction values. This is not very sur
prising since the two fault influence the process in a very similar way and
at this time of the batch the concentrations of A and B are close to each
other. This means that the two faults cannot be distinguished from one
another using DMP, see Fig. 8.7 where the failure likelihood is plotted.

DMA In DMA the satisfaction values for the residuals that are inde
pendent of a fault are also calculated using Eq. 8.11 and then the degree
of fault is determined from Eq. 8.14. In Fig. 8.8 this is shown for a batch
with deviation in CA0. Here the degree of fault of Fault 6 is equal to 1 dur
ing the beginning of the batch. Fault 1 and 2 show a large negative value
but again the tolerances for these faults are not calculated for this time
interval. Fault 4 and 5 also show large negative values. Here it should be
remembered that this plot should be used together with the plot of the

155

Chapter 8. Monitoring of Batch Processes using DMP and DMA

R
es
1

R
es
2

R
es
3

R
es
4

R
es
5

R
es
6

R
es
7

Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6

−

−

−

−

−

−

−

Figure 8.4 Satisfaction values in DMP for a batch with 3% high CA0 (Fault 6).
The xaxis of each subplot is the duration of the Cooling phase, i.e., from 20 to 200
minutes, and the yaxis is the satisfaction value ranging from −1 to +1.

consistency factor, Fig. 8.10. In this figure it can be seen that only Fault
6 have a consistency factor close to 1 and should therefore be identified
as the cause of this upset.
For the monitoring of a batch with a ramp in E1 from 90 to 125 min

utes, i.e., Fault 1, the plot of the degree of fault can be found in Fig. 8.9,
where Fault 1 and 2 show positive values close to 1 from around 100
minutes. The consistency factors for both of the faults are close to 1 and
therefore the faults cannot be distinguished from each other using DMA,
either, see Fig. 8.11. Both Fault 5 and 6 show large positive and negative
values respectively for the degree of fault in Fig. 8.11, but these are con

156

8.4 Applying DMP and DMA for Batch Process Monitoring

R
es
1

R
es
2

R
es
3

R
es
4

R
es
5

R
es
6

R
es
7

Fault 1 Fault 2 Fault 3 Fault 4 Fault 5 Fault 6

−

−

−

−

−

−

−

Figure 8.5 Satisfaction values in DMP for a batch with 1% ramp E1 from 90 to
125 minutes (Fault 1). The xaxis of each subplot is the duration of the Cooling
phase, i.e., from 20 to 200 minutes, and the yaxis is the satisfaction value ranging
from −1 to +1

cerned with initial deviations and should not be considered as alternatives
at this point in the batch.
It should be noted that in the plots of the degree of fault the flickering

mentioned above can be seen. Especially in Fig. 8.9 where the batch is
normal for the first part, but for Fault 2 and 5 the degree of fault jump
between plus and minus 0.5 at several time instances.

157

Chapter 8. Monitoring of Batch Processes using DMP and DMA

F
au
lt
1

F
au
lt
2

F
au
lt
3

F
au
lt
4

F
au
lt
5

F
au
lt
6

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

50 100 150 200

Time [min]

Figure 8.6 Failure likelihood in DMP for a batch with 3% high CA0 (Fault 6).

158

8.4 Applying DMP and DMA for Batch Process Monitoring

F
au
lt
1

F
au
lt
2

F
au
lt
3

F
au
lt
4

F
au
lt
5

F
au
lt
6

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

50 100 150 200

Time [min]

Figure 8.7 Failure likelihood in DMP for a batch with 1% ramp E1 from 90 to
125 minutes (Fault 1).

159

Chapter 8. Monitoring of Batch Processes using DMP and DMA

F
au
lt
1

F
au
lt
2

F
au
lt
3

F
au
lt
4

F
au
lt
5

F
au
lt
6

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

50 100 150 200

Time [min]

Figure 8.8 Degree of fault in DMA for a batch with 3% high CA0 (Fault 6).

160

8.4 Applying DMP and DMA for Batch Process Monitoring

F
au
lt
1

F
au
lt
2

F
au
lt
3

F
au
lt
4

F
au
lt
5

F
au
lt
6

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

50 100 150 200

Time [min]

Figure 8.9 Degree of fault in DMA for a batch with 1% ramp E1 from 90 to 125
minutes (Fault 1).

161

Chapter 8. Monitoring of Batch Processes using DMP and DMA

F
au
lt
1

F
au
lt
2

F
au
lt
3

F
au
lt
4

F
au
lt
5

F
au
lt
6

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

50 100 150 200

Time [min]

Figure 8.10 Consistency factor in DMA for a batch with 3% high CA0 (Fault 6).

162

8.4 Applying DMP and DMA for Batch Process Monitoring

F
au
lt
1

F
au
lt
2

F
au
lt
3

F
au
lt
4

F
au
lt
5

F
au
lt
6

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

50 100 150 200

Time [min]

Figure 8.11 Consistency factor in DMA for a batch with 1% ramp E1 from 90 to
125 minutes (Fault 1).

163

Chapter 8. Monitoring of Batch Processes using DMP and DMA

8.5 Summary

In this chapter the two methods DMP and DMA have been discussed and
applied to a batch process. It is shown under the assumption that every
batch is running under the same nominal conditions that the methods can
detect single faults, but not all faults can be isolated from each other. The
DMP method signals all faults that are possible and further diagnosis is
needed to isolate a specific fault. The adding of supportability is a step in
this direction. In DMA this is comparable to the adding of the satisfaction
value for residuals that are independent of the fault. The consistency
factor in DMA also improves the isolation properties compared to DMP.
The other faults in Table 8.2 have also been tested using DMP and

DMA. Fault 3, i.e., a change in the inner heat transfer coefficient, hi, is
the easiest to detect and isolate, and both the methods behave similarly.
The fault that is hardest to detect is Fault 5, an initial deviation in E2.
This is because at the beginning of the cooling phase there is little B in
the reactor and the influence from the fault is small. This leads to that
a small tolerance needs to be used, which leads to that this fault is often
signaled as a probable fault even though it is not correct.
Since there will always be differences between batch runs such as ini

tial conditions, parameter changes, disturbances, and measurement noise
a successful batch where the end product is within the given specifica
tions does not need to exactly follow the nominal trajectory. If a data
base of historically successful batches are available upper and lower lim
its of the residuals that gives the specified end product can be calculated.
These batch to batch differences affect the performance of the methods
and should be taken into consideration when determining the limits, τmn.
Since a batch process is time variant the limits in the methods need to
be determined for different time intervals, requiring a lot of work effort.
It has also been shown that the methods are sensitive to noise and that
the residuals need to be chosen with care to achieve good performance.
In both DMP and DMA the residuals are weighted and transformed

using a nonlinear function, the sigmoidal function in Eq. 8.4 and 8.10.
The use of these functions will hide information about the magnitude of
the satisfaction. There is no difference between a residual which has the
magnitude of 4 or 5 τ . The satisfaction for both is equal to unity. The
developers of the methods point out that at this level of the diagnosis all
faults should be shown as possible and that further diagnosis should be
performed to conclude which fault has occurred.

164

9

Comparing Multivariate

Statistical Methods for

Batch Process Monitoring

9.1 Introduction

In this chapter a comparison between the methods multiway principal
component analysis, MPCA, using different ways of unfolding the data,
batch dynamic PCA, BDPCA, multi model MPCA, and moving window
PCA described in Chapter 6 is performed. The batch process described
in Chapter 7 is used as a benchmark process. In real batch processes the
durations of the batches are often different. A simple solution to deal with
this is to use another monotonic maturity variable than time to describe
the development of the batch from start to end. Another approach is to use
dynamic time warping, a method from speech recognition, to align batches
with different duration, see [Kassidas et al., 1998]. Here, to simplify the
comparison, an equal batch length for all batches is used. The simulation
time for the batches was set to 200 minutes, where the yield of the product
B is considered to be optimal for a nominal batch. For the monitoring a
sampling time of 1 minute was used, which results in that the number of
samples K = 201. This is slower than the controller sampling time, which
is 12s.
To build models using the multivariate statistical methods seventy

successful or normal batches were used, i.e., I = 70. The batches were
simulated using MonteCarlo simulation. The parameters that were var
ied for the normal batches were the initial concentration, CA0, the heat
transfer coefficient inside the reactor, hi, and the activation energies for

165

Chapter 9. Comparing Multivariate Statistical Methods

Table 9.1 Standard deviation in the parameters.

Parameter Deviation

CA0 0.5%

hi 0.5%

E1 0.1%

E2 0.1%

the two reactions, E1 and E2. The parameters were assumed to be nor
mally distributed and the standard deviations for the deviation from the
nominal values for the parameters are found in Table 9.1.
In the monitoring four variables were used, J = 4, the temperature

in the reactor, T , the temperature in the jacket, TJ , the temperature
in the reactor wall, TM , and the control signal to heating/cooling valve.
Measurement noise was added to the temperature measurements with a
standard deviation of 0.1oF. This leads to that X ∈ R

70�4�201.
Two faults have been selected to compare the methods. The faults are

• Upset in initial concentration, CA0, by 3%

• Ramp up to 1% higher activation energy for reaction one, E1, from
time 90 to 145 minutes

These two faults are the same as Fault 1 and 4 in Table 8.2 and are
considered to have a large impact on the final product. In all of the plots
where control limits are included, the 95% limit is plotted using a dashed
dotted line and the 99% limit is plotted using a dashed line.

9.2 MPCA

The two different ways of unfolding the tensor X to the matrices X I�K J

and X IK�J , and then applying PCA are compared in this section.

Batch-Wise Unfolding

This is the method where X is unfolded to X I�K J = X 70�804 used in
[Nomikos and MacGregor, 1994; Nomikos and MacGregor, 1995b; Nomikos
and MacGregor, 1995a]. The data is mean centered and scaled over the
columns to remove the nonlinear trajectories over time. In this implemen
tation the projection to model plane method [Arteaga and Ferrer, 2002]
has been used to fill in future measurements.

166

9.2 MPCA

For the projection to model plane method to be able to give good es
timations of the future measurements data collected from the new batch
up to 20 samples was needed. Before this the control limits become very
large, probably also due to that the change between the heating and the
cooling phase occurs a few samples before this instance as well. In other
implementations in the literature it have been reported that 10% of the
data from the whole batch usually gives a good prediction of the future
measurements. This is the reason why the monitoring and the control
limits do not start until the 20th sample in the figures with the results
from the method
A model with three principal components was selected based on the

singular values. The control limits for the scores, SPE, and T2 were cal
culated according to Chapter 6. In Fig. 9.1 a batch run with nominal
parameters is shown. The scores have values close to zero, which classi
fies the batch as being close to the ’mean batch’ of the batches used for
calculating the model. The SPE shows a low value except for some high
peaks. This leads to the conclusion that the batch is correctly classified
as a normal batch.
In Fig. 9.2 a batch with a 3% positive initial deviation in CA0 is shown.

This upset is detected soon after the first twenty samples have been col
lected when the score of the first principal component goes outside its
control limits. The batch stays outside the control limits for the rest of
the batch duration and the batch is classified as being abnormal. The SPE
is not sensitive to this fault, which means that the model still is able to
describe the batch but its distance to the ‘mean batch’ is large.
In Fig. 9.3 the monitoring of a batch where the E1 is ramped up 1%

from 90 to 145 minutes is shown. The upset is detected in the SPE at
around 110 minutes when the value starts to ramp up. The second prin
cipal component goes outside its control limit at 145 minutes. After 145
minutes the SPE starts to decrease to finally end up inside its limit at the
end of the batch. This can be explained by remembering that the batch was
normal until 90 minutes. This means that after, e.g., 100 minutes data
from 90 minutes of normal operation and data from 10 minutes where
the process is starting to drift is used for filling in the future. This cannot
be described by the model based on the three principal components and
therefore the SPE will show a high value. As the batch continues more
data from the faulty process is used and the effects of the fault gradually
be show up more and more in the T2 since more and more of the batch
can be described by the model.
It has been shown that the method is able to correctly classify the two

faulty batches as faulty and that a normal batch is clearly shown as such.

167

Chapter 9. Comparing Multivariate Statistical Methods

Time [min]

P
C
1

P
C
2

P
C
3

T
2

S
P
E

4

2

50

100

100

0

0

0

0

0

50

50

50

50

50

50

50

100

100

100

100

100

100

100

150

150

150

150

150

200

200

200

200

200

Figure 9.1 Monitoring of a batch with nominal parameters using MPCA and
batchwise unfolding.

168

9.2 MPCA

Time [min]

P
C
1

P
C
2

P
C
3

T
2

S
P
E

4

2

50

100

100

0

0

0

0

0

50

50

50

50

50

50

50

100

100

100

100

100

100

100

150

150

150

150

150

200

200

200

200

200

Figure 9.2 Monitoring of a batch with 3% high CA0 using MPCA and batchwise
unfolding.

169

Chapter 9. Comparing Multivariate Statistical Methods

Time [min]

P
C
1

P
C
2

P
C
3

T
2

S
P
E

4

2

50

100

100

0

0

0

0

0

50

50

50

50

50

50

50

100

100

100

100

100

100

100

150

150

150

150

150

200

200

200

200

200

Figure 9.3 Monitoring of a batch with a 1% ramp in E1 from 90 to 145 minutes
using MPCA and batchwise unfolding.

170

9.2 MPCA

Variable-Wise Unfolding

The second way of MPCA is to unfold X to the matrix X IK�J = X 14070�4.
Two different version of this method is implemented here. The first is the
version described in [Wold et al., 1998] where the nonlinear dependencies
are left in the data since only the grand mean is subtracted from the data.
The second version is to first remove the nonlinearities by mean centering
and scaling in the same ways as for the X I�K J unfolding and then unfold
the data to X IK�J [Chen et al., 2002].

First Version In the first version a model with two principal compo
nents was selected based on the singular values. The maximum number
of components in this method is J = 4. The control limits for the scores,
SPE, and T2 were calculated according to Chapter 6. In Fig. 9.4 a batch
run with nominal parameters is shown. As can be seen this way of dis
playing the score values is not very good. Since the trajectories over time
are not subtracted it is very hard to see the control limits or the values
of the batch. It is not possible for an operator to see if the batch is inside
the control limits or not in the score plots. Instead in the rest of the score
plots in this section the mean of the score trajectories will be subtracted
for better display, i.e., in Fig. 9.5 and 9.6. Since the scores and thus T2 are
based on only the latest measurement, measurement noise have a great
effect. This is the reason for the spikes outside the control limits in the
T2 plot even though the batch monitored is a nominal batch.
In Fig. 9.5 the monitoring of a batch with a 3% positive initial deviation

in CA0 is shown. The upset is detected after approximately 25 minutes in
the T2 plot. As can be seen the score plots are now more operator friendly.
To be able to zoom in on the scores the high tops at around 20 minutes,
which are due to the switching between the heating and the cooling the,
have been cut off in the plot. The top value of the peaks is almost two
which is ten times larger than the scale in the plot. A problem with this
method can be noticed. One can easily believe that the batch has been
brought back to a normal state at around 100 minutes. When using this
method if the batch moves outside its limits during only a short period
the product might not be on the specifications. This is again because the
monitoring at each time instance is based only on the latest measurement.
In Fig. 9.6 the monitoring of a batch where E1 is ramped up 1% from

90 to 145 minutes is shown. The upset is detected in T2 at around 120
minutes but the values moves in and out of the region of normal operation,
which again can confuse the operator.
Both the need to subtract the mean from the score plots and the way

of determining the control limits described in Chapter 6 can be seen as
a way to compensate for leaving the nonlinear trajectories in the data
matrix X IK�J when calculating the model.

171

Chapter 9. Comparing Multivariate Statistical Methods

Time [min]

P
C
1

P
C
2

T
2

S
P
E

2

3

1

10

10

10

10

20

40

0

0

0

0

50

50

50

50

100

100

100

100

150

150

150

150

200

200

200

200

Figure 9.4 Monitoring of a batch with nominal parameters using MPCA and
variablewise unfolding, first version.

172

9.2 MPCA

Time [min]

P
C
1

P
C
2

T
2

S
P
E

1

2

3

0.2

0.2

0.2

0.2

0

0

0

0

20

40

50

50

50

50

100

100

100

100

150

150

150

150

200

200

200

200

Figure 9.5 Monitoring of a batch with 3% high CA0 using MPCA and variable
wise unfolding, first version. The mean at each time have been subtracted in the
score plots.

173

Chapter 9. Comparing Multivariate Statistical Methods

Time [min]

P
C
1

P
C
2

T
2

S
P
E

1

2

3

0.2

0.2

0.2

0.2

0

0

0

0

20

40

50

50

50

50

100

100

100

100

150

150

150

150

200

200

200

200

Figure 9.6 Monitoring of a batch with a 1% ramp in E1 from 90 to 145 minutes
using MPCA and variablewise unfolding, first version. The mean at each time have
been subtracted in the score plots.

174

9.2 MPCA

Second Version The second version model also uses two principal com
ponents of the maximum four. The control limits for the scores, SPE, and
T2 were again calculated according to Chapter 6. In Fig. 9.7 a batch run
with nominal parameters is shown.
In this version the means of the trajectories do not have to be sub

tracted since the data have already been mean centered at each time
point. The scores and thus the T2 are still based only on measurements
from one time instance and the scores still look noisy, moving around
randomly inside the limits.
In Fig. 9.8 the monitoring of a batch with a 3% positive initial deviation

in CA0 is shown. The upset is detected after approximately 25 minutes in
the score plot of the first principal component and in the T2 plot. After
60 minutes the second score plot changes dynamically from the upper
to lower control limit, which would make it harder for an operator to
make a decision of what is wrong with the batch. The change is because
the process itself changes behavior at this time instance. This is further
discussed in the section about moving window PCA. During the period of
change the SPE is rising showing that the current batch behavior is not
described by the model. The batch is outside the control limits of SPE
from around 75 minutes to the end of the batch, while T2 moves back
inside its limits at the end.
In Fig. 9.9 the monitoring of a batch where the E1 is ramped up 1%

from 90 to 145 minutes is shown. The upset is detected in the score plot
of the first principal component and in the T2 at around 110 minutes.
At the end, the batch moves closer to the region of normal operation to
finally be inside.

175

Chapter 9. Comparing Multivariate Statistical Methods

Time [min]

P
C
1

P
C
2

T
2

S
P
E

10

10

10

10

5

0

0

0

0

50

50

50

50

50

100

100

100

100

150

150

150

150

200

200

200

200

Figure 9.7 Monitoring of a batch with nominal parameters using MPCA and
variablewise unfolding, second version.

176

9.2 MPCA

Time [min]

P
C
1

P
C
2

T
2

S
P
E

10

10

10

10

5

0

0

0

0

50

50

50

50

50

100

100

100

100

150

150

150

150

200

200

200

200

Figure 9.8 Monitoring of a batch with 3% high CA0 using MPCA and variablewise
unfolding, second version.

177

Chapter 9. Comparing Multivariate Statistical Methods

Time [min]

P
C
1

P
C
2

T
2

S
P
E

10

10

10

10

5

0

0

0

0

50

50

50

50

50

100

100

100

100

150

150

150

150

200

200

200

200

Figure 9.9 Monitoring of a batch with a 1% ramp in E1 from 90 to 145 minutes
using MPCA and variablewise unfolding, second version.

178

9.3 BDPCA

9.3 BDPCA

Here BDPCA has been implemented using the new algorithm described
in Section 6.3. The time lag d was calculated using the method from [Ku
et al., 1995] as proposed in the original article [Chen and Liu, 2002], even
though it is probably not the best way to choose it, which is also discussed
in Section 6.3. The calculation of the time lag is described in the section
about DPCA in Chapter 6. Using this the time lag was selected to d = 2.
Based on the singular values the number of principal components was

chosen to two out of the possible (d+1)J = 12. In Fig. 9.10 the monitoring
of a batch with nominal parameters can be found. T2 is inside its limits,
while SPE has some spikes that fall outside. The spikes are probably
because of interacting measurement noise between the d + 1 samples
used at these times.
Fig. 9.11 shows the monitoring of a batch with 3% high CA0. The first

and second scores are outside their control limits at around 20 minutes
and so is the T2. They stay outside the limits for almost the rest of the
batch duration. The SPE is flickering in and out of its control limit. Also
here a dynamical change, now from the lower to upper control limit, takes
places in the second score plot.
The monitoring of a batch with a ramp in E1, up 1% from 90 to 145

minutes, is found in Fig. 9.12. The first score goes above its control limit
at around 110 minutes and it stays outside the limit almost for the rest
of batch. The SPE is mainly inside its control limits, but it is moving and
out of its control limit for the last part of the batch duration.
When Figures 9.10, 9.11, and 9.12 are compared to the same figures

for the second version of the variablewise unfolding MPCA, i.e., Fig
ures 9.7, 9.8, and 9.9, a lot of similarities can be found. If the sign of
the second score plot in BDPCA is changed the score plots in the BDPCA
method looks like a lowpass filtering of the one from the second version
of the variablewise unfolding MPCA. This is not surprising since the two
methods are very similar and they are equivalent when d = 0. The fil
tering effect comes from that in BDPCA the latest d+ 1 = 3 samples are
used instead of only the latest sample.

179

Chapter 9. Comparing Multivariate Statistical Methods

Time [min]

P
C
1

P
C
2

T
2

S
P
E

10

10

20

20

40

20

4

2

0

0

0

0

50

50

50

50

100

100

100

100

150

150

150

150

200

200

200

200

Figure 9.10 Monitoring of a batch with nominal parameters using BDPCA with
d = 2.

180

9.3 BDPCA

Time [min]

P
C
1

P
C
2

T
2

S
P
E

10

10

40

20

20

20

4

2

0

0

0

0

50

50

50

50

100

100

100

100

150

150

150

150

200

200

200

200

Figure 9.11 Monitoring of a batch with 3% high CA0 using BDPCA with d = 2.

181

Chapter 9. Comparing Multivariate Statistical Methods

Time [min]

P
C
1

P
C
2

T
2

S
P
E

10

10

40

20

20

20

4

2

0

0

0

0

50

50

50

50

100

100

100

100

150

150

150

150

200

200

200

200

Figure 9.12 Monitoring of a batch with a 1% ramp in E1 from 90 to 145 minutes
using BDPCA with d = 2.

182

9.4 Multi Model MPCA

9.4 Multi Model MPCA

The results from an implementation of the multi model MPCA method
where a model is calculated for each time instance is described here. The
first step is to calculate how the singular values change over time, and
thus with the models. This is done using SVD on the unfolded matrix
X I�kJ for each k = 1, 2, . . . , K , i.e., at each sample time. The maximum
number of singular values is either kJ or I depending on which has the
smallest value.
In Fig. 9.13 the explained variance for the first 15 singular values at

each sample time, i.e., for each model, are shown for the simulated batch
process. After the switch between the heating and cooling phases, i.e.,
after around 20 minutes, the directions of the most significant principal
components change since the two largest singular values change position
at 25 minutes. This plot can be used to determine how many principal
components that should be used in each model by looking at how many
singular values are significant at each sample time.
A problem that may arise when calculating the singular vectors using

SVD is that the sign of the singular vector may flip. This will give jumps
in the score plots. This has been taken care of when calculating the mod
els. An easy way to check the sign is to calculate the scalar product of the
loadings for two models after each other in time. Some manual manipu
lation may also be necessary to achieve well suited monitoring plots for
operators.
In Fig. 9.14, where a batch with nominal parameters is monitored,

it can be seen how the number of principal components changes over
time. From 5 to 15 minutes only one principal component is used and the
second and third score plot show a value of zero. This is because according
to Fig. 9.13 only one singular value is significant.
To make the plots of the scores more operator friendly the scores are

kept in the same plot even though their significance changes. Thus, af
ter 25 minutes the score of the first principal component does in fact
correspond to the second most significant principal component since the
singular values change place in Fig. 9.13. This has been used in all the
figures concerning monitoring with this method. The T2 99% limit is nor
malized to one since the control limit changes with the number of principal
components used in the model.
The monitoring of a batch with deviation in CA0 can be found in

Fig. 9.15. The score of the second principal component, or really the first,
goes out of its control limits at around 35 minutes and so does the T2.
The SPE is mostly inside its control limit.
In Fig. 9.16 the monitoring of a batch where E1 is ramped 1% from

90 to 145 minutes can be seen. The first plot to detect the fault is the

183

Chapter 9. Comparing Multivariate Statistical Methods

Time [min]

E
xp
la
in
ed
V
ar
ia
n
ce

[%
]

10

30

50

70

0
0

20

20

40

40

60

60

80

80 100 120 140 160 180 200

Figure 9.13 The explained variance calculated for the first 15 singular values of
each unfolded matrix X I�kJ in multi model MPCA.

SPE which goes out of its limit around 110 minutes. The score of the first
principal component goes out its limit around 150 minutes and so does
the T2.
The multi model MPCA method gives results similar to the ones of

batchwise unfolding MPCA and at the end of the batch the two methods
become equivalent and give the same model and the values in the plots are
the same. An advantage of the multi model MPCA is that no filling in of
future measurements is needed. On the other hand a substantial amount
of work has been used in this implementation to get the right sign of the
loadings and to reorganize the scores so that no jumps occur in the score
plots when the significance of the principal components changes.

184

9.4 Multi Model MPCA

Time [min]

P
C
1

P
C
2

P
C
3

T
2

S
P
E

20

20

5

3

2

1

0

0

0

0

0

50

50

50

50

50

50

50

50

50

100

100

100

100

100

150

150

150

150

150

200

200

200

200

200

Figure 9.14 Monitoring of a batch with nominal parameters using multi model
MPCA. T2 has been normalized.

185

Chapter 9. Comparing Multivariate Statistical Methods

Time [min]

P
C
1

P
C
2

P
C
3

T
2

S
P
E

20

20

5

3

2

1

0

0

0

0

0

50

50

50

50

50

50

50

50

50

100

100

100

100

100

150

150

150

150

150

200

200

200

200

200

Figure 9.15 Monitoring of a batch with deviation in CA0 using multi model MPCA.
T2 has been normalized.

186

9.4 Multi Model MPCA

Time [min]

P
C
1

P
C
2

P
C
3

T
2

S
P
E

20

20

5

3

2

1

0

0

0

0

0

50

50

50

50

50

50

50

50

50

100

100

100

100

100

150

150

150

150

150

200

200

200

200

200

Figure 9.16 Monitoring of a batch with a 1% ramp in E1 from 90 to 145 minutes
using multi model MPCA. T2 has been normalized.

187

Chapter 9. Comparing Multivariate Statistical Methods

Time [min]

E
xp
la
in
ed
V
ar
ia
n
ce

[%
]

10

20

30

40

50

60

70

80

90

0
0 20 40 60 80 100 120 140 160 180 200

Figure 9.17 The explained variance calculated for the first 15 singular values of
Xd(k) at each time instance, with d = 2, in moving window PCA.

9.5 Moving Window PCA

The first step in moving windom PCA is to calculate the time lag d to be
used for the models at the different time instances k. How this should be
done is not described in any of the papers [Lennox et al., 2001a; Lennox
et al., 2001b; Lennox et al., 2002]. In these articles a window length d = 5
is used and it is claimed that varying d has limited impact on the results,
e.g., page 274 in [Lennox et al., 2002]. The reason for this can be explained
by that when one uses batchwise MPCA, i.e., here X I�K J = X 70�804, the
number of principal components is 3. This is for a system where the max
imum number of principal components are either the number of batches,
I, or the number of samples times the number of variables, KJ, depend
ing on which is the largest, in our case I, which is 70 . The measurements
are highly correlated in time and therefore the number of principal com
ponents will be low. Thus, different short windows will not change the
performance drastically. The window length d has a filtering effect on the

188

9.5 Moving Window PCA

models. If d is short the method is sensitive to noise and the loadings will
be noisy. Here d = 2 is used, which maybe is a bit too sensitive to noise.
Note that if the longest possible time window at sample k is used this will
result in the multi model MPCA method.
The second step is to calculate the number of principal components to

be used in the model. In Fig. 9.17 the explained variance for the first 15
singular values for Xd(k) in Eq. 6.45 with d = 2 at each time instance k
is shown. In Fig. 9.17 it is not as clear as in Fig. 9.13 that the singular
values change significance at around 20 minutes since the plot is not as
smooth.
To depict how the directions of the principal components, i.e., the val

ues in the loadings, continuously change over time a set of batches without
measurement noise was simulated with the same parameter variation as
described in the beginning of the chapter.
The moving window PCA model at each sample time k can be written

as
Xd(k) = TR(k)PR(k)T + ER(k) (9.1)

where TR(k) ∈ R
I�R are the scores at time k and PR(k) ∈ R

(d+1)J�R are
the loadings at time k, which consists of

PR(k) =

p1,1(k) . . . p1,R(k)
...

...
...

pJ,1(k) . . . pJ,R(k)
...

...
...

pdJ+1,1(k) . . . pdJ+1,R(k)
...

...
...

p(d+1)J,1(k) . . . p(d+1)J,R(k)

(9.2)

where R may change over time.
In Fig. 9.18 the values in the loadings of the first principal component

associated with the first variable (i.e., p1,1(k), p5,1(k) and p9,1(k) since
d = 2 and J = 4) are shown. It can be seen that there is a sharp change
in the values at around twenty samples where the two singular values
and thus the loadings change significance. A more smooth change is seen
at around 60 samples. This can be related to the dynamic change of the
second scores in Fig. 9.8 for the second version of variablewise unfolding
MPCA and Fig. 9.11 for the BDPCA methods. This also coincides with
where the largest singular value in Fig. 9.13 is starting to increase after
decreasing for some time indicating a change in the process. The reason
why Fig. 9.18 is for the system without noise is that when noise is added

189

Chapter 9. Comparing Multivariate Statistical Methods

20 40 60 80 100 120 140 160 180 200

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

k, sample time

p9,1

p5,1

p1,1

Figure 9.18 Values in the first loading vector for the first variable, p1,1(k), p5,1(k)
and p9,1(k) for the noise free process.

the singular values and the loadings become “noisy”, i.e., the principal
components will jump from sample to sample and it becomes hard to see
anything in the three dimensional plot.
Fig. 9.19 shows the monitoring of a batch with nominal parameters.

Here can also be seen how the number of principal components changes
over time. The batch stays well inside the limits of the score plots and T2

plot. The SPE is also low except for one sample at the end.
Since only one component is used in the model between 22 and 90

minutes and the principal components change at around 20 minutes this
will give rise to a transient in the score at this time. This transient is
very clear in Fig. 9.20, where the deviation in CA0 first gives a high score
in the first principal component and then it changes to a low value. Also
the T2 gives ambiguous information when it first almost goes outside its
limit and then jumps back inside to once again go outside. This happens

190

9.6 Summary

because this is at the time of the switching between the heating and the
cooling phase where the dynamics of the process changes.
In Fig. 9.21 the monitoring of a batch with 1% ramp E1 from 90 to 145

minutes is shown. The score of the first principal component goes outside
its limit at 110 minutes. The score of the second principal component is
jumping back and forth outside the control limits and is not giving any
good information.
The second score plot is in fact noisy in all the three figures, Fig. 9.19,

9.20, and 9.21. The reason for this is that the singular values in Fig. 9.17
are not distinct over time and therefore the loadings are not stable at all
at the end and the directions jump between samples. The data consists
mainly of noise at the end of the batch. Therefore, this method is not very
well suited for this process.

9.6 Summary

In this chapter the results of implementing six different ways for mul
tivariate statistical batch process monitoring have been presented. The
methods are compared using two different faults considered to have im
pact on the final product. None of the methods have failed to detect any
of the faults. Some of the methods have given very similar results, such
as the variablewise unfolded MPCA, second version, and BDPCA meth
ods. Also the batchwise unfolded MPCA and multi model MPCA methods
show similar behavior in their plots for monitoring.
The time to detection of the faults in the different methods is now

summarized. The first fault, a 3% high initial high concentration in CA is
detected first in the T2 plots for all of the methods. The fastest methods
for this fault are the ones using an unfolding of the data to preserve
the variable mode, the two versions of variablewise unfolded MPCA and
BDPCA. Their time to detection is around 25 minutes. The moving window
PCA method detects the fault at around 20 minutes when the T2 detects
the fault and then in the next sample jumps well inside the control limits
to again go outside at 26 minutes. The methods preserving the batch mode,
the batchwise unfolded MPCA and the multi model MPCA, detects the
fault at around 30 minutes. On the other hand the methods that preserve
the variable mode tend to go back inside the control limits after the batch
have been running for a while. It is important to understand that this does
not mean that the batch can be considered as a good batch. It is enough
that the batch have been outside the limits once in these methods. The
methods preserving the batch mode stays outside the control limit since
they take the whole batch duration into account when calculating the
score and T2.

191

Chapter 9. Comparing Multivariate Statistical Methods

Time [min]

P
C
1

P
C
2

T
2

S
P
E

10

10

20

20

4

3

2

2

1

0

0

0

0

50

50

50

50

100

100

100

100

150

150

150

150

200

200

200

200

Figure 9.19 Monitoring of a batch with nominal parameters using sliding MPCA.

192

9.6 Summary

Time [min]

P
C
1

P
C
2

T
2

S
P
E

10

10

20

20

4

3

2

2

1

0

0

0

0

50

50

50

50

100

100

100

100

150

150

150

150

200

200

200

200

Figure 9.20 Monitoring of a batch with deviation in CA0 using sliding MPCA.

193

Chapter 9. Comparing Multivariate Statistical Methods

Time [min]

P
C
1

P
C
2

T
2

S
P
E

10

10

20

20

4

3

2

2

1

0

0

0

0

50

50

50

50

100

100

100

100

150

150

150

150

200

200

200

200

Figure 9.21 Monitoring of a batch with a 1% ramp in E1 from 90 to 145 minutes
using sliding MPCA.

194

9.6 Summary

The second fault, a 1% ramp in the activation energy E1 from 90 to 145
minutes, is first detected in the SPE for the methods preserving the batch
mode and in the T2 in the methods preserving the variable mode. The time
of detection is at around 105 minutes for the batchwise unfolded MPCA,
second version of variablewise unfolded MPCA, multi model MPCA, BD
PCA, and moving window PCA. The only method that is a bit slower is
the first version of variablewise unfolded MPCA, which has the worst
performance moving in and out of the limits and detecting the fault af
ter as long as 116 minutes. In all the methods the plot that first detects
the fault is moving in and out of the control limits. Again the methods
preserving the variable mode have a tendency to move back into the nor
mal region at the end of the batch. It can be noticed that SPE for the
batchwise unfolded MPCA in Fig. 9.3 has very similar characteristics to
T2 of second version of variablewise unfolded MPCA in Fig. 9.9 from 90
to 140 minutes (except for the different scale on the yaxis). This can be
explained by that the data is mean centered and scaled in the same way
and both the indices are based only on the latest sample.
The moving window PCAmethod seems not to be suited for this process

due to that the singular values changes significance in an unfavorable
way over the duration of the batch. The method is also not suited because
at the end of the batch very little structured information is available,
the data is almost only noise. This can be seen by looking at the singular
values at the end of the batch duration in Fig. 9.17, where they are getting
closer and closer to each other and it is impossible to see if they change
significance.

The Methods Revisited

As stated above the differences between the first and the second version of
the variablewise unfolded MPCA, is the centering and scaling of X IK�J .
In the first version the grand mean and standard deviation over all times
and batches is used. In the second version the mean and standard devia
tion at each sample time is used instead. To understand what this means
a small example with dummy data is used.
In Fig. 9.22 data is shown that could originate from a batch process

with two measured variables, x1 and x2, i.e., J = 2. The number of batches
is I = 15 and the number of samples is K = 20. Each small ellipse con
tains the measurements from the I batches at each sample time, showing
how the relationship between the two variables are changing over time,
i.e., the direction of the semiaxes of the ellipses changes. Data from the
simulated batch process in Chapter 7 has similar characteristics to this
example.
The grand mean of the data, used in the first version of variablewise

unfolded MPCA, is marked in the figure with a ∗. The means used in the

195

Chapter 9. Comparing Multivariate Statistical Methods

x1

x
2

0
0

100

100

200

200

300

300

400

400

Figure 9.22 Dummy data used for discussion of the methods. Each value is
marked by a +. The grand mean is at the intersection of the two lines.

second version of variablewise unfolded MPCA are the center points of
each ellipse. After scaling the data to unit variance the principal compo
nents will point in a 45o angle to the original variables, shown by the lines
in the figure. This means that there will be points in time where the mon
itoring will work better than at others, depending on if the semiaxes of
the small ellipse are aligned with the principal components or not. If they
are aligned the confidence limits will be tight and if they are not aligned
the limits will not be tight. The reason for this is the recalculation of the
limits using the matrix of the scores in Eq. 6.26.
A variant of the problem with more or less tight limits arises in the

second version as well. This is because the rotation of the small ellipses

196

9.6 Summary

in Fig. 9.22 will make the limits more or less tight over time. After the
data is centered and scaled within each ellipse the data will still have
different rotation when used in the matrix X IK�J . The moving window
PCA method makes the limits tighter since the models are calculated at
each sample time, i.e., only the data inside each small ellipse is used. The
ellipses in Fig. 9.22 are in fact the 99% limits at each sample if the time
lag d = 0. On the other hand the problems discussed above for the moving
window PCA method still exist.
In the batchwise unfolded MPCA methods the measurements over

time are seen as different correlated variables and the model has a weight
for each variable at each time in the loadings.

Normal Variation during Faults

In this chapter only one fault is present in the faulty batch at the time,
while all other parameters at kept at their nominal values. This seems
to be praxis in most articles in the area of statistical monitoring. Since
one of the assumptions is that there are batch to batch variations in
several parameters a thorough evaluation of a method should be done
using several faulty batches with the same fault but the other parameters
varying with its normal deviations from the nominal values using Monte
Carlo simulation. This is since different parameters can push the process
in the opposite direction and even cancel out the effect from the fault.
During the evaluation of the methods in this thesis it has been noticed that
the time to detection of a fault may increase (or decrease) significantly
when using parameters that are large but within the normal variation
instead of having their nominal values. Also multiple faults occurring at
the same time can have similar effects.

197

10

Combining Model-Based

Estimation and Multivariate

Statistical Methods for

Batch Process Monitoring

10.1 Introduction

As described in earlier chapters there exist a huge number of different
methodologies for fault diagnosis. A description of some of the fundamen
tal and practical differences between statistical and causal modelbased
approaches to fault detection and isolation can be found in [Yoon and
MacGregor, 2000]. One of the major differences is that a firstprinciples
model describes the causal effects from inputs to outputs, while a sta
tistical model only describes the covariance structure of the measured
variables during normal operation. In this chapter a new way of com
bining the use of a firstprinciples model of a batch process to estimate
unmeasured states and parameter values together with multivariate sta
tistical methods using historical data from previously successful batches
for online fault detection is studied. A simplified version of the model
described in Chapter 7 is used for the discussions and the evaluation of
the new method, see Section 10.3. Normal batch to batch variations are
assumed in the heat transfer coefficient hi, activation energy E, and ini
tial concentration of A, i.e., CA0. Different faults associated with the same
parameters are considered; decrease in the heat transfer coefficient inside
the reactor (i.e. fouling), changes in the activation energy (a ramp or a
large initial deviation), and abnormally large deviations in CA0.

198

10.1 Introduction

Several of the methods described in Chapter 5 have been combined to
hopefully increase the robustness and efficiency of the diagnosis methods.
For example, in [Gertler and McAvoy, 1997; Gertler et al., 1999] PCA and
parity relations are combined to increase the isolation properties of the
faults and in [Ku et al., 1994] parallel Kalman filters and Hotelling’s T2

statistics are combined. In [Vedam and Venkatasubramanian, 1999] PCA
is combined with SDG. PCA is used for detection of abnormal process be
havior and the contributions from the measured variables are fed to the
SDG to perform diagnosis to find the root cause of the fault. In [Ramaker
et al., 2002] a discussion takes place on how to incorporate external in
formation into multivariate statistical methods. The initial conditions of
the batch run, Z, can be added to the measurements. A grey model ap
proach [Gurden et al., 2001] for batch process monitoring is mentioned
but not fully described. Grey models are hybrid models combining known
(white part) and unknown (black part) causes. The model is estimated
as a single least squares optimization where the parameters are calcu
lated simultaneously. In [Yoon and MacGregor, 2001b] different ways of
incorporation of external information is also described.
In [Bonné and Jørgensen, 2004; Gregersen, 2004] a method for dy

namic inputoutput modeling of batch processes is described. The model
is developed by identifying a grid of interdependent linear time invari
ant autoregressive models with exogenous inputs, i.e., ARX models, us
ing Tikhonov regularization/ridge regression [Tikhonov, 1963; Hoerl and
Kennard, 1970]. The model is based on using the trajectory from initial
condition to sample K − 1 from the ith batch yi ∈ R

KN

yi =
[
yi(0)T . . . yi(k)T . . . yi(K − 1)T

]T
, (10.1)

where yi(k)T =
[
yi1(k)

T . . . yiN(k)T
]T
are the measurements of the N out

puts at sample time k from the ith batch. The measurements from all I
batches are then used to form the model

qX = AX + BU + e, (10.2)

where q is the forward shift operator in time, X =
[
y1 . . . yI

]
∈ R

KN�I is
formed of the measurement trajectories from the I batches, U =

[
u1 . . .uI

]
∈

R
KM�I is formed in a similar way from the trajectories of the M inputs
from the I batches, A ∈ R

KN�KN and B ∈ R
KN�KM are structured lower

blocktriangular matrices, and e is the residual. Eq. 10.2 is solved by least
squares estimation, while at the same time the structure of A and B is
enforced by Tikhonov regularization, which ensures causality and that the
grid of models becomes interdependent. In [Gregersen, 2004] the model
matrices A and B are suggested to be used for filtering in combination

199

Chapter 10. Combining Estimation and Multivariate Statistical Methods

with batchwise unfolded MPCA, but it is not implemented or discussed in
depth. Instead the model is used in univariate SPC using CUSUM plots
for a onestep ahead predictor. The data used in the method is the same
as in MPCA but the variables need to be divided into inputs and outputs
prior to the parameter estimation.
Using a similar data structure as in Eq. 10.1 the article [Lee and

Dorsey, 2004] uses the subspace identification method N4SID [Van Over
schee and De Moor, 1994] to identify a dynamic batchtobatch model. The
model is used together with PCA to monitor the process for batchtobatch
variations using T2 and SPE. An online approach is also described where
a periodically timevarying (PTV) Kalman filter is used.
In this chapter drawbacks of some of the existing methods are high

lighted and discussed. In [Ramaker et al., 2002] it is concluded that the
potentials of combining methods to incorporate external information is
not yet fully explored and that further research is needed in this area.

10.2 Model-Based PCA

A previous method where a firstprinciples model and a multivariate sta
tistical method are combined is modelbased principal component analy
sis, MBPCA, which is described in [Wachs and Lewin, 1998; Wachs and
Lewin, 1999; Rotem et al., 2000; Rotem and Lewin, 2000]. In MBPCA
data simulated from a firstprinciples model with nominal parameters
are subtracted from the measurements of the real process and then PCA
is applied to the difference between the two. This can be seen as the cal
culation of a set of residuals. The aim of MBPCA is to eliminate features
in the output from the process that can be explained by a model of the
process. Thus, any features unexplained by the model, e.g., effects of dis
turbances, and changes in system behavior due to faults, will appear in
the residuals.
The procedure is described in both open loop, see Fig. 10.1, and in

closed loop, see Fig. 10.2. In the openloop version the control signals to
the real process are also fed to the model to simulate normal behavior of
the process and the approach is only applicable if the process is stable.
Despite this it is used for monitoring of the exothermic, and thus unsta
ble, batch reactor in an example in [Wachs and Lewin, 1998]. The example
is the batch rector model with the simplified heating, i.e., no steam, de
scribed in Chapter 7. This simplification is further described in the next
section. The method used for the monitoring is MPCA using variablewise
unfolding [Wold et al., 1998] described in Chapter 6.
In the closedloop version the model is controlled by a controller with

the same parameters as the controller in the real process and following

200

10.2 ModelBased PCA

y

ŷ

u

n

yref

Controller Process

Model

fault

MPCA

−1

ΣΣΣ
+

−

Figure 10.1 MBPCA in the openloop approach.

the same reference trajectory. This method is used in [Rotem et al., 2000]
for monitoring of a compressor. The compressor is a continuous system,
which is affected by a periodical disturbance making the process change
its operating point. By modeling the change of the operating point, the
fault detection abilities are improved. This can be seen as if the reference
trajectory of the closed loop system is changed. This is different from
the case of monitoring a batch process where the reference signal is the
same over time from batch to batch. Therefore, the simulations from the
model gives the same predictions of the process for every batch and it
will not add any extra information to the diagnosis. The subtraction of
the simulations from the model in closedloop MBPCA is equal to mean
centering the data in the batchwise MPCA online. Thus the closedloop
version of MBPCA is equal to the second version of variablewise MPCA,
which is described in Chapter 6.
An extension of MBPCA can be found in [McPherson et al., 2001;

McPherson et al., 2002] where an extra error model is added to remove
structures in the residuals. How this is done is only vaguely described.
It seems like the openloop approach is used in the work, which is not
suitable for an unstable process.

Simplifications of the Reactor Model in MBPCA

It should be noted that in the articles [Dong and McAvoy, 1995; Wachs and
Lewin, 1998; McPherson et al., 2002; Chen and Liu, 2002] the model of
the batch process described in Chapter 7 has been simplified. The simplifi
cation of the model concerns the jacket during the heating phase. Instead
of using a twophase model for the steam, which is very hard to model, it

201

Chapter 10. Combining Estimation and Multivariate Statistical Methods

y

ŷ

u

û

n

yref

Controller

Controller Process

Model

fault

MPCA

−1

−1

Σ

ΣΣ

Σ

Σ

+

+

−

−

Figure 10.2 MBPCA in the closedloop approach.

is assumed that the heating and cooling media is a fluid with the same
density ρ, heat capacity Cp, heat transfer coefficient ho, and that these
are all independent of temperature. Another assumption is that the jacket
is always full with fluid.
In none of the papers describing MBPCA the issue that the concen

trations in the reactor are not measurable, and therefore need to be es
timated, is discussed. The concentrations are simulated in open loop as
suming the initial concentration of A is known and not subject to normal
batch to batch variation which is assumed here. As will be described in
the next section batch to batch variations in CA0 makes the problem much
harder.

10.3 Fundamental Properties of a Batch Process

To be able to better understand the fundamental properties of a batch
process a simplified version of the model described in Chapter 7 will be
used here. The reaction is simplified to one reaction and it is assumed
that the amount of energy transferred to and from the reactor, QM , can be
measured. The process will now consist of only one irreversible exothermic
reaction according to

A
k

−→ B (10.3)

202

10.3 Fundamental Properties of a Batch Process

The mass and heat balances for this process are given by the following
equations

dCA

dt
= −kCA

dT

dt
=

−λ

ρCP
kCA +

QM

VρCP

(10.4)

where again CA is the concentration of A in the reactor, k is the reaction
rate given by the Arrhenius expression

k = α exp
(

−E

R(T + 460)

)
(10.5)

where α is a constant, and E is the activation energy. R is the universal
gas constant and T is the absolute temperature in the reactor. λ is the
heat of reaction, ρ is the density of the contents of the reactor, and CP is
the heat capacity of the contents.
A reference temperature profile for a batch was defined with a starting

temperature of 80oF, continuing with a ramp up to 160oF from 25 to 125
samples with a sampling time of one minute. The temperature is kept
constant until 200 samples when the temperature is slowly ramped down.
The profile has been chosen to have a similar shape as the one described
in Chapter 7.

Recursive Least Squares Estimation

To try to separate the different faults from each other it can be seen that
with the simplifications of the jacket used in MBPCA, described above
in Section 10.2, the heat transfer coefficient inside the reactor, hi, can
be estimated using a recursive least squares, RLS, estimate [Åström and
Wittenmark, 1995]. By using the heat balance for the reactor from Eq. 7.2
and 7.5

dTM

dt
=
QM − QJ
ρMCMVM

QM = hiAi (T − TM)

QJ = hoAo (TM − TJ)

(10.6)

and rewriting them to fit the structure given by

y(k) = ϕT (k)θ (10.7)

where y, ϕ , and θ are given by

y(k) =
dTM (k)

dt
ρMCMVM + hoAo(T(k) − TM (k))

ϕT (k) = Ai(T(k) − TM (k))

θ = hi

(10.8)

203

Chapter 10. Combining Estimation and Multivariate Statistical Methods

The recursive least squares estimate θ̂ with forgetting factor λ is now
given by

θ̂(k) = θ̂(k− 1) + K (k)
(
y(k) − ϕT (k)θ̂ (k− 1)

)

K (k) = P(k− 1)ϕ(k)
(
λ I + ϕT (k)P(k− 1)ϕ(k)

)−1

P(k) =
(
I − K (k)ϕT (k)

)
P(k− 1)/λ

(10.9)

Using the estimate of hi, QM can be calculated and the fault detection
can be reduced to detecting the faults in the activation energy and the
initial concentration of A.

Extended Kalman Filtering

Again, only the temperature in the reactor is assumed to be measurable,
while the concentration needs to be analyzed in a laboratory and is not
available until after the batch is finished. The concentration is assumed
to be controlled in an openloop fashion by letting the temperature in the
reactor follow an optimal prespecified trajectory for the nominal process.
If the concentration was measurable the problem would be very much
different. Then of course the concentration would be controlled with the
temperature in a cascaded fashion. The usual way to try to circumvent
this problem in automatic control is to use an observer to estimate the
unmeasured state and then use this for feedback control. Since the batch
process is a nonlinear system the unmeasured concentration can be es
timated using an extended Kalman filter EKF, see e.g., [Russell et al.,
2000] where an EKF is used for monitoring of batch processes. EKF is a
way to apply the linear Kalman filter theory to a nonlinear system by
linearizing the model around a nominal trajectory. The algorithm is as
follows. A nonlinear process is given by

dx(t)

dt
= f (x(t),u(t))

y(k) = n(x(k))
(10.10)

where x is the state variable, y is the output, and u is the input. Contin
uous time is denoted with t and discrete time with k. Assuming that the
input u is constant over every sampling period the solution becomes

x(k) = x(k−1)+

∫ kts

(k−1)ts
f (x(t),u(k−1))dt = F(x(k−1),u(k−1)) (10.11)

where ts is the sampling time. To also describe effects of state and mea
surement noise the discrete time model now is given by

x(k) = F(x(k− 1),u(k− 1)) + ω (k− 1)

y(k) = n(x(k)) + ν(k)
(10.12)

204

10.3 Fundamental Properties of a Batch Process

where {ω (i)} and {ν(i)} are assumed to be zeromean uncorrelated se
quences of random vectors with covariance Q and R respectively. The
EKF then becomes

x̂(k+ 1hk) = F(x̂(khk),u(k))

P(k+ 1hk) = A(k)P(khk)AT (k) + Q

K (k+ 1) = P(k+ 1hk)CT(k+ 1)
(
C(k+ 1)P(k+ 1hk)CT(k+ 1) + R

)−1

x̂(k+ 1hk+ 1) = x̂(k+ 1hk) + K (k+ 1) (y(k+ 1) − n(x̂(k+ 1hk)))

P(k+ 1hk+ 1) = (I − K (k+ 1)C(k+ 1))P(k+ 1hk))
(10.13)

with

C(k) =
Vn(x)

V x

∣∣∣∣
x=x̂(khk−1)

A(k) =
VF(x,u)

V x

∣∣∣∣
x=x̂(khk−1),u=u(k)

(10.14)

where P is the covariance associated with the estimate of the state x̂. The
filter needs the starting conditions P(0h0) and x̂(0h0).
The estimated concentration will converge to the real concentration de

pending on the initial state and covariance matrix in the EKF. In a batch
process the initial state may be very important. The initial concentration
can be estimated recursively by using a fixedpoint smoother using the so
lution from the EKF [Russell et al., 2000]. Another way of estimating the
state of a nonlinear system is the unscented Kalman filter UKF [Julier
et al., 1995] where the approximation by linearization is avoided.
The EKF will only give the true estimate of the concentration if the

parameters are constant and this is not true in this framework. The pa
rameters are assumed to instead have a normal variation. If the activation
energy E is varying randomly between batches due to different amount
of impurities present in different batches the concentration can no longer
be accurately estimated due to the mismatch between the model and the
process.
If E is assumed to be constant in each batch one way to estimate both

the activation energy and the concentration is to augment the EKF with a
new state. This is called the augmented EKF, AEKF. The problem is that
the system is not observable and all the states cannot be estimated. This
can be seen by linearizing the system around the nominal trajectories
and applying linear methods for observability [Khalil, 2002] or by looking
at local decompositions of the system [Isidori, 1995]. Thus this is not a
suitable approach.
As have been described even this simple exothermic batch process is

very complex. The fundamental properties of this process is that it is non

205

Chapter 10. Combining Estimation and Multivariate Statistical Methods

linear and time varying. It is unstable since the reaction is exothermic and
need to be controlled to not to cause a runaway reaction. It is unreachable,
since the reaction is irreversible, and it is unobservable when normal
variation is assumed in parameters.

10.4 Combining Model-Based Estimation and Multivariate
Statistical Methods

The question tried to be answered here is how knowledge about the pro
cess in the form of a firstprinciples model (with uncertainties in the
model parameters) can be combined with historical knowledge? How can
the measured variables, inputs and outputs, from a historical data base in
cooperation with the model improve the fault diagnosis when the process
has the properties described above? The approach taken here is to try to
find a function f(y,u) that is able to describe some underlying properties
of the system, which can improve the detectability of faults in the process
when added to the measured variables and fed to any of the multivariate
statistical methods described in Chapter 6. A schematic of this approach
can be found in Fig. 10.3.
In several publications it has been proposed that material and energy

balances can be used as extra variables, e.g., in [Yoon and MacGregor,
2001b; Kourti, 2003b], and that the measurement matrix, X , should be
augmented with the extra variables. This approach was tried on the sim
ulated batch process in Chapter 7, but no improvements were seen. Then

f(y,u)

y
u

n

yref

Controller Process

fault

MPCA

−1

ΣΣ

Figure 10.3 General description of the combination of combining modelbased an
multivariate statistical methods for batch process monitoring.

206

10.4 Combining Estimation and Multivariate Statistical Methods

the systematic approach for generating residuals in the DMP method,
see Chapter 8, was used to augment the measurement matrix with these
residuals. This did surprisingly not improve the fault detection either. One
reason might be that the material and energy balances, and the residuals
from DMP are mainly linear combinations of the original variables and
that adding these to the measurement matrix will only act as weights of
the original variables when calculating the model using PCA.
The new idea developed here is that even though an estimation of

either CA or E, in the example used here, will not give correct estimates
it will in some sense still describe the relations between the states in the
system. It will describe a “subspace” depending on the normal parameter
variations. This in combination with a historical data base where the
same estimations have been performed will increase the ability to detect
an abnormal state in the process. Below two approaches for this using an
RLS for estimating E and an EKF for estimating CA are presented. The
two approaches are tested on the simplified batch process simulation. It is
assumed that the heat transfer coefficient inside the reactor, hi, is known.

RLS Approach

The first approach is to estimate the activation energy, E, using an RLS
estimator. It will be shown that this estimation gives useful results in it
self even though the true parameter cannot be estimated when CA0 does
not have its nominal value.
The temperature in the reactor, T , is measured and QM can be calcu

lated from the measurement of TM using Eq. 10.6, when the heat transfer
coefficient inside the reactor, hi, is considered to be known. With these two
an estimate of the change in CA,

dCA(k)
dt
, can be calculated by rewriting the

equations in Eq. 10.4 to

dCA(k)

dt
= −kCA(k)

=

(
dT(k)

dt
ρCp +

QM (k)

V

) /
λ

(10.15)

where dT(k)
dt
is calculated from measurements using, e.g., an Euler ap

proximation according to dT(k)
dt

� (T(k+ 1) − T(k)) /ts, where ts is the
sampling time. This calculation is of course sensitive to measurement
noise.
Having this estimate the differential equation for the concentration

in Eq. 10.4 can be solved over one time step to get CA(k + 1). Eq. 10.4
can also be rewritten to achieve a linear regression model according to

207

Chapter 10. Combining Estimation and Multivariate Statistical Methods

Eq. 10.7 with

y(k) = log

−
dCA(k)

dt
ρCp

α λCA(k)

φ(k) =
−1

T(k) + 460

θ = E/R

(10.16)

Here it is seen that this approach assumes that the initial state, i.e., the
initial concentration is known.
From simulations it was found that the RLS estimation of the E has

converged after around 150 samples. This can be seen in Fig. 10.4, where
the result of the RLS estimation with forgetting factor (λ = 0.995) of E/R
for 40 nominal batches together with two batches with an abnormally high
and low initial concentration is shown. The nominal batches are simulated
using MonteCarlo simulation with standard deviations of 0.2% for E,
0.5% for CA0, and 2% for hi. The abnormal batches shown in the figure
have a deviation of ±3.2% in CA0 and nominal values of E and hi. The
plot shows a large initial transition up to 150 samples and will settle
at a constant value if the initial concentration has its nominal value. If
instead the initial concentration does not have its nominal value, it makes
the estimate drift and the slope (derivative) of the drift is almost directly
proportional to the initial concentration. The filtered derivatives, i.e., the
slope, of the estimates for the same batches as in Fig. 10.4 can be found
in Fig. 10.5. The two abnormal batches clearly shows a larger derivative
after 160 samples. Simulations have shown that the derivative of the
estimate of E after 200 samples is in fact a very good indicator of CA0.
This fact may be used to calculate an estimate of CA after approximately
half the batch by simply integrating Eq. 10.15 from the new estimate of
CA0.
The RLS estimation using the measurements from the process is f(y,u)

in Fig. 10.3 in this approach.

EKF Approach

The second approach is to use an EKF to estimate CA even though the
true activation energy, E, is not known. The estimate will not be correct
but again by using the filtered derivative of the estimated concentration,
information about CA0 can be extracted. The EKF algorithm in Eq. 10.13

208

10.4 Combining Estimation and Multivariate Statistical Methods

0 50 100 150 200 250 300 350 400 450 500
7510

7520

7530

7540

7550

7560

7570

7580

7590

E
/
R

Time [min]

Figure 10.4 RLS estimation with forgetting factor (λ = 0.995) of E/R for 40
nominal batches (thin lines) together with two batches with an abnormally high
and low initial concentration (thick lines).

0 50 100 150 200 250 300 350 400 450 500
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

d
E

/
R

d
t

Time [min]

Figure 10.5 Filtered derivative of the RLS estimation of E/R in Fig. 10.4 for 40
nominal batches (thin lines) together with two batches with an abnormally high
and low initial concentration (+).

209

Chapter 10. Combining Estimation and Multivariate Statistical Methods

was used with

Q =

[
104 0

0 3

]

R = 104
(10.17)

together with the model described in Eq. 10.4.
The results from this approach is not as intuitive as the results from

the RLS approach. The estimation of CA, with the mean subtracted, can
be seen in Fig. 10.6. The filtered derivative of the estimates in Fig. 10.6
can be seen in Fig. 10.7.
Instead of getting a consistent indication of CA0 in the filtered deriva

tive of the estimate as in the RLS approach, here the indication is at a
specific time interval. The values for the two abnormal batches are sig
nificantly outside the normal batches (although this is hard to see in the
figure) after about 135 samples and 10 samples forward. The two batches
have a deviation twice the value of the largest deviation from the 40
normal batches. This is the kind of behavior in the variables that will
lead to that a variablewise unfolded MPCA method will only signal that
the batch is abnormal during this period, while in a batchwise unfolded
MPCA method the batch will be outside the control limits from this time
to the end of the batch as discussed in Chapter 9.
The EKF estimation using the measurements from the process is f(y,u)

in Fig. 10.3 in this approach.

Comparison using Batch-Vise Unfolded MPCA

The estimate, and its filtered derivative in the two approaches described
above are here used as extra variables in addition to the original variables,
the temperature in the reactor, T , and the amount of energy added to or
withdrawn from the reactor, QM , in batchwise MPCA. This makes the
total number of variables J = 4. The number of batches I = 40 and the
number of samples K = 500. This gives that the unfolded matrix used
in batchwise MPCA, X I�K J = X 40�2000. The projection to model plane
method is used for filling in future measurements. As normal variation
in the batches for calculating the model CA0 has a standard deviation of
0.5% of the nominal value and E has a standard deviation of 0.2% of the
nominal value in the MonteCarlo simulations.
The performance is compared to batchwise MPCA without the extra

variables added for the detection of two different faults. The first fault
is a 3.2% high CA0 and the second fault is a 1.2% ramp increase of E
from 300 to 400 samples. These fault are comparable to the faults used
in Chapters 8 and 9.

210

10.4 Combining Estimation and Multivariate Statistical Methods

0 50 100 150 200 250 300 350 400 450 500
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

C
A

Time [min]

Figure 10.6 EKF estimation of CA for 40 nominal batches (thin lines) together
with two batches with an abnormally high and low initial concentration (thick lines).
The mean has been subtracted.

0 50 100 150 200 250 300 350 400 450 500
−6

−4

−2

0

2

4

6
x 10

−4

d
C
A

d
t

Time [min]

Figure 10.7 Filtered derivative of the EKF estimation of CA for 40 nominal
batches (thin lines) together with two batches with an abnormally high and low
initial concentration (+).

211

Chapter 10. Combining Estimation and Multivariate Statistical Methods

Abnormal Deviation in CA0 The T2 index, using three principal com
ponents, for the three methods for the fault of 3.2% high CA0 can be found
in Fig. 10.8. It can be seen that the deviation in CA0 is detected at the 99%
level after 197 samples for the normal batchwise MPCA, at 158 samples
for the method with RLS estimation of E, and as early as after 132 sam
ples for the method with EKF estimate. The time of detection is decreased
by 33% from 197 to 132 samples in the T2 plot.
In Fig. 10.9 the squared prediction error SPE for the three methods are

plotted. Even though it is hard to see, there are three different curves in
the plots behaving similarly. The different methods give values of similar
magnitude that overlap each other. The fault is not reliably detected in
this index, the SPE values jump between being inside and outside the
control limits.
It can be concluded that the combination of the modelbased estima

tion and the batchwise MPCA improves the detection of this fault signif
icantly.

Ramp Increase in E The performance of the detection of a second
fault, a 1.2% ramp increase of the activation energy E of from time 300
to 400 is shown in Fig. 10.10, T2, and Fig 10.11, SPE. In Fig. 10.10 it
can be seen that the detection of the fault is somewhat later (10 samples)
in the methods where the estimates have been added. This is of minor
importance since the fault is detected earlier in the SPE plot, Fig. 10.11,
where all the methods have a very similar behavior at the instance of the
start of the fault around 300 samples. The three curves overlap almost
completely from 300 to 350 samples. The reason that the fault is detected
first in the SPE index is described in Chapter 6 in the description of the
batchwise MPCA method.
It can be concluded that all of the methods have similar performance

for this fault. Of course, the methods based on estimated variables cannot
be anticipated to improve the detection of this fault since it is already
detected at the time instance it occurs with the basic method without any
extra variables.

212

10.4 Combining Estimation and Multivariate Statistical Methods

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

50

T
2

Time [min]

Figure 10.8 T2 in batchwise MPCA for 3.2% high CA0 in three different variants:
Only measured variables T and QM (dasheddotted), T , QM , and filtered derivative
of the estimate of E using RLS (solid), and T , QM , and filtered derivative of the
estimate of CA using EKF (dashed). 95% (dashed) and 99% (solid) confidence limits
are also plotted in the figure.

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

S
P
E

Time [min]

Figure 10.9 SPE in batchwise MPCA for 3.2% high CA0 in three different vari
ants. In the plot the same methods as in Fig. 10.8 are plotted but they overlap
with only minor differences. 95% (dashed) and 99% (solid) confidence limits are
also plotted in the figure.

213

Chapter 10. Combining Estimation and Multivariate Statistical Methods

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

T
2

Time [min]

Figure 10.10 T2 in batchwise MPCA for a ramp increase of 10% in E from
300 to 400 samples in three different variants: Only measured variables T and
QM (dasheddotted), T , QM , and filtered derivative of the estimate of E using RLS
(solid), and T , QM , and filtered derivative of the estimate of CA using EKF (dashed).

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

S
P
E

Time [min]

Figure 10.11 SPE in batchwise MPCA for a ramp increase of 10% in E from
300 to 400 samples in three different variants. In the plot the same methods as in
Fig. 10.10 are plotted. At 300 samples all methods detect the fault in a similar way
and the curves overlap almost completely from 300 to 350 samples, which is the
time interval of interest in this example.

214

10.5 Summary

10.5 Summary

In this chapter a new approach on how to combine modelbased estimation
and multivariate statistical methods for batch process fault diagnosis has
been presented and applied in a simulation study on a simplified version
of the simulated batch reactor process described in Chapter 7. Previous
work in the area has also been described.
The new approach shows significantly better performance for the de

tection of an initial fault, an abnormally large deviation in CA0, compared
to ordinary MPCA, see Fig. 10.8. The approach should also work for the
full batch process if the jacket equations are simplified to only using a
fluid as described above in the section about simplifications in MBPCA.
Another way of applying the proposed methods is to start the estima

tion, using RLS or EKF, from the point in time where the cooling phase
is started. The estimation would have to start from an initial guess of the
state at that time. Of course the proposed methods increase the amount
of work needed to implement the diagnosis system. For example, more
parameters need to be tuned.

215

11

Conclusions

The topic of this thesis is fault detection and diagnosis in batch processes
both from a control system implementation point of view and from a
methodological point of view. In the first part of the thesis a structure
for exception handling in recipebased batch production using JGrafchart
has been proposed. In the second part the focus has been on fault detection
and isolation in batch processes. Some inherent properties of batch pro
cesses have been pointed out that make the diagnosis of a batch process
quite different from diagnosis of a continuous process. Several methods
from different categories of fault detection approaches have been described
and implemented for comparison. A new method to improve fault detec
tion has been proposed. By combining state and parameter estimation
with process historybased methods it is possible to improve the detection
capability of the historybased methods.

11.1 Exception Handling in Recipe-Based Batch Control

Exception handling is an important area of recipebased batch control
that so far has received little interest from the standardization organi
zations. Exception handling is a critical element for achieving longterm
success in batch production. Correct handling of exceptions is a key el
ement in process safety, consistent product quality, and production cost
minimization.
A new approach to equipment supervision in recipebased batch control

systems has been proposed. The proposed method for unit supervision is
based on augmenting each equipment object, i.e., unit, equipment module,
or control module, with a finite state machine modeling the behavior of
the object. The normal execution of a recipe causes the equipmentstate
machine to change state. In addition to the normal states, error states are
added to the state machines. The safety logic in the system is implemented
as transitions or guards in the equipmentstate machine.

216

11.1 Exception Handling in RecipeBased Batch Control

Each operation in the control system is modeled with a procedure
state machine describing the state of the procedure in a similar way as
the equipment objects. The operations also use a startstate machine to
check if the unit is in a state where the operation is allowed to start.
The state machines can be implemented in several ways. In this thesis
multiple input multiple output (MIMO) macro steps have been proposed
for this. Using the MIMO functionality of the macro step it is possible and
convenient to model hierarchical state machines of the proposed type in
JGrafchart.
Exception handling is also needed at the recipe level, e.g., an exception

that has occurred must be fed back to the control recipe recorded in the
batch report, and appropriate actions must be taken. If a batch is aborted
the scheduler needs to reschedule the batch for a later time. An important
consideration is how to separate the recipe information from the exception
handling logic and operations. If the latter is included in the recipe, it
becomes difficult to develop, maintain, and use. It has been shown how
exception transitions and a new language element, the step fusion sets,
can be used for the separation. These new approaches for representing
exception handling at the recipelevel gives a clear separation between
exception handling logic and the logic for the normal operation.
Different combinations of exception handling at the unit level and

the recipe level have been suggested in the thesis. The proposed ap
proaches have been implemented in JGrafchart and tested on a realistic
pilot plant, Procel, at UPC in Barcelona, where they have been integrated
with recipe execution, resource allocation, and scheduling. The described
structures and language elements in JGrafchart should make the devel
opment, maintenance, and use of the exception handling logic both at the
unit level and at the recipe level an easier task. With well structured and
automated exception handling both time and money can be saved. The
new structures and concepts described in the thesis also fits nicely into
the S88 batch control standard.

Future Research

Here only the basic version of Grafchart has been implemented in JGraf
chart. The state machine based structure for modeling equipment objects
and operations could be implemented in HighLevel Grafchart [Johnsson,
1999]. The state machine would model the behavior of a class, e.g., a
certain type of valves, and each token in the state machine would be an
instance of the class, e.g. a specific valve, see Fig. 11.1.
To find solutions for different scenarios and plants the proposed ap

proaches should be further tested and implemented in larger batch control
systems. The suggested methods need to be tested on industrial plants to
determine the practical aspects.

217

Chapter 11. Conclusions

Open

Error

Closed

Figure 11.1 An highlevel equipmentstate machine for valves.

11.2 Batch Process Fault Detection and Isolation

The finite duration and nonlinear behavior of batch processes where the
variables and the dynamics change significantly over time and the fact
that the quality variables are usually only measured at the end of the
batch lead to that monitoring of batch processes is quite different from
the monitoring of continuous processes. There is also often normal varia
tions between batches, e.g, initial feed variations, ambient temperature,
and fouling, which make the process behave differently from batch to
batch even though the product is within its specifications. This is often
not considered in many of the modelbased approaches to fault detection
and isolation. Instead a fault is assumed to be a deviation in a single
parameter from a specific nominal value. A problem is that when having
normal variations in several parameter even a very simple batch process
is not fully observable, which leads to that classical estimation techniques,
such as extended Kalman filters and recursive least squares, do not give
the true values of the states and/or parameters.
Since there will always be differences between batch runs such as ini

tial conditions, parameter changes, disturbances, and measurement noise
a successful batch where the end product is within the given specifica
tions does not need to exactly follow the trajectory of the nominal process.
This normal batch to batch variation may give false alarms or the control
limits need to be raised. If a data base of historically successful batches
is available, control limits that give the specified end product can be cal
culated.
A benchmark batch process simulation model has been implemented

to be used for the comparison of different fault detection methods. The
simulation model makes it possible to simulate normal behavior of the
process to get historical data, as well as to simulate how the process is

218

11.2 Batch Process Fault Detection and Isolation

influenced by different faults, i.e., to generate fault signatures. A dynamic
model gives a deep knowledge about the process and can be used at dif
ferent stages for designing both the control and the diagnostic system.
The diagnostic model processor, DMP, method and the deep model algo

rithm, DMA, method, two modelbased fault detection method developed
for continuous processes, have been applied to the benchmark simulated
batch process. Both of the methods rewrite the dynamic models of the
system to form residuals. The residuals are used to detect faults by as
suming that when the process is behaving normally the residuals should
be small and when a fault occurs they will become large since the model is
no longer valid. Since there are disturbances and measurement noise the
residuals will not be exactly equal to zero and tolerances and sensitivities
need to be determined for each residual.
For a batch process the tolerances and the sensitivities vary over time

and need to be determined for different time intervals or phases in the
process. It has also been shown that the methods are sensitive to noise
and that the residuals need to be chosen with care to achieve good perfor
mance. Some other shortcomings of the methods have also been pointed
out. Both the methods assume that only one fault is present at the same
time and the rest of the system is acting at its nominal values. It has
been shown that under this assumption the two methods can detect sin
gle faults, but not all faults can be isolated from each other.
Multivariate statistical methods take normal batch to batch variations

into consideration and only historical data from successful batch runs is
used to model the normal behavior of the process. Statistical control limits
from the normal batches are derived and future batches are compared to
these limits to classify the batches as normal or abnormal.
The multivariate statistical methods compared in the thesis are based

on principal component analysis, PCA. PCA tries to explain the covari
ance structure of a set of variables by finding a small number of linear
combinations of the variables. PCA linearly transforms an original set of
correlated variables into an often substantially smaller set of uncorrelated
variables, called principal components, that represent most of the infor
mation in the original set of variables. The monitoring of the process then
takes place in the space of the uncorrelated variables, instead of using
the original variables, using statistical control limits.
A survey and comparison of different fault detection methods has

been performed using the simulated batch process. In the thesis it has
been pointed out how the different methods are related to each other
and when they are equal. It has been shown how different unfoldings
of threedimensional data from a batch process affect the control limits
and the sensitivity to noise has been pointed out for the moving window
PCA method. Some shortcomings of the methods are discussed and new

219

Chapter 11. Conclusions

algorithms have been developed for the methods BDPCA and DPARAFAC.
In the thesis some of the attempts to combine different methods for

fault diagnosis have been discussed. Especially the MBPCA method has
been described together with some of its shortcomings. A new approach for
combining modelbased estimation and multivariate statistical methods
for batch process monitoring has been proposed. The estimation meth
ods recursive least squares, RLS, and extended Kalman filtering, EKF,
have been combined with the multivariate statistical method batchwise
unfolded MPCA. Even though the estimation does not give the correct
values of the estimated states or parameters, the estimation and its time
derivative still contain information about the process which can be com
pared to the same estimations for the normal batches in the historical data
base. It has been shown that this combination can improve the detection
of batches with an initial fault.

Future Research

It has been shown that a dynamic model can be very useful in combination
with multivariate statistical methods. In the thesis a simulated process
is used. This has given great insight in the problematic parts of batch
process monitoring and it has enabled changes to be made to test ideas
as the project has progressed.
The work on combining modelbased estimation and multivariate sta

tistical method should be further developed and tested on an industrial
batch process. The influence of model uncertainty should be looked into.
Since the same estimation method is used for both the historical data from
normal batches and the new batch monitored online the need for perfect
accuracy may not be necessary. It might be sufficient to use a dynamic
model describing only a part of the process to improve the monitoring
results.
The work in this thesis has been focused mainly on detection and not

as much on isolation. Further research is needed in the area of fault iso
lation in multivariate statistical methods. A dynamic model can be used
to simulate different faults to obtain their signatures in the scores, T2,
and the SPE. The fault signature can then be used to isolate the origin of
the fault. The work on fault signatures in [Yoon and MacGregor, 2001a]
is promising and could be further developed. The work in this thesis has
mainly been focused on batch process fault detection of single faults. Isola
tion of faults becomes even harder when multiple faults occurring during
the same time are considered, since the faults interact with each other.

220

A

Higher-Order Singular

Value Decomposition

In [De Lathauwer et al., 2000a] a method for singular value decompo
sition for higherorder tensors is proposed, called higherorder singular
value decomposition, HOSVD. The method is a generalization of SVD for
matrices, see Def. 6.2. The article uses tensor notation and the aim in this
part of the thesis is to compare the work on HOSVD, and also to some
extent translate it, to the notation used for the multivariate statistical
methods in Chapter 6.
First a notation for the unfolding of a tensor is defined.

DEFINITION A.1—UNFOLDING OF A TENSOR
The tensor A ∈ R

I1�I2�...�IN unfolded along its nth mode is denoted

A(n) ∈ R
In�In+1...IN I1...In−1

For example, a thirdorder tensor X ∈ R
I�J�K unfolded in the three modes

becomes
X(1) = X I�JK

X(2) = X J�K I

X(3) = X K�IJ

(A.1)

X(1) and X(2) are equivalent to the two unfoldings in Fig. 6.4 after rear
ranging rows and columns.
To be able to compare HOSVD with the ordinary SVD for matrices a

number of definitions will be introduced.
The rank of a higherorder tensor cannot be as easily defined as the

rank of a matrix. The rank of a matrix is the number of linearly indepen
dent rows or columns of the matrix, or the number of nonzero singular
values.

221

Appendix A. HigherOrder Singular Value Decomposition

DEFINITION A.2—RANK1 TENSOR
The tensor A ∈ R

I1�I2�...�IN has rank R = 1 when it equals the outer
product of N vectors, U (1),U (2), . . . ,U (N), i.e., when each element in A,
ai1i2...iN , can be written as

ai1i2...iN = u
(1)
i1
u

(2)
i2

. . .u
(N)
iN

where u(n)
in
is the inth element in the nth vector. This can also be written,

by using ∧ for the outer product, as

A = U (1) ∧ U (2) ∧ . . . ∧ U (N).

DEFINITION A.3—RANK OF A TENSOR
The rank of a tensor A ∈ R

I1�I2�...�IN is the minimal number of rank
1 tensors that give A in a linear combination. The rank of a tensor is
denoted

R = rank (A)

This is in analogy with the decomposition of a rankR matrix as a sum of
rank1 terms.
If the nmode vectors of A ∈ R

I1�I2�...�IN are defined as the Indimensional
vectors obtained by varying index in and keeping all the other indices
fixed, then the nrank of the tensor can be defined as in Def. A.4.

DEFINITION A.4—nRANK OF A TENSOR
The nrank of a tensor A ∈ R

I1�I2�...�IN , denoted by

Rn = rankn (A) ,

is the dimension of the vector space spanned by the nmode vectors.

If A is unfolded to the matrix A(n) using Def. A.1, it can be seen that the
nmode vectors of A are the column vectors of An and

rankn (A) = rank
(
A(n)

)
.

This is a generalization of the column (row) rank of matrices. Note that
the different nranks of a tensor do not have to be the same and the rank
of a tensor does not have to be equal to an nrank, not even if the nranks
are the same. From the Def. A.4 and A.3 it can be seen that Rn ≤ R.

222

DEFINITION A.5—SCALAR PRODUCT OF TWO TENSORS
The scalar product of two tensors A,B ∈ R

I1�I2�...�IN is defined as

〈A,B〉 =

I1∑

i1=1

I2∑

i2=1

. . .

IN∑

iN=1

bi1i2...iNai1i2 ...iN

DEFINITION A.6—FROBENIUS NORM
The Frobenius norm of a tensor A is defined as

iAiF =
√

〈A,A〉

DEFINITION A.7—ORTHOGONALITY
Two tensors A,B ∈ R

I1�I2�...�IN are orthogonal if

〈A,B〉 = 0

DEFINITION A.8—MATRIXTENSOR PRODUCT
The product of a tensor A ∈ R

I1�I2�...�IN and a matrix H ∈ R
Jn�In , where

n = 1, 2, . . . , N, is defined as

B = A�n H (A.2)

where B ∈ R
I1�I2�...�In−1�Jn�In+1�...�IN and the entries in B are given by

Bi1i2...in−1 jn in+1...iN =

IN∑

in=1

ai1i2...in−1inin+1...iNH jn in (A.3)

For example the product of X ∈ R
I�J�K and H ∈ R

L�In , where n = 1, 2, 3
and thus I1 = I, I2 = J, and I3 = K , and B will have the dimensions

B = X�1 H ∈ R
L�J�K , n = 1

B = X�2 H ∈ R
I�L�K , n = 2

B = X�3 H ∈ R
I�J�L, n = 3

(A.4)

223

Appendix A. HigherOrder Singular Value Decomposition

The tensors in Eq. A.4 can after unfolding also be written as

B(1) = H ⋅ A(1), n = 1

B(2) = H ⋅ A(2), n = 2

B(3) = H ⋅ A(3), n = 3

(A.5)

where B(n) can be refolded to its corresponding tensor, B.
The tensor matrix product in Def. A.8 have the following properties [De

Lathauwer et al., 2000a]

1. If F ∈ R
Jn�In and H ∈ R

Jm�Im and n �= m then

(A�n F) �m H = (A�m H) �n F = A�n F �m H

2. If F ∈ R
Jn�In and G ∈ R

M�Jn then

(A�n F) �n H = A�n (H ⋅ F)

THEOREM A.1—HIGHER ORDER SINGULAR VALUE DECOMPOSITION –
HOSVD [DE LATHAUWER et al., 2000A]
The Nthorder tensor A ∈ R

I1�I2�...�IN can be decomposed according to

A = S�1 U
(1) �2 U

(2) . . . �N U
(N) (A.6)

where U (n) ∈ R
In�In is a unitary matrix such that

(
U (n)

) (
U (n)

)T
= I(n),

for n = 1, 2, . . . , N, and S ∈ R
I1�I2�...�IN .

The subtensors of S, Sin=α , are the matrices constructed from slices of
S by setting the index of one of the modes, i.e., n = 1, 2, . . . ,N, equal to
α . The subtensors have the following two properties.

1. Two subtensors fixed in the same mode are orthogonal, i.e.,

〈Sin=α ,Sin=β 〉 = 0, α �= β

2. The norms of the subtensors are ordered according to

iSin=1iF ≥ iSin=2iF ≥ . . . ≥ iSin=IniF ≥ 0

For the proof see [De Lathauwer et al., 2000a].
In analogy with the singular values and the singular vectors for ma

trices in Def. 6.2 the Frobenius norm of the subtensor, iSin=iiF = σ
(n)
i , is

the ith nmode singular value and U (n)
i is the ith nmode singular vector.

224

It can be noted that the model described in Eq. A.6 has the same
structure as the Tucker3 model in Fig. 6.5 with G = S, A = U (1), B =
U (2), C = U (3), D = I, E = J, and F = K .
By using the Kronecker tensor product in Def. 6.3, Eq. A.6 can be

written as

A(n) = U (n)S(n)

(
U (n+1) ⊗ . . . ⊗ U (N) ⊗ U (1) ⊗ . . . ⊗ U (n−1)

)T
(A.7)

and using SVD on the unfoldings gives

A(n) = U (n)Σ(n)(V (n))T (A.8)

for n = 1, 2, . . . , N.
As an example applying these results on the thirdorder tensor X ∈

R
I�J�K gives

X(1) = U (1)S(1)

(
U (2) ⊗ U (3)

)T
= X I�JK ; S(1) = SI�JK

X(2) = U (2)S(2)

(
U (3) ⊗ U (1)

)T
= X J�K I ; S(2) = SJ�K I

X(3) = U (3)S(3)

(
U (1) ⊗ U (2)

)T
= X K�IJ ; S(3) = SK�IJ

(A.9)

and by using SVD these unfoldings can be written as

X I�JK = U (1)Σ(1)(V (1))T

X J�K I = U (2)Σ(2)(V (2))T

X K�IJ = U (3)Σ(3)(V (3))T

(A.10)

The main difference between the matrix SVD and the HOSVD is that
S is a full tensor and does not have a diagonal structure as in the matrix
version. This means that one does not get an optimal approximation of
X by choosing the first D, E, and F singular vectors in U (1),U (2), and
U (3) respectively, which actually is the original approach in the work on
Tucker3.
In [De Lathauwer et al., 2000b] the work on HOSVD is continued

and algorithms for the best rank1 and rank(R1, R2, . . . , RN) approxima
tions of higherorder tensors are developed. The best rank1 approxima
tion equals calculating a PARAFAC model with only one component, i.e.,
R = 1, and the best rank(R1, R2, . . . , RN) approximation is the same as
calculating a Tucker3 model with dimensions (R1, R2, R3) when N = 3.
The algorithm for rank1 approximation has the same problem as the

225

Appendix A. HigherOrder Singular Value Decomposition

PARAFAC algorithm that the solution may only be a local minimum. As
a starting point of the algorithm it is suggested that the HOSVD solution
truncated after the first term is used.
The algorithm proposed for the best rank(R1, R2, . . . , RN) approxima

tion is a squareroot version of the algorithm developed by Kroonenberg
for Tucker3 [Kroonenberg, 1983] and it can be compared to the SVD
method developed in [Andersson and Bro, 1998].

226

B

Schedule in BatchML format

<BatchListEntry ID="66">

<BatchListEntryType>Batch</BatchListEntryType>

<Status>Scheduled</Status>

<RecipeID>7</RecipeID>

<BatchID>66</BatchID>

<ProductID>1</ProductID>

<OrderID>No Order</OrderID>

<BatchPriority>No Order</BatchPriority>

<RequestedBatchSize>1 Batch</RequestedBatchSize>

<ActualBatchSize />

<BatchListEntry ID="9">

<BatchListEntryType>UnitProcedure</BatchListEntryType>

<Status>Scheduled</Status>

<EquipmentID>5</EquipmentID>

<ActualEquipmentID />

<BatchListEntry ID="11">

<BatchListEntryType>Operation</BatchListEntryType>

<Status>Scheduled</Status>

<RequestedStartTime>0</RequestedStartTime>

<RequestedEndTime>2.63</RequestedEndTime>

<ActualStartTime />

<ActualEndTime />

</BatchListEntry>

<BatchListEntry ID="13">

<BatchListEntryType>Operation</BatchListEntryType>

<Status>Scheduled</Status>

<RequestedStartTime>2.63</RequestedStartTime>

<RequestedEndTime>3.63</RequestedEndTime>

<ActualStartTime />

<ActualEndTime />

227

Appendix B. Schedule in BatchML format

</BatchListEntry>

<BatchListEntry ID="15">

<BatchListEntryType>Operation</BatchListEntryType>

<Status>Scheduled</Status>

<RequestedStartTime>3.63</RequestedStartTime>

<RequestedEndTime>5.63</RequestedEndTime>

<ActualStartTime />

<ActualEndTime />

</BatchListEntry>

</BatchListEntry>

<BatchListEntry ID="17">

<BatchListEntryType>UnitProcedure</BatchListEntryType>

<Status>Scheduled</Status>

<EquipmentID>6</EquipmentID>

<ActualEquipmentID />

<BatchListEntry ID="19">

<BatchListEntryType>Operation</BatchListEntryType>

<Status>Scheduled</Status>

<RequestedStartTime>3.63</RequestedStartTime>

<RequestedEndTime>5.63</RequestedEndTime>

<ActualStartTime />

<ActualEndTime />

</BatchListEntry>

</BatchListEntry>

<BatchListEntry ID="21">

<BatchListEntryType>UnitProcedure</BatchListEntryType>

<Status>Scheduled</Status>

<EquipmentID>3</EquipmentID>

<ActualEquipmentID />

<BatchListEntry ID="24">

<BatchListEntryType>Operation</BatchListEntryType>

<Status>Scheduled</Status>

<RequestedStartTime>3.63</RequestedStartTime>

<RequestedEndTime>5.63</RequestedEndTime>

<ActualStartTime />

<ActualEndTime />

</BatchListEntry>

<BatchListEntry ID="26">

<BatchListEntryType>Operation</BatchListEntryType>

<Status>Scheduled</Status>

<RequestedStartTime>5.63</RequestedStartTime>

<RequestedEndTime>8.08</RequestedEndTime>

<ActualStartTime />

228

<ActualEndTime />

</BatchListEntry>

<BatchListEntry ID="28">

<BatchListEntryType>Operation</BatchListEntryType>

<Status>Scheduled</Status>

<RequestedStartTime>8.08</RequestedStartTime>

<RequestedEndTime>12.5</RequestedEndTime>

<ActualStartTime />

<ActualEndTime />

</BatchListEntry>

<BatchListEntry ID="30">

<BatchListEntryType>Operation</BatchListEntryType>

<Status>Scheduled</Status>

<RequestedStartTime>12.5</RequestedStartTime>

<RequestedEndTime>14</RequestedEndTime>

<ActualStartTime />

<ActualEndTime />

</BatchListEntry>

</BatchListEntry>

</BatchListEntry>

229

References

Åkesson, M. (1997): “Integrated control and fault detection for a mechan
ical servo process.” In Proceedings of IFAC Safeprocess ’97, pp. 1252–
1257.

American Institute of Chemical Engineers – AIChE (1999): Guidelines
for Process Safety in Batch Reaction Systems. AIChE.

Andersson, C. A. and R. Bro (1998): “Improving the speed of multiway
algorithms: Part1. Tucker3.” Chemometrics and Intelligent Laboratory
Systems, 42, pp. 93–103.

Andersson, C. A. and R. Bro (2000): “The Nway Toolbox for MATLAB.”
Chemometrics and Intelligent Laboratory Systems, 52:1, pp. 1–4.
http://www.models.kvl.dk/source/nwaytoolbox/.

ANSI/ISA (1995): “ANSI/ISA 88.01 – Batch Control Part 1: Models and
Terminology.” The Instrumentation, Systems, and Automation Society.

ANSI/ISA (2001): “ANSI/ISA 88.00.02 – Batch Control Part 2: Data
Structures and Guidelines for Languages.” The Instrumentation,
Systems, and Automation Society.

ANSI/ISA (2003): “ANSI/ISA 88.00.03 – Batch Control Part 3: General
and Site Recipe Models and Representation.” The Instrumentation,
Systems, and Automation Society.

ANSI/ISA (2004): “ANSI/ISA 84.00.01 Safety Instrumented Systems
for the Process Industry Sector – Part 1: Framework, Definitions,
System, Hardware and Software Requirements.” The Instrumentation,
Systems, and Automation Society.

Arbiza, M., J. Cantón, A. Espuña, and L. Puigjaner (2003a): “Flexible
rescheduling tool for shortterm plan updating.” In Proc. of AIChE’03
Annual Meeting.

230

Arbiza, M., J. Cantón, A. Espuña, and L. Puigjaner (2003b): “Objective
based schedule selector: a rescheduling tool for shortterm plan
updating.” In Proc. of 14th European Symposium on Computer Aided
Process Engineering (ESCAPE 14).

Arteaga, F. and A. Ferrer (2002): “Dealing with missing data in MSPC:
several methods, different interpretations, some examples.” Journal of
Chemometrics, 16, pp. 408–418.

Årzén, K.E. (1991): “Sequential function charts for knowledgebased,
realtime applications.” In Proc. Third IFAC Workshop on AI in Real
Time Control. Rohnert Park, California.

Årzén, K.E. (1993): “Grafcet for intelligent realtime systems.” In
Preprints IFAC 12th World Congress. Sydney, Australia.

Årzén, K.E. (1994): “Grafcet for intelligent supervisory control applica
tions.” Automatica, 30:10, pp. 1513–1526.

Årzén, K.E., R. Olsson, and J. Åkesson (2002): “Grafchart for Procedural
Operator Support Tasks.” In Proceedings of the 15th IFAC World
Congress, Barcelona, Spain.

Åström, K. J. and B. Wittenmark (1995): Adaptive Control. Addison
Wesley, Reading, Massachusetts.

Åström, K. J. and B. Wittenmark (1997): ComputerControlled Systems.
Prentice Hall, Upper Saddle River, New Jersey.

Bonfill, A., M. Arbiza, E. Musulin, A. Espuña, and L. Puigjaner (2004):
“Integrating robustness and fault diagnosis in online scheduling of
batch chemical plants.” In Proc. of International IMS Forum, pp. 515–
522.

Bonné, D. and S. B. Jørgensen (2004): “Datadriven modeling of batch
processes.” In Proc. of 7th International Symposium on Advanced
Control of Chemical Processes, ADCHEM.

Brettschmeider, H., H. Genrich, and H. Hanisch (1996): “Verification and
performance analysis of recipe based controllers by means of dynamic
plant models.” In Second International Conference on Computer
Integrated Manufacturing in the Process Industries. Eindhoven, The
Netherlands.

Bro, R. (1997): “PARAFAC. Tutorial and applications.” Chemometrics and
Intelligent Laboratory Systems, 38, pp. 149–171.

Bro, R. (1998): Multiway Analysis in the Food Industry. PhD thesis,
Chemometrics Group, Food Technology, Dept. of Dairy and Food
Sciences, Royal Veterinary and Agricultural University, Denmark.

231

References

Bro, R. and A. K. Smilde (2003): “Centering and scaling in component
analysis.” Journal of Chemometrics, 17, pp. 16–33.

Cantón, J., D. Ruiz, C. Benqlilou, J. Nougués, and L. Puigjaner (1999):
“Integrated information system for monitoring, scheduling and control
applied to batch chemical processes.” In Proc. of the 7th IEEE Int.
Conf. on Emerging Technologies and Factory Automation.

Cantón Padilla, J. (2003): “Intgrated Support System for Planning and
Scheduling of Batch Processes.” Ph.D. thesis. Department d’Enginyeria
Quimica, Universitat Politécnica de Catalunya, Barcelona, Spain.

Carroll, J. D. and J. Chang (1970): “Analysis of individual differences
in multidimensional scaling via an Nway generalization of "Eckart
Young" decomposition.” Psychometrika, 35, pp. 283–319.

Chang, I.C., C.C. Yu, and C.T. Liou (1994): “ModelBased Approach for
Fault Diagnosis. 1. Principles of Deep Model Algorithm.” Ind. Eng.
Chem. Res., 33, pp. 1542–1555.

Chen, J. (2004): Personal correspondence.

Chen, J. and J. Liu (2001): “Derivation of function space analysis
based PCA control charts for batch process monitoring.” Chemical
Engineering Science, 56, pp. 3289–3304.

Chen, J. and K.C. Liu (2002): “Online batch process monitoring using
dynamic PCA and dynamic PLS models.” Chemical Engineering
Science, 57, pp. 63–75.

Chen, J. and J.H. Yen (2003): “ThreeWay Data Analysis with Time
Lagged Window for OnLine Batch Process Monitoring.” Korean Jour
nal of Chemical Engineering, 20:6, pp. 1000–1011.

Chen, Y., J. F. MacGregor, and T. Kourti (2002): “Multiway PCA
Approaches for the Analysis and Monitoring of Batch Processes: A
Critical Assessment.” In AIChE Annual Meeting.

Choi, S. W., C. Lee, J.M. Lee, J. H. Park, and I.B. Lee (2005): “Fault
detection and identification of nonlinear processes based on kernel
PCA.” Chemometrics and intelligent laboratory systems, 75, pp. 55–
67.

Christie, D. (1998): “A Methodology for Batch Control Implementation –
A Real World Lesson.” In Proc. of World Batch Forum – Meeting of the
Minds.

Cinar, A. and C. Undey (1999): “Statistical process and controller per
formance monitoring. a tutorial on current methods and future direc
tions.” In Proc. of the American Control Conference, pp. 2625–2639.

232

Dahl, K. S., M. J. Piovoso, and K. A. Kosanovich (1999): “Translat
ing thirdorder data analysis methods to chemical batch processes.”
Chemometrics and Intelligent Laboratory Systems, 46:2, pp. 161–180.

David, R. and H. Alla (1992): Petri Nets and Grafcet: Tools for modelling
discrete events systems. PrenticeHall International (UK) Ltd.

De Lathauwer, L., B. De Moor, and J. Vandewalle (2000a): “A multilinear
singular value decomposition.” SIAM Journal on Matrix Analysis and
Applications, 21:4, pp. 1253–1278.

De Lathauwer, L., B. De Moor, and J. Vandewalle (2000b): “On the Best
Rank1 and Rank(R1, R2, . . ., RN) Approximation of HigherOrder
Tensors.” SIAM Journal on Matrix Analysis and Applications, 21:4,
pp. 1324–1342.

Dochain, D. (2003): “State and parameter estimation in chemical and
biochemical processes: A tutorial.” Journal of Process Control, 13,
pp. 801–818.

Dong, D. and T. J. McAvoy (1995): “Multistage batch process monitoring.”
Proc. of American Control Conference, pp. 1857–186.

Fickelscherer, R. J. (1990): Automated Process Fault Analysis. PhD thesis,
University of Delaware.

Fisher, T. G. (1990): Batch Control Systems: Design, Application, and
Implementation. Instrument Society of America, Research Park, NC.

Frank, P. M. (1990): “Fault Diagnosis in Dynamic Systems Using Ana
lytical and Knowledgebased Redundancy – A Survey and Some New
Results.” Automatica, 26:3, pp. 459–474.

Frisk, E. (2001): Residual Generation for Fault Diagnosis. PhD thesis,
Linköping University.

Fritz, M., A. Liefeldt, and S. Engell (1999): “Recipedriven batch processes:
Event handling in hybrid system simulation.” In Proc. of the 1999
IEEE International Symposium on Computer Aided Control System
Design.

GarcíaMuñoz, S., T. Kourti, and J. F. MacGregor (2003): “Model Predic
tive Monitoring for Batch Processes.” Industrial & Engineering Chem
istry Research, 43, pp. 5929–5941.

Genrich, H. J., H.M. Hanisch, and K. Wöllhaf (1994): “Verification of
recipebased control procedures by means of predicate/transition nets.”
In 15th International Conference on Application and Theory of Petri
nets, Zaragoza, Spain.

233

References

Gensym Corporation (1995): G2 Reference Manual. Gensym Corporation,
125 Cambridge Park Drive, Cambridge, MA 02140, USA.

Gertler, J. (1998): Fault Detection and Diagnosis in Engineering Systems.
Marcel Dekker, New York, NY.

Gertler, J., W. Li, Y. Huang, and T. McAvoy (1999): “Isolation Enhanced
Principal Component Analysis.” AIChE Journal, 45, pp. 323–334.

Gertler, J. and T. J. McAvoy (1997): “Principal Component Analysis and
Parity Relations – A Strong Duality.” In IFAC SAFEPROCESS’97,
pp. 837–842.

Gertler, J. and D. Singer (1990): “A new structural framework for
parity equationbased failure detection and isolation.” Automatica, 26,
pp. 381–388.

Gertler, J. J. and M. M. Kunwer (1995): “Optimal residual decoupling for
robust fault diagnosis.” International Journal of Control, 61:2, pp. 395–
421.

Golub, G. H. and C. F. Van Loan (1996): Matrix Computations. 3rd
Edition. The John Hopkins University Press, Baltimore, Maryland.

Graells, M., J. Cantón, B. Peschaud, and L. Puigjaner (1998): “General
approach and tool for the scheduling of complex production systems.”
Computers and Chemical Engineering, 22, pp. 395–402.

Gregersen, L. (2004): Monitoring and Fault Diagnosis of Fermentation
Processes. PhD thesis, Technical University of Denmark, DTU.

Gregersen, L. and S. B. Jørgensen (1999): “Supervision of fedbatch
fermentations.” Chemical Engineering Journal, 75, pp. 69–76.

Gurden, S. P., J. A. Westerhuis, S. Bijlsma, and A. K. Smilde (2001):
“Modelling of spectroscopic batch process data using grey models
to incorporate external information.” Journal of Chemometrics, 15,
pp. 101–121.

Hanisch, H.M. and S. Fleck (1996): “A resource allocation scheme for
flexible batch plants based on highlevel petri nets.” In Proc. of CESA96
IMACS Multiconference.

Harel, D. (1987): “Statecharts, a visual formalism for complex systems.”
Science of Computer Programmming, 8:3, pp. 231–274.

Harshman, R. A. (1970): “Foundation of the PARAFAC procedure: Model
and conditions for an ‘explanatory’ multimode factor analysis.” UCLA
Working Papers in Phonetics, 16, pp. 1–84.

234

Harshman, R. A. and M. E. Lundy (1984): “The PARAFAC model for
threeway factor analysis and multidimensional scaling.” In Research
methods for multimode data analysis, G. Law, C. W. Snyder, Jr., J.
Hattie, and R. P. McDonald (Eds.), pp. 122–215. Praeger, New York.

Hoerl, A. E. and R. W. Kennard (1970): “Ridge regression: Biased
estimation for nonorthogonal problems.” Technometrics, 12, pp. 55–
67.

Hotelling, H. (1933): “Analysis of a complex of statistical variables into
principal components.” J. of Educational Psychology, 24, pp. 417–441,
498–520.

Hyvärinen, A. and E. Oja (2000): “Independent component analysis:
Algorithms and applications.” Neural Networks, 13, pp. 411–430.

IEC (1985): “IEC 60812 – Analysis techniques for system reliability –
Procedure for failure mode and effects analysis (FMEA).” International
Electrotechnical Commission.

IEC (1990): “IEC 61025 – Fault tree analysis (FTA).” International
Electrotechnical Commission.

IEC (1993): “IEC 611313 – Programmable Controllers Part 3: Program
ming Languages.”

IEC (1997): “IEC 615121 – Batch Control Part 1: Models and Ter
monology.”

IEC (1998): “IEC 61508 – Functional safety of electrical/electronic/prog
rammable electronic safetyrelated systems.”

IEC (2001a): “IEC 615122 – Batch Control Part 2: Data Structures and
Guidelines for Languages.”

IEC (2001b): “IEC 61882 – Hazard and operability studies (HAZOP stud
ies) – Application guide.” International Electrotechnical Commission.

IEC (2003): “IEC 615111 – Functional safety – Safety instrumented
systems for the process industry sector.”

Iri, M., K. Aoki, E. O’Shima, and H. Matsyama (1979): “An algorithm for
diagnosis of system failures in the chemical process.” Computers &
Chemical Engineering, 3, pp. 489–493.

ISA (1995): “ISA S88.01 Batch Control.” Instrument Society of America.

Isermann, R. (1984): “Process Fault Detection Based on Modeling and
Estimation Methods – A Survey.” Automatica, 20:4, pp. 387–404.

235

References

Isermann, R. (1989): “Process fault diagnosis based on dynamic models
and parameter estimation methods.” In Patton et al., Eds., Fault
Diagnosis in Dynamic Systems – Theory and Application., pp. 253–
291. Prentice Hall International.

Isermann, R. (1993): “Fault Diagnosis of Machines via Parameter Esti
mation and Knowledge Processing – Tutorial Paper.” Automatica, 29:4,
pp. 815–835.

Isidori, A. (1995): Nonlinear Control Systems. SpringerVerlag, Berlin and
Heidelberg, Germany.

Isidori, A., M. Kinnaert, V. Cocquempot, C. D. Persis, P. M. Frank, and
D. N. Shields (2001): “Residual Generation for FDI in Nonlinear
Systems.” In Åström et al., Eds., Control of Complex Sytems, pp. 209–
227. SpringerVerlag.

Jackson, J. and G. Mudholkar (1979): “Control procedures for residuals
associated with principal component analysis.” Technometrics, 21,
pp. 341–349.

Jalote, P. (1994): Fault tolerance in distributed systems. Prentice Hall,
USA.

Jensen, K. and G. Rozenberg (1991): Highlevel Petri Nets. Springer
Verlag.

Johanneson, G. (1994): ObjectOriented Process Automation with Satt
Line. ChartwellBratt Ltd.

Johnson, R. A. and D. W. Wichern (1998): Applied Multivariate Statistical
Analysis. Prentice Hall, Upper Saddle River, New Jersey.

Johnsson, C. (1999): A Graphical Language for Batch Control. PhD thesis
ISRN LUTFD2/TFRT1051SE, Department of Automatic Control,
Lund Institute of Technology, Sweden.

Johnsson, C. and K.E. Årzén (1998a): “Grafchart and batch recipe
structures.” In WBF’98 — World Batch Forum. Baltimore, MD, USA.

Johnsson, C. and K.E. Årzén (1998b): “Grafchart and recipebased batch
control.” Computers and Chemical Engineering, 22:12, pp. 1811–1828.

Julier, S. J., J. K. Uhlmann, and H. F. DurrantWhyte (1995): “A new
approach for filtering nonlinear systems.” In Proceedings of the 1995
American Control Conference, pp. 1628–1632.

Kassidas, A., J. F. MacGregor, and P. A. Taylor (1998): “Synchronization
of batch trajectories using dynamic time warping.” AIChE Journal, 44,
pp. 864–873.

236

Khalil, H. K. (2002): Nonlinear Systems. Prentice Hall, Upper Saddle
River, New Jersey.

Kourti, T. (2003a): “Abnormal situation detection, threeway data and
projection methods; robust data archiving and modeling for industrial
applications.” Annual Reviews in Control, 27, pp. 131–139.

Kourti, T. (2003b): “Multivariate dynamic data modeling for analysis
and statistical process control of batch processes, startups, and grade
transitions.” Journal of Chemometrics, 17, pp. 93–109.

Kourti, T. and J. F. MacGregor (1995): “Process analysis, monitoring and
diagnosis, using multivariate projection methods.” Chemometrics and
intelligent laboratory systems, 28, pp. 3–21.

Kourti, T., P. Nomikos, and J. F. MacGregor (1995): “Analysis, monitoring
and fault diagnosis of batch processes using multiblock and multiway
pls.” Journal of Process Control, 5, pp. 277–284.

Kramer, M. A. (1987): “Malfunction Diagnosis Using Quantitative Models
with NonBoolean Reasoning in Expert Systems.” AIChE Journal, 33,
pp. 130–140.

Kroonenberg, P. M. (1983): Threemode principal component analysis:
Theory and applications. DSWO Press, Leiden.

Kruger, U., Y. Zhou, and G. W. Irwin (2004): “Improved principal
component monitoring of largescale processes.” Journal of Process
Control, 14, pp. 879–888.

Ku, W., R. H. Storer, and C. Georgkakis (1994): “Uses of state estimation
for statistical process control.” Computers & Chemical Engineering:
ESCAPE 3, 18, pp. S571–S575.

Ku, W., R. H. Storer, and C. Georgkakis (1995): “Disturbance detection
and isolation by dynamic principal component analysis.” Chemomet
rics and intelligent laboratory systems, 30, pp. 179–196.

Lane, S., E. B. Martin, R. Kooijmans, and A. J. Morris (2001): “Perfor
mance monitoring of a multiproduct semibatch process.” Journal of
Process Control, 11, pp. 1–11.

Larsson, J. E. (1992): KnowledgeBased Methods for Control Systems.
PhD thesis ISRN LUTFD2/TFRT1040SE, Department of Auto
matic Control, Lund Institute of Technology, Sweden.

Larsson, J. E., J. Ahnlund, T. Bergquist, F. Dahlstrand, B. Öhman, and
L. Spaanenburg (2004): “Improving expressional power and validation
for multilevel flow models.” Journal of Intelligent and Fuzzy Systems,
15:1, pp. 61–73.

237

References

Lee, J. H. and A. W. Dorsey (2004): “Monitoring of batch processes through
statespace models.” AIChE Journal, 50, pp. 1198–1210.

Lee, J.M., C. K. Yoo, and I.B. Lee (2004): “Fault detection of batch pro
cesses using multiway kernel principal component analysis.” Comput
ers & Chemical Engineering, 28, pp. 1837–1847.

Lennox, B., H. Hiden, G. Montague, G. Kornfeld, and P. Goulding
(2001a): “Process monitoring of an industrial fedbatch fermentation.”
Biotechnology and Bioengineering, 74:2, pp. 125–135.

Lennox, B., K. Kipling, J. Glassey, G. Montague, M. Willis, and H. Hiden
(2002): “Automated production support for the bioprocess industry.”
Biotechnology Progress, 18:2, pp. 269–275.

Lennox, B., G. Montague, H. Hiden, and G. Kornfeld (2001b): “Moving
window MSPC and its application to batch processes.” In Proc. of
Computer Applications in Biotechnology.

Li, W. and S. J. Qin (2001): “Consistent dynamic PCA based on errors
invariables subspace identification.” Journal of Process Control, 11,
pp. 661–678.

Li, W., H. H. Yue, S. ValleCervantes, and S. J. Qin (2000): “Recursive
PCA for adaptive process monitoring.” Journal of Process Control, 10,
pp. 471–486.

Lind, M. (1990): “Representing Goals and Functions of Complex Systems –
An Introduction to Multilevel Flow Modeling.” Technical Report. Insti
tute of Automatic Control Systems, Technical University of Denmark.

Ljung, L. (1999): System Identification: Theory for the User. Prentice
Hall, Upper Saddle River, New Jersey.

Lopes, J. and J. Menezes (1998): “Faster development of fermentation
processes. early stage process diagnosis.” In Proc. of Foundation of
Computer Aided Process Operations – FOCAPO 98, AIChE Symposium
Series, pp. 391–396.

Louwerse, D. J. and A. K. Smilde (2000): “Multivariate statistical process
control of batch processes based on threeway models.” Chemical
Engineering Science, 55, pp. 1225–1235.

Luyben, W. L. (1973): Process Modeling, Simulation, and Control for
Chemical Engineers. McGrawHill.

MacGregor, J. F. and T. Kourti (1995): “Statistical Process Control of
Multivariate Processes.” Control Eng. Practice, 3:3, pp. 403–414.

238

McPherson, L., E. Martin, and J. Morris (2001): “Super ModelBased
Process Performance Monitoring.” In Advances in Process Control 6,
IChemE, pp. 23–30.

McPherson, L., E. Martin, and J. Morris (2002): “Super ModelBased Tech
niques for Batch Process Performance Monitoring.” In 12th European
Symposium on Computer Aided Process Engineering (ESCAPE12),
pp. 523–528.

Meng, X., A. J. Morris, and E. B. Martin (2003): “Online monitoring
of batch processes using a PARAFAC representation.” Journal of
Chemometrics, 17, pp. 65–81.

Miller, P., R. E. Swanson, and C. E. Heckler (1998): “Contribution Plots: A
Missing Link in Multivariate Quality Control.” Applied Mathematics
and Computer Science, 8, pp. 775–792.

Minsky, M. L. (1965): “Matter, Minds, and Models.” In Proc. of Interna
tional Federation of Information Processing Congress, pp. 45–49.

Musulin, E., M. J. Arbiza, A. Bonfill, L. Puigjaner, R. Olsson, and K.E.
Årzén (2005): “Closing the Information Loop in RecipeBased Batch
Production.” In Proceedings of European Symposium on Computer
Aided Process Engineering – ESCAPE 15.

NAMUR (1992): NAMUREmphehlung: Anforderungen an Systeme zur
Rezeptfaheweise (Requirements for Batch Control Systems). NAMUR
AK 2.3 Funktionen der Betriebs und Produktionsleitebene.

Negiz, A. and A. Cinar (1997): “Statistical Monitoring of Multivariate
Dynamic Processes with StateSpace Models.” AIChE Journal, 43:8,
pp. 2002–2020.

Nelson, P. R., P. A. Taylor, and J. F. MacGregor (1996): “Missing
data methods in PCA and PLS: Score calculations with incomplete
observations.” Chemometrics and intelligent laboratory systems, 35,
pp. 45–65.

Nett, C. N., C. A. Jacobson, and A. T. Miller (1988): “An integrated
approach to controls and diagnostics: The 4parameter controller.” In
Proceedings of the American Control Conference, pp. 824–835.

Niemann, H. and J. Stoustrup (1997): “Integration of control and fault
detection: Nominal and robust design.” In Proceedings of IFAC Safe
process ’97, pp. 341–346.

Nilsson, A., K.E. Årzén, and T. F. Petti (1992): “Modelbased diagnosis—
State transition events and constraint equations.” In Preprints IFAC
Symposium on AI in RealTime Control. Delft, The Netherlands.

239

References

Nomikos, P. (1996): “Detection and diagnosis of abnormal batch operations
based on multiway principal component analysis.” ISA Transactions,
35, pp. 259–266.

Nomikos, P. and J. F. MacGregor (1994): “Monitoring batch processes
using multiway principal component analysis.” AIChE Journal, 40:8,
pp. 1361–1375.

Nomikos, P. and J. F. MacGregor (1995a): “Multiway partial least
squares in monitoring batch processes.” Chemometrics and intelligent
laboratory systems, 30, pp. 97–108.

Nomikos, P. and J. F. MacGregor (1995b): “Multivariate SPC Charts for
Monitoring Batch Processes.” Technometrics, 37:1, pp. 41–59.

Oakland, J. S. (1999): Statistical Process Control. Butterworth
Heinemann.

Olsson, R. (2002): “Exception Handling in RecipeBased Batch Control.”
Licentiate thesis ISRN LUTFD2/TFRT–3230–SE. Department of Au
tomatic Control, Lund Institute of Technology, Sweden.

Olsson, R. and K.E. Årzén (2004): “A Modular Batch Laboratory Process.”
In Proc. of 7th International Symposium on Advanced Control of
Chemical Processes – ADCHEM.

Olsson, R. and K.E. Årzén (2000): “Exception Handling in Recipe
Based Batch Control.” In Proc. of ADPM2000 The 4th International
Conference on Automation of Mixed Processes. Dortmund, Germany.

Olsson, R. and K.E. Årzén (2002): “Exception Handling in S88 using
Grafchart.” In Proc. of World Batch Forum North American Conference
2002. Woodcliff Lake, NJ, USA.

Olsson, R., H. Sandberg, and K.E. Årzén (2002): “Development of a Batch
Reactor Laboratory Process.” In Reglermötet 2002. Linköping, Sweden.

Parshall, J. and L. Lamb (2000): Applying S88 – Batch Control from a
User’s Perspective. ISA – Instrument Society of America, Research
Triangle Park, NC, USA.

Patton, R. J., P. M. Frank, and R. N. Clark (1989): Fault Diagnosis in
Dynamic Systems, Theory and Applications. PrenticeHall, Englewood
Cliffs, New Jersey.

Pearson, K. (1901): “On lines and planes of closest fit to systems of points
in space.” Phil. Mag., 2:11, pp. 559–572.

Petti, T. F. (1992): Using Mathematical Models in KnowledgeBased
Control Systems. PhD thesis, University of Delaware.

240

Piovoso, M. J. and K. A. Hoo (Eds.) (2002): “Control Systems Magazine –
Special Issue on Chemometrics for Process Control.” 22:5.

Puig, V., J. Saludes, and J. Quevedo (1997): “Applications in fault
detection and diagnosis of a new algorithm for adaptive threshold
generation.” In TEMPUS Workshop on Systems Modelling, Fault
Diagnosis and Fuzzy Logic Control. Budapest, Hungary.

Qin, S. J. (2003): “Statistical process monitoring: basics and beyond.”
Journal of Chemometrics, 17, pp. 480–502.

Ramaker, H. J., E. N. M. van Sprang, S. P. Gurden, J. A. Westerhuis,
and A. K. Smilde (2002): “Improved monitoring of batch processes by
incorporating external information.” Journal of Process Control, 12,
pp. 569–576.

Rao, C. R. and S. K. Mitra (1971): Generalized Inverse of Matrices and
Its Applications. Wiley.

Rännar, S., J. F. MacGregor, and S. Wold (1998): “Adaptive batch
monitoring using hierarchical PCA.” Chemometrics and intelligent
laboratory systems, 41, pp. 73–81.

Rosenhof, H. P. and A. Ghosh (1987): Batch Process Automation, Theory
and Practice. Van Nostrand Reinhold.

Rotem, Y. and D. R. Lewin (2000): “Assessing the Impact of Parametric
Uncertainty on the Performance of ModelBased PCA.” In Proc. of
ADCHEM 2000, International Symposium on Advanced Control of
Chemical Processes.

Rotem, Y., A. Wachs, and D. R.Lewin (2000): “Ethylene Compressor
Monitoring Using ModelBased PCA.” AIChE Journal, 46:9, pp. 1825–
1836.

Ruiz, D., J. Cantón, J. Nougués, A. Espuña, and L. Puigjaner (2001): “On
line fault diagnosis system support for reactive scheduling in multipur
pose batch chemical plants.” Computers and Chemical Engineering,
25, May, pp. 829–837.

Russell, S. A., D. G. Robertson, J. H. Lee, and B. A. Ogunnaike (2000):
“Modelbased quality monitoring of batch and semibatch processes.”
Journal of Process Control, 10:4, pp. 317–332.

Schölkopf, B., A. Smola, and K.R. Müller (1998): “Nonlinear component
analysis as a kernel eigenvalue problem.” Neural Computation, 10,
pp. 1299–1319.

241

References

Smilde, A. K. (2001): “Comments on threeway analyses used for batch
process data.” Journal of Chemometrics, 15, pp. 19–27.

Stamatis, D. H. (2003): Failure Mode and Effect Analysis: FMEA from
Theory to Execution, 2nd edition. ASQ Quality Press.

Staroswiecki, M. and G. ComtetVarga (2001): “Analytical redundany re
lations for fault detection and isolation in algebraic dynamic systems.”
Automatica, 37, pp. 687–699.

Sun Microsystems (2004): “JavaCC – The Java Parser Generator.”
http://javacc.dev.java.net/.

Sun Microsystems, Inc (2002): “Java API for XML Processing (JAXP).”
JAXP home page, http://java.sun.com/xml/downloads/jaxp.html.

Sun Microsystems, Inc (2005): “The Java Tutorial.” Home page,
http://java.sun.com/docs/books/tutorial/index.html.

Tikhonov, A. N. (1963): “Solution of incorrectly formulated problems and
the regularization method.” Soviet Math. Dokl., 4, pp. 1035–1038.
English transl. of Doklady Akademii Nauk SSSR, 151, 501–504.

Tittus, M. and K. Åkesson (1999): “Deadlock avoidance in batch pro
cesses.” In Proc. of IFAC World Congress. Beijing, China.

Tucker, L. (1966): “Some mathematical notes on threemode factor
analysis.” Psychometrika, 31, pp. 279–311.

Tyler, M. and M. Morari (1994): “Optimal and robust design of integrated
control and diagnostic modules.” In Proccedings of American Control
Conference, pp. 2060–2064.

van Beurden, I. and R. Amkreutz (2002): “Emergency Batch Landing.”
InTech, August, pp. 30–32.

Van Overschee, P. and B. De Moor (1994): “N4SID: Subspace algorithms
for the identification of combined deterministicstochastic systems.”
Automatica, 30:1, pp. 75–93.

Vedam, H. and V. Venkatasubramanian (1999): “PCASDG Based Process
Monitoring and Fault Diagnosis.” Control Engineering Practice, 7:7,
pp. 903–917.

Venkatasubramanian, V., R. Rengaswamy, and S. N. Kavuri (2003a): “A
review of process fault detection and diagnosis Part II: Qualitative
models and search strategies.” Computers & Chemical Engineering,
27, pp. 313–326.

242

Venkatasubramanian, V., R. Rengaswamy, K. Yin, and S. N. Kavuri
(2003b): “A review of process fault detection and diagnosis Part I:
Quantitative modelbased methods.” Computers & Chemical Engineer
ing, 27, pp. 293–311.

Venkatasubramanian, V., R. Rengaswamy, K. Yin, and S. N. Kavuri
(2003c): “A review of process fault detection and diagnosis Part III:
Process history based methods.” Computers & Chemical Engineering,
27, pp. 327–346.

Wachs, A. and D. R. Lewin (1998): “Process Monitoring Using Model
Based PCA.” In Proc. 5th IFAC Symp. Dynamics and Control of
Processing Systems (DYCOPS’5), pp. 86–91.

Wachs, A. and D. R. Lewin (1999): “Improved PCA Methods for Process
Disturbance and Failure Detection.” AIChE Journal, 45:8, pp. 1688–
1700.

Westerhuis, J. A., S. P. Gurden, and A. K. Smilde (2000): “Generalized
contribution plots in multivariate statistical process monitoring.”
Chemometrics and Intelligent Laboratory Systems, 51, pp. 95–114.

Westerhuis, J. A., T. Kourti, and J. F. MacGregor (1998): “Analysis
of multiblock and hierarchical PCA and PLS models.” Journal of
Chemometrics, 12, pp. 301–321.

Westerhuis, J. A., T. Kourti, and J. F. MacGregor (1999): “Comparing
alternative approaches for multivariate statistical analysis of batch
process data.” Journal of Chemometrics, 13, pp. 397–413.

Wise, B. and N. Ricker (1989): “Feedback strategies in multiple sensor
systems.” AIChE Symposium Series, 85:267, pp. 19–23.

Wise, B. M., N. B. Gallagher, S. W. Butler, D. D. W. Jr, and G. G. Barna
(1999): “A comparison of principal component analysis, multiway
principal component analysis, trilinear decomposition and parallel
factor analysis for fault detection in a semiconductor etch process.”
Journal of Chemometrics, 13, pp. 379–396.

Wittenmark, B., K.J. Åström, and S. B. Jørgensen (2000): Process Con
trol. Department of Automatic Control, Lund Institute of Technology.

Wold, H. (1966): “Estimation of principal components and related models
by iterative least squares.” In Multivariate Analysis (Ed. P.R. Krish
naiah), pp. 391–420. Academic Press, NY.

Wold, H. (1975): “Path models with latent variables: The NIPALS
approach.” In Quantitative Sociology: International perspectives on

243

References

mathematical and statistical model building (Ed. H.M. Blalock et al.),
pp. 307–357. Academic Press, NY.

Wold, S., P. Geladi, K. Esbensen, and J. Öhman (1987): “MultiWay
Principal Components and PLSAnalysis.” Journal of Chemometrics,
1, pp. 41–56.

Wold, S., N. Kettaneh, H. Fridén, and A. Holmberg (1998): “Modelling
and diagnostics of batch processes and analogous kinetic experiments.”
Chemometrics and intelligent laboratory systems, 44, pp. 331–340.

Wold, S., M. Sjöström, and L. Eriksson (2001): “PLSregression: A
basic tool of chemometrics.” Chemometrics and intelligent laboratory
systems, 58, pp. 109–130.

World Batch Forum (2003): “Batch Markup Language – BatchML.” WBF
home page, http://www.wbf.org/, Practices and GuideLines.

xmlBlaster.org (1999): “xmlBlaster – Message Oriented Middleware.”
xmlBlaster home page, http://www.xmlblaster.org/.

Yoo, C. K., J.M. Lee, P. A. Vanrolleghem, and I.B. Lee (2004): “On
line monitoring of batch processes using multiway independent compo
nent analysis.” Chemometrics and intelligent laboratory systems, 71,
pp. 151–163.

Yoon, S. and J. F. MacGregor (2000): “Statistical and Causal ModelBased
Approaches to Fault Detection and Isolation.” AIChE Journal, 46:9,
pp. 1813–1824.

Yoon, S. and J. F. MacGregor (2001a): “Fault diagnosis with multivariate
statistical models part I: Using steady state fault signatures.” Journal
of Process Control, 11, pp. 387–400.

Yoon, S. and J. F. MacGregor (2001b): “Incorporation of external infor
mation into multivariate PCA/PLS methods.” In Proc. of 4th IFAC
Workshop on OnLine Fault Detection and Supervision in the Chemi
cal Process Industries (CHEMFAS4). Korea.

Yue, H. H. and S. J. Qin (2001): “ReconstructionBased Fault Identifica
tion Using a Combined Index.” Industrial & Engineering Chemistry
Research, 40:20, pp. 4403–4414.

Zhou, K. (1998): Essentials of Robust Control. Prentice Hall, New Jersey.

244

Department of Automatic Control

ISSN 0280−5316

ISRN LUTFD2/TFRT−−1073−−SE

