7,195 research outputs found

    Efficient Constellation-Based Map-Merging for Semantic SLAM

    Full text link
    Data association in SLAM is fundamentally challenging, and handling ambiguity well is crucial to achieve robust operation in real-world environments. When ambiguous measurements arise, conservatism often mandates that the measurement is discarded or a new landmark is initialized rather than risking an incorrect association. To address the inevitable `duplicate' landmarks that arise, we present an efficient map-merging framework to detect duplicate constellations of landmarks, providing a high-confidence loop-closure mechanism well-suited for object-level SLAM. This approach uses an incrementally-computable approximation of landmark uncertainty that only depends on local information in the SLAM graph, avoiding expensive recovery of the full system covariance matrix. This enables a search based on geometric consistency (GC) (rather than full joint compatibility (JC)) that inexpensively reduces the search space to a handful of `best' hypotheses. Furthermore, we reformulate the commonly-used interpretation tree to allow for more efficient integration of clique-based pairwise compatibility, accelerating the branch-and-bound max-cardinality search. Our method is demonstrated to match the performance of full JC methods at significantly-reduced computational cost, facilitating robust object-based loop-closure over large SLAM problems.Comment: Accepted to IEEE International Conference on Robotics and Automation (ICRA) 201

    Improving the Performance of Mobile Ad Hoc Network Using a Combined Credit Risk and Collaborative Watchdog Method

    Get PDF
    In mobile ad hoc networks nodes can move freely and link node failures occur frequently This leads to frequent network partitions which may significantly degrade the performance of data access in ad hoc networks When the network partition occurs mobile nodes in one network are not able to access data hosted by nodes in other networks In mobile ad hoc network some nodes may selfishly decide only to cooperate partially or not at all with other nodes These selfish nodes could then reduce the overall data accessibility in the network In this work the impact of selfish nodes in a mobile ad hoc network from the perspective of replica allocation is examined We term this selfish replica allocation A combined credit risk method collaborative watchdog is proposed to detect the selfish node and also apply the SCF tree based replica allocation method to handle the selfish replica allocation appropriately The proposed method improves the data accessibility reduces communication cost and average query delay and also to reduce the detection time and to improve the accuracy of watchdogs in the collaborative metho

    On Improving the Robustness of Partitionable Internet-Based Mobile Ad Hoc Networks

    Get PDF
    Recent technological advances in portability, mobility support, and high speed wireless communications and users' insatiable interest in accessing the Internet have fueled to development of mobile wireless networks. Internet-based mobile ad hoc network (IMANET) is emerging as a ubiquitous communication infrastructure that combines a mobile ad hoc network (MANET) and the Internet to provide universal information accessibility. However, communication performance may be seriously degraded by network partitions resulted from frequent changes of the network topology. In this paper, we propose an enhanced least recently used replacement policy as a part of the aggregate cache mechanism to improve the information accessibility and reduce the access latency in the presence of network partitioning. The enhanced aggregate cache is analyzed and also evaluated by simulation. Extensive simulation experiments are conducted under various network topologies by using three different mobility models: random waypoint, Manhattan grid, and mo -di -fied random waypoint. The simulation results indicate that the proposed policy significantly improves communication performance in varying network topologies, and relieves the network partition problem to a great extent

    Data Replication for Improving Data Accessibility in Ad Hoc Networks

    Get PDF
    In ad hoc networks, due to frequent network partition, data accessibility is lower than that in conventional fixed networks. In this paper, we solve this problem by replicating data items on mobile hosts. First, we propose three replica allocation methods assuming that each data item is not updated. In these three methods, we take into account the access frequency from mobile hosts to each data item and the status of the network connection. Then, we extend the proposed methods by considering aperiodic updates and integrating user profiles consisting of mobile users\u27\u27 schedules, access behavior, and read/write patterns. We also show the results of simulation experiments regarding the performance evaluation of our proposed method

    Connectivity-guaranteed and obstacle-adaptive deployment schemes for mobile sensor networks

    Get PDF
    Mobile sensors can relocate and self-deploy into a network. While focusing on the problems of coverage, existing deployment schemes largely over-simplify the conditions for network connectivity: they either assume that the communication range is large enough for sensors in geometric neighborhoods to obtain location information through local communication, or they assume a dense network that remains connected. In addition, an obstacle-free field or full knowledge of the field layout is often assumed. We present new schemes that are not governed by these assumptions, and thus adapt to a wider range of application scenarios. The schemes are designed to maximize sensing coverage and also guarantee connectivity for a network with arbitrary sensor communication/sensing ranges or node densities, at the cost of a small moving distance. The schemes do not need any knowledge of the field layout, which can be irregular and have obstacles/holes of arbitrary shape. Our first scheme is an enhanced form of the traditional virtual-force-based method, which we term the Connectivity-Preserved Virtual Force (CPVF) scheme. We show that the localized communication, which is the very reason for its simplicity, results in poor coverage in certain cases. We then describe a Floor-based scheme which overcomes the difficulties of CPVF and, as a result, significantly outperforms it and other state-of-the-art approaches. Throughout the paper our conclusions are corroborated by the results from extensive simulations

    Live migration of user environments across wide area networks

    Get PDF
    A complex challenge in mobile computing is to allow the user to migrate her highly customised environment while moving to a different location and to continue work without interruption. I motivate why this is a highly desirable capability and conduct a survey of the current approaches towards this goal and explain their limitations. I then propose a new architecture to support user mobility by live migration of a user’s operating system instance over the network. Previous work includes the Collective and Internet Suspend/Resume projects that have addressed migration of a user’s environment by suspending the running state and resuming it at a later time. In contrast to previous work, this work addresses live migration of a user’s operating system instance across wide area links. Live migration is done by performing most of the migration while the operating system is still running, achieving very little downtime and preserving all network connectivity. I developed an initial proof of concept of this solution. It relies on migrating whole operating systems using the Xen virtual machine and provides a way to perform live migration of persistent storage as well as the network connections across subnets. These challenges have not been addressed previously in this scenario. In a virtual machine environment, persistent storage is provided by virtual block devices. The architecture supports decentralized virtual block device replication across wide area network links, as well as migrating network connection across subnetworks using the Host Identity Protocol. The proposed architecture is compared against existing solutions and an initial performance evaluation of the prototype implementation is presented, showing that such a solution is a promising step towards true seamless mobility of fully fledged computing environments
    corecore