373 research outputs found

    Accurate deep neural network inference using computational phase-change memory

    Get PDF
    In-memory computing is a promising non-von Neumann approach for making energy-efficient deep learning inference hardware. Crossbar arrays of resistive memory devices can be used to encode the network weights and perform efficient analog matrix-vector multiplications without intermediate movements of data. However, due to device variability and noise, the network needs to be trained in a specific way so that transferring the digitally trained weights to the analog resistive memory devices will not result in significant loss of accuracy. Here, we introduce a methodology to train ResNet-type convolutional neural networks that results in no appreciable accuracy loss when transferring weights to in-memory computing hardware based on phase-change memory (PCM). We also propose a compensation technique that exploits the batch normalization parameters to improve the accuracy retention over time. We achieve a classification accuracy of 93.7% on the CIFAR-10 dataset and a top-1 accuracy on the ImageNet benchmark of 71.6% after mapping the trained weights to PCM. Our hardware results on CIFAR-10 with ResNet-32 demonstrate an accuracy above 93.5% retained over a one day period, where each of the 361,722 synaptic weights of the network is programmed on just two PCM devices organized in a differential configuration.Comment: This is a pre-print of an article accepted for publication in Nature Communication

    Real-time quality control of heat sealed bottles

    Get PDF
    The present document describes a system for controlling the quality of heat sealed bottles. The system detects defective seals to identify bottles that can not be sold. A prototype was developed to validate and test the system proposed. In the production line, the bottles are filled with a toxic substance and can only be sold when properly sealed. A leak can be harmful to humans and the environment. Because the seals are not visible from outside the bottle, images from each seal are obtained using a thermal camera. The hot glue used in the sealing process makes the seal visible in the infrared image. The image is cleaned and converted to black and white only keeping the seal in the final image. Black pixels present the value 0 and white pixels present the value 1. Then a signature composed by two arrays containing the sum of the number of white pixels in each column and in each row is calculated. Both arrays present a U shape when the bottle is sealed. The signature is then fed to an artificial neural network which was trained to identify correctly sealed bottles. The classification results are stored in a database. The trained neural net presented an accuracy of 98.7 % and an F1 score of 96.0 % in the testing phase. The results shows the inspection process is effective in identifying defective seals and because it is automated it can be scaled up to large bottle processing plants. All classified images can be seen though a web application where a user has the option of validating the operation and identifying errors which will be individually fitted to improve the machine learning model performance. The system is non invasive, automated, and can be applied to common conveyor belts currently used in industrial plants. It can also be adapted to detect different prob lems in bottles of different shapes.Nesta dissertação é descrito um sistema de controlo de qualidade de selos em garrafas. Foi contruído um protótipo com o objetivo de testar e validar o funcionamento do sistema. Na linha de produção, as garrafas são cheias com uma substância tóxica e apenas podem ser vendidas quando corretamente seladas pois uma fuga põe em risco a saúde do utilizador. A dificuldade deste processo deve-se ao facto de o selo não ser visível pois encontra-se debaixo da tampa opaca da garrafa. Dado o uso de cola quente no processo de selagem, com uma câmara térmica é possível obter uma imagem do selo. Esta imagem é depois processada com o intuito de isolar o selo na imagem final. Da imagem final gera-se uma assinatura que consiste na juncão de duas listas contendo a soma do número de pixels brancos por coluna e por linha. Ambas as listas apresentam uma forma de ‘U’ quando a garrafa está corretamente selada. Uma rede neuronal utiliza a assinatura para classificar a imagem, identificando garrafas mal seladas. O resultado obtido é registado numa base de dados. A rede neuronal treinada apresentou uma accuracy de 98,7 % e um F1 score de 96,0 % na fase de treino mostrando que é eficiente na identificação de selos defeituosos. O sistema inclui a possibilidade de validar as classificações usando uma aplicação web onde é possível analisar o histórico de imagens. Quando uma imagem incorretamente classificada é identificada, esta deve ser selecionada e novamente treinada para corrigir o erro e permitir que o modelo tenha capacidade de aprendizagem. Este método não é invasivo nem destrutivo, é automatizado e pode ser usado na produção de produtos diferentes desde que o processo de selagem seja semelhante

    Application of deep learning methods in materials microscopy for the quality assessment of lithium-ion batteries and sintered NdFeB magnets

    Get PDF
    Die Qualitätskontrolle konzentriert sich auf die Erkennung von Produktfehlern und die Überwachung von Aktivitäten, um zu überprüfen, ob die Produkte den gewünschten Qualitätsstandard erfüllen. Viele Ansätze für die Qualitätskontrolle verwenden spezialisierte Bildverarbeitungssoftware, die auf manuell entwickelten Merkmalen basiert, die von Fachleuten entwickelt wurden, um Objekte zu erkennen und Bilder zu analysieren. Diese Modelle sind jedoch mühsam, kostspielig in der Entwicklung und schwer zu pflegen, während die erstellte Lösung oft spröde ist und für leicht unterschiedliche Anwendungsfälle erhebliche Anpassungen erfordert. Aus diesen Gründen wird die Qualitätskontrolle in der Industrie immer noch häufig manuell durchgeführt, was zeitaufwändig und fehleranfällig ist. Daher schlagen wir einen allgemeineren datengesteuerten Ansatz vor, der auf den jüngsten Fortschritten in der Computer-Vision-Technologie basiert und Faltungsneuronale Netze verwendet, um repräsentative Merkmale direkt aus den Daten zu lernen. Während herkömmliche Methoden handgefertigte Merkmale verwenden, um einzelne Objekte zu erkennen, lernen Deep-Learning-Ansätze verallgemeinerbare Merkmale direkt aus den Trainingsproben, um verschiedene Objekte zu erkennen. In dieser Dissertation werden Modelle und Techniken für die automatisierte Erkennung von Defekten in lichtmikroskopischen Bildern von materialografisch präparierten Schnitten entwickelt. Wir entwickeln Modelle zur Defekterkennung, die sich grob in überwachte und unüberwachte Deep-Learning-Techniken einteilen lassen. Insbesondere werden verschiedene überwachte Deep-Learning-Modelle zur Erkennung von Defekten in der Mikrostruktur von Lithium-Ionen-Batterien entwickelt, von binären Klassifizierungsmodellen, die auf einem Sliding-Window-Ansatz mit begrenzten Trainingsdaten basieren, bis hin zu komplexen Defekterkennungs- und Lokalisierungsmodellen, die auf ein- und zweistufigen Detektoren basieren. Unser endgültiges Modell kann mehrere Klassen von Defekten in großen Mikroskopiebildern mit hoher Genauigkeit und nahezu in Echtzeit erkennen und lokalisieren. Das erfolgreiche Trainieren von überwachten Deep-Learning-Modellen erfordert jedoch in der Regel eine ausreichend große Menge an markierten Trainingsbeispielen, die oft nicht ohne weiteres verfügbar sind und deren Beschaffung sehr kostspielig sein kann. Daher schlagen wir zwei Ansätze vor, die auf unbeaufsichtigtem Deep Learning zur Erkennung von Anomalien in der Mikrostruktur von gesinterten NdFeB-Magneten basieren, ohne dass markierte Trainingsdaten benötigt werden. Die Modelle sind in der Lage, Defekte zu erkennen, indem sie aus den Trainingsdaten indikative Merkmale von nur "normalen" Mikrostrukturmustern lernen. Wir zeigen experimentelle Ergebnisse der vorgeschlagenen Fehlererkennungssysteme, indem wir eine Qualitätsbewertung an kommerziellen Proben von Lithium-Ionen-Batterien und gesinterten NdFeB-Magneten durchführen

    Information Leakage Attacks and Countermeasures

    Get PDF
    The scientific community has been consistently working on the pervasive problem of information leakage, uncovering numerous attack vectors, and proposing various countermeasures. Despite these efforts, leakage incidents remain prevalent, as the complexity of systems and protocols increases, and sophisticated modeling methods become more accessible to adversaries. This work studies how information leakages manifest in and impact interconnected systems and their users. We first focus on online communications and investigate leakages in the Transport Layer Security protocol (TLS). Using modern machine learning models, we show that an eavesdropping adversary can efficiently exploit meta-information (e.g., packet size) not protected by the TLS’ encryption to launch fingerprinting attacks at an unprecedented scale even under non-optimal conditions. We then turn our attention to ultrasonic communications, and discuss their security shortcomings and how adversaries could exploit them to compromise anonymity network users (even though they aim to offer a greater level of privacy compared to TLS). Following up on these, we delve into physical layer leakages that concern a wide array of (networked) systems such as servers, embedded nodes, Tor relays, and hardware cryptocurrency wallets. We revisit location-based side-channel attacks and develop an exploitation neural network. Our model demonstrates the capabilities of a modern adversary but also presents an inexpensive tool to be used by auditors for detecting such leakages early on during the development cycle. Subsequently, we investigate techniques that further minimize the impact of leakages found in production components. Our proposed system design distributes both the custody of secrets and the cryptographic operation execution across several components, thus making the exploitation of leaks difficult

    A Comprehensive and Reliable Feature Attribution Method: Double-sided Remove and Reconstruct (DoRaR)

    Full text link
    The limited transparency of the inner decision-making mechanism in deep neural networks (DNN) and other machine learning (ML) models has hindered their application in several domains. In order to tackle this issue, feature attribution methods have been developed to identify the crucial features that heavily influence decisions made by these black box models. However, many feature attribution methods have inherent downsides. For example, one category of feature attribution methods suffers from the artifacts problem, which feeds out-of-distribution masked inputs directly through the classifier that was originally trained on natural data points. Another category of feature attribution method finds explanations by using jointly trained feature selectors and predictors. While avoiding the artifacts problem, this new category suffers from the Encoding Prediction in the Explanation (EPITE) problem, in which the predictor's decisions rely not on the features, but on the masks that selects those features. As a result, the credibility of attribution results is undermined by these downsides. In this research, we introduce the Double-sided Remove and Reconstruct (DoRaR) feature attribution method based on several improvement methods that addresses these issues. By conducting thorough testing on MNIST, CIFAR10 and our own synthetic dataset, we demonstrate that the DoRaR feature attribution method can effectively bypass the above issues and can aid in training a feature selector that outperforms other state-of-the-art feature attribution methods. Our code is available at https://github.com/dxq21/DoRaR.Comment: 16 pages, 22 figure

    A Concept for Deployment and Evaluation of Unsupervised Domain Adaptation in Cognitive Perception Systems

    Get PDF
    Jüngste Entwicklungen im Bereich des tiefen Lernens ermöglichen Perzeptionssystemen datengetrieben Wissen über einen vordefinierten Betriebsbereich, eine sogenannte Domäne, zu gewinnen. Diese Verfahren des überwachten Lernens werden durch das Aufkommen groß angelegter annotierter Datensätze und immer leistungsfähigerer Prozessoren vorangetrieben und zeigen unübertroffene Performanz bei Perzeptionsaufgaben in einer Vielzahl von Anwendungsbereichen.Jedoch sind überwacht-trainierte neuronale Netze durch die Menge an verfügbaren annotierten Daten limitiert und dies wiederum findet in einem begrenzten Betriebsbereich Ausdruck. Dabei beruht überwachtes Lernen stark auf manuell durchzuführender Datenannotation. Insbesondere durch die ständig steigende Verfügbarkeit von nicht annotierten großen Datenmengen ist der Gebrauch von unüberwachter Domänenanpassung entscheidend. Verfahren zur unüberwachten Domänenanpassung sind meist nicht geeignet, um eine notwendige Inbetriebnahme des neuronalen Netzes in einer zusätzlichen Domäne zu gewährleisten. Darüber hinaus sind vorhandene Metriken häufig unzureichend für eine auf die Anwendung der domänenangepassten neuronalen Netzen ausgerichtete Validierung. Der Hauptbeitrag der vorliegenden Dissertation besteht aus neuen Konzepten zur unüberwachten Domänenanpassung. Basierend auf einer Kategorisierung von Domänenübergängen und a priori verfügbaren Wissensrepräsentationen durch ein überwacht-trainiertes neuronales Netz wird eine unüberwachte Domänenanpassung auf nicht annotierten Daten ermöglicht. Um die kontinuierliche Bereitstellung von neuronalen Netzen für die Anwendung in der Perzeption zu adressieren, wurden neuartige Verfahren speziell für die unüberwachte Erweiterung des Betriebsbereichs eines neuronalen Netzes entwickelt. Beispielhafte Anwendungsfälle des Fahrzeugsehens zeigen, wie die neuartigen Verfahren kombiniert mit neu entwickelten Metriken zur kontinuierlichen Inbetriebnahme von neuronalen Netzen auf nicht annotierten Daten beitragen. Außerdem werden die Implementierungen aller entwickelten Verfahren und Algorithmen dargestellt und öffentlich zugänglich gemacht. Insbesondere wurden die neuartigen Verfahren erfolgreich auf die unüberwachte Domänenanpassung, ausgehend von der Tag- auf die Nachtobjekterkennung im Bereich des Fahrzeugsehens angewendet

    Application of Neural Network and Wavelet Transform Techniques in Structural Health Monitoring

    Get PDF
    Structural Health Monitoring (SHM) has recently emerged as a useful tool for tracking the performance parameters of a structure such as strain, deflection, and acceleration through a series of sensors installed on them. The signals produced from these sensors are the main performance indicator of the structure. In assessing the condition of the structure, the proper analysis and the evaluation of changes in pattern of signals are the most important tasks in SHM. Another important aspect of SHM is the detection of the defective sensors. And it is very difficult to identify it manually from a series of sensors. Although it is an important task in SHM but no straightforward method exists currently to carry out this task. In this study, the sensor data from a Canadian bridge have been utilized here to develop Artificial Neural Network (ANN) and Wavelet Transform (WT) based methods for tracking the changes in sensor data pattern and detecting the defective sensors in SHM. The ANN structures are constructed with input nodes accepting data from selected strain gauges and a target selected from the remaining strain gauges. The data collected at different time periods are de-noised by WT and tested against the trained network to find the pattern of differences between the input and output data series. The proposed methods have been validated with the available data and are found to be effective in tracking the data patterns and detecting defective sensors

    GuavaNet: A deep neural network architecture for automatic sensory evaluation to predict degree of acceptability for Guava by a consumer

    Get PDF
    This thesis is divided into two parts:Part I: Analysis of Fruits, Vegetables, Cheese and Fish based on Image Processing using Computer Vision and Deep Learning: A Review. It consists of a comprehensive review of image processing, computer vision and deep learning techniques applied to carry out analysis of fruits, vegetables, cheese and fish.This part also serves as a literature review for Part II.Part II: GuavaNet: A deep neural network architecture for automatic sensory evaluation to predict degree of acceptability for Guava by a consumer. This part introduces to an end-to-end deep neural network architecture that can predict the degree of acceptability by the consumer for a guava based on sensory evaluation
    corecore