




" The Road goes ever on and on
Down from the door where it began.
Now far ahead the Road has gone,
And I must follow, if I can,
Pursuing it with eager feet,
Until it joins some larger way
Where many paths and errands meet.
And whither then? I cannot say. "

- J. R. R. Tolkien,
The Lord of the Rings
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Kurzfassung

Jüngste Entwicklungen im Bereich des tiefen Lernens ermöglichen Perzep-
tionssystemen datengetrieben Wissen über einen vordefinierten Betriebs-
bereich, eine sogenannte Domäne, zu gewinnen. Diese Verfahren des über-
wachten Lernens werden durch das Aufkommen groß angelegter annotierter
Datensätze und immer leistungsfähigerer Prozessoren vorangetrieben und
zeigen unübertroffene Performanz bei Perzeptionsaufgaben in einer Vielzahl
von Anwendungsbereichen.Jedoch sind überwacht-trainierte neuronale Netze
durch die Menge an verfügbaren annotierten Daten limitiert und dies wie-
derum findet in einem begrenzten Betriebsbereich Ausdruck. Dabei beruht
überwachtes Lernen stark auf manuell durchzuführender Datenannotation.
Insbesondere durch die ständig steigende Verfügbarkeit von nicht annotierten
großen Datenmengen ist der Gebrauch von unüberwachter Domänenanpas-
sung entscheidend. Verfahren zur unüberwachten Domänenanpassung sind
meist nicht geeignet, um eine notwendige Inbetriebnahme des neuronalen
Netzes in einer zusätzlichen Domäne zu gewährleisten. Darüber hinaus
sind vorhandene Metriken häufig unzureichend für eine auf die Anwendung
der domänenangepassten neuronalen Netzen ausgerichtete Validierung. Der
Hauptbeitrag der vorliegenden Dissertation besteht aus neuen Konzepten zur
unüberwachten Domänenanpassung. Basierend auf einer Kategorisierung
von Domänenübergängen und a priori verfügbaren Wissensrepräsentationen
durch ein überwacht-trainiertes neuronales Netz wird eine unüberwachte
Domänenanpassung auf nicht annotierten Daten ermöglicht. Um die kon-
tinuierliche Bereitstellung von neuronalen Netzen für die Anwendung in
der Perzeption zu adressieren, wurden neuartige Verfahren speziell für die
unüberwachte Erweiterung des Betriebsbereichs eines neuronalen Netzes
entwickelt. Beispielhafte Anwendungsfälle des Fahrzeugsehens zeigen, wie
die neuartigen Verfahren kombiniert mit neu entwickelten Metriken zur kon-
tinuierlichen Inbetriebnahme von neuronalen Netzen auf nicht annotierten
Daten beitragen. Außerdem werden die Implementierungen aller entwickel-
ten Verfahren und Algorithmen dargestellt und öffentlich zugänglich gemacht.
Insbesondere wurden die neuartigen Verfahren erfolgreich auf die unüber-
wachte Domänenanpassung, ausgehend von der Tag- auf die Nachtobjekt-
erkennung im Bereich des Fahrzeugsehens angewendet.
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Abstract

Recent developments within the application of deep learning allow cogni-
tive perception systems to draw knowledge about the domain of operation
purely data-driven. The supervised learning approach to deep learning is
further accelerated by the emergence of large-scale labeled datasets and pro-
gressively powerful computers. As a result, supervised learning approaches
have shown unprecedented capabilities within perception tasks, for exam-
ple, object detection in a wide range of applications, such as autonomous
driving. However, supervised trained models are limited by the available
labeled data, finding expression in a finite domain of operation. With su-
pervised learning heavily relying on manual labor, and the ever-increasing
availability of unlabeled datasets, the extensive use of unsupervised domain
adaptation approaches is crucial for the advancement of model deployment.
Available unsupervised domain adaptation approaches are usually not suit-
able for achieving model deployment in the adapted domain. Moreover, ex-
isting metrics are often not sufficiently considered or inadequate for unsu-
pervised domain adaptation of models under deployment. The major contri-
bution of the present thesis is a new concept for the training and validation of
unsupervised domain adaptation methods involved in the continuous deploy-
ment of perception models. Based on a conceptualization of domain shift
types, the a priori available knowledge representations within a supervised
trained model are capitalized to enable further unsupervised domain adap-
tation on unlabeled data. To address the need for continuous deployment
of neural networks, three novel unsupervised domain adaptation approaches
are specifically developed to enable the extension of a neural network’s do-
main of operation. Employing exemplary automotive perception tasks, it
is established how a combination of both the novel unsupervised domain
adaptation approaches and the newly proposed domain adaptation metrics
can contribute to handling continuous adaptation and deployment based on
unlabeled data. To compound the contribution, the implementations of all
developed approaches and algorithms are demonstrated and made publicly
available. In particular, the novel approaches were successfully applied to
unsupervised domain adaptation from day to night object detection in au-
tonomous driving.

iii





Preface

The work in your hands originates from my activities and time as a doctoral
student in cooperation between Research and Development at ZF Friedrichs-
hafen AG and the Institute for Automation and Applied Informatics at Karls-
ruhe Institute of Technology. During the last months and years, I experienced
encouragement and support from many directions; for this, I am very grate-
ful and appreciative. With the following lines, and without guarantee for
completeness, I dare the attempt to deliver the appropriate acknowledgment:

To my most radiant beacon, apl. Prof. Dr. Markus Reischl, who allowed
me to merge academic research with industrial application and conduct re-
search in such an interesting and extensive field, for the unfailing support,
constructive discussions, and guidance for my research in general, this thesis
in specific, and all things beyond.

To my consistent ignition, Prof. Dr. Veit Hagenmeyer, who followed my
research with great interest, for the excellent feedback, contributing to the
success of this work, especially on the home stretch.

To my persistent fire accelerator, Prof. Dr. Stefan Elser, who helped me
find my place and pace both as a doctoral researcher at ZF Friedrichshafen
AG and as an adjunct lecturer at Ravensburg-Weingarten University, for the
friendship and continuous commitment.

To my initial spark apl. Prof. Dr. Ralf Mikut, who already during my stud-
ies at KIT, opened the field of machine learning to me, for the excellent
academic and technical guidance and for advising me at the outset of this
journey on so many a question.

To my fellow students, colleagues, and Ph.D. students at KIT, the ZF Inno-
vation Hub in Sunnyvale, and ZF Friedrichshafen AG, who kindly received
and constantly welcomed me in their hallowed halls for their unobstructed
support by sharing ideas, projects, coffee, and motivation. Especially, I want
to thank Prof. Dr. Christian Pylatiuk, Stefan Bühler, Christian Witte, Jo-

v



Preface

hannes Bernhard, Jonas Schmidt, Mostafa Hussein, Marcel Schilling, and
Luca Rettenberger for the collaborations and shared endeavors.

To my industrial supervisor, Dr. Jochen Abhau, who gave me a chance to
prove myself, for granting me support, freedom, space, and opportunities to
drive research and to grow within ZF Friedrichshafen AG.

To my discussion partners, Dr. Daniel Plencner and Dr. Daniel Schmitt, who
regularly made me rethink concepts, challenge ideas, and be innovative, for
being the extraordinarily smart, curious, and nice people they are.

To my hidden supervisors, Dr. Niklas Goby and Tobias Mindel, whom I
appointed myself without them knowing, for readily sharing knowledge, lis-
tening, generating drive, and getting me started by believing in me, adding
perspective to my ideas, and disrupting my beliefs.

To my closest companions on this odyssey, Christian Herzog, Tim Härle,
Frank Hafner, Anja Fessler, Florian Wilhelmi, and Hendrik Vogt, which care
that I stay grounded, on the wall, and my feet, for 24/7 autonomous driving,
diamond hands, going the extra mile and discussing the ultimate questions
of life, the universe, and everything. To my friends near and far, who hold
me dear and let me know that they are around, for accepting me for who I
am and for who I am not.

To the woman who accompanied me for a part of this journey, for love, an-
other perspective, and for enriching my life in so many ways. To my sister,
who at times rescued my self-esteem, reminding me that things are just fine,
that I am doing fine, and that a few breaks are okay. To my beloved parents,
who broke social coercion and afforded time for me to put the pedal to the
metal, for their love, patience, and unconditional endorsement.

Friedrichshafen, December 2022 Mark Schutera

vi



Nomenclature

Alphabetical Symbols

A Set
E Expectation
R Set of Real Numbers
D Domain
G Complete Bipartite Graph
N (x; µ,Σ) Gaussian Distribution over x with Mean µ and Covariance Σ

PG (ui) Parent Nodes of ui in G
T Task
A Matrix
a Vector
b Bias Vector
C Correspondence Tensor
I Identity Matrix
M Mapping Tensor
R Covariance Matrix
V Vertex Cover
W Weight Tensor
a Scalar
bel Posterior Belief
Cov Covariance
f , g Functions
FN False Negatives
FP False Positives
f ps Frames per Second
h Hidden Layer, Function
i.i.d Independent and Identically Distributed
J() Cost Function
KL Kullback-Leibler Divergence
l Layer
o Object
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Nomenclature

O() Time Complexity (Order of the Function)
p() Probability Distribution
px Pixels
std Standard Deviation
T Threshold
t Time Stamp
T N True Negatives
T P True Positives
u Unit, Neuron, Cell, Node
Var Variance
w Scalar Weight
x State, Input
z Layer Activation State

Greek Symbols

α Rotation Angle
∆ Step, Difference
δ Difference Operator
ϵ Learning Rate
µ Mean Value
∇ Partial Derivative Matrix
∂ Partial Derivative
σ Standard Deviation
τ Weight Updates, Number of Computational Operations
θ Set of Parameters, Weights

Superscripts

ŷ Model Prediction, Estimated Output
a Prior
A⊤ Transpose of Matrix A
ỹ Ground Truth, meaning the Empirical Distribution
ỹ′ Pseudo Ground Truth
a∗ Optimal form of a
a′ Derivative, Mapping
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Nomenclature

Subscripts

A:, j Column j of Matrix A
Ai,: Row i of Matrix A
ai Element i of Vector a
Ai, j Element i, j of Matrix A
ainit Initial Value

Other Symbols

∗ Scalar Product
. Placeholder
# Cardinality
_ Empty Element
↓ Defined, Decreasing
→ The process of annotation
A⊙B Hadamard Product (Element-wise Product)
↑ Undefined, Increasing
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1 Introduction

1.1 Emanation and Significance of the Work

1.1.1 Deep Learning - a Paradigm Shift

Deep learning has evoked a paradigm shift within cognitive perception sys-
tems in recent years. Deep learning allows machines to learn from experi-
ence given by annotated data. As such, deep learning enables machines to
be aware of the world as a set of hierarchical concepts, with each concept
being defined by a set of more fundamental concepts [17]. Drawing know-
ledge about the world, purely data-driven, allows the machine to build up
and learn about these concepts and their relation to each other. Represented
as a graph, this graph is deep, with a lot of layers - giving reason to naming
this approach - deep learning [18].

If a system is to behave intelligently, it needs to inherit a considerable amount
of knowledge about the world or the perceived environment and its under-
lying structures and interrelationships. Much of this knowledge is subjec-
tive, and as far as humans are concerned, most actions are instead based on
intuitive premises. When it comes to artificial intelligence, one faces the
challenge of mapping this idiomatic knowledge so a computer can access
and process it. The earlier methods attempted to hard-code knowledge into
statements structured by formal languages and logical operators, also known
as the knowledge-based approach.

As the number of labeled data increases in terms of the number of available
datasets and samples per dataset (see Fig. 1.1a), another approach became
applicable: Deep learning strives to depict system behavior by means of ab-
stract representations, which are in turn obtained and defined by less abstract
ones. In deep learning approaches, these representations are depicted within
neural networks. Those representations are then evaluated on how well they
correspond with reality, being readjusted if these representations do not per-
form well, hence called the data-driven approach. Deep learning is further
propelled by progressively powerful computers or processing units, with sig-
nificantly more memory, faster computation, ever-increasing available data,
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1 Introduction

(a) Development of dataset sizes used in machine learning, size in the number of samples per dataset over
time [18]. Datasets are depicted as blue dots. The figure intends to depict the development of datasets
only, and the central datasets will be introduced in detail (see Sec. 1.4 and 5.3.1).
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(b) Development of neural network size on a logarithmic scale over time. Neural networks are depicted as
blue dots and are put in relation to biological neural network sizes present in the fauna [18].

Figure 1.1
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1.1 Emanation and Significance of the Work

and enhanced and increasingly sophisticated annotation of datasets. As of to-
day, the number of units deployed meaningfully within neural networks dou-
bles approximately every 2.4 years (see Fig. 1.1b), reaching the same number
of neurons as being present in a human brain approximately in 2050 [18].
Modern machine learning and deep learning methods are essential for au-
tonomous perception systems.

1.1.2 Significance of the Work

Neural networks within perception systems, solving tasks such as object
detection, semantic segmentation, and others, are central to a wide range
of applications such as autonomous driving, biomedical computer vision,
and many more. On the way to market, perception systems have to deal
with different versions, variants, and development stages. Since it is neither
economical nor realistic to develop a mature, finalized software system, the
systems will have to evolve in line with extending requirements by improv-
ing performance, adding entirely novel functionalities, and adapting to newly
faced domains and environments outside of the initial operational design do-
main (ODD). Therefore, the initial systems are only developed for a limited
range of applications, which can then be gradually expanded.

The principle of continuous development and deployment is a state-of-the-
art software development approach when improving edge devices such as
smartphones. As is, this procedure is not easily transferable to state-of-the-
art deep learning methods. Here, desired changes, extensions, and adapta-
tions to an existing component, such as additional classes, differing sensor
technology, sensor position, advancements in the sensor technology, or sup-
plementing differing domains, while adhering to the safety requirements, of-
ten trigger another renewed, complete training and validation cycle followed
by deployment. Thus, there is a definite need to develop new methods and
processes that make adaptation more seamless, such as continuous learning
or shared feature spaces.Most commonly, deep learning approaches perform
well when trained supervised, following the mutual assumption: The training
samples and the samples received during application are within the same do-
main. However, supervised learning requires a dataset of annotated samples
for training and validation. Labeling is a time and cost-consuming process.
Thus, there is a definite need to develop further methods and procedures that
make manual supervision unnecessary - this work will concentrate on unsu-
pervised domain adaptation.

3



1 Introduction

Methods for the efficient extension and transformation of existing deep learn-
ing modules are developed to resolve the aforementioned problem state-
ments. Furthermore, these methods get autonomous perception systems
ready for the challenges of a repetitive emergence of new domains and the
shift from datasets to datastreams when deploying neural networks. The fol-
lowing introduction sets out to build the foundation on which the contribu-
tions of this thesis are able to unfold. Initially, the supervised deep learning
pipeline is presented, together with the general concepts of deep learning.
Second, object detection as the central task of this thesis is outlined, fol-
lowed by the associated deep learning architectures for object detection.
Subsequently, the current status of large-scale datasets is described, together
with the theoretical foundation of label policies and manual annotation. Fur-
ther, the capabilities to evaluate deep learning models are pointed out, which
later serve as a gateway to a novel evaluation strategy that is customized to
and targets domain adaptation. Concluding, current concepts and the state-
of-the-art of transfer learning are fanned out, building the groundwork for
the novel unsupervised domain adaptation concept and approaches, which
are defined objectives of this thesis.

1.2 The Connectionist Approach to Mind

In order to understand cognitive perception systems, the prevalent concept
of connectionism first needs to be understood. Within cognitive science,
the mind was traditionally advocated within a computational frame. While
representing mental states as strings of symbols [19], mental processes were
understood as computations on those symbols. Over time, computationalism
was superseded by the connectionist approach, which proposes an under-
standing of the mind as activations unfolding within a network structure. A
network consists of computationally simple nodes, also termed units con-
nected by weighted edges, which transmit activations through the network
and hence enable interaction between nodes, by which intelligent behavior
emerges [20]. This approach provokes comparisons to the nervous system,
leading to analogies and the interdisciplinary borrowing of terms, such as
neuron for the nodes and neural in general. However, the resemblance is
soon exhausted, considering that biological neural networks are unmatched
in their complexity and far from being understood completely [21, 22].
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1.2 The Connectionist Approach to Mind

Today’s machine learning algorithms mainly build upon linear algebra, prob-
abilistic, information theory, and numerical optimization and do not neces-
sarily resemble any biological counterpart [18, 23].

In machine learning, networks, also called models, are deployed in order
to depict a predictive function f ∗ by determining a set of parameters θ

which optimally (θ ∗) approximates f ∗(x;θ ∗), while x ∈ X represents an in-
put sample, associated with a specific domain D . The probability distribution
over the input samples X is referred to as the marginal probability distribu-
tion P(X).

Definition 1.1 (Domain). A domain D consists of a feature space X and
a marginal probability distribution P(X), where X = {x1, . . . ,xn} ∈ X with
an index (here n) depicting the number of samples within the domain. Do-
main coverage is defined as the extent to which P(X) is represented by X.
A domain sample x1 comes with an associated ground truth ỹ1. The tilde
is introduced to differentiate between the actual, true, ground truth y, and
the empirical estimation ỹ, recognizing that any available ground truth is
an estimate of some sort. The source domain dataset is denoted as DS =
{(xS1 , ỹS1

), . . . , (xSn , ỹSn)}= {XS, ỸS}. The target domain dataset is denoted
as DT = {(xT1 , ỹT1

), . . . ,(xTm , ỹTm)}= {XT , ỸT} [24].

Neural network architectures (see Figure 1.2) are cast into multiple layers.
The output signal, or prediction, is denoted as ŷ, and the hidden layer as h.
Each layer, in turn, consists of multiple nodes, the so-called units. The di-
mensionality of the layers l is coined depth, while the dimensionality of the
units is referred to as the width of a layer. While g is the activation function
of the hidden layer, W(l) is the weight matrix for the layer and b depicts the
bias for the layer, with input variable x. The nodes, or units, are denoted
following the weight matrix notation with weights w(l)

jk , which represents the
weight of unit k in layer l− 1 to the unit j in layer l [18]. In a single layer
feed-forward architecture, this corresponds to

ŷ = f (x;θ) = g(l)(W(l)⊤x+b(l)). (1.1)

For further architectural details and deep learning fundamentals, see Ap-
pendix A.2.

The convolution of a layer’s parameters span a feature space H (l),R|θ (l)|,
mapping an input vector x into a feature representation, within that feature

5



1 Introduction

Figure 1.2: Overview of a neural network with input x, hidden layer h and output signal ŷ with
the according notation. Exemplary the unit notation is depicted with respect to
unit h(l)j : Including the mapping by a weight w( j)

jk , the bias b(l)j and the activation

function g(l)j .

space. Feature values of intermediate layers usually are not directly inter-
pretable; however, they provide an internal representation, and their feature
spaces are hence referred to as latent feature spaces. In the case that feature
representations, meaning a layer’s parameters, are common for at least two
otherwise separate neural networks, the feature space in question is called a
shared feature space. Another term for feature space is feature embedding.

Despite consisting of linear models only, a multi-layered feed-forward neural
network, with a finite number of units, is able to represent any given function,
as proven by the universal approximation theorem [25]. However, this is
not to be understood as a universal guarantee that the corresponding set of
parameters is found.

1.2.1 The Supervised Deep Learning Pipeline

In recent years, supervised learning has emerged to be the most successful
concept (see Fig.1.3) for pattern recognition. If one hopes to carry over the
capabilities of supervised deep learning into a different paradigm, it is in-
dispensable to first scrutinize the cornerstones of the current paradigm: The
common supervised deep learning pipeline comprises the approach selec-
tion, which covers architectural decisions, as well as the configuration of the
training process, the validation concept, and test strategy.

6



1.2 The Connectionist Approach to Mind

Figure 1.3: A deep learning pipeline, in general, consists of a training dataset, including sam-
ples (cyan dots) and associated labels (indicated as black circles around the sam-
ples), which is then used for supervised training the neural network. The neural
network, in turn, is iteratively evaluated on the validation dataset with respect to
defined key performance indicators. Reaching a required threshold on the key per-
formance indicators qualifies the neural network for deployment on the test dataset,
which finally allows releasing the model for deployment on the actual application.

In detail, the pipeline is built around data labeling and preprocessing, neural
network training, validation, and testing. In supervised deep learning, there
is a single large-scale dataset, which in turn separates into a training, valida-
tion, and test dataset.

Training, Validation and Testing

The neural network’s parameters θ converge during training, determined
based on a dataset which consists of the training samples x, and their as-
sociated ground truth ỹ while being guided by an objective function and

7
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optimization algorithm. Side-by-side, the training process is monitored by
repeatedly evaluating the current state of the model on the validation dataset.
Once the training process is optimized as mirrored by the validation result,
the model is conclusively evaluated on the test dataset and released on pass-
ing. The resulting and final model f (x;θ) is ready to be used for inference.

Inference

A machine learning life-cycle can be separated into two potentially recur-
rent and synchronous, distinct capabilities - training and inference. Once the
model has converged and has been trained successfully, with respect to an
upfront defined set of metrics evaluated on a test dataset, the model is ready
for deployment. In this second phase, the neural network deduces a predic-
tion ŷ from a so far unseen, sample x, drawn during deployment. Within a
production environment in which the neural network is integrated, these pre-
dictions are used as actionable outputs for other components of the overall
system.

1.2.2 Learning in Neural Networks

Learning or training of a neural network is realized by adjusting the neural
network’s current parameters θ , consisting of weights W and biases b with
the objective to reduce a predefined loss. Usually, this loss is based on ground
truth data and a linked cost or objective function, which is, at its core, an
optimization task. The number of parameters available in the neural network
is termed capacity. The ground truth data is provided either offline: Weights
are updated on a set of training samples or online: Weights are updated after
each training sample [26]. An exemplary learning rule (see Equation 1.2) is
defined by the Hebbian theory [27], in which weights are updated according
to the activations (see Sec. A.2) of the predecessor node xk and the successor
node h j which enclose the weight w jk, and a learning rate ϵ (see Sec. A.2),

∆w jk ∼ ϵ xk h j. (1.2)

Due to the nonlinearity of neural networks with multiple layers and hence a
high-dimensional feature space, most objective functions (see Sec. A.2) are
non-convex. Therefore gradient-based optimizers are iteratively deployed
for the training of neural networks (see Sec. A.2 and Sec. 1.2.3).

8



1.2 The Connectionist Approach to Mind

1.2.3 From Optimization to Learning

During gradient-based optimization, an objective function’s J(θ) loss is min-
imized by means of determining θ . However, the overriding priority is the
model performance on previously unobserved data, assuming an independent
and identical distribution (i.i.d) with respect to the training data. This de-
mand for generalization distinguishes machine learning from optimization.
The ability to generalize is expressed by the validation loss or test loss, which
depicts a previously unobserved input sample’s expected error. In machine
learning, the objective is thus twofold.

• Minimize the training loss (optimization),

• Minimize the generalization gap between training loss and validation
loss (regularization).

Improving model generalization trails along with the law of parsimony, as
expressed by Occam’s razor [28] and statistical learning theorems of the
Vapnik-Chervonenkis dimension [29]: A decrease in model capacity or an
increase in the number of training samples decreases the generalization gap’s
margin. Nevertheless, a decrease in model capacity might also lead to un-
derfitting. The machine learning objectives are ultimately an interplay of
optimization and regularization.

1.2.4 Regularization for Neural Networks

Regularization aims to increase the performance of a machine learning ap-
proach by decreasing the error regarding previously unobserved data, bridg-
ing the generalization gap (see Section 1.2.3). Regularization strategies are
manifold, while in general, the strategies function by inflicting constraints
on,

• the objective function J(θ) (soft parameter constraint).

• the parameter set θ (hard parameter constraint).

Constraints can implicitly contribute prior knowledge about the problem or
force the architecture into a model with less capacity in order to support
generalization. Regularization is a trade-off between increased bias of the
expectation E of an estimator E( f (X;θ)− f ∗(X;θ ∗)) to yield reduced vari-
ance of the estimator Var(θ) [18].
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1.3 Object Detection with Neural Networks

This thesis revolves around object detection, which in turn is inseparably
embedded into the concepts and pipelines. Therefore, the key considerations
on object detection are outlined. Machine learning, and in particular neural
networks, are a central building block to enable machines to perceive and re-
late to their environment [30] based on input from sensory hardware, such as
imaging sensors. Computer vision constitutes a sub-type of machine percep-
tion, which in particular includes methods to process images into numerical
and symbolic information [31].

Definition 1.2 (Perception). Machine perception is the capability of a com-
puter system to interpret and transfer sensor inputs into a representation,
which consecutively enables a machine to understand and react to its envi-
ronment [32].

1.3.1 The Task of Object Detection

Within computer vision, neural networks are deployed for different kinds of
pattern recognition and for different tasks. The most important examples
of tasks in computer vision today are classification, object detection, and
segmentation.

Definition 1.3 (Task). A task T consists of a label space Y and an objec-
tive prediction function f (.), denoted by T = {Y , f (.)}. f (x) can be written
as P(y|x) [24]. A model that takes on a certain task T , is denoted θT .

An object is defined as a spatial coherent semantic concept or pattern af-
filiated with a class. The task of object detection involves detecting and
locating object instances of potentially multiple classes in a sensor measure-
ment, such as camera images. These measurement samples serve as an input
x for the object detector. The output ŷ of an object detector includes the class
affiliations c, as well as the location of the objects in the input sample [33].

1.3.2 Object Detection Architectures

Recently a variety of high-performing, high-paced object detectors have been
introduced. In general, an object detector, for the most part, follows a com-
plementary approach of: Establishing bounding box hypotheses, generating
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Model Pace [ms] mAP

ssd_mobilenet_v1_coco 30 21

ssd_inception_v2_coco 42 24

faster_rcnn_inception_v2_coco 58 28

faster_rcnn_resnet50_coco 89 30

rfcn_resnet101_coco 92 30

faster_rcnn_resnet101_coco 106 32

faster_rcnn_inception_resnet_v2_atrous_coco 620 37

faster_rcnn_nas 1833 43

Table 1.1: Pace and mean average precision (mAP) for different object detectors, represen-
tative for state-of-the-art object detection architectures. Implementation and eval-
uation are according to the Tensorflow Detection model zoo [34]. The pace is de-
termined on a 600x600 px image on an Nvidia GeForce GTX TITAN X GPU. The
models are trained on the COCO data set (see Sec. 1.4.1) and evaluated according to
the COCO mAP, meaning mAP@[.5 : .05 : .95] [35].

features for each bounding box, and classifying the instances according to
the extracted features. In the following, three object detectors, which are
representative of state-of-the-art object detection architectures, are assessed
in detail1. These object detectors form the baseline neural networks for
benchmarking the novel approaches in the course of this work. In particular,
the RFCN object detector demonstrates a representative trade-off between
inference pace and performance (see Tab. 1.1).

SSD: Single Shot MultiBox Detector [36] comprises a feed-forward CNN
with multiple layers. The first layers make use of an architecture used for im-
age classification, such as the Visual Geometry Group (VGG) feature extrac-
tor [37], the MobileNet architecture [38] or the Inception architecture [39],
reduced by the classification layers. Subsequent layers then realize the de-
tection functionality. The detection layers are CNN feature layers decreasing
in size. The detection layers evaluate a set of predefined default bounding
boxes of different aspect ratios at each location in several feature maps with
different scales. Based on these multiple feature maps rather than a single

1 Tensorflow Object Detection Model Zoo
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one, the architecture is able to discretize the class confidence and the shape
offset. The endpoints of the feature maps, meaning the predicted bounding
boxes with the according class-scores, are finalized by a non-maximum sup-
pression.

One-Stage: Region-based Convolutional Neural Network [40] is based
on region proposals (2000 per sample) by selective search, followed by a
fully connected CNN that predicts bounding box hypotheses and classifica-
tion scores concurrently at each position in the input image. Concluding,
similar regions are combined into larger ones, producing the final candidate
region.

Two-Stage: Region-based Fully Convolutional Network [41] follows a
two-stage object detection strategy. The first stage is based on a Fully Con-
volutional Network (FCN), such as the ResNet-101 [42] architecture, and is
used for feature map calculation and region proposal. The region proposal
is based on the R-CNN architecture introduced by Girshick et al. [40] and
substituted by a Region Proposal Network (RPN). The second stage then
executes region classification based on the position-sensitive max-pooled
feature maps and the previously proposed regions of interest.

1.4 Large-Scale Datasets and Labeling

The supervised deep learning pipeline is driven by large-scale datasets,
which bring together data samples with associated labels. Within this the-
sis, a main point of contact when attempting to shift from a supervised to
an unsupervised paradigm is to unravel the bond and interconnection be-
tween annotated large-scale datasets and the training process itself. For this,
it is necessary to appreciate the current role of large-scale datasets and to
understand common label policies.

1.4.1 Large-Scale Datasets

Deep learning approaches and, in particular, supervised learning approaches
are based on feature representation learning driven by large-scale annotated
datasets (see Deep Learning a Paradigm Shift in Sec. 1.1.1). Further, au-
tonomous perception systems build upon an extensive perception system
with different sensor modalities, including cameras, RADARs, and LiDARs.
Hereby, cameras are the cheapest and most commonly used sensor modality
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for object detection [43]. Consequently, available camera sensor samples
and their respective labels (see Tab. 1.2) take on a pivotal role in deep learn-
ing development.

Dataset Images Classes Labels

COCO dataset [35] 328 k 91 2.5 M

Pascal VOC challenge [44] 11.53 k 20 27.45 k

MNIST [45] 70 k 10 70 k

ImageNet [46] 14 M > 27 1.03 M

Table 1.2: Representative extract of state-of-the-art object recognition datasets, including
COCO, Pascal VOC, MNIST, and the ImageNet database, providing a context on
the size and specifications of large-scale datasets for supervised deep learning.

Common Objects in Context (COCO) dataset2 [35] pursues progress in
the development of object recognition in the context of scene understand-
ing, provided by Microsoft in 2014. The benchmark comprises common
objects in their natural context, hence COCO. Within 328 k images, 91 ob-
ject classes and 2.5 M instances are labeled with per-instance segments.
Intersection-over-Union is used as the evaluation metric.

PASCAL Visual Object Classes (VOC) challenge3 [44] is a benchmark
for object classification, object detection, object segmentation, and action
recognition, mainly contributed by the University of Oxford in 2010. The
benchmark comprises consumer photographs collected from the Flickr plat-
form, with high variability in the pose, illumination, and occlusion state.
Starting in 2014 the benchmark now includes 11.53 k images, with 27.45 k
bounding-box-labeled instances distributed over 20 object classes. The main
evaluation metric is the average classification precision.

Modified National Insitute of Standards and Technology (MNIST)4 [45]
is a large-scale digit recognition dataset provided by Yann LeCun at the

2 COCO: http://cocodataset.org/
3 PASCAL VOC: http://host.robots.ox.ac.uk/pascal/VOC/
4 MNIST: http://yann.lecun.com/exdb/mnist/
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Courant Institute of Mathematical Sciences at New York University in 2010.
The dataset comprises 28× 28 px images of digits. 60 k training images
and 10k test images are labeled with the digit class information. Error rate
or accuracy is used as an evaluation metric.

ImageNet5 [46] facilitates developing advanced, large-scale content-based
image search and image understanding algorithms and providing critical
training and benchmarking data for such algorithms, such as the AlexNet [47].
Served by the Stanford Vision Lab in 2009, ImageNet is a large-scale ontol-
ogy of images organized according to the WordNet hierarchy, with each
node comprising thousands of images. ImageNet comprises 14.19 M im-
ages, whereas 1.03 M are annotated into 27 high-level object classes. The
evaluation metrics are the Top-1 and Top-5 average classification precision.

High-level functions of autonomous vehicles heavily depend on stable and
reliable image-based perception capabilities built on visible light camera
sensors. Especially object detection architectures (see Tab. 1.1) heavily
rely on pretrained feature extractors, also known as backbones. The above-
introduced and outlined image datasets are deployed for training feature
extractors in the course of this work.

1.4.2 Image Label Policies

Label policies specify how samples X are annotated (→) or, in other words,
linked to a ground truth Ỹ, which depicts the understanding and knowledge
of a system that the model needs to learn. The effort to establish the as-
sociation between a sample and a label is termed annotation effort; in the
most naive assumption, this is depicted as the number or cardinality of sam-
ples #ỹ, which need to be labeled. As machine learning applications become
increasingly sophisticated, so do the labels, their formats, and their annota-
tion efforts [48].

Image Label Annotations
The basic label annotation (classification) assigns a single class informa-
tion to a specific data sample. A more complex label annotation assigns
a bounding box for a set of objects within a data sample (localization). A
Bounding Box (BB) is a cuboid or, in 2D, a rectangle, hence a convex bound-
ing volume. A bounding volume for a set of objects is a closed volume that
5 ImageNet: http://www.image-net.org/
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completely contains the union of the objects in the set. Usually, the bounding
box is aligned with the coordinate system’s axes, and it is then known as an
axis-aligned bounding box (AABB) [49]. The classification and localization
information can be merged to a further label annotation (detection). More
advanced detection annotations can take place on the level of abstraction of
a pixel instead of a bounding box, meaning the annotation carries the class
information for each pixel (semantic segmentation). Temporal information
in image sequences is annotated by assigning object IDs on the instance level
or time stamps on the sample level. In principle, any kind of information can
be mapped to a label vector, further extending the information content of the
label annotation and its associated data sample.

Image Label Format
Information captured within a label annotation can come in different forms
of representation. Usually, these reflect and fall in line with the deployed
neural network architecture and training process requirements. The single
value format consists of either a digit ỹ = 1, a string ỹ = class_1, or similar
types and usually reflects the association of a sample xi with a class or some
other quantity ỹi that the model needs to predict. The label format is also
implicitly determined by the neural network architecture, and especially the
output layer of a neural network (see ŷ in Fig 1.2). In particular, for classi-
fication tasks, it is common to predict a probability distribution instead of a
single value. Therefore, the label format of ỹ needs to mirror the size of the
output layer, which is done by one-hot encoding, also known as an indicator
variable. Exemplarily for a class "1" label in a binary classification setting,
the indicator variable is the one-hot encoded vector,

xi→ ỹi = [0,1]. (1.3)

1.5 Evaluation

The supervised deep learning pipeline builds upon iterative training, which
at the same time is monitored through validation and finally released by test-
ing. Validation and testing can be considered as the two pillars of evaluation,
which facilitate the learning and deployment of deep learning models. It is
to be expected that evaluation has to evolve when shifting from supervised
learning to unsupervised domain adaptation. Initially, this requires an un-
derstanding of the currently predominant evaluation concepts and metrics,
which are given in the following.
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1.5.1 Object Detection Metrics

The task of object detection (see Sec. 1.3) is two-fold, including localiza-
tion and classification. The object detection metrics reflect this [48]. The
Intersection-over-Union (IoU) determines the localization performance of
detection by taking the set A of predicted object pixels and the set B of true
object pixels and calculates their intersection,

IoU(A,B) =
|A∩B|
|A∪B|

, IoU ∈ [0,1]. (1.4)

This is done for each of the associated object instances by an assignment
algorithm [50, 51]. An IoU-based threshold p is used to determine whether
a prediction is considered a True Positive (T P),

IoU(A,B)≥ p. (1.5)

In benchmarks [44], p commonly defaults to: p = 0.5. The metrics are then
denoted as metric@[p]. Additionally, a classification confidence threshold c
is defined and incorporates the classification performance as a second con-
dition for a prediction to be considered a T P. The confidence equals the
maximum probability value of the prediction ŷ.

To quantify object detection performance, a set of metrics is defined. The
precision is calculated based on T P and False Positives (FP) and is a measure
of the accuracy of the predictions,

P =
T P

T P+FP
, P ∈ [0,1]. (1.6)

The recall is calculated based on True positives (T P) and False Negatives (FN)
and is a measure for the rate of the predictions or the share of relevant in-
stances that the model retrieved,

R =
T P

T P+FN
, R ∈ [0,1]. (1.7)

The F1 score is calculated based on the precision and the recall and depicts
the trade-off between precision and recall,

F1 = 2
P R

P+R
, F1 ∈ [0,1]. (1.8)
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The correlation between precision (P) and recall (R), the selection of the
IoU threshold p, and the confidence threshold c is holistically displayed as
precision-recall curves (PRC) [52], which are similar to receiver operating
characteristic (ROC) curves - mirroring the central matter of optimizing and
trading off recall and precision with respect to performance and functional
requirements for operation. Further, a model’s performance deviation be-
tween two domains DS and DT is called the domain gap.

1.5.2 Visualizing Feature Spaces

Deep neural networks in perception and computer vision not only attend
to complex inputs and outputs but themselves introduce high-dimensional
non-linear behaviors. Interpretability is thus limited [53, 54] due to the non-
intuitive intermediate connections between layers of a neural network. To
increase qualitative explainability and intuition, it is necessary to visualize
feature spaces across all layers. This enables analysis and discussion of
observations in low-dimensional human-readable and human-interpretable
spaces.

A domain is depicted by a specific distribution of its data samples. Neu-
ral networks are trained on data with a particular distribution XS, lacking
knowledge about domains XT on which they have not been trained. The two
domains can be thought of as separate clusters with an inter-cluster distance,
domain divergence [55], or domain discrepancy. Dimensionality reduction
algorithms can visualize these feature spaces [56] through matrix factoriza-
tion such as the principal component analysis (PCA) [57], or by graph-based
methods such as UMAP [58], or tSNE (see Alg. A.2) [59].

While PCA is deterministic, it is limited to two or three principal compo-
nents when used in visualization. The graph-based methods are stochastic
and based on clustering, thereby making sure that the embedding preserves
the pattern in the data during dimension reduction. UMAP preserves local
and global structures, while tSNE is capable of preserving local structures
between adjacent data samples.
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1.6 Transfer Learning and Domain Adaptation

In machine learning, it is assumed that the training data and the data received
during inference are drawn from the same distribution and domain (i.i.d).
However, this assumption is regularly violated, due to deployment shifts and
domain shifts in general, when facing real-world applications, such as au-
tonomous driving or biomedical perception systems.
In search for current approaches and concepts, which are able to transfer
knowledge between domains, to build upon this Section turns to transfer
learning and its sub-types.

1.6.1 Overview Transfer Learning

A transfer learning setup could consist of a task, such as object detection on
a target domain but only having the required labeled data to train on a source
domain. The two domains might differ in the feature space X or might
have a different data distribution P(X). Transfer learning approaches aim at
transferring knowledge acquired in the source domain into the target domain.

For knowledge transfer, a multitude of strategies is available [60]. These are
distinguished with respect to which weights are constant or adjusted during
transfer learning. When fine-tuning or retraining a model, all weights are up-
dated while training on the target domain; the knowledge transfer constituent
resides in the initialization of the weights based on the source domain train-
ing. In feature extraction pre-trained weights remain constant and are uti-
lized for feature extraction on the target domain. This is especially useful
in case the feature spaces X of the input samples of the source and target
domain are similar. The resulting feature vector can then be used as a base
for further training subsequent layers specifically for the target domain task.

Definition 1.4 (Transfer Learning). Given a source domain DS and a
learning task TS, a target domain DT and learning task TT , transfer learn-
ing aims to improve the learning of the target predictive function fT (.) in DT
using the knowledge in DS and TS, where DS ̸= DT , or TS ̸= TD [24].

Transfer learning is an active field of research. Transfer learning is distin-
guished concerning the domain and task conditions at hand. In the follow-
ing, the partitions of transfer learning are identified. Unsupervised and self-
supervised domain adaptation are described in detail, focusing on domain
adaptation as a transductive transfer learning subfield. Finally, current met-
rics for domain adaptation are outlined.
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1.6.2 Transfer Learning Settings

Transfer learning is to be understood with respect to the concerned domains
and their association with a task setting and is accordingly categorized (see
Fig. 1.4).

Figure 1.4: Overview of the different transfer learning settings: Inductive transfer learning,
unsupervised transfer learning, and transductive transfer learning, including its
sub-setting domain adaptation. Adapted from [2].

In the inductive transfer learning setting, the task on the target domain is
different from the task on the source domain. Labeled data is available in the
source domain and the target domain. An example of the inductive transfer
learning setting is a task changing from classification to object detection.
Thus, inductive transfer learning can be understood as task adaptation:

Definition 1.5 (Inductive Transfer Learning). Given a source domain DS
and a learning task TS, a target domain DT and learning task TT , inductive
transfer learning aims to improve the learning of the target predictive func-
tion fT (.) in DT using the knowledge in DS and TS, where TS ̸= TD [24].

In the unsupervised transfer learning setting, similar to the inductive transfer
learning setting, the target task is different from the source task. However,
unsupervised transfer learning addresses cases in which there are no labels
available in either the target domain or the source domain. An example of the
unsupervised transfer learning setting is a task changing from classification
to object detection, while no labels are available in either domain.
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Definition 1.6 (Unsupervised Transfer Learning). Given a source do-
main DS and a learning task TS, a target domain DT and corresponding
learning task TT , unsupervised transfer learning aims to improve the learn-
ing of the target predictive function fT (.) in DT using the knowledge in DS
and TS, where TS ̸= TD and YS and YT are not observable [24].

In the transductive transfer learning setting, the source and target tasks are
the same or closely related, while the source and target domains are different.
In this situation, no labeled data is available in the target domain. However,
labeled data is available in the source domain. The transductive transfer
learning setting sees a constant task, for example, object detection, yet a
shift in the domain, while no labels in the target domain are available.

Definition 1.7 (Transductive Transfer Learning). Given the source do-
main DS and a corresponding learning task TS, a target domain DT and
a corresponding learning task TT , transductive transfer learning aims to
improve the learning of the target predictive function fT (.) in DT using the
knowledge in DS and TS, where DS ̸= DT , and TS = TD. Besides, some
unlabeled target domain data must be available at training time [24].

1.6.3 Unsupervised Homogeneous Domain Adaptation

Transductive transfer learning can be further distinguished with respect to
a homogeneous and heterogeneous case. The former case is also known as
domain adaptation.

Definition 1.8 (Homogeneous and Heterogeneous Transfer Learning).
Given a source domain DS, with a corresponding feature space XS and
a target domain DT , with a corresponding feature space XT , in the homoge-
neous transfer learning case the source domain and the target domain share
a feature space XS = XT . While in the heterogeneous transfer learn-
ing case, the source domain and the target domain have diverging feature
spaces XS ̸= XT [61].

As mentioned in Subsection 1.6.2, transductive transfer learning can be for-
mulated as a homogeneous domain adaptation problem. Within homoge-
neous domain adaptation problems, the task in source and target domain is
the same TS = TT , and so are the feature spaces of the domains XS = XT ,
and the marginal probability distributions of the input data are different,
P(XS) ̸= P(XT ) [24]. Domain adaptation aims at learning a representa-
tion that is domain invariant.
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Definition 1.9 (Unsupervised Homogeneous Domain Adaptation). Given
a source domain DS and a corresponding learning task TS, a target do-
main DT and a corresponding learning task TT , unsupervised homogeneous
domain adaptation aims to improve the learning of the target predictive func-
tion fT (.) in DT using the knowledge in DS and TS, where DS ̸= DT , XS =
XT , P(XS) ̸= P(XT ), and TS = TT . In addition, unlabeled target domain
data must be available at training time [24].

Homogeneous domain adaptation is partitioned into a supervised, semi-
supervised, weakly-supervised, and unsupervised case. The cases range from
the supervised case, supplying labeled target data, to the unsupervised case,
in which only unlabeled target data is available. Unsupervised homogeneous
domain adaptation can also be categorized by type (see Tab. A.12) and a neu-
ral network’s architectural elements. Discrepancy-based approaches, which
build on fine-tuning an existing source domain model, also cover feature ex-
traction approaches (see Sec. 1.6.1). Adversarial-based approaches follow a
generator-discriminator architecture. Reconstruction-based approaches en-
sure intra-domain representation, as well as indistinguishable inter-domain
representations [61, 62]. For an overview of the approaches discussed in the
following, refer to Tab. A.12.

Generative Models (see a) in Fig. 1.5) combine a generator model θG that
learns to produce samples, with a discriminator model θD, that side-by-side
learns to distinguish generated from real samples. Based on source samples
or a randomly drawn feature vector, synthetic target samples are generated
while preserving the labels of the source samples, which can then be used
for training on the target domain [63, 64]. Advanced architectures introduce
additional design choices to guide the generator module’s training process.
Additional losses are defined by additional discriminators [65], and condi-
tions [66, 67]. Parameter-sharing constraints are introduced to favor a shared
latent feature space of the source and the target domain [68].

Encoder-Decoder Reconstruction architectures (see b) in Fig. 1.5) [69]
combine the encoder network θE for representation learning [70] with a de-
coder network θD for the auxiliary input data reconstruction task [71, 72].
The most common example for these architectures are variational autoen-
coders [73]. The actual training task can then be trained directly, cross-
domain, on the shared latent representation [74, 75].

21



1 Introduction

a) Generative Models

c) Non-Generative Models

b) Encoder-Decoder Reconstruction

d) Adversarial Reconstruction
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Figure 1.5: Overview of state-of-the-art architectures for unsupervised domain adaptation.
Input samples (colored dots) are source domain xS (cyan) and respectively target
domain samples xT (blue). Samples within a shared latent feature space (the gray
area) are depicted z ∈ Z . Encoded or translated samples are indexed with the
domains that capture the transition, such as xS,T representing a translation from
the source to the target domain. A dot with a bold stroke represents a sample with
available ground truth ỹ. The architectures comprise different neural network ar-
chitectural elements such as generative networks θG, discriminator networks θD,
encoder networks θE , decoder or reconstruction networks θR, and the task net-
work θT .
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Non-Generative Models (see c) in Fig. 1.5) aim at directly learning an in-
distinguishable inter-domain representation, termed shared feature space, by
approaches such as domain-confusion loss [76], or by explicit parameter-
sharing [77]. The model can then be trained using the source domain labels
and deployed for inference on the target domain [62].

Adversarial Reconstruction (see d) in Fig. 1.5) combines the notion of
auxiliary reconstruction with learning indistinguishable inter-domain repre-
sentations with GANs and their adversarial loss [77, 78]. The adversarial
loss is the difference between the generated [79], and original sample within
a domain [80], determined by a discriminator.

1.6.4 Self-Supervised Domain Adaptation

Transductive transfer learning (see Subsection 1.6.2) can be formulated as a
domain adaptation problem, in particular as homogeneous domain adap-
tation [24] if the tasks in source and target domain are the same TS =
TT , and so are the feature spaces of the domains XS = XT . Further, the
marginal probability distributions of the input data are different for the two
domains, P(XS) ̸= P(XT ). As is common in supervised learning, self-
supervised domain adaptation follows an annotation-based mode of learn-
ing [62, 81]. In self-supervised domain adaptation, a model is trained on
the target domain data XT along with a pseudo label Y′ [82]. Pseudo la-
bels are generated based on knowledge from DS and TS cast into a model’s
parameters θ(.). Equation 1.9 is exemplary for class-specific pseudo labels,

y′i =

{
1, if i = argmaxi θ(xT ),

0, else.
(1.9)

Definition 1.10 (Self-Supervised Homogeneous Domain Adaptation).
Given a source domain DS and a corresponding learning task TS, a target
domain DT and a corresponding learning task TT , self-supervised homoge-
neous (XS =XT ) domain adaptation aims to improve the learning of the tar-
get predictive function fT (.) in DT using the knowledge in DS and TS to gen-
erate pseudo labels Y′ for XT , where DS ̸= DT , P(XS) ̸= P(XT ), and TS =
TD. In addition, some unlabeled target domain data must be available at
training time [24, 81].

Homogeneous domain adaptation is divided into supervised, semi-supervised,
and unsupervised cases. The cases range from the supervised case, supply-
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Sample with pseudo ground truth

a) Context-Based Self-Supervision b) Cross-Modal Self-Supervision

Figure 1.6: Overview of state-of-the-art architectures for self-supervised domain adaptation.
Input samples (colored dots) are source domain xS (cyan) and respectively target
domain samples xT (blue). Squared samples depict samples with pseudo ground
truth. Dashed lines represent a correspondence between samples, such as an acqui-
sition at the same moment in time t. Shared parameters, and thus a shared feature
space, are visualized as gray shapes. Samples within a shared latent feature space
are depicted z ∈ Z . Encoded or translated samples are indexed with the domains
that capture the transition, such as xT,S representing a translation from the target
to the source domain. A dot with a bold stroke represents a sample with available
ground truth ỹ. The architectures comprise different neural network architectural
elements such as encoder networks θE , and the task network θT .

ing labeled target data, to the unsupervised case, in which only unlabeled
target data is available. Self-supervised domain adaptation is subdivided by
the deployed type of self-supervision (see Tab. A.14) and the way this is cast
into a neural network’s architectural elements. Context-based approaches
utilize the context features such as similarity, spatial structure, and tempo-
ral structure for self-supervision. Cross-modal-based approaches learn from
the correspondence between two samples of different input data character-
istics, such as distinct sensor modalities [61, 81]. For an overview of the
approaches discussed in the following, refer to Tab. A.14.

Context-based self-supervision (see a) in Fig. 1.6) aims at grouping un-
labeled samples [83] based on context [84] within a shared feature space
based on the source domain knowledge [82, 85]. A similarity measure, such
as spatial distance [86], or temporal [87] context is then utilized as a su-
pervision cue to assign pseudo labels in the target domain [88, 89]. The
model can then be trained using the labels in the target domain. Context-
based self-supervision can be formulated as an iterative process in which the
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1.6 Transfer Learning and Domain Adaptation

target domain is assumed to be a sequence of intermediate domains DT =
{DT 1, DT 2, . . . , DT m}, and the model is continually adapted [90, 91].

Cross-modal-based self-supervision (see b) in Fig. 1.6) makes use of the
correspondence of data samples from different input modalities [81]. Sample
correspondence of different input modalities, capturing the same state, is
used as a supervision signal to learn a feature representation for each of the
input data modalities. These feature representations can then be used for
recognition and classification tasks in each modality. Further, information
available in one modality can be used as a supervision signal (reference) to
learn the pattern and deduce the information within the second modality. A
prominent example is depth estimation with a single camera, supervised by a
LiDAR [92]. Cross-modality is often closely related to sensor modality and
can be composed of image data and audio data [93], 3D point cloud data [94],
and others.

1.6.5 Preserving Source Domain Knowledge

When fine-tuning a model for a target domain, a fundamental issue is that
while the parameters are adjusted to depict the target domain, knowledge of
the source domain is lost during domain adaptation. This effect is known
as catastrophic forgetting [95] and is usually measured as a drop in a per-
formance measure when evaluated on the target domain as opposed to being
validated on the source domain. Often, transferring knowledge to the target
domain is not enough. At the same time, preexisting knowledge of the source
domain has to be preserved within the neural network. This can be achieved
following one of two strategies, an architecture-based or training-based by-
passing of catastrophic forgetting (for a detailed overview, see Tab. A.13):

Architecture-based approaches address the capacity and connection design
of a neural network. For example, models are extended horizontally, intro-
ducing lateral connections to the previously trained layers [96]. This allows
the model to preserve source domain knowledge while adapting to further
domains in other parts of the neural network architecture.

Training-based approaches address the parameter update. For example,
by reducing the plasticity of the essential parameters learned on the source
domain [97] or building upon learning shared feature extraction layers and
jointly fine-tuning on prediction layers only [60].
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1.7 Unresolved Problems and Thesis Outline

Derived from the previous chapters on the state-of-the-art, unresolved prob-
lems and open tasks can be determined which aggravate and prevent the
efficient extension and unsupervised adaptation of existing deep learning
modules and their deployment in perception systems.

Unresolved Problems

• The common deep learning pipeline is unable to digest unlabeled data:
In principle, the development of cognitive perception systems is based
on the use of supervised learning. However, the applicability of super-
vised learning comes to an end together with the availability of labels,
limiting the range of an application. In addition, large-scale unlabeled
data is squandered and remains untapped for the most part, as unsu-
pervised learning is not enabled to contribute as supervised learning
does. Advancement into additional fields of application is dearly paid
for by all things concerning the required labeling effort and friction
within the conventional deep learning pipeline. Consequently, a holis-
tic concept is missing, which embeds the necessary, novel unsuper-
vised learning approaches that are able to adapt neural networks to
emerging domains in a way that allows the neural networks to be con-
sistently deployment-ready and monitorable.

• Prior epistemic knowledge is not harnessed sufficiently:
Although transfer learning is a broadly adopted concept, prior know-
ledge within models is mostly accessed within feature space repre-
sentations and purposed as feature extraction. Furthermore, transfer
learning is usually followed by a renewed use of supervised learning
to impose the implementation of the target task. This renders transfer
learning to be an educated initialization approach, which additionally
needs a retrofitting of at least some parts of the model. Furthermore,
there is no holistic concept to adapt and embed the available prior
model knowledge based on unlabeled or continuous data samples. It
is, therefore, necessary to restructure the transfer learning approach
such that the task model is enabled for direct inference on a transferred
shared feature space.

• A characterization of domain states has been neglected:
As training and deployment data is readily assumed to be indepen-
dent and identically distributed, and purely supervised learning ap-

26



1.7 Unresolved Problems and Thesis Outline

proaches have been widely adopted, little thought has been given to
utilizing domain priors and domain characteristics. However, datasets
and domains have been characterized; the knowledge of domain transi-
tions and domain interconnection has not yet seen adequate application
within domain adaptation approach selection and domain adaptation
itself.

• Domain adaptation is not implemented for model deployment pur-
poses:
Although current research offers an extensive set of domain adapta-
tion approaches, these are mostly developed and tested on domain
adaptation itself and remain agnostic to target tasks. Thus, domain
adaptation approaches offer limited abilities to actually adapt models
and their performance to a target domain. Further, an overall concept
is missing, which is able to embed domain adaptation approaches as
auxiliaries into the main deployment cycle of neural networks.

• Supervised learning finds itself within the area of tension between
catastrophic forgetting and deployment shift:
First, neural networks often find themselves unaware of an occurring
deployment shift. Supervised learning in this regard is helpless to-
wards domain shifts, to the degree that the last resort is to reiterate
the whole supervised learning pipeline. The neural network is then
exposed to catastrophic forgetting. Required are deep learning archi-
tectures and training approaches that intrinsically cope with domain
shifts while bypassing or making catastrophic forgetting adjustable.

• Domain adaptation benchmarks are insufficient and lack appropriate
process and deployment metrics:
Benchmarks for supervised learning-based perception models are avail-
able in abundance. However, benchmarks directed at domain adapta-
tion approaches for model deployment are missing. Current super-
vised learning benchmarks are insufficient in distinguishing inherent
domain characteristics within the data. Further, available benchmark
datasets come monolithic and fully labeled, providing little incentive
and no support for the development and validation of distinct unsu-
pervised domain adaptation approaches along domain shifts. What
domain adaptation benchmarks are at hand, they are limited to a set of
inadequate domain adaptation metrics, entirely neglecting metrics for
the model under deployment.
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Objectives and Tasks

Drawing on the unresolved problems mentioned in the previous section, a
specific set of tasks is derived. In compliance, the principal objectives of this
thesis are:

1. The design of a novel concept for analyzing domain shifts and the
subsequent utilization of unsupervised domain adaptation approaches
for developing neural networks under deployment. The novel concept
and framework are further required to integrate validation capabilities
with respect to domain adaptation, as well as deployment metrics. The
concept needs to cover the full cycle of continuous development and
integration of neural networks under deployment.

2. The development of novel approaches for the extension and domain
adaptation of neural networks. The novel approaches need to be label
efficient, applicable in a continuous development setting, in control
of catastrophic forgetting, and enable the neural network under test
to be high performing in the adapted domain or during cross-domain
deployment.

3. Extended, novel domain-centered metrics and performance indicators
for the quantification of domain adaptation. The re-purposing of per-
formance metrics for neural networks within a domain adaptation set-
ting, with the objective of making domain adaptation approaches quan-
tifiable, comparable, and interpretable.

4. Integration of available supervised learning datasets into a domain
adaptation setting by arranging the relevant domain characteristics.
The arranged datasets combined with novel metrics establish purpose-
designed benchmarks for different types of domain adaptation that al-
low evaluating the novel concepts and methods.

5. The qualitative and quantitative means for representation of domains,
domain shifts, and domain adaptation performances. The descriptive
and interpretable representations need to give the developer insight
into the underlying domain characteristics of the dataset and metrics to
trace the performance development of the domain adaptation process.

6. The implementation of the novel methods and associated tooling in
open-source repositories, which are ready to be adopted to a wide
range of unsupervised domain adaptation problems within perception.
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7. The proof of application and transferability of the novel domain adap-
tation concept, underlying methods, and metrics, aligned with use-
cases of automotive perception and specifically adapting to object de-
tection by night.

Thesis Outline

To improve the unsupervised and continuous deployment of neural networks,
the conventional supervised learning pipeline is embedded into a novel con-
cept for domain adaptation, including the classification of domain character-
istics in Chapter 2. Consequently, novel approaches for unsupervised domain
adaptation are developed and presented in Chapter 3. In order to broaden the
evaluation capabilities of domain adaptation approaches under deployment,
Chapter 4 introduces extended and specifically developed metrics, culminat-
ing into domain adaptation benchmarks. Chapter 5 demonstrates the applica-
bility and feasibility of the novel approaches by evaluation against purpose-
designed benchmarks and metrics. Concluding, Chapter 6 summarizes the
achieved objectives and work packages. Followed by a discussion of the find-
ings, conclusions, and an outlook for potential research objectives are drawn.
Appendix A presents the software and hardware environments, providing the
hereupon implemented and open-sourced domain adaptation approaches and
further supportive extensions on deep learning fundamentals.
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2 Novel Unsupervised Domain
Adaptation Concept

The common supervised deep learning framework (see Fig. 1.3) comprises
labeling, data preprocessing, training, validation, and testing, based on a
single monolithic dataset. The emergence of domain shifts during the de-
ployment of the neural network is met with reiterating the deep learning
framework. Often neglected, systematically addressing domain shifts al-
lows for continuous deployment, validation, and adaptation of the percep-
tion system. Hence, the performance and aptitude of the conventional deep
learning pipeline are to be complimented. For instance, by involving func-
tional blocks for domain shift analysis, unsupervised domain adaptation, and
approach selection, as well as a means for continuous validation, the deep
learning pipeline can be enabled towards adaptive model deployment. Ac-
cepting domain adaptation as a given and integral part of the deep learning
pipeline, this Chapter proposes and introduces a holistic concept and novel
framework (see Fig. 2.1) for unsupervised domain adaptation.

2.1 Unsupervised Domain Adaptation Framework

The central and novel functional blocks to extend and adjust the deep learn-
ing framework for unsupervised domain adaptation are introduced and item-
ized in the following:

• Domain Shift Analysis:
The operational design domain has to be analyzed with respect to do-
main shifts within the entirety of the data - present and potentially
forthcoming. The objective is to define the domain shift type and pro-
gression (see Sec. 2.2).

• Approach Selection:
The insights of the domain shift analysis are then utilized for selecting
an adequate domain adaptation approach (see Sec. 2.3).
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Figure 2.1: A deep learning framework, in general, consists of a training dataset, including
samples and associated labels, which is then used for training the neural network.
The neural network, in turn, is evaluated on the validation dataset with respect to a
specified metric set. Reaching a required threshold on this set qualifies the neural
network for deployment on the test dataset and, finally, the release as part of the
real application (see Fig. 1.3). To address domain shifts within the data (depicted
as a change in color from cyan to blue), the novel unsupervised domain adaptation
concept introduces functional blocks (depicted as matt gray blocks) to the frame-
work and follows a process accommodating the domain shift (depicted as a black
arrow) in general: Domain Shift Analysis followed by the Approach Selection, the
Unsupervised Domain Adaptation itself, which is implicitly driven and directed by
Continuous Validation.
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2.1 Unsupervised Domain Adaptation Framework

• Unsupervised Domain Adaptation:
Based on the type of domain shift and deployment requirements, dif-
ferent unsupervised domain adaptation approaches allow for integrat-
ing the domain shift into the deep learning framework without addi-
tional label efforts (see Ch. 3).

• Continuous Validation:
While adapting to the domain shift, the task performance, as well as
the adaptation performance of the neural network, needs to be evalu-
ated and monitored continuously (see Ch. 4).

In conclusion, the unsupervised domain adaptation framework puts the in-
tegration of domain shifts at the center of the deep learning framework.
Going forward, approaches and methods capable of fulfilling the tasks (do-
main shift analysis, unsupervised domain adaptation, continuous validation)
of the functional blocks introduced by the unsupervised domain adaptation
framework are proposed.

The Artificial Petals Taxonomy of Domain Shifts

In the following, novel methods and approaches are introduced concern-
ing their basic functionality and mechanism. To provide a guiding element
and support for interpretation by visualization, the synthetic and auxiliary
Artificial Petals Dataset is established at this point and remarkably refer-
enced in italic throughout the text. The Artificial Petals Dataset makes it
possible to depict domain shifts and their characteristics. The dataset is
employed throughout all presented methods and approaches and enables
cross-referencing and holistic comparisons. The synthetic dataset comprises
simplistic flower pictures framed by a black circle (see Fig. 2.2).

The dataset visualizes domain shifts within two dimensions: The major
domain-changing characteristic, the carpel color, and the minor domain-
changing characteristic, the number of petals. The flowers with cyan carpels
are of the source domain DS, and those with blue carpels are of the target
domain DT . In favor of simplicity, in the following, the source domain task
is defined as a classification regarding the number of flower petals (such as
4). The shift d between domains is approximated as the difference in the
number of flower petals.
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Figure 2.2: Qualitative depiction of two domains within an unsupervised domain adaptation
setting (see Sec. 1.6). The source domain DS (cyan), and a target domain DT
(blue). The source domain includes labeled samples enabling supervised train-
ing (bold stroke). The target domain samples have no available labels.
Samples of the Artificial Petals Dataset qualitatively depict the relations within the
dataset. The domain change emerges along both axes, representing a minor (num-
ber of petal transition from 4 to 10) and major (color of the carpel transition from
cyan to blue) domain-changing characteristic. Adapted from [2].

2.2 Domain Shift Analysis

Domain shifts can emerge from different sources and be of different types.
The nuances in their characteristics call for a befitting taxonomy. In the
following, a domain shift is considered a covariate shift P(XS) ̸= P(XT ) be-
tween subsets of a dataset, considered domains DS and DT , with samples XS
and XT . The measure of how different the domains are, is denoted DS||DT .
The here presented novel taxonomy proposes to distinguish domain shifts
based on type and progression: Domain shift type refers to the transition
from one domain to the other; it distinguishes between a continuous and a
discrete transition of the samples within the dataset. Domain shift progres-
sion concerns the sample availability during domain adaptation; a progres-
sion is either self-contained when samples are available in each domain; or
forthcoming in case a domain is not yet populated when a model is deployed.
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2.2 Domain Shift Analysis

Domain Shift Type

The type of domain shift is categorized as either continuous or discrete
throughout this work. It is essential to acknowledge that most domain shifts
can be represented according to both domain shift types, depending on how
the data is acquired, sampled, and processed. For example, the application
of object detection at night features a continuous domain shift if the com-
plete transition from day to night is captured within the data or a discrete
domain shift in case the night and day conditions are captured without the
transitional states. Thus, the domain shift type is either predetermined by the
available data or is to be actively shaped and framed by the process of data
sampling. Nevertheless, the different types of domain shifts and the different
progression characteristics need to be categorized and matched with domain
adaptation approaches and assessment approaches.

Discrete Domain Shift:
DS||DT ≥ m

A discrete domain shift demonstrates no direct transition of data samples
between the source and the target domain. The domains are separated by
a threshold margin m. The margin is qualitatively depicted as a distance m
that results in a domain gap. A margin m can be a performance measure, a
distance within a feature space, or a difference in the label affiliation.

In the Artificial Petals Dataset, an exemplary discrete domain shift emerges
between samples with four petals X4 and samples with eight petals X8. The
margin is quantitatively depicted as the difference m = 4 that results in a
domain gap defined by a class shift.

Continuous Domain Shift:
DD||DD+1 ≤ m, with D ∈ {S, . . . ,T}

A continuous domain shift consists of data samples, which interconnect the
source and target domain with intermediate domains. The adjacent domains
are not further apart than a threshold margin m and are potentially overlap-
ping.

35



2 Novel Unsupervised Domain Adaptation Concept

In the Artificial Petals Dataset, a continuous domain shift emerges between
samples with four petals X4 and samples with ten petals X10, interconnected
by samples with six petals X6 and eight petals X8. The margin is qualita-
tively depicted as the difference m = 2 that allows for a continuous transition
between samples with a different number of petals.

Domain Shift Progression

In this work, the progression of a domain shift is categorized as either self-
contained or forthcoming. Self-contained domain shifts are characterized
by knowledge about the presence of a target domain and available samples
in the target domain, while forthcoming domain shifts are by all means un-
defined. Consequently, applications exposed to a forthcoming domain shift
need to rely on methods with an intrinsic mode of continuous adaptation in
parallel to the neural network inference.

Self-Contained Domain Shift:
DS ̸= DT with XS,XT ∈ X

Common large-scale datasets are static. Any domain shifts within these
datasets are self-contained, meaning they can be defined and are, at present,
captured and depicted within the dataset.

In the Artificial Petals Dataset, self-contained domain shifts emerge be-
tween all available samples in the dataset. For example, this includes sam-
ples X4, X6, X8, and X10. For each set of samples, for example X4 and X10
the domain shift can be defined as a distance D4||D10.

Forthcoming Domain Shift:
DS ̸= DT with XS ∈ X and XT /∈ X

A dataset with a forthcoming domain shift, at the time a neural network is
trained on a domain DS, is still in a state of data and, in particular, a domain
extension. In a forthcoming domain shift, by definition, not all domains are
depicted within the available training data X, and thus only come to exist
at a later point in time in the form of additional samples XT , constituting a
further domain DT .
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In the Artificial Petals Dataset, a forthcoming domain shift is the emergence
of an additional domain, which is not yet covered within the current dataset.
Such a domain, for example, are samples with 12 petals X12 or five petals X5.
However, it is important to notice that the forthcoming domain remains un-
known at the time of acquiring the initial dataset of source domain samples
with, for example, four petals X4.

2.3 Approach Selection

When confronted with approach selection for unsupervised domain adapta-
tion, two dimensions clearly stand out during domain analysis: The domain
shift type (along the vertical axis in Fig. 2.3) and domain shift progres-
sion (along the horizontal axis in Fig. 2.3) within the dataset. It is self-evident
that there is an additional dimension of technical requirements that need to
be met and thus influence the selection of an appropriate domain adaptation
approach. Requirements that form the basis for selection are the realiza-
tion of the specified task performance, the model’s memory requirements for
deployment on the target hardware, available computational real-time capa-
bility, and manageable annotation efforts or the availability of labeled data.
Last but not least, appropriate approaches need to be available which are able
to meet the requirements and present domain characteristics.

Figure 2.3: The dimensions of approach selection: Domain shift type on the vertical axis and
domain shift progression on the horizontal axis. The artificial petals depict the
present domain shift as combinations of the two dimensions. The cyan area indi-
cates potential for supervised learning methods, assuming labels are available. The
blue area indicates the necessity for implicit or superimposed continuous adapta-
tion, as the domain shift occurs after deployment.

37





3 Novel Approaches for Unsupervised
Domain Adaptation

To complement the unsupervised domain adaptation concept (see Ch. 2),
novel unsupervised domain adaptation approaches are developed for discrete
self-contained, continuous self-contained, and continuous forthcoming do-
main shifts (see Sec. 3.1, 3.2, and 3.3). Taken together, the approaches en-
able the proposed unsupervised domain adaptation concept (see Sec. 2.1) to
be applied broadly and highlight its holistic and modular usage potential.

3.1 Sample Supplementation Approach

3.1.1 Overview and Ideation

With the novel unsupervised domain adaptation framework established (see
Sec. 2.1), suitable unsupervised domain adaptation approaches need to be de-
veloped and expanded upon. Perception, and in particular computer vision,
is central to real-world applications and produces an extensive amount of
research. Currently, deep learning, in particular, supervised learning, outper-
forms any other approach to perception and object detection in a wide range
of use cases, as will be shown in Sec. 5.3.2. However, supervised learning
and its data-driven process introduce unique constraints, such as being de-
pendent on large-scale labeled data and restricting the model’s inference per-
formance to samples that are independent and identically distributed (i.i.d),
and thus within the training data’s domain. Further, current state-of-the-art
developments on unsupervised domain adaptation address generative models
while lacking deployment and validation in application tasks.

The novel sample supplementation approach (SSUP) deploys a first neu-
ral network’s generative capabilities to supplement the training of a second
neural network for object detection. Hereby, the SSUP extends the area of
operation of a neural network beyond its source domain without requiring
additional label efforts. The novel approach’s applicability will be shown in
Sec. 5.4.

39



3 Novel Approaches for Unsupervised Domain Adaptation

SSUP’s approach to domain adaptation is a generative one. The setting re-
quires samples xi ∈ X, i = 1, . . . ,N within the same feature space X with
respect to sensor modality, input dimensions and ranges of values, and of
different domains D . The domains are the source domain DS = (XS, ỸS),
including samples and the associated ground truth ỹi ∈ Ỹ, i= 1, . . . ,N, either
an unlabeled target domain DT = (XT ,_), or an empty domain DE = (_,_)∈
X , which is enclosed by the source domain, however, constitutes of no sam-
ples itself (see Fig. 3.1). The available data X is then used by a generative
adversarial neural network (see Sec. 1.6.3) to depict the distribution P(X)
and feature space X of the data X. The generative capability of the genera-
tive adversarial neural network is deployed to create additional samples for

Figure 3.1: Qualitative depiction of two domains within a generative supplementation setting.
Given are the source domain DS (cyan) and an unlabeled target domain DT (blue),
with a discrete domain shift, and empty domains (white spaces). The source do-
main includes labeled samples (indicated by a bold stroke around the circle) and
enables supervised training of the task TS. The domain change emerges along the
axes, representing a minor and major domain-changing characteristic in the target
domain. Generated samples (gray) allow bridging the empty domains and densify-
ing the domains by adding synthetic samples to preexisting ones.
Samples of the Artificial Petals Dataset qualitatively depict the relations within
the dataset. The source domain includes cyan carpels, whereas the target domain
includes blue carpels. The generated samples occur across all domains and are de-
picted with carpel colors ranging from cyan to blue and display a different number
of petals. The empty or enclosed domain is defined and expressed by carpel colors
between cyan and blue. Adapted from [2].
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training. In turn, these synthetic samples are added to the initial dataset, used
for training a model θS performing a source task TS. Sample supplementa-
tion aims for generalization and improving model performance on unseen
data in previously empty domains or (sparse) domains with little training
samples. Sample generation is delicate, as generative adversarial neural net-
works are prone to mode collapse or might generate defective samples by
introducing label breaks or label switches. These are issues that come with
any means of augmentation and need to be guardrailed accordingly with
appropriate sanity checks or effective priors. Beyond that, the introduction
of supplemental samples, even in the case of mere interpolated samples, al-
lows for trading an increased bias of the model for a reduced variance of the
model’s predictions and benefits regularization (see Sec. 1.2.4).

3.1.2 Sample Supplementation Architecture

Assuming the availability of an unlabeled target domain DT = (XT ,_), the
SSUP architecture utilizes a generative adversarial neural network to depict
the enveloping domain’s distribution, enabling the generation of additional
data within the domain. By sample supplementation, a model that has been
trained on a source task is trained or fine-tuned on the source domain data-
set (XS, ỸS)again, which has been extended by artificial samples (XZ , ỸZ)
created by the generator module θG of a generative adversarial neural net-
work (see Fig. 3.2).
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Sample supplementation architecture

(a) Generative adversarial neural network consisting of a generator network θG and a discrimina-
tor network θD. The generator translates from a random noise vector z ∈ Z into artificial sam-
ples xZ,S,xZ,T ∈X . The generator is paired with a discriminator network θD which learns to predict
ŷD an input sample’s domain DS,DT or DZ .
Samples of the Artificial Petals Dataset qualitatively depict the samples within the approach. The inputs
are the source (cyan carpels) and target (blue carpels) samples. And in turn, samples of these same
domains are generated. Adapted from [6].

Supplemented Source Task Training

(b) After training the SSUP model, the generator is used standalone to yield additional samples (XZ , ỸZ).
Concluding, the source task model is trained on all available domains DS,DT , and DZ , resulting in
improved domain coverage. Adapted from [6].

Figure 3.2
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Image-to-Image Translation Neural Network

The image-to-image translation is realized by a generative adversarial neu-
ral network, which consists of a generator network θG and a discrimina-
tor network θD (see Fig. 3.2a). The generator network θG generates sam-
ples xZ ∈X of domain DS and DT by encoding from a random noise vec-
tor z ∈Z . The discriminator network θD predicts ŷD the samples’ associa-
tions with either being a real sample xS or xT or being a generated sample xZ .
These predictions are used to determine the loss for training the generator.
Generator loss is calculated based on the discriminator’s prediction ŷD, as
well as the corresponding domain label ỹD of the input sample. The dis-
criminator is alternately trained on the same loss. The generative adversarial
neural network can map and model the representation of the given dataset
and its domains DS, DT and then generate additional samples of said do-
mains (see Generative Models in Tab. A.12).

Supplemented Source Task Training

After training the generative adversarial neural network, the generator mod-
ule can generate additional samples xZ (see Generator Module in Fig. 3.2b).
The generated samples enable additional training or fine-tuning of a source
task model θS; this requires that the samples xZ implicitly include the re-
spective ground truth ỹZ . For example, the ground truth can be available
as class affiliations for classification tasks or interrelated temporal informa-
tion for temporal prediction tasks (such as tracking) or as a ground truth
transferred along with an image-to-image translation (such as bounding box
coordinates). The neural network θS is then trained on the combined data-
set (XS, ỸS), (XT , ỸT ), (XZ , ỸZ), with respect to a source task TS that can
be learned based on available labels. After successful supplemented training,
the model performs the source task TS with increased performance. How-
ever, the effects on source domain performance, such as catastrophic forget-
ting (see Sec. 1.6.5), remain to be analyzed and put in relation to the benefi-
cial effects. Likewise, auxiliary methods are to be developed (see Sec. 4.1.2),
which enable to quantify the domain adaptation characteristics of the gener-
ated samples.
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Approach Configuration

The SSUP approach instantiates hyperparameters, which allow configuring
and customizing its deployment. The central hyperparameters for supple-
mented training revolve around customizing the number and ratio of gener-
ated samples for training the task neural network (see Tab. 3.1). Beyond,
there are the hyperparameters inherent to any deep learning training process,
here, in particular, to train the image-to-image translation neural network
(see App. A.1).

Hyperparameter Description

#xZ Number of generated samples

#xS/#xZ Ratio between real and generated samples for training

Table 3.1: Central configuration hyperparameters of the SSUP approach

A detailed study of the hyperparameter setting, their interplay and effects
on domain adaptation and catastrophic forgetting during retraining, as well
as best practices considering deployment, result from the experiments in
Sec. 5.4.4.

3.1.3 Conclusion

Additional training samples can be generated by training and inference of a
generative adversarial neural network without requiring any labeling effort.
The additional samples and their affiliated labels are then deployed to sup-
plement the training of a source task neural network. Supplemented training
is enabled by taking advantage of the ability of generative adversarial neural
networks to depict a dataset’s distribution, defining the different domains to
enable sample generation in a specific target domain. For the first time [6],
the approach aims to adapt a neural network to sparse or enclosed target
domains.
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3.2 Shared Latent Feature Space Approach

3.2.1 Overview and Ideation

SSUP aims to extend the area of operation of a neural network beyond its
source domain. The presented extension of a neural network to an addi-
tional domain is achieved by combining the supplementation capabilities
of generative adversarial neural networks with effective supervised training.
As a consequence, the approach inherits the disadvantages of supervised
retraining: As of now, any form of fine-tuning is prone to catastrophic for-
getting (see Sec. 1.6.5) or necessitates trading-off performance in different
domains and further, there is the apparent need for an often nontrivial retrain-
ing process. Current state-of-the-art approaches usually tackle these issues
by yet another increase in the amount of labeled data, which is by no means a
guarantee to bypass catastrophic forgetting nor to ensure domain adaptation
and domain coverage. At the same time, image-to-image translation net-
works are researched as an end in itself, lacking deployment and validation
in applications. For the first time, image-to-image translation capabilities
aim for cross-domain neural network deployment. The novel shared latent
feature space approach’s (SHALFS) objective is to learn the translation be-
tween two domains and thereby implicitly extend the neural network’s field
of application by cross-domain adaptation of the target domain without any
retraining nor additional labeling.

SHALFS’ approach to unsupervised domain adaptation is based on the as-
sumption that images xi ∈X, i= 1, . . . ,N of different, domains DS = (XS, ỸS)
and DT = (XT ,_) with a discrete domain shift, but a common feature
space X (see parameter sharing A.2) hold a common, but initially un-
known, shared latent feature space representation in Z (see Sec. 1.6). The
shared latent feature space Z is then used as a transit zone for image-to-
image translation from target domain DT to source domain DS, and vice
versa (see Fig. 3.3). Original to our approach, image-to-image translation
capabilities are utilized to deploy a model θS, that was trained on source
domain DS to perform the source task TS, cross-domain on samples XT,S
adapted from the target domain DT (see Sec. 3.2.3) [1].

3.2.2 Unsupervised Image-to-Image Translation

The unsupervised image-to-image translation architecture follows an encoder-
decoder network architecture while deploying generative neural networks in
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Minor domain-changing 

characteristic

Major domain-changing 

characteristic

Figure 3.3: Qualitative depiction of an unsupervised image-to-image translation setting.
Translation happens between the source domain DS (cyan) and the target do-
main DT (blue). Source domain samples (cyan circles) are labeled (bold stroke)
and are used for supervised training of the task TS. The target domain remains
unlabeled. The domain change emerges along the axes, representing a minor and
major domain-changing characteristic. A common, shared latent feature space Z
is created and enables a common mapping (arrows with dotted lines) of samples
within the shared latent feature space (gray) from and to both the source domain
and the target domain.
The Artificial Petals Dataset qualitatively depicts the shared latent feature space
as a vector with length two, representing the number of petals and the color of the
carpel - see gray flower. Adapted from [1].

the decoder paths. The neural network architecture follows a two-stream
mechanism evoking a shared latent feature space between the source domain
and target domain (see Fig. 3.4).

Shared Latent Feature Space for Stream-Linking

Central to the domain adaptation capability of the neural network architec-
ture is the shared latent feature space implementation (see z in Fig. 3.4). The
shared latent features are induced by introducing a weight constraint in the
form of sharing the last layer between encoders θES and θET , correspond-
ing to sharing the first layer of the generators θGS and θGT . Accordingly, the
preservation of a shared feature representation z∈Z for all input samples xS
and xT is guaranteed.
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Figure 3.4: Overview of the image-to-image translation architecture (such as UNIT [98]).
The two streams take source domain samples xS and respectively target domain
samples xT . The encoding of the shared latent feature space z ∈ Z is realized by
the source encoder θES and target encoder θET . The decoding is realized by the
source generator θGS and target generator θGT . The generators yield translated
samples xS,S (source to source), xT,S (target to source), xS,T (source to target),
and xT,T (target to target). For training, the generators are matched by the source
discriminator θDS and target discriminator θDT .
The Artificial Petals Dataset qualitatively describes the encoding from flowers
with blue or cyan carpels into a gray flower in the shared latent feature space. The
gray flower representing the number of petals, and the color of the carpel, is then
decoded into either a flower with a cyan carpel (source domain) or a flower with a
blue carpel (target domain). Adapted from [1].

Encoding and Decoding the Shared Latent Feature Space

The image-to-image translation architecture includes two encoder-decoder
networks (see Fig. 3.4). The decoder networks coincide with the generator
networks and are thus indexed G.

The source encoder-decoder network consists of θES, θGS. The target encoder-
decoder network consists of θET , θGT . The application of encoder-decoder
networks is motivated by their capability to reduce the complexity of data
distributions, mapping them into lower-dimensional feature spaces: The en-
coders θE map input samples x ∈X to the shared latent feature space z ∈Z .
The decoders θG reconstruct the samples x ∈ X from the shared latent fea-
ture space z ∈Z back to their initial feature space and domain DS, respec-
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tively DT . The encoder-decoder networks are trained with respect to the loss
LEG,S derived from xS and zS (respectively LEG,T from xT and zT ),

LEG,S(θES,θGS) = KL(qS(zS|xS)||pη(z))
−EzS∼qS(zS|xS)[log pθGS(xS|zS)],

(3.1)

The distribution of the latent feature vector zS is denoted qS(zS|xS) and ran-
domly sampled from N (zS|θES,µ(xS),I) where θES,µ(xS) is the average out-
put of the encoder θES. KL is the Kullback-Leibler divergence [55], a statisti-
cal measure of the distance between a first and a second probability distribu-
tion. For training the re-parameterization trick [99] is deployed: By adding
noise to the reference distribution pη(z) of the shared latent space, which
produces outputs zS = θES,µ(xS)+η . The added noise follows a Gaussian
distribution, where η ∼ N (η |0,I) and allows to express a gradient of an
expectation as an expectation of a gradient, being differentiable with respect
to θES.

Learning the Shared Latent Feature Space

For learning the shared latent feature space, the image-to-image translation
architecture includes two generative adversarial neural networks (see Fig. 3.4),
build upon the two encoder networks θES and θET . The first, the source
GAN, consists of the generator discriminator pair θGS, θDS. The second,
the target GAN, consists of the generator discriminator pair θGT , θDT . The
source generator network θGS generates samples xS,S and xT,S ∈XS of do-
main DS by decoding from the latent vector z ∈ Z . The target generator
network θGT generates samples xT,T and xS,T ∈XT of domain DT by de-
coding from the latent vector z ∈ Z . Each generator, in turn, outputs two
sample streams: The translation stream xS,T (respectively xT,S), and the re-
construction stream xS,S (respectively xT,T ). For training, only the translation
streams are considered. The discriminators θD predict the samples’ associa-
tions with either the source domain or the target domain. These predictions
are used to determine the loss LGAN,S for training the GANs (in Eq. 3.2 ex-
emplarily shown for the source GAN, and respectively holds for the target
GAN and the loss LGAN,T ),

LGAN,S(θGS,DT ) = ExS∼P(XS)[logθDS(xS)]

+ EzT∼qT (zT |xT )[log (1−θDS(θGS(zT )))].
(3.2)
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The loss is calculated based on the discriminator prediction ŷD as well as the
corresponding domain label ỹD of the input samples.

3.2.3 Cross-Domain Neural Network Deployment

The domain adaptation capability of the unsupervised image-to-image trans-
lation enables direct deployment of a model θS on the target domain DT .
The model has only been trained to perform a task TS on source domain
data XS, and is now enabled to perform the task TS on an adapted target
domain sample xT,S as well. This functionality is cast into the unsupervised
domain adaptation module:

xT

� ET

� GS

z

xT,S

Figure 3.5: Overview of the cross-domain neural network deployment. The unsupervised
image-to-image translation network is pruned down, leaving the translation stream
from target sample xT to its source domain translation xT,S, passing the shared
latent feature space vector z ∈ Z . The target domain sample xT in its translated
form xT,S is then suitable for a model θS, being trained on the source domain DS,
to perform a source task TS, resulting in a prediction ŷT,S.
The Artificial Petals Dataset qualitatively describes the translation from a flower
with a blue carpel (target domain) into a cyan flower (source domain), which is
then suitable for inference on the source task model. Adapted from [1].

Unsupervised Domain Adaptation Module

The unsupervised domain adaptation module is derived from a pretrained
image-to-image translation architecture and is used in inference mode only.
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The image-to-image translation capability is pruned, leaving the target to
source translation stream,

xT,S = θGS(θET (xT )). (3.3)

The target to source translation stream, in turn, enables cross-domain neural
network deployment on the source task TS.

Source Task

The domain adaptation capability enables the cross-domain deployment of
neural networks. The neural network θS, required by the definition of the set-
ting of unsupervised domain adaptation (see Sec. 1.6.2), is trained on source
domain data XS, and with respect to a source task TS. The source task TS
can be learned based on available labels ỸS in the source domain DS. Sub-
sequent to the unsupervised domain adaptation (see Eq. 3.3) the model θS is
enabled to immediately perform the source task TS cross-domain, including
the target domain DT ,

ŷT,S = θS(xT,S). (3.4)

An alternative approach to cross-domain adaptation requires the neural net-
work θS to be trained on source domain samples xS which are mapped to a
vector in the shared latent feature space z ∈Z ,

ŷT,Z = θZ(xT,Z). (3.5)

During inference, this reduces the number of computational operations by
the decoder part θGS. However, this would again introduce the necessity for
retraining on the shared latent feature space.

Inherently, any source task can be integrated into the cross-domain neural
network deployment framework. In cognitive perception systems, possible
source tasks include, among others: Classification, object detection, object
re-identification, and semantic segmentation.

Approach Configuration

The SHALFS approach instantiates hyperparameters, which allow config-
uring and customizing its deployment. The central hyperparameters for the
shared latent feature space revolve around customizing the operation point
of the object detector. By configuring the thresholds for the intersection over
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union and the classification confidence, it is possible to trade off precision
and recall of the task neural network under deployment (see Tab. 3.2). A de-
tailed study of the hyperparameter composition, their effects on trading-off
recall and precision, and a process for setting a use-case oriented operating
point result from the experiments in Section 5.5.5.

Hyperparameter Description

@IoU Intersection over union threshold

c Classification confidence threshold

Table 3.2: Central configuration hyperparameters of SHALFS under deployment.

Beyond, there are the hyperparameters inherent to any deep learning training
process, here, in particular, to train the image-to-image translation neural
network (see App. A.1).

3.2.4 Conclusion

A shared latent feature space is induced unsupervised by training an image-
to-image translation network without requiring any labeling effort in the tar-
get domain. Unprecedented, the SHALFS approach to unsupervised domain
adaptation follows the intention to provide the means for cross-domain neu-
ral network deployment. Original [1] to the approach, the image-to-image
translation is interpreted as an unsupervised trained preprocessing module
auxiliary to the source task model.

51



3 Novel Approaches for Unsupervised Domain Adaptation

3.3 Continuous Self-Supervision Approach

3.3.1 Overview and Ideation

SSUP and SHALFS aim to extend the performance of a neural network be-
yond its source domain by including a target domain. However, a discrete
domain shift needs to be present, meaning the target domain needs to be
distinct from the source domain, and associated samples must be available
during training and the domain adaptation process. These approaches do not
address scenarios with a continuous domain shift, regardless of the present
domain shift progression. State-of-the-art self-supervised learning is de-
ployed to improve and extend a neural network’s performance within a given
source domain. Continuous domain shifts are neglected in current state-
of-the-art self-supervised learning approaches and commonly unattended in
practical applications, opening the doors for performance deterioration over
time due to deployment shifts.

The subsequent work aims for continuous domain adaptation. The result is
the here-developed continuous self-supervision approach (COSS) to domain
adaptation. By redesigning the pseudo-label approach (see Sec. 3.3.2) the
approach intends to act on data with a continuous domain shift. Making use
of the continuous domain shift prior. The secondary objective of this work
is the introduction to a cue-based approach (CUEB) to bypass catastrophic
forgetting during continuous domain adaptation (see Sec. 3.3.3).

In accordance with Fig. 3.6, the approaches are based on the assumption of a
continuous domain shift ∆α between the source domain DS = (XS, Ỹ) and
target domain DT = (XT ,_) by intermediate domains Dα (see Sec. 1.6.4).
Samples XS and XT are within the same feature space XS = XT . Adja-
cent domains Dα and Dα+∆α are near to superimposition, thus the model’s
predictions θα(xα+∆α) still hold, yet showing minimal deflections charac-
terized by the domain shift. These deflections are subsequently exploited
by generating pseudo-labels and, in turn, adapting the model θα+∆α to the
intermediate domain. Starting in the source domain DS with an initially su-
pervised trained model θS, the self-supervision mechanism is continuously
deployed until the model is adapted to the target domain DT , being enabled
to perform the source task on target domain samples θT (xT ) [2].
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Figure 3.6: Qualitative depiction of a dataset with a continuous domain shift, reaching from
the source domain (cyan) to the target domain (blue), passing intermediate do-
mains (gray). Only the source domain includes labeled samples (cyan circles with
bold stroke) and enables supervised training on the source domain DS. The con-
tinuous domain change emerges along the axes, representing a minor and major
domain-changing characteristic. Assuming that the model’s performance is similar
in adjacent domains (domain shifted by a small intermediate domain step ∆α) en-
ables generating pseudo-labels on the adjacent domain’s samples (cyan boxes with
light stroke), in turn, enables self-supervised domain adaptation.
The samples of the Artificial Petals Dataset qualitatively depict the domains and
the domain shift within the dataset. The minor (number of petals) and major (color
of the carpel) domain change emerges along the axes. Adapted from [2].

3.3.2 Continuous Self-Supervision by Pseudo-Labels

Assuming the availability of a model that has been trained on the source do-
main, the method utilizes unlabeled data for self-supervised domain adapta-
tion by pseudo-label ỹ′

α+∆α
generation. COSS is an iterative fine-tuning of a

pretrained model on an unlabeled dataset by using the context-knowledge (see
Sec. 1.6.4) of a continuous domain shift. The continuous domain shift ∆α

within the dataset is understood in terms of domains Dα = (Xα ,_)and
emerges from a context-knowledge which enables to arrange the data in
a continuous sequence and permits the assumption that the model’s per-
formance is similar for adjacent domains, with sufficiently small domain
shifts ∆α , and the associated samples. At last, this also applies for the target
domain model θT (xT ) in DT .
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The advancement of the here presented approach is the direct embedding
of the pseudo-label mechanism into the continuous domain adaptation train-
ing process of a neural network. In the second step, a design scheme for
effectively bypassing catastrophic forgetting is introduced by explicitly in-
tegrating a classification-based cue layer into the architecture of the neural
network.

Continuous Self-Supervision Architecture

. . .

Figure 3.7: Overview of the COSS architecture. Initially the model is trained supervised
on the source domain DS = (xS ∈ XS, ỹS ∈ ỸS) (see first row). The training
of a model is depicted as a light gray box. Subsequently, the parameters of the
trained model θS are then adopted (vertical, dotted lines) to generate pseudo-
labels ỹ′S+∆α

(see Eq. 3.7 and here depicted as cyan, vertical bar within the black
framed box of the model) in the adjacent domain DS+∆α . The adjacent or inter-
mediate domain is characterized by the domain shift ∆α . The pseudo-labels and
corresponding samples xS+∆α are then, in turn, deployed for training the model,
which as a result, is adapted to the intermediate domain. The whole process is iter-
atively (bold black dots) perpetuated until the target domain DT is reached and the
model has been conclusively adapted across all domains.
In the first row, the samples of the Artificial Petals Dataset qualitatively depict the
continuous domain shift from cyan to blue carpel colors during the progress of the
adaptation. Adapted from [2].

54



3.3 Continuous Self-Supervision Approach

Source Task

The new approach assumes a source domain DS = (XS, ỸS). Classifica-
tion and semantic segmentation are examples of possible source tasks TS.
The source task is expected to remain the same during the continuous do-
main adaptation and is initially learned on available ground truth with la-
bels ỸS (see Fig. 3.7). The model trained supervised on source domain
data DS is denoted θS(xS).

Pseudo-Label Implementation

The key aspect of continuous self-supervised learning is that a model θα is
applicable in domains Dα+∆α adjacent to the domain Dα the model θα has
been trained on. This holds for small domain discrepancies ∆α . Assum-
ing a near superimposition between two adjacent domains Dα and Dα+∆α ,
predictions on the adjacent, intermediate domain samples show valid perfor-
mance and minimal deflections in the accuracy of the predicted probability
distribution,

ŷα+∆α = θα(xα+∆α). (3.6)

The deflections in accuracy are flattened by the one-hot encoding of the pre-
diction. The control variable j′ indexes the prediction θα(.) j′ , while j in-
dexes the pseudo-label ỹ′

α+∆α, j,

ỹ′α+∆α, j =

{
1, if j = argmax j′ θα(xα+∆α) j′ ,

0, else.
(3.7)

The resulting pseudo-label ỹ′
α+∆α

is an approximate of the ground truth ỹ.
The minimal deflections within the prediction are exploited to adapt the
model to the shifted domain Dα+∆α , by generating a pseudo-label for each
sample xα+∆α in the dataset, and subsequently retraining the model.

Continuous Self-Supervised Domain Adaptation

The method at its core can be seen as a self-supervised iterative fine-tuning
of a neural network pretrained on a classification task in the source do-
main DS (see Alg. 1) across an initially unlabeled dataset, characterized by
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a continuous domain shift (see Fig. 3.6). An optional extension is to addi-
tionally retrain the model, on the source domain samples, subsequent to each
training on the intermediate target domain.

Algorithm 1 COSS

1: procedure ITERATIVE FINE-TUNING ON PSEUDO-LABELS(DS =
(XS, ỸS) source domain, ∆α domain shift between two adjacent do-
mains, Dα = (Xα ,_) domain-arranged data with α ∈ S+∆α, . . . ,T end-
ing in the target domain DT , θ untrained model.)

Initial supervised training of the model:
2: start in the source domain S
3: train θS on (XS, Ỹ)

Iterative fine-tuning along the domain shift ∆α:
4: while α < T do
5: inference samples of the adjacent domain ŷα+∆α = θα(xα+∆α)

6: generate pseudo-labels Ỹ′α+∆α from predictions Ŷα+∆α

7: train θα+∆α on (Xα+∆α , Ỹ
′
α+∆α)

8: shift into adjacent, intermediate domain α = α +∆α

9: return conclusively adapted model θT
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3.3.3 Cue-based Bypassing of Catastrophic Forgetting

Bare continuous self-supervision can not guarantee that source domain per-
formance or any other intermediate performance is preserved (see Catas-
trophic Forgetting in Sec. 1.6.5) during continuous domain adaptation. There-
fore, in the following, a COSS extension is introduced to preserve domain-
specific model performance. The novel proposal to bypass catastrophic
forgetting can be seen as a cue-accessible horizontal extension of the self-
supervised continuous adaptation architecture or a cue-based bypassing of
catastrophic forgetting - CUEB.

Cue Implementation

The domain-specific models are accessed via a domain cue ŷCue. The cue
is solely extracted from a given input sample x(.), inferred by the domain
classification model θCue,

ŷCue = θCue(x(.)). (3.8)

The auxiliary domain classification model is trained on samples xα across
all domains and their corresponding domain labels α . The domain labels are
derived from the same context-knowledge used to arrange the samples con-
cerning the continuous domain shift (see Alg. 1). Subsequently, the domain-
specific model θα is selected and deployed for the main task,

ŷα = θα(x(.)),with α = argmax ŷCue. (3.9)

Domain Specific Neural Network Extension

The architectural extension of the neural network means the continuous stor-
ing of domain-specific models (see model storage in Fig. 3.8) and their ac-
cess via a domain cue ŷCue that is made available by a domain classifi-
cation model θCue. During inference, the domain cue allows directed ac-
cess to domain-specific knowledge across all domains: The source domain
model θS, intermediate domain models θα and the target domain model θT .
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Figure 3.8: Overview of the CUEB architecture. The CUEB architecture is an extension of the
COSS architecture (see Fig. 3.7). Both approaches share the pseudo-label genera-
tion and subsequent iterative training of the network on pseudo-labels (see Eq. 3.7)
in the adjacent domain +∆α until the target domain is reached and the model
has been conclusively adapted across all domains. The new feature, introduced
by CUEB, is that intermediate domain-specific models are stored (see horizon-
tal dashed lines connected to models in the model storage, depicted as a gray,
open frame) and assigned to the cue of the current domain. Moreover, initially,
an auxiliary domain classification model θCue is trained on the samples of all do-
mains Dα and the corresponding domain labels α . During inference, this allows
the model θCue to predict ŷCue the domain of the sample x(.) and select the ideally
tuned model θα for the main task.
In the top row, the samples of the Artificial Petals Dataset qualitatively depict the
continuous domain shift from cyan to blue carpel colors during the progress of the
adaptation. Adapted from [2].
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Low-Level Feature Backbone

Continuous domain adaptation results in high computational efforts, espe-
cially due to the repetitive training necessary for adapting to the experienced
shifts. To increase computational efficiency during training and inference
and to further reduce the required memory of the full model, a low-level
feature backbone θlow is introduced for feature extraction.

Due to the common input feature space X the low-level feature space Z
can be shared, making use of transfer learning (see Sec. 1.6). The pre-trained
low-level layers are used for feature extraction, making the low-level feature
vector z shareable between two adjacent domains θα and θα+∆α or two dif-
ferent tasks θα and θCue (see Sec. 1.6.3).

Sharing (see Sec. A.2) the low-level features by force-setting parameters for
two different tasks to equal each other also reduces computational efforts
for the inference of CUEB. Both models are deployed on the same input
sample xα . This enables low-level feature vectors θlow(x(.)) to be calculated
only once during inference and then to be used by the domain classifica-
tion model θCue,high(θlow(x(.))), and subsequently by the thereby selected
main classification layer θα,high(θlow(x(.))). This increases computational
efficiency, as opposed to computing features from the initial input sample
for each task and model.

Approach Configuration

COSS instantiates hyperparameters, which allow configuring and customiz-
ing its deployment.

Hyperparameter Description

o Opening training epochs

r Epochs retraining

n Epochs training on adjacent domain

∆α Inter-domain step size

c Pseudo-label confidence

Table 3.3: Central configuration hyperparameters of the COSS approach under deployment.
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The central hyperparameters for COSS and CUEB revolve around customiz-
ing the transition and adaptation to adjacent domains (see Tab. 3.3). A de-
tailed analysis of the hyperparameter configurations, their interplay, and ef-
fects on transitioning between adjacent domains, as well as best practices
under deployment, result from the experiments in Section 5.6.2. Beyond,
there are the hyperparameters inherent to any deep learning training process,
here in particular for the neural network training process (see App. A.1).

3.3.4 Conclusion

Domain adaptation is implemented in an unprecedented, continuous self-
supervised manner by iterative pseudo-label generation and thereon-based
fine-tuning of a neural network. Further, a novel cue approach allows for pre-
serving domain-specific knowledge created during continuous domain adap-
tation and retrieved during inference. Out-of-the-way [2], COSS’ approach
to domain adaptation addresses continuous neural network deployment, and
in the case of CUEB, even without catastrophic forgetting, across continuous
domains.
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4 Purposed Datasets and Metrics for
Domain Adaptation

Deep learning-based perception systems are data-driven, as are the presented
novel approaches to unsupervised domain adaptation (see Ch. 2). Hence,
benchmarks that fuel the development and validation capabilities of percep-
tion systems become increasingly important. Currently available, large-scale
datasets (see Sec. 1.4) aim at training and evaluating supervised learning
approaches. However, deployed perception systems rely on continuously
updated neural network versions and are affected by changing data and an-
notation accessibility (see Fig. 4.1). Further, initial data is expected to be
enriched with labels for supervised training on the datasets; however, when
facing growing and expanding datasets, an increasing number of data sam-
ples without associated labels need to be handled and trained on. For neu-
ral networks in training, or under deployment, within unsupervised domain
adaptation settings, only a limited set of metrics are available.

Figure 4.1: Qualitative depiction of a dataset with continuous emerging domain changes, fol-
lowing a domain shift ∆α along the axes from source domain (cyan) to the target
domain (blue) and a neural network’s versions θ (displayed within boxes) for con-
tinuous domain steps S, S+∆α, . . . , T . Adapted from [2].
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As unsupervised and continuous domain adaptation approaches (see Ch. 2)
gain importance, this chapter offers an extension of current domain adap-
tation metrics (see Sec. 4.1) and introduces two purpose-designed bench-
mark datasets (see Sec. 4.2). In doing so, the designed metrics render
domain adaptation interpretable, quantifiable, and comparable. These novel
metrics cover unsupervised domain adaptation, as well as metrics for do-
main adaption regarding continuous domain shifts. Suitable to address the
different characteristics (see Fig. 4.1) and needs of unsupervised domain
adaptation problems, an advanced assessment concept for domain adapta-
tion needs to be developed. The assessment concept ought to capture the
domain adaptation capability as well as the task performance while depict-
ing deployment requirements.

Henceforth, the in this chapter originating domain adaptation metrics, to-
gether with the newly tailored datasets, enable in-depth analysis and are in-
dispensable to further drive research and to enable the validation of the entire
domain adaptation process.

4.1 Novel Domain Adaptation Assessment Metrics

4.1.1 Overview and Ideation

As large-scale, unlabeled, and continuously expanding datasets emerge, and
as they begin to overwhelm supervised learning approaches, there is a need
for unsupervised domain adaptation approaches that enable the scaling and
continuous deployment of cognitive perception systems. Currently, super-
vised learning is the general approach when training and deploying deep
learning models (see Sec. 1.1.1). Consequently, neural network evalua-
tion, validation, and testing are thus aligned and centered on supervised
approaches. Thus, current metrics are expressive when concerning task-
specific key performance indicators (see Sec. 1.5.1), yet only a few metrics
are available that cover the characteristics of domain adaptation and contin-
uous training processes [1, 2].

This section introduces an extensive, novel domain-centered metric set, with
the objective to make domain adaptation approaches quantifiable, compa-
rable, and interpretable. From this point forward, the in this work, devel-
oped and defined metrics enable detailed analysis and evaluation of domain
adaptation approaches. The guiding principle is that all domain adaptations
should be understood in terms of bridging domain shifts (see Fig. 4.1), ex-
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perienced through continuous and forthcoming domain shifts within a data-
set. The starting point of the consideration builds upon an application (see
Sec. 4) driven by continuous and unsupervised domain adaptation of a neu-
ral network. The novel metric set enables the evaluation of the application
by embedding its task performance within the domain adaptation setting (see
Sec. 4.1.2). This work further introduces metrics, which allow measuring the
degree of applicability of the approaches in practice (see Sec. 4.1.3).

4.1.2 Advanced Task and Adaptation Specific Metrics

Currently, the choice of domain adaptation-specific metrics is limited to
catastrophic forgetting (see Sec. 1.6.5) and task-specific performance met-
rics (see Sec. 1.5.1). The metric set, presented here for the first time, enables
the evaluation of a domain adaptation approach by embedding its task per-
formance within a continuously conceived adaptation process (see Fig. 4.1,
and Fig. 4.2). In the following, P is the task performance metric (such as
the object detection metrics in Sec. 1.5.1). Di and D j refer to two domains
which are separated by a domain shift ∆α , as such that D j =Di+∆α . Further,
a metric PD(.),θ(.) is specified by the domain D(.) the neural network is evalu-
ated on, and the domain D(.) the neural network θ(.) has last been trained on,
accordingly visualized in Fig. 4.2.

Embedded Task Metrics

The novel embedding of common task performance metrics into the domain
adaptation process not only allows to report on the domain adaptation ca-
pabilities of a method but, in particular, allows to monitor and analyze the
domain adaptation process itself:

In-domain performance Pi defines the identity performance measure, mean-
ing the neural network is evaluated on the domain Di it also has been trained
on. Domain identity is usually the stage in which performance is best for a
specific domain within the domain adaptation process,

Pi = PDi,θi , Pi ∈ [0,1]. (4.1)

A special case is the source domain performance PS.
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From there, the extended domain gap DGS,i puts the in-domain performance,
that has been achieved by adaptation, in relation to the source domain per-
formance,

DGS,i = PS−PDi,θS , DGS,i ∈ [0,1]. (4.2)

The common definition of the domain gap refers to the particular case of the
target to source domain gap DGT,S.

The extended domain adaptation DA j,i depicts the domain adaptation per-
formance by putting an initial or earlier performance of the neural network
in perspective to the reached in-domain performance within a reference do-
main D j,

DA j,i = Pj−PD j ,θi , DA j,i ∈ [0,1]. (4.3)

The complement is the extended catastrophic forgetting CFi, j that measures
the performance deterioration of a neural network θ j in domain Di, when
adapted to domain D j,

CFi, j = Pi−PDi,θ j , CFi, j ∈ [0,1]. (4.4)

Currently, catastrophic forgetting CFS,T refers to the special case of source
domain performance, once the domain adaptation reached the target do-
main. Accordingly, in-domain catastrophic forgetting CFi depicts the po-
tential catastrophic forgetting of a neural network θi in domain Di, once it
has been adapted to the target domain DT ,

CFi = Pi−PDi,θT , CFi ∈ [0,1]. (4.5)

Covering the need to distinguish between the domain the neural network θ(.)

has been trained on, and the domain the neural network is evaluated on D(.),
enables the embedding of the task performance metrics into the domain
adaptation process, creating novel embedded task metrics (see Fig. 4.2).
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Figure 4.2: Illustration of the novel evaluation system for unsupervised domain adaptation
approaches. Aggregation of the regular task performance (performance metric) and
the metrics emerging from the nature of domain adaptation (from source to target
domain) and continuous domain adaptation (over multiple intermediate domains).
The figure depicts the novel unification of performance metrics (y-axis) along the
domain adaptation process (x-axis). Adapted from [1, 2].

Further, each metric can also be evaluated across all domains D{S,...,T}, re-
sulting in the metrics mean. In the following, done exemplary for the mean
Performance mP, and a neural network θ(i),

mPi =
1

#{S, . . . ,T} ∑
n∈{S,...,T}

PDn,θi , mPi ∈ [0,1]. (4.6)

The source in-domain performance PS of the model trained on the source
domain is used as a reference point and baseline for the continuous domain
adaptation approach. The lower reference point is either the source domain
model’s performance PDT ,θS on the target domain or the approximated per-
formance of a random predictor.

Adaptation Process Metrics

Embedding the task metrics into the domain adaptation process enables ded-
icated adaptation metrics, characterizing the process of domain adaptation
itself. For this purpose, this work introduces novel adaptation process met-
rics such as the fray factor, the continuity factor, and the built knowledge
factor:
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Fray factor fF, j defines the mean in-domain catastrophic forgetting CF (see
Eq. 4.5) of a neural network θ j, which reached domain D j and CFi, j is then
evaluated on all j− 1 domains DS, . . . ,D j−1. fF, j quantifies the capability
to bypass catastrophic forgetting during domain adaptation and depicts how
much it frays from the ideal performance of each domain,

fF, j =
1

j−1

j−1

∑
i=S

Pi−PDi,θ j , fF, j ∈ [0,1]. (4.7)

The continuity factor fC, j depicts the mean performance of a neural net-
work θ j across all j domains DS, . . . ,D j, it has been trained on, up to a
domain D j it has just reached during the domain adaptation process. When
reported along multiple domain adaptation steps, the fC, j allows conclusions
regarding the stability and potential reach of the overall domain adaptation
process,

fC, j =
1
j

j

∑
i=S

PDi,θ j , fC, j ∈ [0,1]. (4.8)

Built knowledge factor fK, j is a variant of the continuity factor, with fC,T =
fK,T . Depicting the mean performance of a neural network θ j when evalu-
ated, across all T domains DS, . . . ,DT . fK, j characterizes domain generaliza-
tion capabilities of the domain adaptation approach,

fK, j =
1
T

T

∑
i=S

PDi,θ j , fK, j ∈ [0,1]. (4.9)

Adaptation Quantity Metrics

In order to quantify domain shifts, gaps, and adaptation capabilities, it is
necessary to link domain characteristics to a measurable quantity. Within
a machine learning pipeline, there are different options to access domain
characteristics, as expressed by samples. The primary access is to analyze
the samples of the domains within a dataset. Secondary access to domain
characteristics is by the inference of the model with the samples of a dataset.
Domain characteristics can then emerge through the prediction performance
or an uncertainty estimation for the model. For the latter, an already trained
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model is required, and for reliable prediction performance, labeled samples
are inevitable. Thus, this work proposes model-agnostic approaches to reach
adaptation quantity metrics based on dimensionality reduction of the input
samples’ features.

The tSNE [59] algorithm maps samples onto a two-dimensional space, con-
cerning their distance in the high-dimensional image feature space (see
Sec. 1.5.2). By mapping image samples from different domains such as
source and target domain xS ∈XS, xT ∈XT and the translated samples xT,S ∈
XS by the tSNE algorithm, quantitative similarity measures are obtained, be-
tween target domain XT and source domain XS. Small distances represent
the considerable similarity between any two samples or domains. Between to
data cluster center’s (cD1,cD2), the Euclidean norm or inter-cluster distance,

dEu(cD1,cD2) = ||cD1− cD2||2, (4.10)

or the Mahalanobis distance [100], between a probability distribution QD1
and a cluster center cD2, with respect to the inverse covariance matrix S−1

D1,

dMa(QD1,cD2) =

√
∑

N
i=0(cD2,i−µD1)T S−1

D1(cD2−µD1)

N
, (4.11)

approximate the domain characteristics such as domain shifts ds,Eu(cS,cT,S)
or ds,Ma(QS,cT,S) and domain discrepancies dd,Eu(cS,cT ) or dd,Ma(QS,cT ).
The variance VARD1 or the standard deviation σD1 of the samples x mapped
by tSNE contributes insights into the distribution of specific domain,

VarD1 =

√
∑

N
i=0(xD1,i−µD1)

N−1
. (4.12)

σD1 =

√
∑

N
i=0(xD1,i− cD1)2

N
. (4.13)

This is especially of interest for the translated samples xT,S ∈XS, as it al-
lows to expose defects in the translation model, such as mode collapse. These
transferred metrics can be visualized in 2D, are interpretable, and computa-
tional efficient.
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4.1.3 Applicability and Adaptation Specific Metrics

Currently, domain adaptation approaches are mainly evaluated based on
losses that are used during the training of the domain adaptation models.
A secondary approach is to qualitatively evaluate the semantic adaptation
capabilities by human assessment. However, both evaluation strategies over-
look the need to quantitatively depict the domain adaptation performance for
actual deployment. When applying domain adaptation, the approaches face
deployment requirements, and a particular approach’s adaptation character-
istic limits the deployment opportunities. These requirements and character-
istics are articulated as principal metrics for deployment and are annotation
efficiency, sample efficiency, model efficiency, computational efficiency, and
run-time efficiency. The set is by no means exhaustive and is intended to be
extended with respect to the specific deployment setting at hand.

Applicability and adaptation specific measures

Each applicability and adaptation-specific measure, taken after the domain
adaptation process ET , is referenced against the same measure ES taken from
the initial neural network before domain adaptation. In this way, the initially
supervised trained neural network serves as a baseline during deployment.
Further, the resulting normalization of the metrics to range from 0, meaning
no application of the domain adaptation is possible, to 1, meaning optimal
conditions for deployment of the method, allows for comparability across
approaches within the limitations Elim of a particular deployment setting.

Annotation efficiency eA depicts the annotation effort during domain adapta-
tion EA,T = #ỹT (see Sec. 1.4.2). The annotation effort is put in relation (see
Eq. 4.14) to the initial annotation effort in terms of the number of source
domain labels EA,S = #ỹS. This gives, eA is 1 if no further manual labeling
is required during domain adaptation, and 0 if the number of manual labels
equals or exceeds the number of labels EA,lim = #ỹS necessary for supervised
training. When assuming a constant task TS = TT during domain adapta-
tion, the annotation effort can be considered constant. As the annotation
effort ceases to be constant during domain adaptation, it is necessary to es-
timate and introduce a factor that maps the change of effort based on the
annotation effort of a single source domain sample to the effort for a sample
in the current domain.
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Sample efficiency eS measures the number of samples that need to be stored
together with their labels ES,T = #(xT , ỹ′T ) in order to be available during the
domain adaptation process for training. The sample efficiency is put in rela-
tion (see Eq. 4.14) to the initial sample efforts ES,S = #(xS, ỹS) for supervised
training. The limits of sample availability ES,lim usually originate from avail-
able memory or legal restrictions such as data protection regulations. eS is 1
if no samples ES,T = 0 need to be stored for domain adaptation, and 0 if the
necessary number of samples for domain adaptation can not be stored ES,lim,
or equal the initial sample efforts for supervised training.

Annotation efficiency eA and sample efficiency eS are calculated with respect
to the efforts during domain adaptation EA/S,T , as well as the efforts during
initial supervised training EA/S,S, limited by a marginal effort EA/S,lim,

eA/S =

{
max (0,1− EA/S,T

EA/S,S
), if EA/S,T < EA/S,lim

0, else.
(4.14)

Model efficiency eM is defined by the increase in model size during the do-
main adaptation process. Model efficiency eM puts the model’s memory re-
quirements before EM,S and after EM,T domain adaptation into relation (see
Eq. 4.15). The limited model size EM,lim arises from hardware constraints
such as available memory to store or transfer the model onto an edge de-
vice. eM is 1 if model size remains constant or decreases during domain
adaptation and 0 if it surpasses the memory resources for model storage.

Computational efficiency eC describes the number of operations or weight
updates EC,T = τT that are necessary during domain adaptation of the neu-
ral network in relation to the operations EC,S = τS necessary for supervised
training (see Eq. 4.15). Computational efficiency eC is 1 if the number of
operations equals the number of operations EC,S necessary for supervised
training in the source domain. Computational limitations EC,lim occur in
case the domain adaptation process needs to keep real-time requirements.
Thus, limited by the hardware’s computational capacity or the number of
samples that need to be trained on, the domain adaptation process can only
require a limited number of operations per adaptation step. Computational
efficiency eC is 0 if the number of necessary operations EC,T exceed the ac-
tionable operations EC,lim.
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Run-time efficiency eR refers to the average time (or the number of opera-
tions) needed for inference on a single sample after the domain adaptation
process is concluded. Run-time efficiency eR puts the run-time after domain
adaptation ER,T in relation (see Eq. 4.15) to the model’s initial run-time ER,S.
Run-time efficiency eR is 1 if the adapted model’s run-time equals the initial
model’s run-time. The eR is 0 for the maximum feasible inference run-
time ER,lim as defined by the application’s run-time requirements.

Model efficiency eM , computational efficiency eC, and run-time efficiency eR
are calculated with respect to the efforts during domain adaptation EM/C/R,T ,
as well as the efforts during initial supervised training EM/C/R,S, limited by a
marginal effort EM/C/R,lim,

eM/C/R =

{
min (1,

EM/C/R,S
EM/C/R,T

), if EM/C/R,T < EM/C/R,lim

0, else.
(4.15)

Aggregation of applicability and adaptation specific metrics

For the first time, the applicability and adaptation metrics are formulated for
domain adaptation processes under deployment.

Figure 4.3: For illustration, theoretical applicability and adaptation-specific metrics aggregated
into a radar plot. The range of the values is from the center out, e ∈ [0,1]. The effi-
ciency metrics e plotted along the respective axis, span the deployment area (blue).
The application-specific limiting boundary conditions Elim applied to the respec-
tive axis result in the no-deployment area (red). Adapted from [1].
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Merged, the subsequently presented measures define a set of central ap-
proach characteristics (see the red area in Fig. 4.3). Invoked by the prob-
lem statement’s requirements or resulting from the system and implementa-
tion limitations (see Fig. 4.3 and App. A), the applicability and adaptation
specific measures are transferred into an aggregated set of metrics, within
boundary conditions.

4.2 Purposed Benchmark Datasets

4.2.1 Overview and Ideation

As large-scale, unlabeled, and continuously expanding datasets emerge, and
as they begin to overwhelm supervised learning approaches, there is a need
for fully controllable and configurable benchmark datasets, designed with
the purpose to enable the development and evaluation of unsupervised do-
main adaptation approaches. This section introduces two novel benchmark
datasets. The leitmotif is the explicit specification of domain shifts (see
Fig. 4.1) within a dataset.

In the novel rotatedMNIST dataset (see Sec. 4.2.2), the domain-changing
characteristic emerges by rotations of the MNIST (see Sec. 1.4.1) source
domain samples. An innovation and key characteristic of the rotatedMNIST
dataset is the fully controllable, continuous domain shift. Based on the con-
figuration, this enables the evaluation of domain adaptation approaches for
discrete and continuous domain shifts.

By generation of the HeartSeg dataset (see Sec. 4.2.3), this work breaks
new ground for domain adaptation within semantic segmentation of biomed-
ical, sequential images. The dataset is purpose-designed to develop domain
adaptation approaches in the spatial and temporal domains.

Going by the example, these datasets shall be used as a reference for design-
ing further domain adaptation-purposed datasets or serve as toy-problems for
developing domain adaptation methods.

71



4 Purposed Datasets and Metrics for Domain Adaptation

4.2.2 rotatedMNIST Dataset

Overview and Ideation

The rotatedMNIST dataset1 [2] is an extension of the MNIST, handwrit-
ten digits dataset [45]. While the rotatedMNIST dataset’s task remains digit
classification, the novel dataset is enhanced for domain adaptation by simple,
continuous, or discrete, counterclockwise rotation (see Fig. 4.4). Bearing
the potential and characteristics of a large-scale dataset with a continuous
and forthcoming domain shift, the dataset aims at providing a novel go-to
benchmark dataset for continuous domain adaptation (see Sec. 3.3) in a fully
adjustable setting. Further advantages of the rotatedMNIST dataset are the
low computation and memory requirements per sample.

rotatedMNIST Dataset 

Counter-Clockwise Rotation

05

1

1 3

2

4

1

9

Figure 4.4: Exemplary illustrations of the MNIST dataset samples XS, and their according
digit annotations Ỹ (0◦ MNIST source domain D0). Further samples of the rotat-
edMNIST dataset are depicted from left to right, according to their major domain-
changing characteristic. The dataset arises through rotating the MNIST dataset by
small-angle steps, evoking a continuous domain shift relating to the spatial ori-
entation of the digits. The counter-clockwise rotations for 30◦ (D30), 60◦ (D60),
and 90◦ (D90) are shown exemplarily, for nine samples of the MNIST dataset.
Adapted from [2].

1 rotatedMNIST dataset: https://osf.io/qgj5d/
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Features

The rotatedMNIST dataset is based on the MNIST dataset of handwritten
digits, which has a training set of 60000 samples, and a test set of 10000
samples. The MNIST dataset X consists of N = 70000 handwritten digit
samples xi ∈ X, i = 1, . . . ,N, xi ∈ N28×28 and the respective, one-hot en-
coded labels ỹi ∈ Ỹ, i = 1, . . . ,N, ỹi ∈ [0; 1]10. A sample xi is a gray-scale
image (see samples in Fig. 4.4). The depicted digit within an image is cen-
tered with respect to its center of mass and respectively cropped, resulting
in the feature space X0 of 28× 28 pixels with pixel values in the range
of [0; 255]. The MNIST dataset is extended by simple, continuous, counter-
clockwise rotation of all samples by a set of angles α ∈ [0;αmax] starting at 0◦

with αmax being the maximal rotational shift and the target domain (for ex-
ample 90◦ in Fig. 4.4), resulting in the rotatedMNSIT dataset’s controllable,
continuous domain shift.

Labeling Policy

The one-hot encoded label ỹi indicates one of the digit classes [0; 9] pictured
in the corresponding sample xi, independent of the state of rotation α . The
continuous domains Dα = (Xα , Ỹ) consist of xα,i ∈ Xα and ỹi ∈ Ỹ. The la-
bels remain unaffected by the rotations and are thus adopted unchanged. For
the purpose of demonstrating domain adaptation capabilities, the labels Ỹα ̸=0
are used for validation only and are not accessed during training.

4.2.3 HeartSeg Dataset

Overview and Ideation

The HeartSeg dataset2,3 [3] (see Fig. 4.5) focuses on semantic understanding
of ventricle segments and dimensions in medaka (Oryzias latipes) along the
cardiac cycle captured in image sequences. The medaka fish is used as an
in-vivo model organism [101, 102] for a variety of subjects in biomedical
research [4].

Ventricle segmentation, in particular, contributes to the understanding of car-
diovascular diseases and the groundwork for the autonomous perception of
ventricular dimensions. The novel dataset is designed for the development

2 HeartSeg dataset: https://osf.io/snb6p/
3 Extended HeartSeg dataset: https://osf.io/uyk79/
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HeartSeg Dataset

Lateral view 48 hpf Zebrafish

Camera View

Figure 4.5: On the top, an exemplary illustration of a 48 hpf wildtype zebrafish in lateral view
is featured (adapted from [103]). Displayed are the HeartSeg dataset samples X
and their according annotations encoding the ventricle segment Ỹ as binary label
masks. Given, are three ventral samples (V1-V3) of a recording in temporal se-
quence (bottom to top) and three lateral samples (L1-L3). In the second sample,
the descriptions of the ventricle, bulbus arteriosus, and atrium are included in the
image. Adapted from [3, 12].
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and evaluation of domain adaptation approaches and transfer learning ap-
proaches. In this respect, the dataset is tailored to accommodate multiple do-
main shifts. In the temporal domain, the domain shift of the heart segments
is along the cardiac cycle, from diastole to systole. In the spatial domain,
the domain shift is between different sensor poses (lateral and ventral). In
the semantic domain, the domain shift is between different circulatory ves-
sels (ventricle, atrium, and bulbus arteriosus).

Features

The HeartSeg dataset (see Fig. 4.5) is based on an RGB-image feature
space X . The dataset is recorded as image sequences (at 17 fps with 25 or 50
images each) of the medaka’s ventricle (1-2 days after hatching of medaka
embryos from the fertilized egg). The images are captured from either a ven-
tral or lateral view, which can be differentiated into two domains within the
source domain. The images are taken with a 640× 480 px resolution. The
dataset is recorded by a stationary camera, with fixed focus (SMZ18 Nikon
6x magnification), featuring 59 image sequences. The dataset is split into
a training set (725 ventral samples from 29 sequences, 500 lateral samples
from 20 sequences) and a test set (250 ventral samples from 5 sequences, 250
lateral samples from 5 sequences). The training set and test set are disjoint.

Labeling Policy

The dataset features binary, semantic, dense pixel-level annotations of a
medaka’s ventricle segments. Annotations have been carried out by domain-
level experts and are made available for all sequences with an overall volume
of 1725 samples. Each frame has been annotated individually by manual la-
beling, supported by the brush-tool of the pixel annotation tool [104]. Anno-
tation of a single frame takes approximately 25 seconds. The labeling policy
ensures unperforated label masks. If some foreground is visible (such as
pigmentation), it is considered part of the ventricle segment.
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5.1 New Mobility Concepts and their Potential

A prediction based on the German In-Depth Accident Study estimates a 15
percent decrease in accidents [105] in longitudinal traffic until 2060 due to
progressive automation in Germany [106]. The Bundesanstalt für Straßen-
wesen [107], and the World Health Organization [108] expect beneficial
effects of vehicle automation for traffic safety: Predicting a diminution of
the margin for driving errors by the vehicle driver, as well as increased func-
tional safety of the algorithms of autonomous and automated vehicles. The
entry of autonomous vehicles into series production is bound to open up new
possibilities for individual mobility and public transport. To this day, ad-
vanced driver assistance systems were mainly focused on safety and comfort
benefits [109]. However, with autonomous vehicles emerging, more erup-
tive developments in the overall system are to be expected. This growth is
already evident in mobility as a service, car-sharing platforms, hybridiza-
tion of public transport, autonomous parking, and people movers. By 2025,
sales of more than 3.5 million vehicles worldwide with level 4 [110] driving
functions are expected. The added-value potential associated with the intro-
duction of highly automated driving in Germany has been estimated at up to
8.8 billion Euros. This positive economic starting point is also reflected in the
forecasts regarding the sales figures for artificial intelligence-based systems
in the automotive sector. Besides, the automotive industry has far greater
potential for exploitation: Deep learning-based applications will also pene-
trate the processes along the entire value chain of the Original Equipment
Manufacturers (OEM) and their suppliers, enabling mobility as a service ex-
ceeding the mere sale of autonomous vehicles [111].

5.1.1 Economic Potential

The concept of autonomous driving can be understood in terms of the defi-
nition of the fourth degree of automation, given by the BASt: "In a defined
use case the automated driving platform [system] completely executes the
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lateral and longitudinal guidance. Here, the driver does not have to monitor
the system. Before exiting the use case, the system calls on the driver to as-
sume the driving task with sufficient lead time. If the takeover does not take
place, the system returns to the risk-minimal state" [107]. According to the
World Health Organization (WHO), more than 1.2 million lives are claimed
by traffic injuries every year. In addition to being a health care issue, road
traffic accidents are a development issue for low- and middle-income coun-
tries, costing those governments approximately 3% of the Gross Domestic
Product (GDP) [108].

5.1.2 Safety Potential

In Germany in 2016 alone, 3206 people perished due to traffic injuries,
and 2.6 million further traffic accidents occurred according to the Statistis-
ches Bundesamt [112]. However, autonomous vehicles might soon sidestep
some of those traffic accidents. Therefore, to estimate the capabilities of au-
tonomous vehicles, regarding their ability to avoid and prevent traffic acci-
dents, a discriminate comparison of the overall performance between humans
and autonomous vehicles is inevitable. This comparison becomes possible
once the functional specification and the technical limits of autonomous ve-
hicles move into series development. At the same time, past and present traf-
fic accident data of conventional driver-controlled vehicles can form the basis
for direct knowledge of the significant accident causes and their changes over
time (see Fig. 5.1). A prediction based on the German In-Depth Accident
Study (GIDAS) shows an estimated 15 percent decrease of accidents in lon-
gitudinal traffic until 2060 due to progressive automation in Germany [106].
In accordance the Bundesanstalt für Straßenwesen (BASt) expects beneficial
effects of vehicle automation for traffic safety: They see a diminution of the
margin for driving errors by the vehicle driver, as well as increased functional
safety of the algorithms of autonomous vehicles [107].

5.2 On Implementation

The implementation details on neural network architecture, the training hy-
perparameters, and respective tooling are given in detail in the appendix (see
App. A.1). The implemented neural network architectures and their previ-
ously unseen deployment enable direct application in domains with contin-
uous and discrete domain shifts. Further, the implemented methods enable
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year dates

number of traffic deaths

Figure 5.1: Development of traffic deaths in Germany according to [105], displaying the prod-
uct launch of selected Advanced Driver Assistance Systems (ADAS) from 1953
until 2015.

continuous deployment or cross-domain adaptation. Research and develop-
ment of novel approaches are enabled by building upon the here presented,
publicly available implementation and repositories. The repositories for each
novel approach are designed to ensure the accessibility and reproducibility
of the developed methods. Besides, by providing the source code1,2,3 and
validation pipeline, the novel methods are open to being extended by fur-
ther research or transferred to other problem statements, datasets, or neural
network architectures. Providing trained neural networks, not least, enables
direct inference and deployment of the approaches and models on real-world
problem statements, such as night perception for autonomous driving and ad-
vanced driver assistance systems. The results and documentation given in the
repositories are elaborated in detail and discussed in the following sections
on application and results.

1 SSUP and SHALFS repository: https://osf.io/snmwt/
2 COSS and CUEB: https://osf.io/qgj5d/
3 HeartSeg repository: https://osf.io/snb6p/
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5.3 On Application and Experiments

Perception under deployment is becoming an increasingly complex task in
a continuously changing environment subject to dynamic conditions [5].
Hence, the context of cognitive perception systems moves from large-scale
annotated datasets to continuously expanding unlabeled datasets. Based on
the newly designed concept for unsupervised domain adaptation and the
novel developed approaches SSUP, SHALFS, and COSS (see Ch. 2), al-
gorithms need to be implemented and applied to models and applications.
The experimental results need to prove the functionality of the developed
methods, and their beneficial characteristics need to be evaluated according
to established and newly designed metrics (see Ch. 4). From the presented
findings, a general application to a wide range of problems within continu-
ous and unsupervised domain adaptation is deducible. For the first time, the
novel unsupervised domain adaptation concept demonstrates all aspects of
continuous development, including delivery, validation, and integration of
neural networks under deployment.

Notably in automated and autonomous vehicle deployment, the underlying
perception systems are subject to different versions, and development stages.
Due to the long service life of ground-based vehicles, a significant problem
for automobile manufacturers arises when autonomous vehicles are brought
into the market, implicitly introducing modules that depend on continuous
development and deployment. This renders the development of a perception
system that is finalized from the beginning neither economical nor realistic,
rather the systems will have to frequently adapt to newly faced requirements
outside of the initial operational design domain (ODD).

Driving at night is a safety-critical component within autonomous driv-
ing [113]. Even as traffic is reduced during night hours, in 2006, 32.2%
of road fatalities in the EU occurred during the night hours (6 pm to 6 am).
In 2005, 45% of all pedestrian fatalities in the EU occurred during night
hours. These statistics are similarly reflected in the USA and Japan. Nor-
malized to a vehicle mile, this approximately results in a three to four times
higher fatality rate during night hours. This imbalance in the fatality rate is
traced back to human perception: "Visual acuity, contrast sensitivity, spatial
resolution, distance perception and reaction time all deteriorate as overall
light levels do" [114]. Consequently, night conditions require autonomous
perception systems and advanced driver assistance systems.
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5.3.1 Autonomous Driving Night Domain Datasets

In perception applications for autonomous driving, deep learning architec-
tures are enabled by large-scale autonomous driving datasets (see Tab. 5.1)
and affiliated benchmarking, such as Cityscapes4 [115], and KITTI5 [116].

Dataset Images Classes Labels

Cityscapes [115] 20 k 30 380 k

KITTI [116] 14 k 8 350 k

Table 5.1: Representative extract of large-scale object detection datasets for autonomous driv-
ing, lacking large-scale night domain data, providing a context on size and specifi-
cations of large-scale datasets for supervised deep learning.

The state-of-the-art datasets and benchmarks for object detectors and other
models lack diversity concerning nighttime conditions. For instance, the
night domain share within foundation datasets is neglectable for super-
vised training: COCO (0.23%), ImageNet (0.03%), Pascal VOC (1.24%),
KITTI (0.00%). Nevertheless, in autonomous driving, object detection
needs to operate under conditions such as low contrast, homogeneity of
background, little color information, and low signal-to-noise ratio [117], as
experienced in tunnels, due to a heavily overcast sky and, in particular at
night. Early on, small-scale datasets such as the iROADs dataset [118] in
2014, and the LISA-Night Dataset [119] in 2012, indicate the need for night
domain data for object detection research. Until recently, the lack of pub-
licly available large-scale night domain autonomous driving datasets made
it impossible to train or validate data-driven object detection approaches on
the night domain. A similar lack is observed for weather conditions, such as
rain, fog, and snow [35, 44, 115, 116].

KAIST multi-spectral Dataset6 [120] aims at all-day perception within au-
tonomous driving, enabling object detection, drivable region detection, depth
estimation, and localization. Provided by the Korea Advanced Institute of
Science and Technology in 2019, the dataset covers urban, and residential

4 Cityscapes: https://www.cityscapes-dataset.com/
5 KITTI: http://www.cvlibs.net/datasets/kitti/
6 KAIST multi-spectral Dataset: http://multispectral.kaist.ac.kr/
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Dataset Images Classes Labels

KAIST multi-spectral [120] 95 k 3 > 305 k

Nighttime Driving [121] 35 k 19 50

BDD 100K [122] 100 k 10 > 1.1 M

Argoverse [123] 85 k 15 > 12.5 k

Boxy [124] 200 k 1 > 1.9 M

Exclusively Dark Image Dataset [125] 7.3 k 12 7.3 k

Table 5.2: Overview of state-of-the-art object detection datasets, which include data in the
night domain.

driving environments. It provides co-aligned thermal and RGB cameras. The
data has been recorded during sunrise, morning, afternoon, sunset, night, and
dawn. The dataset provides around 95k images with around 305k bounding
box annotations.

Nighttime Driving Dataset7 [121] targets semantic image segmentation of
nighttime scenes. Introduced in 2018, by the Computer Vision Lab of ETH,
it provides 50 pixel-wise semantic segmentation annotations for testing on
the night domain, and 35k unlabeled images ranging from daytime to twi-
light to nighttime.

BDD100K Berkeley Deep Drive Dataset8 [122] focuses on real-world au-
tonomous driving. Provided by the Berkeley Deep Drive Consortium, the
large-scale dataset of 100k videos comprises 100k annotated key-frames.
The annotations range from object bounding boxes with occlusion and trun-
cation information and class labels to lane markings, drivable areas, and
full-frame semantic segmentation. The images have been recorded in New
York and the Bay Area, including Berkeley and San Francisco.

Argoverse Dataset9 [123] strives to facilitate autonomous driving through
highly detailed maps. Made available by ARGO AI in 2019, Argoverse is
a 3D object tracking and motion forecasting dataset, including two high-

7 Nighttime Driving Dataset: http://people.ee.ethz.ch/ daid/NightDriving/
8 BDD100K: http://bdd-data.berkeley.edu/
9 Argoverse Dataset: https://www.argoverse.org/
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definition maps. The sensor set includes LiDAR and camera modalities.
Most important in this context is the share of nighttime recordings within the
dataset of 85k images.

Boxy Dataset10 [124] pursues the progress within vehicle detection on free-
ways. Contributed by BOSCH in 2019, the large-scale dataset includes a
diverse range of domains such as sunny, rainy, and nighttime driving. With
more than 1.9 million 3D bounding box annotations with pixel-level accura-
cies on 200k images, it allows to benchmark object detection in depth.

Exclusively Dark Image Dataset11 [125] supports research on object detec-
tion and image enhancement within low-light environments. Generated in
2019 at the University of Malaya, ExDark is a collection of 7363 low-light
images from very low-light environments with ten gradations and twelve ob-
ject classes annotated on both image class level and local object bounding
boxes.

5.3.2 Object Detection by Night

For object detection at night, research has been pursued with rule-based
approaches such as histogram equalization [126], and image contrast en-
hancement [117, 127, 128]. These approaches can be understood as pre-
processing, translation, or mapping directed from the target domain to the
source domain. Approaches targeting autonomous driving focus on detect-
ing the road [129] or the vehicles’ rear lights [130] under night conditions,
based on explicit rules or classifiers. Object detection has been addressed on
the sensory level by relying on different sensor modalities such as LiDAR,
Radar, or thermal cameras. However, RGB cameras represent the cheapest
and most commonly used type of sensor for object detection [43].

For a large part, rule-based approaches have been developed before deep
learning became a synonym for computer vision. Recently, data-driven ob-
ject detectors (see Sec. 1.3) enable accurate object detection in the day do-
main, where large-scale datasets are available (see Sec. 1.4). Yet, data-driven
approaches raise another set of issues, such as the effort of data acquisition
and annotation within a potentially infinite set of domains.

10 Boxy Dataset: https://boxy-dataset.com/boxy/
11 ExDark: https://github.com/cs-chan/Exclusively-Dark-Image-Dataset
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The evaluation of object detection (Faster-RCNN, see Sec. 1.3.2) on the
night data of the BDD100K dataset [122] shows an average precision drop
of 1.0% and, more concerning, a drop in recall by 12.6% and in the F1 score
by 13.4%. The BDD100K data is diverse, including various weather condi-
tions, scene types, cities, and different test vehicles for data recording. Even
more so, the findings reflect the need to extend the state-of-the-art object
detectors to the night domain in order to achieve reliable performance, in
particular for autonomous driving applications.

The drop clearly reflects the shortcomings of supervised learning on small-
scale datasets and, as a neural network needs to adapt to new domains and
needs to perform under an extended range of conditions. In this context,
performance with respect to the time of day is especially interesting, as the
perception task becomes more challenging with the adaptation to nighttime
conditions. The lack of large-scale, nighttime datasets prevents supervised
learning approaches. While at the same time, the continuous shift from the
day to the night domain, due to the circadian rhythm, predestines percep-
tion by night for, yet to be developed, unsupervised and continuous domain
adaptation approaches.
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5.4 Sample Supplementation Approach

5.4.1 Motivation

A significant domain gap (see Sec. 5.3.2) is observed for object detection
by night with a neural network trained only in the day domain. Neural net-
work training involves the acquisition efforts and preparation of an adequate
amount and diverse set of labeled data. Data annotation, especially in the
night domain, is often an ambiguous, expensive, time-consuming, and chal-
lenging task.

SSUP, the novel generative domain extension approach, creates target do-
main samples in the feature space of the night domain. Training on these ar-
tificial samples, being tied to the ground truth of their related source domain
samples, is proven to be an effective way to increase the target domain per-
formance of the neural network, for the first time, on the BDD100K dataset.
Further, the neural network’s (object detector’s) domain of operation (night)
is indirectly extended by training on generated data.

Subsequent experiments with SSUP aim at demonstrating the potentials and
limitations of artificial sample generation. As SSUP is closely associated
with retraining in a supervised manner, the results also cover the analysis of
induced catastrophic forgetting. Results are to be demonstrated for the use-
case of perception for autonomous driving at night, based on the BDD100K
dataset. The results ought to cover qualitative findings and quantitative anal-
ysis of how to close an object detector’s domain gap when retraining on
artificially generated data.

5.4.2 Night Training-Sample Generation

The night domain training-sample generation (see Fig. 5.2) is realized by
the generator part of an unsupervised image-to-image translation architec-
ture (see Fig. 3.4 and Sec. 3.1) on BDD100K [122] image samples at a res-
olution of 1280×720 px (for further details see Sec. 5.3.1). The implemen-
tation details on neural network architecture, the training hyperparameters,
and respective tooling are given in detail in the appendix (see App. A.1).
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D2 D3

D4 D5 D6

DN1 DN2 DN3

DN4 DN5 DN6

D1

DN1

Figure 5.2: Night training-sample generation from day to night. Original image samples xS
of the day domain (XS: D1 - D6) are randomly drawn from the BDD100K val-
idation data. The image samples are translated to the night domain xS,T : Day to
night (DN1 - DN6) translations are shown below the corresponding images. On
top, sample DN1 is displayed enlarged to enable a detailed, qualitative analysis of
the translated image. Adapted from [1].
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Semantic Adaptation

From a qualitative perspective, the generated night samples compared to their
source day samples show the characteristics that one expects from night do-
main samples; a decline of contrast (see D4 and DN5), reduced color, re-
duced expressiveness of semantic and structural details (see DN2 and DN3).
For background segments generated, night samples collapse into regions of
homogeneity in parts, leading to a complete loss of semantic information (the
pedestrian on the left edge of DN1 is hardly visible). These changes precisely
reflect the characteristics expected to be experienced in the night domain.

Semantic Artifacts

The generated night samples’ artifacts emerge, especially from former bright
areas and large pixel gradients translated into town lighting and traffic lights,
as seen in DN1 and DN5. Former sky and plant foliage segments default
into homogeneous dark areas, as seen in DN4 and DN6. Clouds that stand
out from the background translate into town light source artifacts (see the top
center in DN1 and the top left in DN6). Shading within the source domain
experiences an amplification (see the hard shoulders in DN3 and DN4), while
mirages and reflection remain comparatively constant (see the wet road in
DN2 and the cowling in DN5). For the most part, the artifacts do not impair
the generated samples’ semantic quality, particularly when compared to the
by far more potent overall change in the semantic state of the translation
from day to night, imposed by the generation process itself. Furthermore,
emerging artifacts are meaningful in the context of translation (see emerging
lamps and lighting in DN1 to DN6).

5.4.3 Visualizing Generative Shifts

From an application perspective discussing semantic artifacts is not expedi-
ent, as human analysis of semantic artifacts does not allow for conclusions
regarding the model performance or potential misclassifications attributed
to malign semantic artifacts. In the following, the newly developed adapta-
tion metrics (see Sec. 4.1.2) for quantifying translation quality are applied,
and their results are discussed in detail.By mapping samples from the (day)
source domain xS ∈XS and (night) target domain xT ∈XT and the sam-
ples xS,T generated in the night domain, it is possible to visualize emerging
generative shifts. Further, quantitative measures are obtained based on the
Mahalanobis distance for the domain discrepancy (dd,Ma = 15.40 see the
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left plot in Fig. 5.3), between target domain XT (night) and source do-
main XS (day) and the domain shift (ds,Ma = 11.89 see the right plot in
Fig. 5.3), between source domain XS (day) and the generated samples’ do-
main XS,T (generated night).
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Figure 5.3: The left plot shows the night target domain (dark blue) and day source do-
main (cyan). The right plot shows the centroid of the night target domain (dark
blue), the generated night target domain (transparent dark blue) in relation to the
day source domain (cyan). Both plots are based on the same 2D tSNE mapping
and visualize 100 random samples. The large dots with a black border depict the
centroids for each of the domains. Domain discrepancy and domain shifts are cal-
culated according to the Mahalanobis distance. The axes depict the two dimensions
of the tSNE mapping. Adapted from [1].

The distance between the target domain night samples and the generated
night samples is reduced to a domain discrepancy of dd,Ma = 1.10. Fur-
ther, it is to point out that the target domain’s underlying distribution stays
intact when generating night samples. The integrity of a domain’s distribu-
tion is quantified by the covariance matrices that stay at the same magnitude
of Cov(XT ) = [[1.13,−0.54], [−0.54,2.23]] for the night and Cov(XS,T ) =
[[3.23,−1.65], [−1.65,2.61]] for the generated night samples.
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5.4.4 Generative Domain Extension by Retraining

Usually, a neural network experiences a performance drop due to a domain
gap when inferred on a domain on which it has not been trained. For ex-
ample, object detection performance on the BDD100K validation data drops
when shifting operations from the day domain into the night domain (see
retrained on day in Tab. 5.3). In safety-critical cognitive perception systems
such as autonomous driving, recall is essential. Consequently, reducing the
number of false negatives and mitigating the significant decrease in recall for
object detection by night is a core objective.

Setting Day Domain Night Domain

Retrained on day
(baseline)
Recall 64.7 % 43.1 %
Precision 87.5 % 88.9 %
F1 score 74.4 % 58.1 %

Retrained on night
Recall 20.4 % (↓) 74.8 % (↑)
Precision 52.0 % (↓) 85.3 % (↓)
F1 score 29.3 % (↓) 75.0 % (↑)

Generative Domain Extension
Recall 25.0 % (↓) 50.3 % (↑)
Precision 50.0 % (↓) 71.1 % (↓)
F1 score 33.3 % (↓) 58.9 % (↑)

Table 5.3: Evaluation of the RFCN object detector on the BDD100K validation dataset with
respect to the recall, precision, and F1 score metrics. The IoU threshold is @0.5,
and the classification confidence threshold is @0.5. All models are initialized with
the COCO dataset. The last set of rows presents the results of the generative domain
extension approach by retraining the model for one epoch on generated night sam-
ples. The arrows reflect the change in performance with respect to the baseline.

The starting point is a neural network that has been pretrained on the day do-
main. Based on the ability to translate day samples into night samples (see
Sec. 5.4.2, and Sec. 5.4.3), the neural network is retrained on the generated
night domain samples, using the ground truth adopted from the former day
domain samples. Generated samples enable domain extension (see Sec. 3.1),
adapting to domains in which no annotated real-world training data is avail-
able, as for the night domain in the here presented experiments.
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Retrained on day functions as baseline, the RFCN (see Sec. 1.3) object de-
tector is evaluated on the day domain and night domain after being trained
with early stopping on the BDD100K day training data. Especially on unseen
samples within the unseen night domain, the model’s predictive performance
is problematic - establishing a Recall baseline of 43.1%. The RFCN object
detector is chosen as it is a well-balanced object detector centered within the
spectrum of performance and inference pace (details shown in Tab. 1.1).

Generative domain extension in perspective compares favorable, especially
for the safety-critical recall in the night domain: Improving to 50.3% com-
pared to the baseline’s 43.1%. Simultaneously, the F1 score in the day do-
main drops significantly due to the experienced catastrophic forgetting by
retraining, from 74.4% to 33.3% motivating the shift from targeted exten-
sion into a transfer approach. Generative domain extension within SSUP
provides an instrument for trading-off precision for recall.

Retrained on night experiments further sharpen the retraining capabilities
on generated data. Retraining with early stopping on the BDD100K night
domain data, the object detector achieves an F1 score of 75.0% in the
night domain, clearly outperforming the reference object detector’s perfor-
mance (58.1%) and the generative domain extension performance (58.9%).
However, this approach also endures the deterioration of the performance in
the day domain due to catastrophic forgetting during retraining, from 74.4%
to 29.3%.

The placement of the generative domain extension approach SSUP into the
context of deploying domain adaptation approaches is given and concluded
in Sec. 5.7.1, together with recommendations for application.
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5.5 Shared Latent Feature Space Approach

5.5.1 Motivation

SHALFS introduces the adaptation of a neural network to a target domain by
implicit image-to-image translation. In contrast to the generative domain ex-
tension (see Sec. 5.4), this method does not need any paired samples between
source and target domain, nor does it need labels to be available in either do-
main (find a detailed comparison in Sec. 5.7.2). Nevertheless, the novel
module is able to deploy object detectors in a target domain (night) it has
not been trained on by implicitly expanding the neural networks domain of
operation. SHALFS mitigates domain gaps. Even more so, the domain adap-
tation capabilities significantly improve in the target domain and are verified
by qualitative analysis of the image-to-image translation capabilities (see
Sec. 5.5.2 and Sec. 5.5.3), by quantitative analysis of the domain and shift
distances within a shared feature space embedding (see Sec. 5.5.4) and ex-
plicit object detector performance on the target domain (see Sec. 5.5.5).

Besides breaking ground for decoupling domain adaptation approaches from
retraining the neural network under deployment, the experiments on the
SHALFS intend to demonstrate the new-developed concept of cross-domain
adaptation. The results are to be shown for the use case of perception for au-
tonomous driving at night. The results mean to cover qualitative findings and
quantitative performance achievements within object detection, supported by
the novel domain adaptation metrics and visualization methods.

5.5.2 Night-to-Day Image Translation

The plain image-to-image translation (see Fig. 5.4) from night to day by the
domain adaptation module (see Fig. 3.4) is carried out on BDD100K [122]
image samples at a resolution of 1280×720 px. The implementation details
on neural network architecture, the training hyperparameters, and respective
tooling are given in detail in the appendix (see App. A.1).

Semantic Adaptation

The samples translated into the day domain demonstrate a qualitative in-
crease in contrast (see samples ND2 and ND3), improved color, and feature
expressiveness (especially see samples ND1 and ND4) in comparison to their
original counterparts in the night domain. The day-translated samples show
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N1 N2 N3

N4 N5 N6

ND1

ND2 ND3

ND4 ND5 ND6

ND1

Figure 5.4: Image-to-image translation from night to day. Original image samples xT of the
night domain (XT : N1 - N6) are randomly drawn from the BDD100K validation
data. The image samples are translated to the day domain xT,S: Night-to-day (ND1
- ND6) translations are shown below the corresponding images. On top, sample
ND1 is displayed enlarged to enable a detailed, qualitative analysis of the trans-
lated image. Later, the here presented qualitative results are quantified. Adapted
from [1].
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DA D DU

DAD DD DUD

T1 T2 T3

TD1 TD2 TD3

Figure 5.5: Image-to-image translation from dawn, day, dusk, or tunnel to day. Original image
samples xS of the dawn domain (DA), the day domain (D), the dusk domain (DU),
and tunnel samples (T) are randomly drawn from the BDD100K validation data.
The image samples are translated to the day domain xS,T : Dawn to day (DAD), day
to day (DD), dusk to day (DUD), and tunnel to day (TD) translations are shown
below the corresponding images. Adapted from [1].

an enhancement in human perception capabilities (such as the perception of
other traffic participants, see ND2, ND4, and ND5).

Semantic Artifacts

The translated samples show artifacts, particularly in regions of former ho-
mogeneities, such as background segments consisting of sky segments and
plant foliage (see ND1 and ND4). In the here presented context, automated
detection and marking of artifacts can be assumed to be feasible. To quan-
tify, the robustness and general occurrence of artifacts in the image’s upper
third (mainly consisting of sky segments) has been validated explicitly for
false positives of the object detector (here RFCN in Sec. 1.3). In the night
domain, the object detector experiences 13 false positives on the validation
set. The number of false positives determines a false positive rate of 0.27%
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in the translated domain, which by no means annul the quantitative benefi-
cial effects of the night-to-day translation, which are an order of magnitude
higher, as will be subsequently demonstrated. The results show that the ob-
ject detector performance is sufficiently robust for occurring artifacts in the
image-to-image translation, making artifacts in the upper third of the image
neglectable. Even though the experienced artifacts do not impair the object
detector performance to justify further filter operations, restricting the region
of interest of the image space prevents false positives implicitly and should
be considered in general.

Domain-Specific Influence

The translation achieves consistent results (see Fig. 5.5) when applied to the
source and intermediate target domains: Dawn (see DAD), day (see DD), and
dusk (see DUD) samples from a range of scenes included in the dataset (such
as highway, parking lot, city street, partly clouded, rainy, and others). Simul-
taneously, semantic features crucial to the detection task are preserved (as
quantified in detail by the beneficial effect of the domain adaptation, which
is subsequently analyzed), for example, in cars and persons.

5.5.3 Extended Side Mirror Deployment

The semantic adaptation achieved by the image-to-image translation is capa-
ble of enhancing human perception capabilities when it comes to night per-
ception. The in this work developed cross-domain adaptation module (see
Sec. 3.2.3) is deployed on a test vehicle, realizing the extended side mirror
application12 for maneuvering and reverse parking under night-time con-
ditions. The image input stream of both side cameras is translated from
the night domain into the day domain by deploying the novel cross-domain
adaptation approach. Subsequently, the translated images are visualized with
displays, which enhance the conventional side mirrors’ functionality.

The test vehicle for the E Side Mirror application is based on a Hyundai
platform (see Fig. 5.6). The platform has been ZF-customized and equipped
with a four-camera sensor setup. The deployed cameras are identical to
Sekonix SF3325 - one front-view camera, one rear-view camera, and the
two backward-facing side mirror cameras [131]. The image input stream,

12 This work contributes the algorithmic share of the winning project of the ZF Excellence Award
2019 in the category products and manufacturing processes - "The ZF Excellence Award is the
most important innovation competition within the ZF Group."
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E Side Mirror Test Vehicle

Figure 5.6: Test vehicle for the E Side Mirror application. Displayed on the left is the Hyundai
platform, showing the backward-facing side mirror camera, highlighted by the
cyan circle (for a more detailed specification of the Sekonix SF3325 [131]. The
sensor setup consists of four Sekonix SF3325 cameras. The field of vision of the
test vehicle is depicted in the upper right corner as a bird’s eye view. The circles
represent the camera’s mounting position.

N1

ND1

N2

ND2

N3

ND3

Figure 5.7: Image-to-image translation from night to day for images of the right backward-
facing side mirror camera. Original image samples xT of the night domain (XT :
N1 - N3) are recorded with the E Side Mirror platform for validation. The image
samples are translated to the day domain xT,S: Night-to-day (ND1 - ND3) transla-
tions are shown below the corresponding images.
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at 30 frames per second, is processed by the NVIDIA Drive PX2, based on
NVIDIA’s DriveOS [132], inferencing the novel image-to-image translation
model (see Sec. 3.2.3 and Sec. A.1). The translated images (see the bottom
row in Fig. 5.7) are visualized on SmallHD 702 LCD field monitors with a
resolution of 1920 × 1080, a color depth of 24 bit, 7-inch monitor with 1000
Nits brightness [133]. The E Side Mirror project is an Advanced Driver As-
sistance System (ADAS) that has reached concept and prototype level for
night perception. The objective is to make maneuvering at night safer and
more comfortable for human drivers13,14. In the following, SHALFS is being
evaluated qualitatively and quantitatively.

5.5.4 Visualizing Domain Discrepancies and Shifts

At this point, the evaluation of the image translation capabilities has been
qualitative only, displaying the translated samples for human inspection (see
Fig. 5.4). As this might be insightful for individual samples, this is not
feasible to state reliable performance metrics. In order to quantify domain
adaptation measures such as domain discrepancies and domain shifts of the
image-to-image translation, the tSNE algorithm is deployed (see Sec. 1.5.2).
This approach is crucial as it addresses the current research issue of how to
quantitatively evaluate GAN architectures, proposing feature embedding al-
gorithms. The domain discrepancy (see Fig. 5.8a) based on the Mahalanobis
distance in the two-dimensional tSNE feature space is dd,Ma = 4.41 for the
night and the day cluster. Further, a quantitative measure is obtained for the
domain shift ds,Ma (see Fig. 5.8b), realized by the image-to-image translation
from target domain XT (night) into the source domain XT,S (night-to-day).
During image-to-image translation, data samples xT drawn from a single
data distribution or domain (night) are being shifted into samples xT,S from
another data distribution or domain XS (day domain). The experienced do-
main shift in the two-dimensional tSNE feature space is ds,Ma = 0.95 for a
translation from night to day.

By image-to-image translation of the target domain, the domain discrepancy
to the source domain is reduced to dd,Ma = 3.52 between the centroids of the
source domain and the translated source domain; this explicates a reduction
in domain discrepancy of 20.18%. Quantifying the result of the unsupervised
domain adaptation by the tSNE algorithm shows the successful shift within
the feature space - see the qualitative result of the domain shift highlighted by

13 Patent on object detection for night perception systems [g]
14 Patent on lane detection and segmentation for night perception systems [n]
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(a) tSNE Mapping Night and Day Samples. The large dots with a black border depict the centroids for each
of the two domains depicting domain discrepancy dd,Ma between the night domain and day domain.
The samples D and N (indicated by a bold stroke around the circle) exemplary demonstrate the overlap
between the day and night domain and vice versa. Overlaps arise for day samples with night domain
characteristics, such as in tunnels (D), or for night samples with day domain characteristics, such as in
beneficial lightning conditions (N). Adapted from [1].

(b) tSNE Mapping Night and Night-to-Day Translated Samples. The large dot with a black border in dark
cyan represents the source/day domain centroid, depicting the effective domain shift ds,Ma from the
night domain to the night-to-day domain. The sample ND1 presents an example where the domain
adaptation failed, and a domain shift did not occur. ND2 shows a sample where the domain adaptation
into the day-to-night domain has been successful. Adapted from [1].

Figure 5.8: 2D tSNE mapping and visualization of 100 random samples from the target/night
domain (dark blue) and the corresponding source domain translations (cyan). The
axes depict the dimensions of the tSNE mapping.
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the centroids and the shifted point cloud in Fig. 5.8b. The tSNE algorithm,
combined with the novel adaptation quantity metrics (see Sec. 4.1.2), point
out failed domain adaptations, which manifest in minor or non-existent shifts
during domain adaptation, as perceivable in ND1 in Fig. 5.8b).

5.5.5 Domain Adaptation for Object Detection by Night

The results so far have shown that domains can be shifted from one to an-
other by unsupervised image-to-image translation. Further, SHALFS en-
ables cross-domain deployment for object detectors based on the presented
translation capabilities.

To demonstrate the quantitative performance effects of the cross-domain de-
ployment of object detectors, a night perception benchmark for domain gap
reduction based on a set of night perception datasets is set up in the following,
based on the BDD100K dataset, the Argoverse dataset, and the Boxy data-
set, as well as, newly defined and established domain adaptation metrics (see
Sec. 4.1), and an extensive set of publicly available, pretrained object detec-
tors. The object detectors are pretrained on the COCO dataset and subse-
quently inferred on either the original data of a night perception dataset or
the night perception data translated into the day domain by the cross-domain
adaptation module. The object detectors are evaluated at an operating point
with a confidence threshold @0.5 and an IoU threshold @0.5 to ensure com-
parability. The cross-domain adaptation module has only been trained on the
training data of the BDD100K dataset.

Precision and Recall

In safety-critical cognitive perception systems, recall is prioritized over pre-
cision. Simultaneously, in object detection by night, a significant decrease
in the recall is observed due to the neural network’s domain gap when it
is pretrained on the day domain only - for comparison, on the day domain,
the average object detector performs with an F1 score of 59.0%, precision
of 94.5%, and recall of 44.4%. In the night domain, the average object de-
tector performs lower with an F1 score of 45.1%, precision of 93.5%, and
recall of 31.8%.

The validation of the object detector set confirms a general performance
increase (see Fig. 5.9a) when deploying the novel cross-domain adaptation
module. On the BDD100K dataset the F1 score (std) increases on average
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(a) Night-to-day object detector precision over
recall on the vehicle class of the BDD100K.
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(b) Night-to-day object detector precision over
recall on the vehicle class of the Argoverse
dataset (see Sec. 5.3.1).

(c) Night-to-day object detector precision over
recall on the vehicle class of the Boxy dataset.

(d) Night-to-day object detector precision over re-
call on the pedestrian class of the BDD100K.

Figure 5.9: Precision over recall for a set of nine pretrained object detectors (see Sec. 1.3). The
performance is reported on the night domain (blue) and the translated night-to-day
domain (cyan). The large dots with a black border depict the average performance
over all object detectors for each of the domains. The RFCN object detector, which
in the following is subject to further detailed analysis, is highlighted by a broad,
gray border. The figure indicates an increase in recall, trading off with a decrease
in precision. Adapted from [1].
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by 3.9% (±3.5%), the recall by 3.4% (±2.6%), the precision decreases on
average by 1.3% (±1.3%).

Similar effects can be observed for the object detector set on other night
perception datasets as well, solidifying the findings. On the Argoverse data-
set (see Fig. 5.9b), the F1 score (std) increases on average by 4.9% (±2.6%),
the recall by 5.6% (±2.6%), and the precision decreases on average by
1.9% (±1.3%).

On the Boxy dataset (see Fig. 5.9c), the F1 score (std) increases on av-
erage by 2.9% (±2.3%) with respect to the object detector set, the recall
by 2.1% (±1.5%), the precision decreases on average by 6.9% (±10.6%).

Pedestrian Detection at Night

The demonstrated overall performance increase is reflected by the F1 score,
and the recall, in particular, is reproducible for the pedestrian class (see
Fig. 5.9d). The F1 score (std) increases on average by 4.7% (±3.2%), the re-
call by 4.3% (±1.5%), the precision decreases on average by 5.8% (±1.7%).
The targeted improvement of the cognitive perception systems in recall for
driving at night has been realized. The approach demonstrates a general
performance increase in the F1 score, independent of the deployed object
detector, across multiple night perception datasets and the object classes of
vehicles and pedestrians.

Performance on Individual Detectors

When analyzing the object detectors on an individual level, the findings (see
Fig. 5.10) confirm the in this work presented averaged trends. With a
decrease in model size and faster inference pace, fewer parameters, and
model capacity, the beneficial effects of domain adaptation on neural net-
work performance are amplified. For example on the BDD100K dataset,
the ssdlite_mobilenet_v2_coco (as introduced in Tab. 1.1) experiences an F1
score improvement of 11.7%, a recall improvement of 8.7% and a precision
drop of 2.5%, as opposed to the larger r f cn_ resnet101_coco (RFCN) which
experiences an F1 score improvement of 2.1%, a recall improvement of 2.4%
and a precision drop of 1.0%.
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Figure 5.10: The object detectors’ performances in percent on the translated night-to-day do-
main. The figure shows the change in performance for a set of nine individual
object detectors when translating the samples from night to day. The evaluation
has been carried out on the BDD100K validation dataset for vehicles. The evalua-
tion occurs at the operating point with an IoU threshold @0.5 and a classification
confidence threshold @0.5.

Receiver Operating Characteristic

Up to now, the effects of SHALFS’ cross-domain adaptation module have
to be interpreted as a desirable, beneficial trade-off centering on recall over
precision. The impression of being a trade-off is caused by the constriction
to a single operating point (see dots with gray border in Fig. 5.11a) with
IoU threshold @0.5 and a classification confidence threshold @0.5 during
evaluation.

A comprehensive analysis of the receiver operating characteristic (ROC) over
the whole operation space of an object detector reveals a general, benefi-
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cial effect of the cross-domain adaptation module beyond a single operating
point. The analysis follows a two-step approach:

1. Introduction of a representative object detector and its characteristics
within SHALFS cross-domain adaptation.

2. Broaden the analysis from a single operating point to the full operation
space.

The focus is put on one specific object detector to engage with a more de-
tailed analysis. The RFCN object detector is a well-balanced object detec-
tor centered within the spectrum of performance and inference pace (see
Fig. 5.10). The RFCN object detector is retrained on the BDD100K day
training data (see Tab. 5.4) and evaluated on the BDD100K validation data-
set. Validation on the day domain yields an F1 score of 74.4%. In the night
domain, the object detector achieves an F1 score of 58.1%, or an absolute F1
score object detection domain gap of 16.3% between the day domain and
night domain. After the SHALFS cross-domain adaptation, the F1 score do-
main gap is reduced to 11.1%.

Contrasting the precision over recall curve of the night domain (blue) with
the night-to-day domain (cyan), a positive performance shift (to the upper
right) is apparent (see curves in Fig. 5.11a). With an increase in the IoU
threshold (from @0.5 to @0.95), the increase in performance shift becomes
more distinctive and beneficial for the novel SHALFS cross-domain adapta-
tion approach. The same positive performance shift effect is perceptible in
areas that favor high recall over high precision. Concluding, the perceived
trade-off is a pseudo decrease in precision due to the fixed, single operation
point. In closing, SHALFS cross-domain adaptation provides an overall im-
proved performance for object detection in night perception (see the F1 Score
increase between the blue and the cyan line in Fig. 5.11b).

Alternative Training Schemes

A range of different training schemes is available for a model to learn object
detection by night, such as supervised training and retraining. For compar-
ison, the SHALFS is contrasted with various alternative training schemes,
and baseline approaches (see Tab. 5.4). The RFCN object detector is se-
lected as a model, as it constitutes a representative object detector according
to Fig. 5.10. The evaluation is carried out on the BDD100K dataset. In order
to evaluate the effects of the domain adaptation approach on the target and
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(a) Precision over recall for the night domain (blue color) and the night-to-day domain (cyan color), each
for an IoU threshold @0.5 (upper curves), and @0.95 (lower curves) respectively. Adapted from [1].

(b) F1 Score over IoU for the night domain (blue color) and the night-to-day domain (cyan color), each
averaged over confidence threshold @[0.05 : 0.9] with steps of 0.05. The superior performance of cross-
deployment in the night-to-day domain is apparent over different IoU values. The expected F1 Score
drop for high IoU thresholds is observable for deployment on either domain.

Figure 5.11: The performance characteristics are reported on the night domain (blue) and the
translated night-to-day domain (cyan). Notice the continuously present, positive
shift of the ROC curves for the night-to-day domain in relation to the ROC curves
for the night domain. The solid lines centered on dots represent the operating
points at an IoU @0.5 and confidence threshold @0.35, or @0.5 (dots with gray
border).
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source domain performances, the training schemes are evaluated on the day
domain DS and night domain DT of the BDD100K validation data.

Setting Day Domain Night Domain

Retrained on day
(baseline)
Recall 64.7 % 43.1 %
Precision 87.5 % 88.9 %
F1 score 74.4 % 58.1 %

Trained on COCO
Recall 54.3 % (↓) 40.3 % (↓)
Precision 92.7 % (↑) 92.5 % (↑)
F1 score 68.5 % (↓) 56.1 % (↓)

Retrained on night
Recall 20.4 % (↓) 74.8 % (↑)
Precision 52.0 % (↓) 85.3 % (↓)
F1 score 29.3 % (↓) 75.0 % (↑)

Retrained on day and night
Recall 76.9 % (↑) 75.6 % (↑)
Precision 74.2 % (↓) 66.5 % (↓)
F1 score 75.5 % (↑) 70.8 % (↑)

Cross-domain adaptation
(SHALFS)
Recall 64.9 % (↑) 50.2 % (↑)
Precision 87.3 % (↓) 85.7 % (↓)
F1 score 74.5 % (↑) 63.3 % (↑)

Table 5.4: Evaluation of the RFCN object detector on the BDD100K validation dataset is for
an IoU threshold @0.5 and a classification confidence threshold @0.5. All models
are initialized with the COCO dataset.

Trained on COCO directly deploys the publicly available RFCN object de-
tector that has been pretrained on the COCO dataset. An in-depth com-
parison with other object detectors is available in Fig. 5.10). The pretrained
RFCN object detector demonstrates the beneficial effect of retraining on des-
ignated data by reporting an overall lower performance than the retraining
scheme. The F1 score is 68.5% in the day domain and 56.1% in the night
domain.
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Retrained on night is the supervised retraining scheme targeting the night
domain and has the object detector retrained on the BDD100K night domain
data. In the night domain, the retrained object detector achieves an F1 score
of 75.0%, outperforming the reference and domain adaptation approach’s
object detection capabilities. However, the catastrophic forgetting during re-
training and, consequently, deterioration of performance in the day domain
must not be overlooked. The retrained object detector drops to an F1 score
of 29.3%, thus underperforming all other approaches evaluated in the day
domain.

Retrained on day and night is the third retraining scheme and allows retrain-
ing of the object detector with early stopping on the BDD100K day domain
and night domain data. The retrained object detector achieves an F1 score
of 70.8% and a recall of 75.5% in the day domain, outperforming the refer-
ence and domain adaptation approach’s object detection capabilities, evalu-
ated in the night domain. However, the required annotation effort (eA = 0)
and the compilation and the memory requirements (eS = 0) of a combined
dataset that needs to be kept in storage during training are not negligible in
a holistic evaluation as laid out in the newly introduced applicability and
adaptation specific metrics (see Sec. 4.1.3).

SHALFS cross-domain adaptation deploys the reference object detector re-
trained on day, which has been retrained on the BDD100K day domain data
within the cross-domain adaptation approach: The day domain is translated
into the day-to-day domain, and the night domain is translated into the night-
to-day domain for evaluation (see Sec. 3.2.3). As expected, based on previ-
ous findings (see Sec. 5.5.5), the novel cross-domain adaptation approach
yields improved object detection performance both in the day domain (an F1
score of 74.5%) and night domain (an F1 score of 63.3%). SHALFS is capa-
ble of closing the domain gap in object detection at night. The outcome is an
average recall improvement by 7.1% while decreasing the average precision
by 3.16%. This amounts to a reduction in the F1 score domain gap of an
absolute 5.3% in the night domain (see Tab. 5.4).
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5.6 Continuous Self-Supervision Approach

5.6.1 Motivation

Domain adaptation often causes a performance drop in the source domain -
catastrophic forgetting. On top of that, emerging domains are often heavily
shifted and vary widely from the source domain, making current context-
based approaches ambiguous by disregarding available knowledge of the
data distribution and, here, a continuous shift. Thus the continuous domain
adaptation approach is assessed by means of the domain adaptation perfor-
mance metric DA (see Eq. 4.3) and catastrophic forgetting metric CF (see
Eq. 4.4).

COSS demonstrates the efficient extension and domain adaptation of exist-
ing neural networks. The approach deploys a continuous data distribution
shift prior, together with preexisting knowledge of the source domain.The
continuous domain adaptation approach is sufficient to render target domain
labels unnecessary by pseudo-label deployment while preserving source do-
main performance utilizing a cue.
Experiments with COSS for the first time target domain shifts, which only
become apparent during deployment. Further, the results enable to analyze
the robustness and limits of applicability and especially the potential of by-
passing catastrophic forgetting in a continuous unsupervised setting with
CUEB.

5.6.2 The Mechanism of Continuous Domain Adaptation

COSS is implemented for classification, and the evaluation is carried out
on the validation set of the MNIST dataset and rotatedMNIST dataset. The
implementation details on neural network architecture, the training hyper-
parameters, and respective tooling are given in detail in the appendix (see
App. A.1).

The approach-specific hyperparameters (see Tab. 5.5) are analyzed, and the
hyperparameters’ influence on domain adaptation and catastrophic forgetting
is investigated to discuss the mechanism of the novel continuous domain
adaptation approach.
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Hyperparameter Description Abbreviation Range of Values

Opening training epochs on D0 o {1,10,50}
Epochs retraining on D0 r {0,1,2,3,5}
Epochs training on Dα+∆α n {1,2,3,5}
Inter-domain step size ∆α {0.1,1,2,10}
Pseudo-label confidence threshold c {0.0,0.5,0.9}

Table 5.5: Configuration hyperparameter space of COSS, with the abbreviations of the hyper-
parameters and the corresponding range of values in which the hyperparameters
have been considered.

For the analysis, two guiding metrics have been defined (see Sec. 4.1.2),
maximizing domain adaptation performance DA (see Eq. 4.3) and minimiz-
ing catastrophic forgetting CF (see Eq. 4.4). Initially, each configuration
of the range of values of the hyperparameter configuration space has been
considered and processed within a grid search scheme. It is necessary to
remark that for searches that have a single optimal hyperparameter as ob-
jective, random search [134] is recommended due to the extensive training
expenses inherent to neural networks on large-scale datasets. However, in the
following, the full configuration space is searched and analyzed to provide a
methodology for hyperparameter selection within COSS. Noticeable cluster
formations and areas of high performance are highlighted in the following
and linked to the according hyperparameter decision, enabling the transfer
of the found pattern to other datasets and tasks. The general optimization di-
rection is towards increasing domain adaptation capabilities while reducing
catastrophic forgetting (see Fig. 5.12a).

Inter-Domain Step Size (∆α)

Evaluating the influence of the hyperparameters, ∆α the inter-domain step
size stands out as the most influential hyperparameter with respect to do-
main adaptation capabilities. The inter-domain step size ∆α correlates in-
versely DA (see Fig. 5.12b) and there is no configuration DA ≥ 0.38 with-
out ∆α = 0.1
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Domain Adaptation (DA)
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(a) Visualization of the complete hyperparameter configuration space (see Tab. 5.5) of the continuous
domain adaptation approach. The configuration space is displayed within the dimensions of catastrophic
forgetting CF and domain adaptation DA. The gray arrow illustrates the general optimization direction.

(b) Impact of the inter-domain step size ∆α hyperparameter on the absolute domain adaptation perfor-
mance and absolute catastrophic forgetting. The inter-domain step size ∆α , here the angular change due
to the rotation, defines the domain gap’s magnitude that is bridged during a single adaptation step. The
blue dots represent the configurations for an inter-domain step size of ∆α = 0.1. The cyan line shows
the maximal domain adaptation performance for configurations with larger inter-domain step sizes.

Figure 5.12
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The inter-domain step size ∆α defines the prior’s utilization of the contin-
uous domain shift within the dataset. The continuous domain adaptation
approach is based on a step-wise domain adaptation on intermediate do-
mains. The inter-domain step size ∆α specifies how far the model moves
along the domain shift during a single adaptation step (see Fig. 3.7).

Appointing ∆α = 0.1 improves DA to 0.84 (±0.03) and CF reaches an aver-
age of 0.17 (±0.33). The standard deviation of CF and the plotted configu-
rations with ∆α = 0.1 (see blue dots in Fig. 5.12b) make the formation of a
cluster due to one of the other hyperparameters apparent.

Epochs Retraining (r)

The retraining r on the source domain data, which is done subsequent to each
of the training sequences on the intermediate target domains (see Alg. 1 and
Sec. 3.3.2) has a major impact on capabilities to limit catastrophic forgetting.

When it comes to catastrophic forgetting, any number of epochs greater than
zero of retraining r on the source domain lessens the deteriorative effect on
the source domain performance. Due to repeated supervised retraining on the
source domain, source domain knowledge and performance are preserved
within the model. This finding emerges particularly clearly when study-
ing the catastrophic forgetting for zero epochs retraining (see blue dots in
Fig. 5.13a). When retraining for one or more epochs r ≥ 1, the catastrophic
forgetting drops significantly, meaning below a CF of 0.2 for each of the
configurations. It is to be kept in mind that bypassing catastrophic forget-
ting is not to be treated as an end in itself, and the requirement needs to be
specified in alignment with the use-case at hand.

Training on Intermediate Target Domain (n)

The number of epochs n the model is recurrently trained on the interme-
diate target domain, enabled by self-supervised generated pseudo-labels, is
the central component of the domain adaptation approach (see Alg. 1 and
Fig. 3.7), and thus is invariably enabled (n≥ 1).

The number of epochs trained n on an intermediate target domain decides the
model’s level of convergence on the current, intermediate target domain (see
blue dots in Fig. 5.13b). A larger number of epochs means a further pro-
gressed convergence and adaptation across past domains. Moreover, the
higher the intermediate target domain performance, the higher the quality
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(a) Impact of the epochs retraining r hyperparameter over combinations of the hyperparameter configu-
ration space (see Tab. 5.5), on the domain adaptation performance and the catastrophic forgetting. Blue
dots show configurations with no retraining (r = 0). The cyan line shows the maximal catastrophic for-
getting for configurations with retraining (r≥ 1). Retraining on the source domain mitigates catastrophic
forgetting by safeguarding the source domain knowledge during repetitive retraining.

(b) Impact of the number of epochs trained on the intermediate target domain n on the absolute do-
main adaptation performance and absolute catastrophic forgetting over combinations of the hyperpa-
rameter configuration space (see Tab. 5.5). Training on the intermediate target domain n is the means to
adapt the neural network. Thus, this hyperparameter controls the extent to which adaptation takes place.
The blue dots show configurations with five epochs training on the intermediate domain (n = 5). These
configurations include the best domain adaptation performances (best DA performance is marked by the
blue line).

Figure 5.13
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of the self-supervised generated pseudo-labels become for the second next
intermediate target domain, and greatly determine the successful progression
towards the target domain.

Opening Training Epochs (o)

The opening training epochs o define the number of epochs the model is
initially pretrained on the source domain data in a supervised manner (see
Sec. 3.3.2 and illustrated in the first row of Fig. 3.7). The opening training
epoch-hyperparameter o determines how strong the source domain know-
ledge is encaptured within the source domain model. A large number of
opening training epochs corresponds to an increase in source domain per-
formance and an already proceeded convergence of the model on the source
domain.

The opening training epochs hyperparameter does not correlate with catas-
trophic forgetting (see Tab. 5.6). Whether the model forfeits its source do-
main performance is not determined by the initial source domain perfor-
mance or knowledge it initially acquired. Nevertheless, the opening training
epochs hyperparameter strongly correlates with the domain adaptation and
self-supervised adaptation capabilities to intermediate target domains, espe-
cially the first adaptation step starting out from the source domain. At the
same time, the effect of the opening training epochs on domain adaptation
is superimposed by the effects of other hyperparameters to the end that a
visualization comparable to Figure 5.13 is of no avail.

However, the beneficial effects of increasing the number of opening training
epochs are tied to the source domain performance converging to 97.8% for 50
opening training epochs (as depicted in the upper left corner of Fig. 5.14a).
The performance convergence makes experiments for larger numbers of
opening training epochs unnecessary. The initial source domain performance
has a considerable influence on the pseudo-label quality and thus positively
influences the domain adaptation capabilities.

Pseudo-Label Confidence Threshold (c)

The pseudo-label confidence threshold c correlates little with the domain
adaptation and less with catastrophic forgetting (see Tab. 5.6). For small
intermediate domain step sizes such as 0.1, the neural network remains con-
fident, as expected, following the assumption of superimposition of two ad-

111



5 Applications in Unsupervised Domain Adaptation

jacent domains. In contrast to expectation, even larger intermediate-domain
step sizes, such as 2 or 10, which, judged by the domain adaptation per-
formance, break the assumption of superimposition, do not show increased
uncertainty within the model. This alludes to the circumstance that the con-
fidence of a neural network’s predictions loses its expressiveness when leav-
ing its source domain. The predictive confidence of a neural network is often
misinterpreted as an estimate of model uncertainty. Especially in the con-
text of domain adaptation, the here presented findings highlight this bias and
urge future research in the direction of uncertainty estimation under domain
shifts.

5.6.3 Capabilities of Continuous Domain Adaptation

Having studied the fundamental hyperparameters (see Tab. 5.5) and having
understood their influence (see Sec. 5.6.2 and Tab. 5.6) within the continuous
domain adaptation approach, allows to analyze the capabilities and limita-
tions of the novel continuous domain adaptation approach.

Guiding Metrics Hyperparameters

o r n ∆α = 0.1 c

Guidance (↑) (∼) (↑) (↓) (−)
DA 0.39 0.33 0.15 − 0.00

CF 0.00 −0.64 0.02 − 0.00

Table 5.6: Pearson correlation of the configuration hyperparameters with respect to the contin-
uous domain adaptation metrics DA and CF . The correlations are calculated for ∆α

set to 0.1, removing the impact of configurations that collapsed during continuous
self-supervised domain adaptation due to a large intermediate domain step. The
first row provides generalized guidance to set the hyperparameter configuration:
Arrows indicating the direction in which the value of the hyperparameter should be
optimized, (−) indicating that the approach is agnostic to the parameter, and (∼)
indicating a use-case dependency of the hyperparameter.

This subsection will focus on the top of the class continuous domain adap-
tation configurations within the configuration space (as defined in Tab. 5.5)
on the rotatedMNIST dataset. Taking a closer look at configurations with
optimal performance on the key performance indicators, domain adaptation
(DA) and catastrophic forgetting (CF), enables analyzing the capabilities of
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Configuration Metrics

DA CF fK(std)

(I) o50_r0_n5_∆α0.1_c0.0 0.868 0.840 0.567 (0.324)

(II) o50_r1_n5_∆α0.1_c0.9 0.862 0.016 0.882 (0.087)

(III) o50_r2_n1_∆α0.1_c0.0 0.847 0.004 0.912 (0.053)

Table 5.7: Optimal (highlighted in bold) performing self-supervised continuous domain adap-
tation configurations concerning domain adaptation DA, catastrophic forgetting CF ,
and mean accuracy fK(std) after the last adaptation step. Configuration (I) achieves
the optimal DA, demonstrating the capability to reach source domain performance
in the target domain continuously. Configuration (II) achieves the optimal trade-off
between CF and DA, when weighted equally. Configuration (III) achieves the lead-
ing built knowledge factor fK , when all domains are taken into account, as well as
the optimal CF , demonstrating the ability to limit catastrophic forgetting during the
continuous self-supervised domain adaptation process.

continuous domain adaptation, which are: Achieving source domain perfor-
mance in the target domain, limiting catastrophic forgetting in the source
domain, coping with the domain gap width, and coping with constant, con-
tinuous adaptation repetitions (see Tab. 5.7).

Achieving Source Domain Performance

Central to any domain adaptation approach is its capability to adapt to a
target domain, aiming for source domain performance. Based on a con-
figuration with exclusively training self-supervised (see configuration (I)
in Tab. 5.7), the capability for domain adaptation into the target domain
is optimal. The characteristics of the domain adaptation approaches are
depicted (see Fig. 5.14) within the novel validation system (introduced
in Fig. 4.2).

The source domain accuracy of the model trained on the source domain
is 97.8% (see cyan dot with gray border in the upper left corner of Fig. 5.14a)
and used as a reference point and baseline for the domain adaptation ap-
proach. The initial model has a target domain accuracy of 11.1%, approx-
imately equivalent to a random classifier’s performance (≈ 10%) for a task
with ten classes (digits from 0 to 9). Once the domain adaptation process
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is completed, the target domain accuracy achieves 97.8% (see blue dot with
gray border in Fig. 5.14a), reaching source domain performance in the tar-
get domain. A closer inspection (see dots with a gray border at the top
in Fig. 5.14a) makes evident that this finding holds for each intermediate
domain, continuously reaching source domain performance during adapta-
tion: 97.8%, 98.1%, 98.0%, 98.0%, 97.9%, 97.9%, 97.8%, 97.7%, 97.8%,
and closing 97.8%.

Further, a drop in domain performance is observable once the model adjusts
to the adjacent intermediate target domain. Both the performance increase
and deterioration follow a wave-shaped pattern. The more distant the contin-
uously adapted model gets from a specific domain, the more the performance
deteriorates. For example, the source domain performance drops to an accu-
racy of 13.9% when the model just reaches the target domain (see cyan dot
with gray border in the lower right corner of Fig. 5.14a). This effect is best
known as catastrophic forgetting. Limiting catastrophic forgetting is another
central aspect of domain adaptation approaches.

Limiting Catastrophic Forgetting

The most salient difference when comparing configurations (see Tab. 5.7)
with retraining on the source domain (see Fig. 5.14b and Fig. 5.14c), with
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(a) Configuration (I): Zero epochs retraining, five epochs adaptation training.
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(b) Configuration (II): One epoch retraining, five epochs adaptation training.
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(c) Configuration (III): Two epochs retraining, one epoch adaptation training.

Figure 5.14: COSS showing different levels of catastrophic forgetting. Development of the
classification accuracy over the continuously adapted domain, the model has
been trained on in the process of continuous self-supervised domain adaptation.
The colored lines (from the cyan source domain to the blue target domain) repre-
sent the evaluation on a set of domains (for a domain indication, see the colored
captions), ranging from the source to the target domain. The dark blue line, for
example, represents the evaluation on the target domain over the domains that
have been continuously reached by the model at a given step within the adaptation
process. The accuracy of a model evaluated on a domain, once the model contin-
uously reaches the target domain, is depicted as a colored dot with a gray border.
Adapted from [2].
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those that do not retrain (see Fig. 5.14a), is the absent drop in accuracy
after the domain has been adapted to. Especially once reaching the target
domain, this is reflected by the built knowledge factor fK (std) over all do-
mains (see definition in Eq. 4.6). For configuration (I), without retraining, fK
is 56.7% (±32.4%). For configuration (II), with a single epoch of retrain-
ing, fK rises to 88.2% (±8.7%). Catastrophic forgetting in the source domain
almost vanished (CF of 1.6%) while keeping the domain adaptation DA at a
comparable level of 86.2%. Retraining also has a major effect on the stan-
dard deviation of the accuracies, reducing the standard deviation by 73.15%.

The order in which the model performs on different domains when reach-
ing the target domain allows further observations (see Fig. 5.14b). Domains
that only have been recently adapted to, as expected, rank highest for ac-
curacy: 90 (97.6%) and 80 (97.1%); the same holds for the source domain
that has been used for retraining: 0 (96.3%). To be highlighted is the subse-
quent order of the domains’ performances, which get in line with respect to
a domain’s distance to the domains that have been trained on the latest (D0,
and D90,), meanwhile dropping in accuracy: 10, 70, 20, 60, 30, 50, and fi-
nally 40 (72.6%). The domains located closer to the target domain and thus
to the side that experiences five times the number of training epochs have an
accuracy advantage.

Once the training ratio is inverted and moderated, resulting in a single adap-
tation training epoch and two epochs retraining (Fig. 5.14c), the order in
which the model performs on different domains conforms to the expecta-
tion. Domains close to the source domain, used for training, rank highest
for accuracy: domain 0 (97.6%) and domain 10 (96.1%); the same holds
for domains that only have been recently adapted to, domain 80 (95.7%)
and domain 90 (95.2%). The case of the target domain running up behind
domains 0, 10, and 80 is due to incomplete convergence, which is a result of
the low number of training epochs the model has experienced for adaptation
in the target domain. Similar effects can be found throughout the adapta-
tion process. For example, when reaching domain 80, accuracy on domain
70 (96.0%) outperforms accuracy on domain 80 (95.6%). Respectively con-
tinued, this pattern is consistently observable.

When overlaying configuration (II) and (III), the mitigation of the conver-
gence, by reducing the number of adaptation training, becomes even more
apparent (see solid lines in Fig. 5.15). First, the optimal in-domain accu-
racy, as evaluated on the respective domains, of configuration (III) falls short
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Figure 5.15: Development of the classification accuracy over the continuously shifting do-
mains the model has consecutively been trained on in the process COSS. The
dashed lines represent configuration (II) (one epoch retraining, five epochs adap-
tation training), and the solid lines represent configuration (III) (two epochs re-
training, one epoch adaptation training). The evaluation of the two configurations
is compared with each other on the exemplary domains 30, 60, and 90. The bar
pattern between two lines evaluated on the same domain highlight the shift of
their accuracy development during continuous domain adaptation. When continu-
ously reaching a domain, a model’s accuracy evaluated on that domain is depicted
as a colored dot with a gray border.

compared to configuration (II). Besides, the accuracy gained per adaptation
step (see the green area between dotted and solid lines in Fig. 5.15) is higher
for configuration (II) when approaching the in-domain performance. At the
same time, configuration (II) shows a higher loss in accuracy per adaptation
step when moving away from the in-domain (see the red area between dotted
and solid lines in Fig. 5.15). These two effects can be traced back to the dif-
ferent ratios of retraining and adaptation training results and become visible
in two intersections of the configurations’ curves.

Nevertheless, configuration (III) shows a long-term sustainable and more sta-
ble development of the overall accuracies with slight accuracy deterioration,
little catastrophic forgetting of 0.4%, and in comparison, an improved mean
accuracy of 91.2% and a further reduction in the standard deviation of the
accuracies to 5.3%. (see the entire performance in Tab. 5.7).
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Coping with Adaptation Step Size

Domain gap width or the continuous domain shift’s adaptation step size is
central to the self-supervised continuous domain adaptation approach. This
has been analyzed and established in Fig. 5.12b. In consequence, the general
applicability of the continuous domain adaptation approach depends on how
far the domain adaptation can reach in a single adaptation iteration. Data
preprocessing, here, controlled rotation is able to influence the domain width
between two adjacent domains. However, this controllability and potential
for influence can not be taken for granted and is highly dependent on the
configurability of the dataset and task. Based on configuration (III) (see
Tab. 5.7), the capability and reach of bridging the domain gap by the self-
supervised continuous domain adaptation approach is elaborated and visual-
ized (see Fig. 5.16).

Figure 5.16: Development of the classification accuracy over a log-scale of the adaptation
step size (inter-domain step size ∆α) during the process of the continuous self-
supervised domain adaptation (see configuration (III) in Tab. 5.7). The classifica-
tion accuracy is visualized for an evaluation on the source domain (cyan dots with
gray border) and the target domain (blue dots with gray border). The lower solid
gray line depicts the performance of a random classifier, and the upper solid line
represents the lower end of the source domain performance. Adapted from [2].

From the previous configuration analysis (see Fig. 5.12b), it is evident that
the smaller the gap or shift between two adjacent domains, the more suc-
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cessful the continuous domain adaptation becomes. Up to now, smaller step
sizes have been equivalent to an increased number of overall training epochs.
Compensating for the number of epochs, they have been scaled concerning
a configuration with an intermediate step size of ∆α = 0.1. This results
in r ∗∆α/0.1 epochs retraining and n ∗∆α/0.1 adaptation training epochs.
The observations remained comparable, whereas smaller domain steps are
highly beneficial to the approach.

Increasing the domain step between two adjacent domains, at some point,
breaks the approach’s initial assumption of superimposition (see Sec. 3.3),
which is necessary to ensure the validity of the model’s prediction and accu-
racy of the pseudo-label generation. Thus, the exponential decline in domain
adaptation performance does not come as a surprise, as errors in the pseudo-
label generation propagate and build up the prediction error. Defining the
range in which an approach is functional is ambiguous without referring
to a specific use case. The missing-context impediment is resolved by the
deployment of heuristic baselines to enable the assessment of approach per-
formance into two stages. The first baseline is at ≈ 75%, at the lower end
of source domain performance, up to the point of ∆α ≤ 0.3◦ (88.4%) where
domain adaptation and source domain performance are in an equal position.
The second baseline is at ≈ 10%, the performance of a random classifier,
starting with ∆α ≥ 4◦ (12.8%), the effects of domain adaptation are no
longer measurable. As the retraining is performed in a supervised manner,
there is only a slight increase in catastrophic forgetting ∆α ≤ 0.3◦ (2.5%),
which becomes more visible when the adaptation process falls apart in gen-
eral ∆α ≥ 4◦ (20.0%).

Coping with Adaptation Repetitions

Self-supervised domain adaptation in practice targets the deployment within
applications that inherit a constant, continuous shift. This Section concen-
trates on the convertible performance guarantees when coping with a large
number of adaptation repetitions is crucial for continuous adaptation while
experiencing deployment shift. Further deployment-specific and use-case-
oriented considerations are postponed (see Sec. 5.7.1).

In the last consequence, the general applicability of continuous domain adap-
tation depends on coping with a large number of iterative adaptation repe-
titions. Based on a configuration without retraining (see (I) in Tab. 5.7),
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Continuously Adapted Domain
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Figure 5.17: Development of the classification accuracy over multiple continuous domain shift
repetitions in which the model is being adapted through COSS. The plot depicts
the accuracy development over three 360◦ rotations (revolutions are reflected
by a spinning arrow on the cyan ground, with the respective count). The lines
represent the evaluation of configuration (I) (no retraining, five epochs adaptation
training) on a set of domains for improved clarity, exemplary for domains 0, 45,
and 90. When continuously reaching a domain, the model’s accuracy evaluated on
that domain is depicted as a colored dot with a gray border.

the limits of adaptation repetitions by the self-supervised continuous domain
adaptation approach are elaborated and visualized in Fig. 5.17.

The previously presented experiments (see Fig. 5.14 ff.) only demonstrate
COSS’ ability for continuous domain adaptation on the rotatedMNIST in
the limited range from 0◦ to 90◦. In theory, continuous domain adaptation
can be repeated infinitely. Due to the ideally suited characteristics of the
rotatedMNIST dataset, which allows for an infinite domain shift by rotation,
the empiric capabilities concerning adaptation repetition are stress tested in
the following experiment. The recurrent zero degree crossings at multiples
of 360◦ enable the comparison of performances concerning the number of
revolutions on a specific domain (see Fig. 5.17).

The first finding is that the approach is capable of adapting a model to the
full range of domains during the first revolution of the sample: From domain
0 (97.9%) to domain 360 (94.7%), with only a slight accuracy deterioration.
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Subsequently, the approach experiences a drop in accuracy raised by error
propagation within the pseudo-label generation. This friction loss motivates
further work on bypassing forgetting during self-supervised continuous do-
main adaptation and the need for auxiliary and supportive methods to stabi-
lize continuous domain adaptation.

Cue-based Bypassing of Catastrophic Forgetting

Until this point, the findings reflect that catastrophic forgetting is to be
limited by retraining supervised on the source domain (see Fig. 5.14c and
Fig. 5.15). As a second strategy, CUEB (see approach details in Sec. 3.3.3)
successfully bypasses catastrophic forgetting during continuous domain adap-
tation.

Figure 5.18: CUEB Bypassing Catastrophic Forgetting. Classification accuracy over the con-
tinuously shifted domains the model has been trained on in the process of CUEB.
The colored lines (from the cyan source domain to the blue target domain) repre-
sent the evaluation on a set of domains (for details, see colored captions), ranging
from the source to the target domain. The dark blue line, for example, represents
the evaluation on the target domain over the domains that have been continuously
reached by the model at a given moment. When continuously reaching a domain,
a model’s accuracy evaluated on that domain is depicted as a colored dot with a
gray border. Notice how the performance after the in-domain step remains con-
stant due to the cue-based classification and continuous model extension. The
effects on performance due to model miss-selections due to the cue prediction are
included; nevertheless negligible. Adapted from [2].
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This bypass is achieved by keeping domain-specific parameters available and
accessible by employing a cue. The effect is that in-domain performance is
maintained throughout the continuous domain adaptation. Figure 5.18 illus-
trates how the model’s accuracy, for a given domain, remains constant after
it has been reached (colored dots with gray border) during continuous do-
main adaptation. When reaching a domain and thereby reaching the optimal
performance of a model on that domain, the model’s classification layer is
stored and linked with a domain cue for subsequent retrieval. The domain
classification model θ DC, has a mean accuracy (std) of 98% (±0.7%) for
cue-prediction, averaged over all domains and classes. However, the ex-
pected 2% cue-driven model miss-selection has no impairing influence on
the adaptation performance (see Fig. 5.18).

The approach is an extension to COSS, the previously presented continuous
domain adaptation approach, merging domain adaptation capabilities over
continuous domains, with minimal catastrophic forgetting and maximal do-
main adaptation with respect to the transitioned domains (see fK CUEB in
Tab. 5.8).

Configuration Metrics

DA CF fK

(I) o50_r0_n5_∆α0.1_c0.0 0.868 0.840 0.567 (0.324)

(III) o50_r2_n1_∆α0.1_c0.0 0.847 0.004 0.912 (0.053)

(IV) CUEB on (I) 0.863 0.005 0.974 (0.005)

Table 5.8: Self-supervised continuous domain adaptation configurations with respect to do-
main adaptation DA, catastrophic forgetting CF , and the built knowledge factor fK
after the last adaptation step. Configuration (I) achieves the optimal DA, demon-
strating the capability to continuously reach source domain performance in the
target domain. CUEB on configuration (I) achieves the optimal fK , which indicates
a constant decrease of catastrophic forgetting along all domains, up to and beyond
reaching the target domain. While ranking a narrow second in DA and CF for com-
parison, see configuration (III). CUEB renders retraining unnecessary while at the
same time reducing catastrophic forgetting (in bold).

Sample size efficiency is ideal; neither samples nor labels need to be kept
available after training; this suits imminent and continuous training scenar-
ios, with effects comparable to COSS configurations without retraining. The
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approach allows integrating newly recorded data into an already learned in-
termediate domain Dα . For this purpose, only the layer θC

α for the corre-
sponding domain has to be trained on the intermediate domains. In turn, the
store-keeping of domain-specific parameters throughout the continuous do-
main adaptation process results in a decline in model size efficiency when it
comes to memory requirements to store the model and its cue-linked layers
and backbones.

5.6.4 Continuous Learning for Semantic Domain Shifts

Deep learning increasingly advances biomedical research, deploying neural
networks in a wide range of different computer vision tasks, such as clas-
sification, object detection, and not least, semantic segmentation. Neural
networks, though are commonly trained supervised on large-scale, labeled
datasets. These preconditions present a challenge in biomedical pattern
recognition, as datasets are in most cases small-scale, challenging to obtain,
expensive to label, and frequently heterogeneously labeled. Furthermore,
heterogeneous labels are a challenge for supervised methods, due to their
inherent semantic domain shift. The semantic domain shift arises if for an
individual sample not all classes are labeled.

By framing heterogeneous labels as a semantic domain shift, and making use
of COSS, it is possible to continuously train a neural network while adapting
to semantic domain shifts. The target domain DT is characterized by sam-
ples missing source domain ground truth but introducing target domain la-
bels. The training on the target domain is enabled by a class asymmetric loss
tailored15 to the needs of COSS - allowing for incomplete or heterogeneous
ground truth information (see Fig. 5.19). For development and validation
purposes, a biomedical small-scale, multi-class semantic segmentation data-
set is needed. The in this work introduced heartSeg dataset (see Sec. 4.2.3)
is based on the biological model system of the Medaka fish’s cardiac system
and provides labels for the atrium as well as ventricle.

Continuous semantic domain adaptation

Initially, the dataset is fully labeled ỸS, holding ground truth information of a
single class across all samples X. The semantic domain shift unfolds within
the ground truth information, expanding by labels of a second class ỸT .

15 Frugal labeling repository: https://osf.io/uyk79/
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Figure 5.19: Objective functions for semantic domain adaptation. The images in sequence
from the top, depict forward passes of a training step during the domain adapta-
tion. In the bottom image, only the source domain ground truth is available, while
in the top image the semantic shift already provides additional atrium labels. A
class asymmetric objective function ensures that training in the target domain is
carried over multiple training steps without reflecting a loss (see the empty tile on
the bottom right) based on a missing target domain label mask within source do-
main samples. False predictions for target domain instances, that overlay source
domain labels, however, are reflected in the loss (see the small patch to the left
on the bottom left tile). This approach allows to build up knowledge in the target
domain while being able to retrain on the source domain at the same time.
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Thereby, arises the need for training on the target domain. This is non-
trivial, due to the necessity to bypass catastrophic forgetting on the source
domain while ensuring the preservation of domain knowledge in the newly
emerging target domain.

Thus, validation revolves around the relation between domain adaptation
(measured as mean intersection over union mIoU) and the magnitude of la-
bel availability (measured as the percentage of dropped labels in percentage
%) in the target domain (see Fig. 5.20). Specifically, this means that the
dataset is modified such that the ventricle class is always fully labeled, and
the atrium class contains a decreasing percentage of labels to simulate vary-
ing magnitudes of semantic domain shifts in the ground truth of the data,
reflected by the availability of atrium labels.

10

Figure 5.20: According to the mIoU , the results are categorized over the percentage of dropped
atrium labels. The performance of the ventricle class stays relatively constant.
This is to be expected as the constant availability of ventricle labels is synony-
mous with the continuous retraining of the COSS method. The atrium class shows
a slowly decreasing performance when increasing the number of dropped labels.
Dropping 40% atrium class labels from our dataset, results in a marginal perfor-
mance deterioration of ≈ 2% in IoU, compared to the benchmark in which all
labels are available. The baseline is depicted as a blue dot with a gray border,
while the optimal performance-label ratio, is highlighted by a gray line. All val-
ues are averaged over ten consecutive runs. Adapted from [12].
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The general ablation study, forms the baseline for the semantic domain
adaptation experiment. Starting from training on the fully labeled atrium
(73% mIoU) and ventricle class (78% mIoU), labels are continuously dropped
from both classes. When 70% of the labels are dropped, the performance of
the atrium is at 27% and the ventricle 38% of the mIoU metric over all
classes, averaged over 10 consecutive runs.

The continuous semantic domain adaptation (see Fig. 5.20), depicts a con-
stant performance on the fully labeled ventricle class at around 80% mIoU .
The constant performance in the source domain illustrates the capability of
bypassing catastrophic forgetting during semantic domain adaptation. Fur-
ther, the performance on the atrium class representing our target domain
remains stable up to 70% dropped atrium labels, where the performance is at
68% mIoU . These results highlight the potential to train on sparsely labeled
target domain samples.

Towards cue-based self-supervision for spatial semantic domain shifts

The continuous semantic domain adaptation approach demonstrates a frugal
character with respect to the required labels in the target domain. The seman-
tic domain shift enables the extension of the ground truth by an additional
class.

In cases in which, the emerging class has a large semantic overlap with the
source domain class, the domain shift opens the opportunity for framing it as
a spatial domain shift. With this framing, a spatial cue-based approach could
in turn make a pseudo-label approach feasible. Coming back full circle to
the COSS and CUEB approaches.

The continuous semantic domain adaptation further allows for domain adap-
tations along two unfolding semantic shifts. For example, two datasets with
different source domain ground truth (heterogeneously labeled), continu-
ously converge into each other, forming a single dataset when they both
reached their common target domain.

Semantic segmentation enables high-throughput experiments and is of high
interest to biomedical research. Our approach and analysis show competitive
results in supervised training regimes and encourage frugal labeling for con-
tinuous semantic domain adaptation within biomedical image recognition.
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5.7 Discussion and Conclusion of the Novel
Methods

Concluding, the novel approaches are taken apart, set out, and subsequently
confronted with each other. In this way, the novel approaches are contex-
tualized within the novel unsupervised domain adaptation concept. The ad-
vantages and adversities of the methods are highlighted and discussed. The
Section is complemented by application recommendations and best practices
for the here presented approaches.

5.7.1 Concluding the Domain Adaptation Evaluation

Further research, development, and benchmarking of unsupervised domain
adaptation approaches are enabled by providing two novel datasets. Both the
rotatedMNIST dataset, as well as the HeartSeg dataset, are purpose-designed
with respect to domain adaptation approaches for cognitive perception sys-
tems. In addition, introducing a novel evaluation concept (see Sec. 4.1) for
domain adaptation approaches renders the datasets into benchmarks. The
presented evaluation concept and metric set enable the assessment of un-
supervised, discrete domain adaptation approaches and continuous domain
adaptation approaches. In this way, the evaluation results become compara-
ble across the board of different domain adaptation methods.

Concluding the Sample Supplementation Approach

The capabilities of the newly introduced generative domain extension ap-
proach SSUP for object detection at night16 have been presented. This work
highlights the potential of training on generated samples, including their
respective ground truth eA = 1, for domain extension17 [6]. Training on
the generated samples is compute efficient eC = 1, as the expected train-
ing efforts for fine-tuning are commonly less than the initial source domain
training. However, the retraining is weak when it comes to sample efficiency
eS = 0, as the generated samples need to be kept in memory for supplemen-
tation during the domain adaptation process. Characteristic for fine-tuning
approaches such as SSUP, the adapted model remains constant in model ef-
ficiency eM = 1 and compute efficiency eR = 1 during inference.

16 Patent on the generation of validation data with generative adversarial networks [a]
17 Patent on training approach for recurrent neural networks based on generated data [b]
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Figure 5.21: Aggregated evaluation of the SSUP method based on application metrics within
the radar plots (left) and task metrics within the novel evaluation plots (right).
The radar plots depict efficiency metrics for annotation, sample, model, compu-
tational, and run-time efficiency (for a detailed specification, see Sec. 4.1.3 and
Fig. 4.3). The task metric plot depicts the initial domain gap DG (gray bar), the
domain adaptation DA (light blue bar), and catastrophic forgetting CF (cyan bar).
For a detailed definition of the task metrics see Section 4.1.2 and Figure 4.2. The
cyan dots represent evaluation on the source domain, and the blue dots represent
evaluation on the target domain.

While the sample generation is proven to be successful when approaching
it from a feature-level perspective, the gains are not trivial to harvest. The
difficulties are highlighted by the experienced catastrophic forgetting and
fray factor CF = fF = 41.1% and are underlined by the poor knowledge
built up fK = 46.1% along with the arguably negligible domain adaptation
of DA = 0.8 %. Especially when generating samples in a challenging do-
main, such as the night domain, in which low information areas are a char-
acteristic of the domain itself. Further, the research helped broaden an un-
derstanding and the process of quantifying domain gaps DG = 16.3% (here
between day and night object detection performance) and the mechanism of
domain extension. It immensely helped lay the foundation for approach-
ing the task from another angle, substantiating through the subsequent ap-
proaches.
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Concluding the Shared Latent Feature Space Approach

This section has shown the capabilities of the novel cross-domain adaptation
approach SHALFS in object detection at night18 [7]. The beneficial charac-
teristics19 of unsupervised image-to-image translation have been deployed
in an advanced driver assistance use-case.

Shared Latent Feature Space (SHALFS)
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Figure 5.22: Aggregated evaluation of the SHALFS method based on application metrics
within the radar plots (left) and task metrics within the novel evaluation plots
(right). The radar plots depict efficiency metrics for annotation, sample, model,
computational, and run-time efficiency (for a detailed specification, see Sec. 4.1.3
and Fig. 4.3). The task metric plot depicts the initial domain gap DG (gray bar)
and the domain adaptation DA (light blue bar). Catastrophic forgetting CF is
circumvented and can thus not be illustrated. For a detailed definition of the task
metrics see Section 4.1.2 and Figure 4.2. The cyan dots represent evaluation on
the source domain, and the blue dots represent evaluation on the target domain.

The shared latent feature space approach does not require keeping samples
or labels in memory eS = 1 during domain adaptation. SHALFS deployment
as a cross-domain adaptation for object detection by night enables decreas-
ing the domain gap (DG = 16.3% between day and night before domain
adaptation) by DA = 5.3% and a knowledge built up at fK = 60.75%, with-
out experiencing catastrophic forgetting CF = fF = 0%. Domain adaptation
is achieved without additional labeling effort eA = 1 and enables the direct
deployment of pretrained object detectors20 without having to retrain eC = 1

18 Patent on object detection for night perception systems [g]
19 Patent on parametrization for artificial neural networks [d]
20 Patent on unauthorized passenger recognition [h]
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while unfolding into the target domain. At the expense of the cross-domain
adaptation module, slightly decreasing overall model efficiency eM < 1 and
run-time efficiency eR < 1, the modular framework and the demonstrated
interchangeability of the object detector within the cross-domain adaptation
increase flexibility and functional adaptation through the object detector and
potential for functional extensions21.

Concluding the Continuous Domain Adaptation Approaches

The results of self-supervised continuous domain adaptation22 demonstrate
the configuration space analysis and capabilities of this novel approach [2].
The extension through CUEB23 utilizes the context-knowledge about a con-
tinuous domain shift, as well as a continuous distribution characteristic
within a dataset. CUEB optimizes sample efficiency for CUEB to eS = 1
as no repetitive source domain training is necessary, as opposed to COSS
where source domain retraining routines eS = 0 are central to mitigate catas-
trophic forgetting.

The self-supervised continuous domain adaptation approach iteratively over-
comes the performance gap between source domain, intermediate domains,
and target domain DG = 86.7% by utilizing unlabeled and, in the process,
pseudo-labeled eA = 1 large-scale datasets. In use cases, such as autonomous
driving, these unlabeled large-scale datasets are readily available. Further,
the entire dataset does not have to be available during the initial source do-
main training, enabling continuous training and seamless knowledge built up
at fK = 0.912 for COSS and fK = 0.974 for CUEB during continuous domain
adaptation. COSS comes at the expense of computational efforts eC = 0,
while model efficiency eM = 1 and run-time efficiency eR = 1 is optimal as
the architecture is not extended as the model’s weights are merely updated.
With this research, methods that enable bypassing catastrophic forgetting
have been designed and analyzed. It is shown how catastrophic forgetting
can be mitigated by retraining routines (COSS) CF = 0.004% or entirely
bypassed CF = fF = 0% by extending the neural network architecture by
adding a cue-mechanism (CUEB). Bypassing catastrophic forgetting enables
the safe, continuous deployment of models.

21 Patent on input data compression for anonymization during acquisition [p]
22 Patent on continuous domain adaptation for neural networks based on pseudo-labels [i]
23 Patent on cue-based inference for domain adaptation by neural networks [k]
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Continuous Self-Supervision (COSS & CUEB)
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Figure 5.23: Aggregated evaluation of the CUEB (light blue fill) and COSS (gray-transparent
striped fill) method based on application metrics within the radar plots (left) and
task metrics within the novel evaluation plots (right). The radar plots depict effi-
ciency metrics for annotation, sample, model, computational, and run-time effi-
ciency (for a detailed specification, see Sec. 4.1.3 and Fig. 4.3). The task metric
plot for COSS depicts the initial domain gap DG (gray bar), the domain adapta-
tion DA (light blue bar), and catastrophic forgetting CF (cyan bar). The cyan dots
represent evaluation on the source domain, and the blue dots represent evaluation
on the target domain. For detailed information on the adaptation process metrics
( fC , fF , and fK ) for specific configurations, it is suggested to revisit Section 5.6.
For a detailed definition of the task metrics see Section 4.1.2 and Figure 4.2.

Potentially a large set of computer vision tasks and applications are able to
be interpreted and stated as continuous domain adaptation problems. Appli-
cations are expected to apply the continuous domain adaptation to additional
object classes, differing sensor modalities, and sensor positions or deploy-
ment of the novel approach to different tasks, such as semantic segmentation
or object detection. This work will serve as an adaptation approach to help
solve the challenge of measuring and reducing the domain gaps inherent to
data-driven applications while bypassing catastrophic forgetting and annota-
tion efforts in continuously changing domains. Not least, the domain-specific
neural network extension method opens the possibilities of computational
efficient continuous training eC ≈ 1, as merely domain-specific high-level
layers need to be adapted and stored eM < 1. Computational efficiency for
training improves by approximately 98.7% compared to COSS since the
low-level feature representation layer (401920 parameters) only has to be
trained only once and remains constant for subsequent inter-domain steps
and thus parameter updates. Making the core feature extraction reliant on
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a pretrained backbone, the adverse effects of adding a cue-mechanism on
model efficiency and run-time efficiency24 eR ≈ 1 are mitigated. Run-time
efficiency remains near optimal, as the number of operations only slightly
increases from 407050 operations by 1.2%, due to the additional 5130 oper-
ations needed to predict the cue.

5.7.2 Cross-Method Selection and Comparison

In the following, the novel approaches to unsupervised domain adaptation
are assessed within a general deployment context. The limitations and ad-
vantages of the methods for applications are further identified. First, the
crucial characteristics and capabilities of the methods are detailed. To con-
clude, the different methods are put in relation to each other, and application
recommendations are given.

Cross-Method Comparison

The methods proposed and developed within this thesis are compared using
application metrics introduced in the concluding evaluation of the domain
adaptation methods in Section 5.7.1 and presented in the aggregated form of
an overlay in Figure 5.24.
In general, unsupervised domain adaptation implicates the need to adapt a
neural network to an intermediate domain or target domain that has not been
part of the initial source domain and does not obtain explicit ground truth
information, such as labels. Being independent of ground truth in the target
domain, unsupervised domain adaptation methods in all shapes are efficient
with respect to additional annotation effort. Sample efficiency diminishes
for generative approaches such as SSUP, requiring access to stored labels,
and for continuous approaches such as COSS that are stabilized by super-
vised continuous retraining, which requires access to the source domain or
intermediate domain samples and labels. In SSUP’s pure retraining-driven
domain adaptation, model efficiency is optimal, as the number of parameters
within the model remains the same. If the domain adaptation is realized by
an architectural extension, such as the cue-mechanism of CUEB, or a mod-
ular extension, such as the cross-domain adaptation module of SHALFS,
model efficiency inevitably drops accordingly. Depending on the size of
these extensions and their role during inference, this directly correlates with

24 Patent on cue-based run-time reduction for neural networks [f]
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Cross-Comparison Overlay

All

Figure 5.24: Overlay of the radar plots of SSUP, SHALFS, COSS, and CUEB. The cyan-
striped area is covered by all methods and approaches. When requirements ex-
ceed this area, a particular approach needs to be selected to satisfy them. Poten-
tially reachable areas are depicted in light blue.

the run-time efficiency of the model. To conclude, the here presented con-
tinuous domain adaptation methods, such as COSS and CUEB, as well as
the retraining-driven generative approach of SSUP, require a large amount of
compute.

Best Practices

Discrete unsupervised domain adaptation, such as in SSUP or SHALFS,
enables larger domain gaps and does not require the two domains to be in-
terconnected. This also brings the advantage that detailed knowledge of the
shift is not required to train the domain adaptation module. The modular
characteristic further allows deployment of the neural network on the source
task, which can thus be capsuled from the domain adaptation itself.

However, it must not be forgotten that unsupervised domain adaptation either
engages with newly forthcoming domains or, until then, neglected domains.
Thus, real-world deployment and open-world scenarios provide enough pre-
text for unsupervised domain adaptation to be understood as a continuous
process tackling the emerging deployment domain gap over time.
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A retraining framework or a means for continuous adaptation thus always
needs to be an integral part of deploying a neural network.

As framed in this thesis, continuous unsupervised domain adaptation, as pro-
moted in COSS and CUEB, heavily relies on the source domain performance
that has been achieved by supervised learning. Consequently, high source
domain performance is beneficial to the domain adaptation outcome. More-
over, it has been shown that retraining on the source domain, as well as opting
for smaller domain shift increments, acts in a stabilizing way for continuous
domain adaptation. Otherwise, there is a risk of the adaptation capability
breaking down gradually. Further, continuous domain adaptation depends
on the prior of the continuous, infinitesimal shift. Thus, in continuous self-
supervised domain adaptation, the domain shift needs to be well understood
and structured to be helpful. On the other hand, it becomes evident that for-
getting is by no means inevitably catastrophic and, at times, even beneficial.
Consequently, this research comes to question whether the notion of forget-
ting in deep learning is purely catastrophic. This is especially the case when
a task experiences semantic shifts over time. At last, when deploying un-
supervised domain adaptation, method selection is a matter of intended and
required model behavior and the domain context of the deployment.

134



6 Conclusion

Unsupervised, continuous development and deployment of neural networks
across multiple domains pose high demands on the employed methods and
models. Even minor domain adaptations are complex and often require a
renewed neural network deployment cycle from square one. However, it is
neither realistic nor economical to develop conclusively generalized neural
networks. Moreover, in high-performing neural network applications, the
domain adaptation is commonly reliant on a supervised learning strategy
based on time-consuming, expensive, manually annotated data. As unla-
beled large-scale datasets become predominant, they originate the need for
research and development regarding previously neglected unsupervised do-
main adaptation approaches and their application’s prerequisites.

This work proposes deploying unsupervised domain adaptation approaches
to extend the unsupervised and continuous development of neural networks.
The thesis categorizes types of domain shift and capitalizes on the source
domain’s already available knowledge representations to enable further un-
supervised domain adaptation on unlabeled data. Methods for the efficient
extension and transformation of existing deep learning modules are devel-
oped to resolve the problem statement of neural network adaptation across
multiple domains. These methods get cognitive perception systems ready for
the challenges of the repetitive emergence of new domains. Therefore, this
work proposes novel self-supervision and unsupervised domain adaptation
approaches for continuous learning, expanding the neural networks’ domain
of operation. The core contributions are summarized subsequently.

To begin, the characterization of domain states and analysis of their impli-
cations on neural network training in the context of domain adaptation (see
Ch. 2). Research and development of novel unsupervised domain adapta-
tion approaches concerning different domain states: Sparse domains (see
Sec. 3.1), discrete domains (see Sec. 3.2), and continuous domains (see
Sec. 3.3). The novel approaches for unsupervised domain adaptation are fol-
lowed by the modification and extension of metrics concerning the different
variants of domain adaptation (see Sec. 4.1). Further, methods to interpret
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and visualize domain states and the effects of domain adaptation approaches
are presented. Closing, the design, and generation of datasets (see Sec. 4.2)
to support domain adaptation research and development are discussed and
put into practice. Building on the, in this work, developed and implemented
domain adaptation approaches, these are evaluated on large-scale datasets for
autonomous driving by night (see Ch. 5). Concluding, the different domain
adaptation approaches are compared, thereof method selection criteria are
identified, and application recommendations are given. The publicly avail-
able implementation of the domain adaptation approaches provides full-stack
repositories (see App. A.1), which enables to connect and tie future research
to this work.

The key message of this work is that unsupervised domain adaptation for
cognitive perception systems is feasible. In combination, the outcomes take
a stand for a paradigm shift from supervised learning stratagems to unsuper-
vised learning stratagems. Considering the future development of cognitive
perception systems, unsupervised learning stratagems live up to the emer-
gence of unlabeled large-scale datasets. The most significant efforts of this
work have been channeled into scientific publications and patents (see A.4),
the latter are in the following compiled to a list:

1. Development of a concept for domain state characterization enabling
the design of domain adaptation methods based on deep learning ap-
proaches, including network architectures, hyperparameter determina-
tion, and training process design.

2. Systematic design of a concept for unsupervised domain adaptation,
covering the full cycle of continuous development and integration of
neural networks under deployment.

3. Integration of novel domain-centered metrics and performance indica-
tors for the quantification of domain adaptation. This work contributes
a strategy to base the quantitative evaluation of unsupervised and con-
tinuous domain adaptation methods on task performance, adaptation
performance, and deployment requirements. Hereby reaching the ob-
jective of making domain adaptation approaches quantifiable, compa-
rable, and interpretable.

4. Providing a qualitative and quantitative means for representation of
domains, domain shifts, and domain adaptation performances. The
descriptive and interpretable representations give insights into the un-
derlying domain characteristics relevant to the adaptation process.
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5. Making datasets available for domain adaptation-specific training and
validation by generating novel datasets and customizing existing data-
sets in accordance with their domain characteristics. The results are
purpose-designed benchmarks for different types of domain adapta-
tion.

6. Development and implementation of SSUP for generative domain ex-
tension in sparse domains or discrete domain shifts, based on a semi-
supervised retraining approach.

7. Development and implementation of SHALFS for unsupervised do-
main adaptation for discrete domain shifts based on a shared latent
feature space. SHALFS provides a novel way for the implicit cross-
domain deployment of pretrained neural networks, opening the possi-
bility of bypassing catastrophic forgetting and seamless and modular
extensions of the operational design domain.

8. Development and implementation of COSS for self-supervised do-
main adaptation in continuously shifting domains based on pseudo-
label generation.

9. Development and implementation of CUEB, enabling an architec-
tural approach to bypass catastrophic forgetting in continuous self-
supervised learning scenarios.

10. Proof of concept and functionality through applications in autonomous
driving prototypes: E-Side Mirror and validation on large-scale data-
sets for the use case of domain adaptation for driving by night and
other purpose-designed benchmarks.

Potentials for further Research

The newly presented methods are conclusively implemented, their domain
adaptation capabilities and functionalities have been proven, and their results
have been evaluated on novel unsupervised domain adaptation-specific met-
rics. At the same time, catastrophic forgetting is not yet entirely prevented by
each of the presented methods. Unsupervised domain adaptation approaches
still need to reach source domain performance in adapted domains. Across
the deep learning board, supervised problem statements need to be rethought
and reinterpreted from an unsupervised learning perspective, meaning the
transition from labeled datasets to large-scale unlabeled and continuously
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expanding datasets for training neural networks. These problem statements
potentially range from domain adaptations by a change in sensor position,
introducing an advanced sensor modality, or pure deployment shift.

Potentials for methodological developments are within self-supervised ap-
proaches and shared feature space approaches. It has to be investigated which
further supervision cues and knowledge priors, such as reference sensors, or
passive human supervision, are available and suitable for semi-unsupervised
and unsupervised domain adaptation. Work has also been initiated that deals
with real-time inference and training capabilities on edge devices. Extend-
ing large-scale unlabeled datasets can also open up other application areas
for present and future methods. Building upon methods to visualize and
quantify domain shifts and epistemic uncertainties under domain shift might
contribute to the safety envelope for autonomous perception systems, sup-
porting the safety argument and highlighting the need for domain adaptation.
The underlying mechanisms and effects of catastrophic forgetting need fur-
ther be researched in the context of continuous learning and deployment.

These open problems are extensive, yet from a factual perspective, they
merely reflect the contributions and progress within unsupervised domain
adaptation from the other end of the scale. Thus, this work encourages and
closes with an imperative for further development and research within unsu-
pervised and continuous domain adaptation and domain representations.
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A Appendix

1. Implementation and Repositories

2. Deep Learning Fundamentals

3. Related Work Tabular Overview

4. Lists of Related Publications, Patents, and Supervised Work

A.1 Implementation and Repositories

The objective of implementing the proposed, novel unsupervised domain
adaptation approaches (see Ch. 2) is to provide, for the first time, an exe-
cutable version and foundation for further development, research, and de-
ployment of the very same. In the following, each approach’s implemen-
tation to domain adaptation is assembled and organized in the form of a
repository.

Hardware and Software Specifications (Sec. A.1) include the require-
ments, software packages, and their versions in order to set up the envi-
ronment on your machine.

Neural Network Training reports the settings of the hyperparameters and
data necessary for the training process. The associated neural network archi-
tectures depict the interplay of general architectural elements such as layers
and units and the associated functions.

Codebase Overview gives an overview of the source code that comes with
the repository as well as its overarching purpose within the repository.
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Hardware Specifications

Graphical Processing Unit

Deep Learning research is driven by and highly correlated to the develop-
ment of computing hardware. A High Performance Computer (HPC) is
employed throughout the research to carry out the computationally expen-
sive tasks, such as data preprocessing, training, and evaluation of neural
networks and novel methods. As of this writing, the HPC comprises mul-
tiple NVIDIA® TESLA® P100 Graphical Processing Units (GPU) based on
the NVIDIA® PascalTM GPU architecture (for detailed specifications, see
Tab. A.1). The GPUs are accessed by use of MobaXTerm [135] and driven
by Cuda compilation tools (8.0 V8.0.61) and CuDNN (5.1.10).

GPU Specifications

GPU Architecture NVIDIA® Pascal®

NVIDIA® CUDA® Cores 3584

Double-Precision Performance 5.3 TeraFLOPS

Single-Precision Performance 10.6 TeraFLOPS

Half-Precision Performance 21.2 TeraFLOPS

GPU Memory 16 GB CoWoS HBM2

Memory Bandwidth 732 GB/s

Interconnect NVIDIA® NVLinkTM

Max Power Consumption 300 W

ECC Native support with no capacity

or performance overhead

Thermal Solution Passive

Form Factor SXM2

Compute APIs NVIDIA® CUDA® , DirectCompute,

OpenCLTM, OpenACC

Table A.1: Specifications of the NVIDIA® TESLA® P100 GPU accelerator according to the
NVIDIA® datasheet [136].
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Image Translation Repository

The general concept of the shared latent feature space approach is based on
an unsupervised two-stream mechanic to learn a shared representation (see
Sec. 3.2). For cross-domain neural network deployment, the common rep-
resentation enables an unsupervised domain adaptation capability which en-
ables direct deployment of an object detector on translated night data.

Software Specifications

The primary programming language for this repository is Python in ver-
sion (2.7.13), with additionally utilized packages (see Tab. A.2). For visual-
ization, the statistical programming language R [137] was deployed.

Python Packages Version

TensorFlow [34] (1.2+)

Torch (0.4.1)

Torchvision (0.2.1)

TensorboardX (1.4)

Numpy (1.17.1)

Table A.2: Version specifications of the utilized python software packages of the image trans-
lation repository.

Neural Network Training

The unsupervised image-to-image translation [98] is based on the pro-
posed unsupervised domain adaptation module (see Sec. 3.2). Find the train-
ing hyperparameter configuration in Tab. A.3.

The approach does not require paired or labeled night domain samples. For
training, the BDD100K dataset is deployed. The training utilizes 70000 sam-
ples from the training set and 10000 samples from the validation set. The
original dimensions of 1280×720 px are kept for the labeled keyframe im-
ages (see detailed information in Sec. 5.3.1). The samples can be separated
into 39986 annotated night images and 52511 annotated day images.
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Training Hyperparameters Value

Weight initialization Kaiming He

Loss GAN Binary Cross-entropy Loss

Loss VAE Cycle Consistency Loss

Optimizer Adam

Epochs 15

Learning rate ϵ 0.0001

First-momentum term ρ1 0.5

First-momentum term ρ2 0.999

Learning rate decay d, τ 0.5, 100000

Batch size 1

Table A.3: UNIT Neural network training hyperparameters of the image translation repos-
itory. The hyperparameters are explained in the fundamentals part of this thesis on
neural network training (see Sec. 1.2.2). Hyperparameters, when not stated explic-
itly, follow the default setting of the deployed deep learning framework (referring to
software specifications A.2).

Training Hyperparameters Value

Weight initialization Pretrained model

Regularization L2 parameter norm penalty

Weight updates 10k (Early stopping A.2)

Learning rate ϵ 0.00003

First-momentum term ρ1 0.9

Batch size 1

Table A.4: RFCN Neural network training hyperparameters of the image translation repos-
itory. The hyperparameters are explained in the fundamentals part of this thesis
on neural network training (see Sec. 1.2.2). Hyperparameters, when not stated ex-
plicitly, follow the default settings of the hyperparameter configuration proposed
initially for training the RFCN model [41].
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The 7285 dusk and dawn images are not considered during training. To
increase the coverage of high-frequent semantics in the sample, the dis-
criminator is evaluated on randomly cropped areas (patches) instead of the
complete generated samples [138]. Besides, the discriminator takes three
generated inputs for a single sample, two of them down-sampled with fac-
tors two and four, improving multi-scale domain adaptation capabilities [37].

The source task is object detection (see Fig. 3.5), and is cross-domain de-
ployed, subsequent to the unsupervised image-to-image translation. For a
full list of deployed object detectors, see Tab. 1.1 and Sec. 1.3. In the cases
that the object detector has been retrained, see the hyperparameter configu-
ration for retraining in Tab. A.4.

For validation and testing of the cross-domain deployment on the source
task, the BDD100K bounding box coordinates of persons (129262 object in-
stances) and cars (1021857 object instances) have been used, and the data is
distinguished concerning the night and day domain. Whenever the RFCN ob-
ject detector was retrained, BDD100K bounding box coordinates were used.

File Name Description

Neural Network Training:

train.py UNIT training module

Evaluation and Analysis:

test.py Inferencing UNIT model on single frame

test_batch.py Inferencing UNIT model on folder

ObjectDetector.py Object detector module

hungarian.py KPI calculation module

Models:

unit_n2d.hdf5 Trained UNIT Night-to-day

cross-domain adaptation model

Table A.5: Overview codebase of the image translation repository.
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The original validation set is used as the test set to conclusively evaluate the
domain adaptation performance and the object detectors’ performances.

Codebase Overview

The shared latent feature space repository1 is publicly available and consists
of the complete code base (see Tab. A.5), with detailed information on the
hyperparameter settings, neural network architecture, deployed data, data
pipeline, validation scripts, results, evaluation, and documentation [1].

1 Shared latent feature space repository: https://osf.io/snmwt/
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Continuous Self-Supervision Repository

The concept of the continuous self-supervision approach is assuming a con-
tinuous domain shift and exploits this knowledge by a self-supervised pseudo
label approach to domain adaptation (see Sec. 3.3).

Software Specifications

The primary programming language used throughout this work is Python in
version (3.6.9), with additionally utilized packages (see Tab. A.6).

Python Packages Version

TensorFlow [34] (1.14.0)

Keras (2.2.5)

Numpy (1.17.1)

sklearn (0.0)

Pillow (6.1.0)

Table A.6: Version specifications of the utilized python software packages.

Training Hyperparameters Value

Weight initialization Glorot

Loss Binary Cross-entropy Loss

Optimizer Adam

Epochs 50

Learning rate ϵ 0.01

Batch size 32

Table A.7: Classification neural network training hyperparameters of the self-supervised
continuous domain adaptation repository. The hyperparameters are explained in the
fundamentals part of this thesis on neural network training (see Sec. 1.2.2). Hyper-
parameters, when not stated explicitly, follow the default setting of the deployed
deep learning framework (referring to software specifications A.6).
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Neural Network Training

The continuous self-supervised domain adaptation is based on a fully
connected neural network θα for classification.Find the training hyperpa-
rameter configuration in Tab. A.7.

The neural network is extended into the target domain by self-supervised iter-
ative fine-tuning (see Fig. 3.3.2). The configuration for iterative fine-tuning
introduces further method-specific hyperparameters, which are discussed
and analyzed (see Sec. 5.6.2 and Tab. 5.5).

Self-supervised continuous domain adaptation requires a dataset with a con-
trollable, continuous domain shift. For the research, therefore, the rotat-
edMNIST dataset (see Sec. 4.2.2) is introduced. The domain shift within
the data emerges based on context knowledge, such as the spatial transition
from rotating the original MNIST samples by a specific angle step size. The
domain D90 is termed the target domain and marks the end of a set of inter-
mediate domains (see Eq. A.1).

Dα with α(s) = ∆α s,s ∈ N,α ≤ 90. (A.1)

The maximal angle αmax is bound above at 90◦ to obviate rotation variant
ground truth, such as would be the case for digits 6 and 9 and rotations
of α = 180◦.

The Cuepervision approach (see Sec. 3.3.3) is trained with the same train-
ing hyperparameters and data as outlined by the continuous self-supervised
domain adaptation approach (see Tab. A.7). The novel contribution is to be
found in the architectural subtlety of introducing a feature extractor linked to
a domain classification layer and the main classification layer of the source
task.

Codebase Overview

The continuous self-supervision repository2 is publicly available and con-
sists of the complete code base (see Tab. A.8, with detailed information on
the hyperparameter settings, neural network architecture, deployed data, data
pipeline, validation scripts, results, evaluation, and documentation [2].

2 Continuous self-supervision repository: https://osf.io/qgj5d/
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File Name Description

Neural Network Training:

mnist_train.py Training implementation

mnist_data_handler.py Data loader module

mnist_adaptation.py Main neural network module

Evaluation and Analysis:

mnist_visualize.py Visualization module

analysis.py Continuous adaptation analysis module

Models:

sparse_model_1.hdf5 One epoch trained classification model

sparse_model_50.hdf5 50 epochs trained classification model

Table A.8: Overview codebase of the continuous self-supervision repository.
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HeartSeg Repository

At the core of the HeartSeg repository is providing a controllable, adjustable
biomedical image benchmark for spatial and temporal, continuous, and dis-
crete domain adaptation (see Sec. 4).

Codebase Overview

The HeartSeg repository3 is publicly available and consists of the entire
dataset with samples and labels, the complete code base (see Tab. A.9, with
detailed information on the hyperparameter settings, neural network archi-
tecture, deployed data, data pipeline, validation scripts, results, evaluation,
and documentation [3].

File Name Description

Neural Network Training:

unet_model.py U-net implementation

data.py Training data pipeline

Evaluation and Analysis:

data_loader.py Load data from stream

data_writer.py Write logging and prediction data

inference.py Inferencing segmentation model

segmentation_analysis.py Analyzing segmentation frame-wise

timeseries_analysis.py Analyzing segmentation over time

ventricular_dimensions.py Determine ventricular dimensions

Models:

unet_heart.hdf5 Trained U-net segmentation model

Table A.9: Overview codebase of the HeartSeg repository.

3 HeartSeg repository: https://osf.io/snb6p/
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Software Specifications

The primary programming language used throughout this work is Python in
version (3.6.7), with additionally utilized packages (see Tab. A.10).

Python Packages Version

TensorFlow [34] (1.12.0)

Keras (2.2.4)

Numpy (1.15.4)

scipy (1.2.0)

openCV 2 (3.4.4.19)

Table A.10: Version specifications of the utilized python software packages.

Neural Network Training

Training Hyperparameters Value

Weight initialization Glorot

Loss Sørensen-Dice Loss

Optimizer Adam

Learning rate ϵ 0.00001

First-momentum term ρ1 0.9

First-momentum term ρ2 0.999

Epochs 60

Batch size 8

Dropout 0.5

Augmentation flip, zoom, rotate, shift

Table A.11: U-net neural network training hyperparameters. Hyperparameters are ex-
plained in the fundamentals part of this thesis on neural network training (see
Sec. 1.2.2). Hyperparameters, when not stated explicitly, follow the default setting
of the deployed deep learning framework (specified in A.10).
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A.2 Deep Learning Fundamentals

Backpropagation and Stochastic Gradient Descent

A neural network receives an input x and generates an output y; this is called
inference or forward propagation. During training, the output is compared
to the ground truth data by a cost function (see Chapter A.2). In order to
increase performance, the cost information is then backpropagated through
the network by means of calculating a gradient and updating the weights
accordingly [139]. The gradient g(θ) = ∇θ J(θ) represents the derivative
of a multi-dimensional function, in this case, the cost function J regarding
the parameter set or, in other words, the weights W and b. The gradient
is defined for any point p on an n-dimensional differential function J. The
norm of the gradient |g| expresses the magnitude of the ascent at point p [26].

The derivatives for each of the n parameters θi whereas i ∈ {1,2, . . . ,ni} in
the network, are computed by propagating the gradient, and deploying the
chain rule of calculus (see Equations A.2 and A.3).

∇x y =
(

∂h
∂x

)⊤
∇h y,

∂y
∂x

=
∂y
∂h

∂h
∂x

.

(A.2)

More generally, each node u(i) with parameter θ (i) is linked to an oper-
ation for forward propagation, namely an activation function (see Chap-
ter A.2) f (A(i)) while A(i) is the set of all predecessor nodes, also par-
ents P , u( j) of node u(i) on the path to the root, for j < i with j ∈P(u(i)).
Starting from the output u(n), the gradient is propagated, and consequently
the gradient for each layer and unit emanates.

∂u(n)

∂u( j)
= ∑

i∈{k; j∈{P(u(k))}}

∂u(n)

∂u(i)
∂u(i)

∂u( j)
. (A.3)

The gradient on each unit is subsequently used to update the parameter
set θ (see Equation A.4). This process is repeated by means of iterative
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gradient descent in order to minimize the cost J(θ), which is determined
during forward propagation and calculated by a loss function L(ŷ,y) [18].

θ
′ = θ − ϵ g(θ),

θ
′ = θ − ϵ ∇θ J(θ).

(A.4)

The learning rate ϵ represents the step size for updating the model’s param-
eters during training (see Equation A.4). Intuitively larger step sizes corre-
spond with faster descent, while risking to overstep the optimal loss. In turn,
a low step size will have linear improvements taking more time to descend
into an optimum [26]. In order to trade off those characteristics, one strategy
is to decay the learning rate by d during the training process every τ weight
updates (see Equation A.5) [34, 140].

ϵn = ϵ0 d⌊
1+n

τ
⌋. (A.5)

Mutually, the learning rate is stated to be among the most important hyper-
parameters for neural network training [18, 26, 140].
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Activation Function

A unit u of a neural network computes an affine transformation z = W⊤x+b
on a given input x, which is coined activation state z. Subsequently, a non-
linear activation is put into use; namely, the activation function f (z;θ), re-
sulting in an output y [26]. The activation function theoretically needs to be
differentiable at each point x on f , due to the optimization strategy of gra-
dient descent (see Chapter A.2). In practice, activation functions with only
a small amount of non-differentiable points are still valid, as it is tolerable
for the minima of the cost function to be non-differentiable, as it is not ex-
pected to actually reach a minimum during gradient descent. Moreover, the
superimposed numerical errors legitimize utilizing the derivative of either
side of the point [18]. Different types of activation functions used in a neural
network come with prevalent characteristics. Some activation functions are
sensitive in an interval [−0.5;0.5], which motivates data preprocessing such
as zero-centering and normalizing the input values [140].

Rectified linear unit

The linear unit, or rectified linear unit (ReLU), uses the activation func-
tion of Equation A.6. The ReLU has constant first-order derivatives and
zero second-order derivatives, which make optimization and gradient descent
more effective since the gradient direction is consistent and the gradient does
not vanish [46]. ReLUs have the disadvantage of vanishing weights when
updated too far into the negative domain, and this effect is reduced by leaky
ReLU units [141] that introduce a slight negative slope in the negative do-
main.

f (z) = max{0,z},

f ′(z) =

{
0, if z < 0,
1, if z > 0.

(A.6)

Sigmoid

The sigmoid unit σ(z) (see Equation A.7) saturates over most of its range of
values: To one, for positive values of z, or to zero, for negative values of z.
The activation function is sensitive for z around zero.

f (z) =
1

1+ e−x ,

f ′(z) = (1− f (z)) f (z).
(A.7)
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Objective Function

Optimization is based on the objective function J, with θ ∗ = argmin J(θ).
During the optimization process, J is minimized by means of determining θ .
In machine learning, J is mutually named as cost function, loss function,
or error function. Obviously, the definition of J is of great influence for
the training process of neural networks, as it is for conventional machine
learning methods, in a way that it determines the gradient (see Chapter A.2)
by comparing the models output y = f (x;θ) with the empirical distribution
of the ground truth data ỹ.
The neural network model f (x;θ) can be interpreted in terms of a probabil-
ity density p(y | x;θ), with random variables x and y. This enables a cost
function to be determined by calculating the negative log-likelihood or cross-
entropy between the model’s distribution and the probability density of the
ground truth data p̃, whereas E is the expectation value (see Equation A.8).
As such, the training process attempts to match the model’s distribution to
the empirical one of the ground truth.

J(θ) =−Ex,ỹ∼p̃ log p(ỹ|x,θ). (A.8)

By assuming the model’s distribution to be Gaussian, N (see Equation A.9)
and a parametrization of σ = 1, it is evident that the mean squared error is
equivalent to a maximum likelihood scheme [18].

p(ỹ | x,θ) = N (ỹ; f (x;θ),σ2),

p(ỹ | x,θ) =−m logσ − m
2

log(2π)− 1
2σ2

m

∑
i=1
||ỹi− f (xi;θ)||2,

p(ỹ | x,θ) = N (ỹ; f (x;θ),I),

p(ỹ | x,θ) =−m
2

log(2π)− 1
2

m

∑
i=1
||ỹi− f (xi,θ)||2,

J(θ) =
1
2
Ex,ỹ∼p̂ ||ỹ− f (x;θ)||2 + const.

(A.9)

The mean squared error, thus, follows the properties of maximum likelihood:
Assuming an infinite amount of ground truth samples ỹm, with m→∞, which
are considered to be generated by f (x;θ0), the estimated parameter set θ

approaches the true values θ0 (consistency) [142].
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Nonconvex Gradient-Based Optimization

In general, optimization revolves around determining θ ∗ by minimizing an
objective function’s error J(θ). When deploying gradient-based optimiza-
tion on deep neural networks, additional challenges arise due to the general
nonconvex case: Infinite amount of local minima, nonidentifiability, batch-
based inexact gradients, vanishing and exploding gradients, and the poor cor-
respondence between local and global structures [18]. Restating the problem
statement of optimization from finding the true and exact values θ0 for the
underlying model to finding a sufficiently optimal set of values θ ∗ (see Equa-
tion A.10).

θ
∗ ̸= θ0. (A.10)

In the following, optimization algorithms are introduced along with strate-
gies and tactics, overcoming optimization problems for the nonconvex case
of neural networks.

Stochastic Gradient Descent

Backpropagation and gradient descent (see Sec. A.2) have already been
introduced. An extension of this method is the stochastic gradient de-
scent (SGD) (see Alg. 2): Following the gradient of a randomly selected
set of m training samples, batches. The central idea is to observe an un-
biased estimate of the gradient by taking the average gradient of a batch
only (stochastic) instead of the whole training set (deterministic). Equa-
tion A.11) shows that the standard error of the mean decreases only by

√
m

when increasing m the number of samples in a batch.

σ√
m
. (A.11)

At the same time, a reduction in m reduces and sets an upper bound to the
computational effort for each update step, which is a necessity when dealing
with large or even growing datasets, as is the case for machine learning and
data-driven approaches in general (see Fig. 1.1a). Further assuming i.i.d, it
is to be assumed that samples to a degree show similarities and thus have
comparable leverage on the gradient [18, 143, 144].

Momentum Methods

Stochastic gradient descent (see A.2) has drawbacks when dealing with small
gradients or variance in subsequent gradients since the method relies on the
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Algorithm 2 Stochastic gradient descent - O(n)

1: procedure WEIGHT UPDATE (θ initial weights, ϵi learning rate in itera-
tion k, m batch size)

2: k← 1
3: while stopping criterion not met do
4: Estimate average batch gradient: ĝ = 1

m ∇θ ∑
m
i L( f (xi;θ);yi)

5: Update the weights: θ ′ = θ − ϵk ĝ(θ)
6: k← k+1

gradient at each iteration only (see Alg. 2). The momentum method [145]
averages gradients of past iterations, yielding velocity v (see Equation A.12)
and considers them for the current weight update. α ∈ [0,1) specifies the
magnitude of the exponential decay of the averaged gradients. Assuming
unit weight, v can be seen analogously to the Newtonian momentum, hence
the naming. The equations for stochastic gradient descent with momentum
are thus Eq. A.12.

v = αv− ϵg,
θ
′ = θ +v.

(A.12)

Besides the standard momentum method, other momentum methods differ
on whether the gradient is evaluated before or after applying the velocity
update [146, 147].

Adaptive Methods

The notion of adaptive methods [148, 149, 150] is that the learning rate
should be set locally, being sensitive for each parameter and iteration, in-
stead of globally. The most commonly applied of these methods is the
Adam (Adaptive momentum) optimizer [150]: An algorithm for first-order
gradient-based s optimization of stochastic objective functions, based on
adaptive estimates of second-order moments r (see Equation A.13). ρ1 and ρ2
are the exponential decay rates for the accumulated moment estimates, and δ

is a small constant utilized for numerical stability. t marks the current iter-
ation count. r̂ and ŝ are the bias-corrected terms of the moment estimates
during initialization.
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s = ρ1s+(1−ρ1)g,
r = ρ2r+(1−ρ2)g⊙g,

ŝ =
s

1−ρ t
1
,

r̂ =
r

1−ρ t
2
,

θ
′ = θ − ϵ

ŝ√
r̂+δ

.

(A.13)

Adam implicitly determines the magnitude of the learning rate for each pa-
rameter adaptively. ϵ is further an upper bound for the learning rate only.

Weight Initialization

Optimization of neural networks is iterative and heavily depends on the ini-
tial model weights or model parameters θ : Deciding whether and how fast
the algorithm converges. Concerning generalization, weight initialization
aims to break symmetries [20] between different units connected to the same
inputs by assigning them different initial values and thus making them depict
different functions and capture different patterns. Beyond, there is little sci-
entifically confirmed knowledge on the influence and mechanics of weight
initialization, resulting in the predominance of well-performing heuristics,
such as Kaiming [151], Xavier [152], and others [153, 154]. In practice,
randomly drawing weights from a uniform distribution is a computationally
efficient way to achieve this (see Equation A.14), with m being the number
of inputs to guarantee consistent activation variance over all layers [18]. To
further ensure all layers to have the same gradient variance, n the number
of outputs is considered, resulting in a normalized weight initialization (see
Equation A.15) [152].

w jk ∼ U[− 1√
m
,

1√
m
], (A.14)

w jk ∼ U[−
√

6
n+m

,

√
6

n+m
]. (A.15)

Other strategies strive to initialize the parameters by pretraining the model
on a similar, often simpler task. Other strategies are immediately utilizing an
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already trained model, with the same architecture, as an initial point. In many
cases, these approaches profit from faster convergence due to the directed
initialization and improved generalization due to the parameters containing
information about the preceding reference model or task. These approaches
touch the field of transfer learning [24].

Batch Normalization

When updating the weights of a neural network, it is done under the as-
sumption that the other weights stay the same, yet in practice, all weights
are updated and have a strong influence on each other. As a consequence,
the optimization process suffers from a covariate shift that is induced by
higher-order effects in deep networks. Batch normalization [155] mitigates
this effect, by normalizing Hi, j a minibatch of activations element-wise by
the mean of each unit µµµ j and the standard deviation of each unit σσσ j (see
Equation A.16).

H′i, j =
Hi, j−µµµ j

σσσ j
. (A.16)

In that way, the input distribution will be propagated throughout all layers of
the network. During inference, µµµ and σσσ are set to running averages deter-
mined during training.

Skip Connection

In neural networks, and mainly in CNNs [42], skip connections, also referred
to as shortcut connections, are used to bypass features with lower abstraction
into deeper layers. This has the effect of regaining spatial information which
otherwise would have been lost in layers with features of higher abstrac-
tion. The introduced skip connections x execute an identity mapping, plainly
element-wise adding the output of the initial layer f(x) to the output of the
skipped layers y, assuming that both outputs have the same dimensions (see
Equation A.17).

y = f(x,{W})+x. (A.17)

The gradient flow exploration shows that the introduction of skip connections
entails a favorable precondition of the weight matrices.
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Parameter Norm Penalties

Adding a parameter norm penalty Ω(θ) to the objective function J(θ ;X,y),
is a soft constraint on the capacity of the model. α ∈ [0, inf) scales the share
in the loss during optimization (see Equation A.18).

J̃(θ ;X,y) = J(θ ;X,y)+αΩ(θ). (A.18)

As biases b induce less variance, only weights w are penalized. The most
common parameter norm penalty is the L2 norm [156] (see Equations A.19).

Ω(θ) =
1
2
||w||22,

w = (1−αϵ)w− ϵ∇wJ(w;X,y).
(A.19)

Parameter norm penalties are also known as weight decay, shifting the pa-
rameters closer to the origin of the parameter space while contracting dimen-
sions of w, to which the objective function is insensitive. The dimensions
can be interpreted as eigenvectors, whereas the sensitivity is mirrored by the
eigenvalues of the Hessian H.

Parameter Sharing

Prior knowledge of parameter dependencies is explicitly entered into the net-
work architecture by parameter sharing through force setting parameters wA

to equal wB. Prior knowledge of parameter dependencies is, for example,
translation invariance in images (such as in CNNs), similar inputs recurring
over time (such as in RNNs), or the mapping to a shared feature space (such
as Encoder-Decoder architecture). As a consequence of parameter sharing,
the memory requirements are reduced, and the model’s capacity is decreased,
which leads to a regularization effect (see Section 1.2.3).

Minibatch Method

In Section A.2, the SGD algorithm was introduced, motivating the central
idea of minibatch methods, observing an unbiased estimate of the gradient
from a batch of randomly drawn samples. From this point, it is apparent
that batch-design is a crucial factor for optimization and regularization. The
batch design is twofold. Batch size is a trade-off between a more unbiased
estimate of the gradient (larger batch size) against regularization effects due
to the noisiness of the biased estimate of the gradient (smaller batch size)
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[157]. While small batch sizes require small learning rates due to the noise-
induced instability, the iterations to reach convergence might increase heav-
ily. Large batch sizes are prone to exceed hardware limitations (RAM) during
computation. As GPUs follow the single instruction multiple data (SIMD)
paradigm [158], data parallelism improves runtime. Parallelism capabilities
are achieved by matching the physical processors of the GPU by sampling
power-of-two batch sizes. Sample selection is made by random sampling
to get an unbiased estimate of the gradient over the whole dataset, assum-
ing a pattern in the dataset, especially in its consecutive frames. As dataset
size (see Fig. 1.1a) increases, generalization is improved by decreasing the
number of iterations in which an individual sample is utilized for training.

Augmentation

Increasing the number of samples n for training reduces the generalization
gap and improves the neural network’s performance (for more on this, see
1.2.3). In practice, making additional data available can demand a great
effort for data collection, data preparation, and ground truth annotations. Es-
pecially in object recognition, data augmentation presents a useful solution
to generate additional data by transforming a sample x in the training set and
keeping the affiliated ground truth label y [159].

Dropout

Dropout [160] can be understood as training an ensemble of second networks
within a single neural network. A second network within the ensemble is de-
signed by removing input and hidden units, meaning zero multiplication of
the units’ output, from the encompassing network during training. A differ-
ent second network is chosen during each training step by randomly remov-
ing or dropping units defined by the binary mask vector µ and the sample
probability p(µ). The number of dropped units, also the dropout rate is
commonly between 0 and 0.5. The second networks share parameters (see
Section A.2) of the encompassing network θ , implicitly training multiple
second networks at once and consequently keeping down memory require-
ments and computational effort.

∑
µ

p(µ)p(y|x;θµ) = p(y|x;θ). (A.20)
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The parameter sharing causes each hidden unit to function in different en-
sembles, putting a regularization pressure on every hidden unit [161], im-
proving generalization. The output of all ensembles is approximately the
output of the encompassing network (see Equation A.20), making the ap-
proach computationally feasible during inference.

Early Stopping

When training a model with a large capacity, the training error steadily de-
creases over the training epochs. At some point, the model overfits the train-
ing samples, leading to an increased validation error. Early stopping deter-
mines the point of least validation error in hindsight, returning the model
parameters at that training step θ ∗. This is to be understood as a regular-
ization method that prevents the model from exploiting its full capacity by a
hard parameter constraint [26, 28, 162].

Hyperparameter Search

ANN design comes with a set of hyperparameters λ defining the architecture
and training process. Hence it is necessary to define a process to approximate
the optimal set of hyperparameters λ ∗ to reach the optimal parameter set θ ∗

that minimizes the overall validation loss L of the ANN. The optimal hy-
perparameter set is defined as Eq. A.21.

λ
∗ = argmin

λ

L (θλ ). (A.21)

Due to the computational expense of training neural networks, hyperparame-
ters are often handcrafted by human experts. When it comes to shallow neu-
ral networks, the hyperparameter search can profit from and be performed in
a more methodized manner. Bergstra et al. [134] showed that random search
is more efficient than grid search when it comes to dealing with high dimen-
sional spaces: Sampling in a grid of points gives a uniform coverage in the
original parameter space, though an inefficient coverage of the subspaces.
On the other hand, random sampling gives uniform coverage in the parame-
ter subspaces. Each hyperparameter, within the set λ , is independently and
randomly drawn from the uniform distribution U[lower bound,upper bound],
conforming to the hyperparameter’s interval and scale type (such as Boolean,
integer or float). Random search is insusceptible to overfitting due to the na-
ture of randomness during hyperparameter configuration.
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Sample and Feature Visualization with tSNE

The t-distributed stochastic neighbor embedding (tSNE) is a non-linear di-
mensionality reduction algorithm. tSNE is used for visualizing high-dimen-
sional data in low-dimensional spaces by mapping. tSNE casts the pattern
of high-dimensional data based on the pairwise similarities of data points
with multiple features by transferring the similarity measurement into a low-
dimensional mapping.

Algorithm 3 t-distributed stochastic neighbor embedding

1: procedure TSNE(X = {x1,x2, . . . ,xn} data set with samples from dif-
ferent domains, Perp cost function parameter perplexity, T number of
iterations, ϵ learning rate, α(t) momentum:)

2: p j|i, calculate pairwise similarities through Perp

3: pi, j←
p j|i+pi, j

2n
4: Y (0) = y1,y2, . . . ,yn from N (0,10−4I), sample initial mapping
5: for t = 1 to T do
6: q j|i, calculate pairwise low-dimensional similarities

7:
δC(p j|i,q j|i,yi,y j∈{1;n})

δyi

8: q j|i, calculate conditional probability for low-dimensional points y j
and yi

9: ∑t = Gt ∑t−1 GT
t +Rt

State correction:
10: Kt = ∑tHT

t (Ht∑tHT
t +Qt)

−1

11: µt = µ t +Kt(zt −h(µ t))
12: ∑t = (I−KtHt)∑t

13: return µt , ∑t
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A.3 Related Work Overview

The related work on unsupervised homogeneous domain adaptation, self-
supervised domain adaptation, and catastrophic forgetting is organized with
respect to the type and accompanied by a short description (details and plac-
ing in context see Ch. 1).

Unsupervised Homogeneous Domain Adaptation

Reference Approach Type

Coupled Generative Parameter-sharing constraint Generative
GANs [68] enforcing a multi-domain Model
2016 joint distribution
Pixel-Level GAN architecture for Generative
Domain Transfer [65] pixel-level image generation Model
2016 in the target domain
Unsupervised pixel-level GAN architecture for Generative
domain adaptation with unsupervised transformation Model
GANs [163] from source to target
2017 image
Image-to-Image translation Input-transformation Generative
with conditional tuples to learn Model
adversarial networks [66] on transformation
2017 loss
Unsupervised domain Domain-confusion loss Non
adaptation by backprop [76] to learn a Generative
2015 shared feature space Model
Adversarial Discriminative Untied parameter Non
Domain Adaptation [77] sharing to learn a Generative
2017 shared feature space Model
DLID: Deep Learning for Learning an interpolating Encoder
Domain Adaptation by path of features Decoder
Interpolating domains [74] to transition from source Reconst.
2013 to target domain
Domain separation Training a shared and Encoder
networks [70] separated encoders Decoder
2016 for representation learning Reconst.
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Domain generalization for Learning a domain-invariant Encoder
object recognition with representation by multiple Decoder
multi-task autoencoders [71] reconstruction networks Reconst.
2015
Deep reconstruction- Learning a representation Encoder
classification networks for reconstruction and Decoder
for unsupervised classification Reconst.
domain adaptation [75]
2016
Unpaired image-to-image Adversarial loss Adversarial
translation using cycle for unpaired Reconst.
consistent adversarial image-to-image
networks [78] translation
2017
Dualgan: Unsupervised dual Dual-GAN architecture Adversarial
learning for image-to- to train a translator Reconst.
image translation [80] from two sets of
2017 unlabeled images
Learning to discover Reconstruction is done Adversarial
cross-domain into both domains Reconst.
relations with GANs [79] based on an
2017 adversarial loss
Unsupervised Combining Adversarial
image-to-image reconstruction Reconst.
translation networks [98] cycle consistency, and
2017 adversarial loss
CyCADA: Cycle Adapt representations at Adversarial
consistent adversarial pixel and feature-level, Reconst.
domain adaptation [164] enforces cycle
2018 consistency, and task loss

Table A.12: Overview of state-of-the-art unsupervised domain adaptation, featuring references,
year of publication, a short description, and a type categorization of the domain
adaptation approach.
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Catastrophic Forgetting

Reference Approach Type

Overcoming catastrophic Decreasing plasticity of Training
forgetting in neural the model during retraining based
networks [97] by protecting the most
2017 important parameters.
Learning Transferring to an additional task Training
without by shared feature extraction based
Forgetting [60] and joint training on
2018 old and new task.
Progressive Extending neural networks Architecture
Neural by additional layers based
Forgetting [96] and lateral connections
2018 to previous layers.

Table A.13: Overview state-of-the-art approaches to avoid catastrophic forgetting, featuring
reference, year of publication, a short description, and a type categorization of the
domain adaptation approach.

Self-Supervised Domain Adaptation

Reference Approach Type

Semi-Supervised Self- Self-supervised training Similarity
Training of Object of an object detector model Context
Detection Models [86] by iteratively assigning based
2005 labels by the model itself
Pseudo-Label: The Simple Training on unlabeled data Similarity
And Efficient Semi- by assigning the class Context
Supervised Learning affiliation with the maximum based
Method for DNNs [82] predicted probability
2013 (entropy regularization)
Unsupervised Visual Graph-based pairing of Similarity
Representation Learning unlabeled samples with Context
by Graph-based cycle consistency. Pairs based
Consistent Constraints [83] are used as supervision
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2016 signal
Deep Clustering for Jointly learning of Similarity
Unsupervised Learning neural network parameters Context
of Visual Features [88] and cluster assignments based
2018 as supervision signal
Boosting self- Clustering-based Similarity
supervised learning via assignment of pseudo- Context
knowledge transfer [85] labels based on a based
2018 prelearned feature space
Find your own way: Weakly Self-supervised Temporal
-supervised segmentation of generation of pseudo- Context
path proposals for urban labels based on based
autonomy [87] temporal projection
2017
Look, Use correspondence Cross
listen of modalities Modal
and learn [93] as supervision signal to based
2017 learn a representation
Self-Supervised Self-supervised Cross
Sparse-to-Dense: generation of depth Modal
Self-Supervised Depth pseudo-labels for based
Completion from LiDAR images from depth
and Monocular Camera [94] images from depth
2019 measurements

Table A.14: Overview of state-of-the-art self-supervised domain adaptation, featuring ref-
erence, year of publication, a short description, and a type categorization of the
domain adaptation approach.
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List of Related and Disclosed Patents

[a] DE102018206108A1, EP000003557487A1 - 23.10.2019
Mark Schutera - ZF Friedrichshafen AG. The invention relates to an evalu-
ation device for generating validation data for an intelligent algorithm.

[b] DE102018206110A1, EP000003557490A1 - 23.10.2019
Mark Schutera - ZF Friedrichshafen AG. The invention relates to a method
for training artificial neural networks based on generated spatio-temporal
data.

[c] DE102018207977A1 - 28.11.2019
Mark Schutera, Tim Härle, Devi Alagarswamy - ZF Friedrichshafen AG.
The invention relates to the field of driver assistance systems and, more par-
ticularly, to a method and apparatus for securing a vehicle occupant of a
vehicle with a seat belt device.

[d] DE102018217943A1 - 23.04.2020
Mostafa Hussein, Mark Schutera - ZF Friedrichshafen AG. The present in-
vention relates to an evaluation device for parameterizing a recurrent neural
network for generating training data, a parameterization method for a recur-
rent neural network, and a method for generating training data.

[e] DE102018219760A1 - 20.05.2020
Mark Schutera, Prof. Dr. Stefan Elser - ZF Friedrichshafen AG. The
present invention relates to a method for training a recurrent neural network,
a method for providing driver assistance, and a collision prediction system
for protection against and/or during collisions of a vehicle.

[f] DE102018219996A1 - 28.05.2020
Mark Schutera - ZF Friedrichshafen AG. The present invention relates to
a training method for a neural network providing a neural network with a
reduced runtime, in particular with results of at least constant quality.

[g] DE102018221313A1 - 10.06.2020
Mark Schutera, Mostafa Hussein - ZF Friedrichshafen AG. The invention
relates to a method for detecting objects in night shots by means of a de-
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tector that is trained to detect objects in day shots of an environment of an
automatically operated vehicle.

[h] DE102019206991A1 - 19.11.2020
Tim Härle, Mark Schutera, Christian Herzog - ZF Friedrichshafen AG. The
invention relates to a system for a passenger transport vehicle for recogniz-
ing unauthorized persons. The invention also relates to a passenger transport
vehicle comprising such a system. The invention also relates to a method for
recognizing unauthorized persons.

[i] DE102019211672A1 - 04.02.2021
Mark Schutera - ZF Friedrichshafen AG. The present invention relates to a
training method for a neural network based on self-supervised and continu-
ous learning.

[j] DE102019212408A1 - 26.02.2021
Devi Alagarswamy, Mark Schutera, Tim Härle, Martin Seyffert, Vincent
Choquet - ZF Friedrichshafen AG. The invention relates to a method for de-
termining the body weight and/or the seat position of a vehicle occupant of
a motor vehicle, a control device for a motor vehicle, and a motor vehicle.

[k] DE102020200998A1 - 29.07.2021
Mark Schutera - ZF Friedrichshafen AG. The present invention relates to a
method for processing sensor data by means of an artificial neural network
and a file with a plurality of topologies for a large number of second artificial
neural networks based on environment-related characteristics.

[l] DE102020201742A1 - 12.08.2021
Mark Schutera, Frank Hafner - ZF Friedrichshafen AG. Method for select-
ing training data related to the sensor environment with the following steps:
recognition of an inadequately trained situation due to human interaction;
identification of sensor data relating to the inadequately trained situation.

[m] DE102020201743A1 - 12.08.2021
Frank Hafner, Mark Schutera - ZF Friedrichshafen AG. Training method
for an artificial neural network which is trained to process sensor data from
a first sensor, with the following steps: Providing first sensor data from the
first sensor and from second sensor data from a second sensor, the first sen-
sor data having structures for improved machine interpretability of the first
sensor data. Projecting the structures of the first sensor data onto the second
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sensor data into projected second sensor data; Training the artificial neural
network with the projected second sensor data.

[n] DE102020205346A1 - 28.10.2021
Mostafa Hussein, Mark Schutera, Tobias Mindel - ZF Friedrichshafen AG.
The invention relates to a computer-implemented method for recognizing a
lane in night shots by means of a detector which is designed to recognize
lanes in day shots of the surroundings of an automatically operated vehicle.
The invention also relates to a computer program product for recognizing
a lane in night shots, a control device for a vehicle for regulating and/or
controlling the automated operation of the vehicle, and a vehicle that is con-
figured for automated operation.

[o] DE102020205470A1 - 04.11.2021
Mark Schutera, Frank Hafner - ZF Friedrichshafen AG. A method for pro-
cessing optical sensor data, comprising the following steps: acquiring optical
sensor data; Generating a copy of the optical sensor data, the copy having a
reduced resolution compared to the original sensor data; Examining the copy
of the optical sensor data to determine an area of increased relevance; Pro-
jecting the area of increased relevance of the copy onto the original sensor
data; Cutting out the projected area in the original sensor data in order to fur-
ther process the area of increased relevance based on the original sensor data.

[p] DE102021202072A1 - 08.09.2022
Mark Schutera, Frank Hafner - ZF Friedrichshafen AG. A computer imple-
mented method for processing raw data from environment sensing sensors
of a driving system or of a traffic infrastructure element comprising the steps
of training a first artificial neural network (backbone), after which input data
are compressed to latent features not interpretable by humans, providing ex-
tracted first layers, inputting the raw data recorded during operation of the
driving system or the traffic infrastructure element, and storing the latent
features obtained as output from the raw data features.

[q] DE102021207699A1 - 26.01.2023
Mark Schutera, Frank Hafner - ZF Friedrichshafen AG. A method for par-
tially unsupervised training of a deep neural network comprising the steps of:
Predefining a class hierarchy of an auxiliary class and a main class; where the
objects of the main class are completely enclosed by objects of the auxiliary
class (such as unexpected objects present on the driving path); providing a
model pre-trained on the segmentation of objects of the auxiliary class (such
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as free space); Fusion of the annotations to the main and auxiliary classes in
the training dataset and subsequent training.

[r] DE102021208371A1 - 09.02.2023
Frank Hafner, Mark Schutera - ZF Friedrichshafen AG. Computer-implemented
method and computer program for decoupling execution times of data pro-
cessing procedures of a first environment perception system and a second
environment perception system of a driving system.

[s] DE102021208423A1 - 09.02.2023
Mark Schutera, Hendrik Vogt - ZF Friedrichshafen AG. Method and com-
puter program for safeguarding a perception system against contamination of
an perception system imaging sensor and perception system of an automated
driving system.
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List of Supervised Related Work

Simon Seitz (Karlsruhe Institute of Technology) - WS17/18
Vehicle cut-In detection for adaptive cruise control with neural networks
Master Thesis

Mostafa Hussein (Freiburg University) - SS18
Image-to-image translation for domain adaptation from CARLA to KITTI
Master Thesis

Hendrik Vogt (Karlsruhe Insitute of Technology) - WS18/19
Object reidentification in multi-camera settings
Internship

Hendrik Vogt (Karlsruhe Insitute of Technology) - SS19
Continuous domain adaptation - object detection from day to night
Master Thesis

Kshama Ramesh (Technical University Chemnitz) - WS19/20
Inference runtime optimization for object detection by night
Master Thesis

Luca Rettenberger (Karlsruhe Institute of Technology) - WS20/21
Methods for the frugal labeler: Multi-class semantic segmentation on het-
erogeneous labels
Research Project

Stefan Bühler (Karlsruhe Institute of Technology) - WS20/21
Ventricle meets Myocardium: In vivo semantic segmentation analysis and
high-throughput tooling
Bachelor Thesis

Sahil Arora (University of Applied Sciences Ravensburg-Weingarten) - SS21
Domain adaptation in camera mounting position shifts
Bachelor Thesis

Stefan Bühler (Karlsruhe Institute of Technology) - WS21/22
Unsupervised deployment shift approximation through epistemic uncertainty
Internship
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Marcus Bentele (University of Applied Sciences Vorarlberg) - SS22
Tackling performance biases in object detection for autonomous driving
Master Thesis

Isabel Janez (Ravensburg University of Cooperative Education) - WS22/23
Validation strategies for trustworthy autonomous driving functions
Internship

Stefan Bühler (Karlsruhe Institute of Technology) - SS23
Anonymization at the borders of human and machine pattern recognition
Master Thesis
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