33 research outputs found

    Switching techniques for broadband ISDN

    Get PDF
    The properties of switching techniques suitable for use in broadband networks have been investigated. Methods for evaluating the performance of such switches have been reviewed. A notation has been introduced to describe a class of binary self-routing networks. Hence a technique has been developed for determining the nature of the equivalence between two networks drawn from this class. The necessary and sufficient condition for two packets not to collide in a binary self-routing network has been obtained. This has been used to prove the non-blocking property of the Batcher-banyan switch. A condition for a three-stage network with channel grouping and link speed-up to be nonblocking has been obtained, of which previous conditions are special cases. A new three-stage switch architecture has been proposed, based upon a novel cell-level algorithm for path allocation in the intermediate stage of the switch. The algorithm is suited to hardware implementation using parallelism to achieve a very short execution time. An array of processors is required to implement the algorithm The processor has been shown to be of simple design. It must be initialised with a count representing the number of cells requesting a given output module. A fast method has been described for performing the request counting using a non-blocking binary self-routing network. Hardware is also required to forward routing tags from the processors to the appropriate data cells, when they have been allocated a path through the intermediate stage. A method of distributing these routing tags by means of a non-blocking copy network has been presented. The performance of the new path allocation algorithm has been determined by simulation. The rate of cell loss can increase substantially in a three-stage switch when the output modules are non-uniformly loaded. It has been shown that the appropriate use of channel grouping in the intermediate stage of the switch can reduce the effect of non-uniform loading on performance

    Novel techniques in large scaleable ATM switches

    Get PDF
    Bibliography: p. 172-178.This dissertation explores the research area of large scale ATM switches. The requirements for an ATM switch are determined by overviewing the ATM network architecture. These requirements lead to the discussion of an abstract ATM switch which illustrates the components of an ATM switch that automatically scale with increasing switch size (the Input Modules and Output Modules) and those that do not (the Connection Admission Control and Switch Management systems as well as the Cell Switch Fabric). An architecture is suggested which may result in a scalable Switch Management and Connection Admission Control function. However, the main thrust of the dissertation is confined to the cell switch fabric. The fundamental mathematical limits of ATM switches and buffer placement is presented next emphasising the desirability of output buffering. This is followed by an overview of the possible routing strategies in a multi-stage interconnection network. A variety of space division switches are then considered which leads to a discussion of the hypercube fabric, (a novel switching technique). The hypercube fabric achieves good performance with an O(N.log₂N)²) scaling. The output module, resequencing, cell scheduling and output buffering technique is presented leading to a complete description of the proposed ATM switch. Various traffic models are used to quantify the switch's performance. These include a simple exponential inter-arrival time model, a locality of reference model and a self-similar, bursty, multiplexed Variable Bit Rate (VBR) model. FIFO queueing is simple to implement in an ATNI switch, however, more responsive queueing strategies can result in an improved performance. An associative memory is presented which allows the separate queues in the ATM switch to be effectively logically combined into a single FIFO queue. The associative memory is described in detail and its feasibility is shown by laying out the Integrated Circuit masks and performing an analogue simulation of the IC's performance is SPICE3. Although optimisations were required to the original design, the feasibility of the approach is shown with a 15Ƞs write time and a 160Ƞs read time for a 32 row, 8 priority bit, 10 routing bit version of the memory. This is achieved with 2µm technology, more advanced technologies may result in even better performance. The various traffic models and switch models are simulated in a number of runs. This shows the performance of the hypercube which outperforms a Clos network of equivalent technology and approaches the performance of an ideal reference fabric. The associative memory leverages a significant performance advantage in the hypercube network and a modest advantage in the Clos network. The performance of the switches is shown to degrade with increasing traffic density, increasing locality of reference, increasing variance in the cell rate and increasing burst length. Interestingly, the fabrics show no real degradation in response to increasing self similarity in the fabric. Lastly, the appendices present suggestions on how redundancy, reliability and multicasting can be achieved in the hypercube fabric. An overview of integrated circuits is provided. A brief description of commercial ATM switching products is given. Lastly, a road map to the simulation code is provided in the form of descriptions of the functionality found in all of the files within the source tree. This is intended to provide the starting ground for anyone wishing to modify or extend the simulation system developed for this thesis

    On packet switch design

    Get PDF

    On-board B-ISDN fast packet switching architectures. Phase 1: Study

    Get PDF
    The broadband integrate services digital network (B-ISDN) is an emerging telecommunications technology that will meet most of the telecommunications networking needs in the mid-1990's to early next century. The satellite-based system is well positioned for providing B-ISDN service with its inherent capabilities of point-to-multipoint and broadcast transmission, virtually unlimited connectivity between any two points within a beam coverage, short deployment time of communications facility, flexible and dynamic reallocation of space segment capacity, and distance insensitive cost. On-board processing satellites, particularly in a multiple spot beam environment, will provide enhanced connectivity, better performance, optimized access and transmission link design, and lower user service cost. The following are described: the user and network aspects of broadband services; the current development status in broadband services; various satellite network architectures including system design issues; and various fast packet switch architectures and their detail designs

    IP and ATM integration: A New paradigm in multi-service internetworking

    Get PDF
    ATM is a widespread technology adopted by many to support advanced data communication, in particular efficient Internet services provision. The expected challenges of multimedia communication together with the increasing massive utilization of IP-based applications urgently require redesign of networking solutions in terms of both new functionalities and enhanced performance. However, the networking context is affected by so many changes, and to some extent chaotic growth, that any approach based on a structured and complex top-down architecture is unlikely to be applicable. Instead, an approach based on finding out the best match between realistic service requirements and the pragmatic, intelligent use of technical opportunities made available by the product market seems more appropriate. By following this approach, innovations and improvements can be introduced at different times, not necessarily complying with each other according to a coherent overall design. With the aim of pursuing feasible innovations in the different networking aspects, we look at both IP and ATM internetworking in order to investigating a few of the most crucial topics/ issues related to the IP and ATM integration perspective. This research would also address various means of internetworking the Internet Protocol (IP) and Asynchronous Transfer Mode (ATM) with an objective of identifying the best possible means of delivering Quality of Service (QoS) requirements for multi-service applications, exploiting the meritorious features that IP and ATM have to offer. Although IP and ATM often have been viewed as competitors, their complementary strengths and limitations from a natural alliance that combines the best aspects of both the technologies. For instance, one limitation of ATM networks has been the relatively large gap between the speed of the network paths and the control operations needed to configure those data paths to meet changing user needs. IP\u27s greatest strength, on the other hand, is the inherent flexibility and its capacity to adapt rapidly to changing conditions. These complementary strengths and limitations make it natural to combine IP with ATM to obtain the best that each has to offer. Over time many models and architectures have evolved for IP/ATM internetworking and they have impacted the fundamental thinking in internetworking IP and ATM. These technologies, architectures, models and implementations will be reviewed in greater detail in addressing possible issues in integrating these architectures s in a multi-service, enterprise network. The objective being to make recommendations as to the best means of interworking the two in exploiting the salient features of one another to provide a faster, reliable, scalable, robust, QoS aware network in the most economical manner. How IP will be carried over ATM when a commercial worldwide ATM network is deployed is not addressed and the details of such a network still remain in a state of flux to specify anything concrete. Our research findings culminated with a strong recommendation that the best model to adopt, in light of the impending integrated service requirements of future multi-service environments, is an ATM core with IP at the edges to realize the best of both technologies in delivering QoS guarantees in a seamless manner to any node in the enterprise

    Analyzing Traffic and Multicast Switch Issues in an ATM Network.

    Get PDF
    This dissertation attempts to solve two problems related to an ATM network. First, we consider packetized voice and video sources as the incoming traffic to an ATM multiplexer and propose modeling methods for both individual and aggregated traffic sources. These methods are, then, used to analyze performance parameters such as buffer occupancy, cell loss probability, and cell delay. Results, thus obtained, for different buffer sizes and number of voice and video sources are analyzed and compared with those generated from existing techniques. Second, we study the priority handling feature for time critical services in an ATM multicast switch. For this, we propose a non-blocking copy network and priority handling algorithms. We, then, analyze the copy network using an analytical method and simulation. The analysis utilizes both priority and non-priority cells for two different output reservation schemes. The performance parameters, based on cell delay, delay jitter, and cell loss probability, are studied for different buffer sizes and fan-outs under various input traffic loads. Our results show that the proposed copy network provides a better performance for the priority cells while the performance for the non-priority cells is slightly inferior in comparison with the scenario when the network does not consider priority handling. We also study the fault-tolerant behavior of the copy network, specially for the broadcast banyan network subsection, and present a routing scheme considering the non-blocking property under a specific pattern of connection assignments. A fault tolerant characteristic can be quantified using the full access probability. The computation of the full access probability for a general network is known to be NP-hard. We, therefore, provide a new bounding technique utilizing the concept of minimal cuts to compute full access probability of the copy network. Our study for the fault-tolerant multi-stage interconnection network having either an extra stage or chaining shows that the proposed technique provides tighter bounds as compared to those given by existing approaches. We also apply our bounding method to compute full access probability of the fault-tolerant copy network

    The Design of a single chip 8x8 ATM switch in 0.5 micrometers CMOS VLSI

    Get PDF
    This thesis illustrates the design of a single chip Asynchronous Transfer Mode (ATM) protocol switch using Very Large Scale Integration (VLSI). The ATM protocol is the data communications protocol used in the implementation of the Broadband Integrated Services Digital Network (B-ISDN), A number of switch architecture are first studied and a new architecture is developed based on optimizing performance and practicality of implementation in VLSI. A fully interconnected switch architecture is implemented by permanently connecting every input port to all the output ports. An output buffering scheme is used to handle cells that cannot be routed right away. This new architecture is caned the High Performance (HiPer) Switch Architecture. The performance of the architecture is simulated using a C++ model. Simulation results for a randomly distributed traffic pattern with a 90% probability of cells arriving in a time slot produces a Cell Loss Ratio of 1.Ox 10^-8 with output buffers that can hold 64 cells. The device is then modeled in VHDL to verify its functionality. Finally the layout of an 8x8 switch is produced using a 0.5 micrometer CMOS VLSI process and simulations of that circuit show that a peak throughput of 200 Mbps per output port can be achieve

    Packet switch architecture with multiple output queueing, Journal of Telecommunications and Information Technology, 2004, nr 4

    Get PDF
    In this paper the new packet switch architecture with multiple output queuing (MOQ) is proposed. In this architecture the nonblocking switch fabric, which has the capacity of NxN2, and output buffers arranged into N separate queues for each output, are applied. Each of N queues in one output port stores packets directed to this output only from one input. Both switch fabric and buffers can operate at the same speed as input and output ports. This solution does not need any speedup in the switch fabric as well as arbitration logic for taking decisions which packets from inputs will be transferred to outputs. Two possible switch fabric structures are considered: the centralized structure with the switch fabric located on one or several separate boards, and distributed structure with the switch fabric distributed over line cards. Buffer arrangements as separate queues with independent write pointers or as a memory bank with one pointer are also discussed. The mean cell delay and cell loss probability as performance measures for the proposed switch architecture are evaluated and compared with performance of OQ architecture and VOQ architecture. The hardware complexity of OQ, VOQ and presented MOQ are also compared. We conclude that hardware complexity of proposed switch is very similar to VOQ switch but its performance is comparable to OQ switch

    Design and evaluation of high-performance packet switching schemes

    Get PDF
    The design of high-performance packet switches is essential to efficiently handle the exponential growth of data traffic in the next generation Internet. Shared-memory-based packet switches are known to provide the best possible delay-throughput performance and the lowest packet-loss rate compared with packet switches using other buffering strategies. However, scalability of shared-memory-based switching systems has been restricted by high memory bandwidth requirements, segregation of memory space and centralized control of switching functions that causes the switch performance to degrade as a shared-memory switch is grown in size. The new class of sliding-window based packet switches are known to overcome these problems associated with shared-memory switches. This thesis presents different schemes proposed earlier by Dr. Kumar for use in the sliding-window switch to allocate self-routing parameters. Comparative performance of these schemes have been evaluated in this thesis. The results show the scalability of the switch that can be achieved with different parameter assignment schemes. It is shown that not all assignment schemes have same performance. With appropriate assignment scheme, it is possible to achieve very high throughput-performance and switch size for sliding-window switches
    corecore