4,549 research outputs found

    Wireless broadband access: WiMAX and beyond - Investigation of bandwidth request mechanisms under point-to-multipoint mode of WiMAX networks

    Get PDF
    The WiMAX standard specifies a metropolitan area broadband wireless access air interface. In order to support QoS for multimedia applications, various bandwidth request and scheduling mechanisms are suggested in WiMAX, in which a subscriber station can send request messages to a base station, and the base station can grant or reject the request according to the available radio resources. This article first compares two fundamental bandwidth request mechanisms specified in the standard, random access vs. polling under the point-to-multipoint mode, a mandatory transmission mode. Our results demonstrate that random access outperforms polling when the request rate is low. However, its performance degrades significantly when the channel is congested. Adaptive switching between random access and polling according to load can improve system performance. We also investigate the impact of channel noise on the random access request mechanism

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    Wireless Communication in Process Control Loop: Requirements Analysis, Industry Practices and Experimental Evaluation

    Get PDF
    Wireless communication is already used in process automation for process monitoring. The next stage of implementation of wireless technology in industrial applications is for process control. The need for wireless networked control systems has evolved because of the necessity for extensibility, mobility, modularity, fast deployment, and reduced installation and maintenance cost. These benefits are only applicable given that the wireless network of choice can meet the strict requirements of process control applications, such as latency. In this regard, this paper is an effort towards identifying current industry practices related to implementing process control over a wireless link and evaluates the suitability of ISA100.11a network for use in process control through experiments

    60 GHz MAC Standardization: Progress and Way Forward

    Full text link
    Communication at mmWave frequencies has been the focus in the recent years. In this paper, we discuss standardization efforts in 60 GHz short range communication and the progress therein. We compare the available standards in terms of network architecture, medium access control mechanisms, physical layer techniques and several other features. Comparative analysis indicates that IEEE 802.11ad is likely to lead the short-range indoor communication at 60 GHz. We bring to the fore resolved and unresolved issues pertaining to robust WLAN connectivity at 60 GHz. Further, we discuss the role of mmWave bands in 5G communication scenarios and highlight the further efforts required in terms of research and standardization

    An Energy Aware and Secure MAC Protocol for Tackling Denial of Sleep Attacks in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks which form part of the core for the Internet of Things consist of resource constrained sensors that are usually powered by batteries. Therefore, careful energy awareness is essential when working with these devices. Indeed,the introduction of security techniques such as authentication and encryption, to ensure confidentiality and integrity of data, can place higher energy load on the sensors. However, the absence of security protection c ould give room for energy drain attacks such as denial of sleep attacks which have a higher negative impact on the life span ( of the sensors than the presence of security features. This thesis, therefore, focuses on tackling denial of sleep attacks from two perspectives A security perspective and an energy efficiency perspective. The security perspective involves evaluating and ranking a number of security based techniques to curbing denial of sleep attacks. The energy efficiency perspective, on the other hand, involves exploring duty cycling and simulating three Media Access Control ( protocols Sensor MAC, Timeout MAC andTunableMAC under different network sizes and measuring different parameters such as the Received Signal Strength RSSI) and Link Quality Indicator ( Transmit power, throughput and energy efficiency Duty cycling happens to be one of the major techniques for conserving energy in wireless sensor networks and this research aims to answer questions with regards to the effect of duty cycles on the energy efficiency as well as the throughput of three duty cycle protocols Sensor MAC ( Timeout MAC ( and TunableMAC in addition to creating a novel MAC protocol that is also more resilient to denial of sleep a ttacks than existing protocols. The main contributions to knowledge from this thesis are the developed framework used for evaluation of existing denial of sleep attack solutions and the algorithms which fuel the other contribution to knowledge a newly developed protocol tested on the Castalia Simulator on the OMNET++ platform. The new protocol has been compared with existing protocols and has been found to have significant improvement in energy efficiency and also better resilience to denial of sleep at tacks Part of this research has been published Two conference publications in IEEE Explore and one workshop paper

    A Study of Medium Access Control Protocols for Wireless Body Area Networks

    Get PDF
    The seamless integration of low-power, miniaturised, invasive/non-invasive lightweight sensor nodes have contributed to the development of a proactive and unobtrusive Wireless Body Area Network (WBAN). A WBAN provides long-term health monitoring of a patient without any constraint on his/her normal dailylife activities. This monitoring requires low-power operation of invasive/non-invasive sensor nodes. In other words, a power-efficient Medium Access Control (MAC) protocol is required to satisfy the stringent WBAN requirements including low-power consumption. In this paper, we first outline the WBAN requirements that are important for the design of a low-power MAC protocol. Then we study low-power MAC protocols proposed/investigated for WBAN with emphasis on their strengths and weaknesses. We also review different power-efficient mechanisms for WBAN. In addition, useful suggestions are given to help the MAC designers to develop a low-power MAC protocol that will satisfy the stringent WBAN requirements.Comment: 13 pages, 8 figures, 7 table

    Performance analysis of contention based bandwidth request mechanisms in WiMAX networks

    Get PDF
    This article is posted here with the permission of IEEE. The official version can be obtained from the DOI below - Copyright @ 2010 IEEEWiMAX networks have received wide attention as they support high data rate access and amazing ubiquitous connectivity with great quality-of-service (QoS) capabilities. In order to support QoS, bandwidth request (BW-REQ) mechanisms are suggested in the WiMAX standard for resource reservation, in which subscriber stations send BW-REQs to a base station which can grant or reject the requests according to the available radio resources. In this paper we propose a new analytical model for the performance analysis of various contention based bandwidth request mechanisms, including grouping and no-grouping schemes, as suggested in the WiMAX standard. Our analytical model covers both unsaturated and saturated traffic load conditions in both error-free and error-prone wireless channels. The accuracy of this model is verified by various simulation results. Our results show that the grouping mechanism outperforms the no-grouping mechanism when the system load is high, but it is not preferable when the system load is light. The channel noise degrades the performance of both throughput and delay.This work was supported by the U.K. Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/G070350/1 and by the Brunel University’s BRIEF Award
    • 

    corecore