7 research outputs found

    Flow Allocation for Maximum Throughput and Bounded Delay on Multiple Disjoint Paths for Random Access Wireless Multihop Networks

    Full text link
    In this paper, we consider random access, wireless, multi-hop networks, with multi-packet reception capabilities, where multiple flows are forwarded to the gateways through node disjoint paths. We explore the issue of allocating flow on multiple paths, exhibiting both intra- and inter-path interference, in order to maximize average aggregate flow throughput (AAT) and also provide bounded packet delay. A distributed flow allocation scheme is proposed where allocation of flow on paths is formulated as an optimization problem. Through an illustrative topology it is shown that the corresponding problem is non-convex. Furthermore, a simple, but accurate model is employed for the average aggregate throughput achieved by all flows, that captures both intra- and inter-path interference through the SINR model. The proposed scheme is evaluated through Ns2 simulations of several random wireless scenarios. Simulation results reveal that, the model employed, accurately captures the AAT observed in the simulated scenarios, even when the assumption of saturated queues is removed. Simulation results also show that the proposed scheme achieves significantly higher AAT, for the vast majority of the wireless scenarios explored, than the following flow allocation schemes: one that assigns flows on paths on a round-robin fashion, one that optimally utilizes the best path only, and another one that assigns the maximum possible flow on each path. Finally, a variant of the proposed scheme is explored, where interference for each link is approximated by considering its dominant interfering nodes only.Comment: IEEE Transactions on Vehicular Technolog

    Cross-layer Design for Wireless Mesh Networks with Advanced Physical and Network Layer Techniques

    Get PDF
    Cross-layer optimization is an essential tool for designing wireless network protocols. We present a cross-layer optimization framework for wireless networks where at each node, various smart antenna techniques such as beam-forming, spatial division multiple access and spatial division multiplexing are employed. These techniques provide interference suppression, capability for simultaneous communication with several nodes and transmission with higher data rates, respectively. By integrating different combinations of these multi-antenna techniques in physical layer with various constraints from MAC and network layers, three Mixed Integer Linear Programming models are presented to minimize the scheduling period. Since these optimization problems are combinatorially complex, the optimal solution is approached by a Column Generation (CG) decomposition method. Our numerical results show that the resulted directive, multiple access and multiplexing gains combined with scheduling, effectively increase both the spatial reuse and the capacity of the links and therefore enhance the achievable system throughput. The introduced cross-layer approach is also extended to consider heterogeneous networks where we present a multi-criteria optimization framework to model the design problem with an objective of jointly minimizing the cost of deployment and the scheduling period. Our results reveal the significant benefits of this joint design method. We also investigate the achievable performance gain that network coding (with opportunistic listening) when combined with Successive Interference Cancellation (SIC) brings to a multi-hop wireless network. We develop a cross-layer formulation in which SIC enables concurrent receptions from multiple transmitters and network coding reduces the transmission time-slot for minimizing the scheduling time. To solve this combinatorially complex non-linear problem, we decompose it to two linear sub-problems; namely opportunistic network coding aware routing, and scheduling sub-problems. Our results affirm our expectation for a remarkable performance improvement when both techniques are jointly used. Further, we develop an optimization model for combining SIC with power control (PC). Our model optimally adjusts the transmission power of nodes to avoid interference on unintended receivers and properly embraces undesired interference through SIC. Therefore, it provides a balance between usage of PC and SIC at the transmitting and receiving sides, respectively. Our results show considerable throughput improvement in dense and heavily loaded networks

    Contention techniques for opportunistic communication in wireless mesh networks

    Get PDF
    Auf dem Gebiet der drahtlosen Kommunikation und insbesondere auf den tieferen Netzwerkschichten sind gewaltige Fortschritte zu verzeichnen. Innovative Konzepte und Technologien auf der physikalischen Schicht (PHY) gehen dabei zeitnah in zelluläre Netze ein. Drahtlose Maschennetzwerke (WMNs) können mit diesem Innovationstempo nicht mithalten. Die Mehrnutzer-Kommunikation ist ein Grundpfeiler vieler angewandter PHY Technologien, die sich in WMNs nur ungenügend auf die etablierte Schichtenarchitektur abbilden lässt. Insbesondere ist das Problem des Scheduling in WMNs inhärent komplex. Erstaunlicherweise ist der Mehrfachzugriff mit Trägerprüfung (CSMA) in WMNs asymptotisch optimal obwohl das Verfahren eine geringe Durchführungskomplexität aufweist. Daher stellt sich die Frage, in welcher Weise das dem CSMA zugrunde liegende Konzept des konkurrierenden Wettbewerbs (engl. Contention) für die Integration innovativer PHY Technologien verwendet werden kann. Opportunistische Kommunikation ist eine Technik, die die inhärenten Besonderheiten des drahtlosen Kanals ausnutzt. In der vorliegenden Dissertation werden CSMA-basierte Protokolle für die opportunistische Kommunikation in WMNs entwickelt und evaluiert. Es werden dabei opportunistisches Routing (OR) im zustandslosen Kanal und opportunistisches Scheduling (OS) im zustandsbehafteten Kanal betrachtet. Ziel ist es, den Durchsatz von elastischen Paketflüssen gerecht zu maximieren. Es werden Modelle für Überlastkontrolle, Routing und konkurrenzbasierte opportunistische Kommunikation vorgestellt. Am Beispiel von IEEE 802.11 wird illustriert, wie der schichtübergreifende Entwurf in einem Netzwerksimulator prototypisch implementiert werden kann. Auf Grundlage der Evaluationsresultate kann der Schluss gezogen werden, dass die opportunistische Kommunikation konkurrenzbasiert realisierbar ist. Darüber hinaus steigern die vorgestellten Protokolle den Durchsatz im Vergleich zu etablierten Lösungen wie etwa DCF, DSR, ExOR, RBAR und ETT.In the field of wireless communication, a tremendous progress can be observed especially at the lower layers. Innovative physical layer (PHY) concepts and technologies can be rapidly assimilated in cellular networks. Wireless mesh networks (WMNs), on the other hand, cannot keep up with the speed of innovation at the PHY due to their flat and decentralized architecture. Many innovative PHY technologies rely on multi-user communication, so that the established abstraction of the network stack does not work well for WMNs. The scheduling problem in WMNs is inherent complex. Surprisingly, carrier sense multiple access (CSMA) in WMNs is asymptotically utility-optimal even though it has a low computational complexity and does not involve message exchange. Hence, the question arises whether CSMA and the underlying concept of contention allows for the assimilation of advanced PHY technologies into WMNs. In this thesis, we design and evaluate contention protocols based on CSMA for opportunistic communication in WMNs. Opportunistic communication is a technique that relies on multi-user diversity in order to exploit the inherent characteristics of the wireless channel. In particular, we consider opportunistic routing (OR) and opportunistic scheduling (OS) in memoryless and slow fading channels, respectively. We present models for congestion control, routing and contention-based opportunistic communication in WMNs in order to maximize both throughput and fairness of elastic unicast traffic flows. At the instance of IEEE 802.11, we illustrate how the cross-layer algorithms can be implemented within a network simulator prototype. Our evaluation results lead to the conclusion that contention-based opportunistic communication is feasible. Furthermore, the proposed protocols increase both throughput and fairness in comparison to state-of-the-art approaches like DCF, DSR, ExOR, RBAR and ETT

    Design methods for optimal resource allocation in wireless networks

    Get PDF
    Wireless communications have seen remarkable progress over the past two decades and perceived tremendous success due to their agile nature and capability to provide fast and ubiquitous internet access. Maturation of 3G wireless network services, development of smart-phones and other broadband mobile computing devices however have motivated researchers to design wireless networks with increased capacity and coverage, therefore un-leaching the wireless broadband capabilities. In this thesis, we address two very important design aspects of wireless networks, namely, interference management and control through optimal cross-layer design and channel fading mitigation through relay-assisted cooperative communications. For the former, we address, in the context of wireless network design, the problem of optimally partitioning the spectrum into a set of non-overlapping channels with non uniform spectrum widths and we model the combinatorially complex problem of joint routing, link scheduling, and spectrum allocation as an optimization problem. We use column generation decomposition technique (which decomposes the original problem into a master and a pricing subproblem) for solving the problem optimally. We also propose several sub-optimal methods for efficiently solving the pricing subproblems. For the latter problem, we study the joint problem of relay selection and power allocation in both wireless unicast and multicast cooperative cellular networks. We employ convex optimization technique to model this complex optimization problem and use branch and bound technique to solve it optimally. We also present sub-optimal methods to reduce the problem complexity and solve it more efficiently

    Link Scheduling in UAV-Aided Networks

    Get PDF
    Unmanned Aerial Vehicles (UAVs) or drones are a type of low altitude aerial mobile vehicles. They can be integrated into existing networks; e.g., cellular, Internet of Things (IoT) and satellite networks. Moreover, they can leverage existing cellular or Wi-Fi infrastructures to communicate with one another. A popular application of UAVs is to deploy them as mobile base stations and/or relays to assist terrestrial wireless communications. Another application is data collection, whereby they act as mobile sinks for wireless sensor networks or sensor devices operating in IoT networks. Advantageously, UAVs are cost-effective and they are able to establish line-of-sight links, which help improve data rate. A key concern, however, is that the uplink communications to a UAV may be limited, where it is only able to receive from one device at a time. Further, ground devices, such as those in IoT networks, may have limited energy, which limit their transmit power. To this end, there are three promising approaches to address these concerns, including (i) trajectory optimization, (ii) link scheduling, and (iii) equipping UAVs with a Successive Interference Cancellation (SIC) radio. Henceforth, this thesis considers data collection in UAV-aided, TDMA and SICequipped wireless networks. Its main aim is to develop novel link schedulers to schedule uplink communications to a SIC-capable UAV. In particular, it considers two types of networks: (i) one-tier UAV communications networks, where a SIC-enabled rotary-wing UAV collects data from multiple ground devices, and (ii) Space-Air-Ground Integrated Networks (SAGINs), where a SIC-enabled rotary-wing UAV offloads collected data from ground devices to a swarm of CubeSats. A CubeSat then downloads its data to a terrestrial gateway. Compared to one-tier UAV communications networks, SAGINs are able to provide wide coverage and seamless connectivity to ground devices in remote and/or sparsely populated areas
    corecore