97,477 research outputs found

    Generalized detector as a spectrum sensor in cognitive radio networks

    Get PDF
    The implementation of the generalized detector (GD) in cognitive radio (CR) systems allows us to improve the spectrum sensing performance in comparison with employment of the conventional detectors. We analyze the spectrum sensing performance for the uncorrelated and spatially correlated receive antenna array elements. Addi¬tionally, we consider a practical case when the noise power at the output of GD linear systems (the preliminary and additional filters) is differed by value. The choice of the optimal GD threshold based on the minimum total error rate criterion is also discussed. Simulation results demonstrate superiority of GD implementation in CR sys¬tem as spectrum sensor in comparison with the energy detector (ED), weighted ED (WED), maximum-minimum eigenvalue (MME) detector, and generalized likelihood ratio test (GLRT) detecto

    BER of MRC for M-QAM with imperfect channel estimation over correlated Nakagami-m fading

    Get PDF
    In this contribution, we provide an exact BER analysis for M-QAM transmission over arbitrarily correlated Nakagami-m fading channels with maximal-ratio combining (MRC) and imperfect channel estimation at the receiver. Assuming an arbitrary joint fading distribution and a generic pilot-based channel estimation method, we derive an exact BER expression that involves an expectation over (at most) 4 variables, irrespective of the number of receive antennas. The resulting BER expression includes well-known PDFs and the PDF of only the norm of the channel vector. In order to obtain the latter PDF for arbitrarily correlated Nakagami-m fading, several approaches from the literature are discussed. For identically distributed and arbitrarily correlated Nakagami-m channels with integer m, we present several BER performance results, which are obtained from numerical evaluation and confirmed by straightforward computer simulations. The numerical evaluation of the exact BER expression turns out to be much less time-consuming than the computer simulations

    Adaptive Non-uniform Compressive Sampling for Time-varying Signals

    Full text link
    In this paper, adaptive non-uniform compressive sampling (ANCS) of time-varying signals, which are sparse in a proper basis, is introduced. ANCS employs the measurements of previous time steps to distribute the sensing energy among coefficients more intelligently. To this aim, a Bayesian inference method is proposed that does not require any prior knowledge of importance levels of coefficients or sparsity of the signal. Our numerical simulations show that ANCS is able to achieve the desired non-uniform recovery of the signal. Moreover, if the signal is sparse in canonical basis, ANCS can reduce the number of required measurements significantly.Comment: 6 pages, 8 figures, Conference on Information Sciences and Systems (CISS 2017) Baltimore, Marylan
    • …
    corecore