2,868 research outputs found

    Performance Evaluation of Cryptographic Algorithms over IoT Platforms and Operating Systems

    Get PDF
    The deployment of security services over Wireless Sensor Networks (WSN) and IoT devices brings significant processing and energy consumption overheads. These overheads are mainly determined by algorithmic efficiency, quality of implementation, and operating system. Benchmarks of symmetric primitives exist in the literature for WSN platforms but they are mostly focused on single platforms or single operating systems. Moreover, they are not up to date with respect to implementations and/or operating systems versions which had significant progress. Herein, we provide time and energy benchmarks of reference implementations for different platforms and operating systems and analyze their impact. Moreover, we not only give the first benchmark results of symmetric cryptography for the Intel Edison IoT platform but also describe a methodology of how to measure energy consumption on that platform

    An IoT Endpoint System-on-Chip for Secure and Energy-Efficient Near-Sensor Analytics

    Full text link
    Near-sensor data analytics is a promising direction for IoT endpoints, as it minimizes energy spent on communication and reduces network load - but it also poses security concerns, as valuable data is stored or sent over the network at various stages of the analytics pipeline. Using encryption to protect sensitive data at the boundary of the on-chip analytics engine is a way to address data security issues. To cope with the combined workload of analytics and encryption in a tight power envelope, we propose Fulmine, a System-on-Chip based on a tightly-coupled multi-core cluster augmented with specialized blocks for compute-intensive data processing and encryption functions, supporting software programmability for regular computing tasks. The Fulmine SoC, fabricated in 65nm technology, consumes less than 20mW on average at 0.8V achieving an efficiency of up to 70pJ/B in encryption, 50pJ/px in convolution, or up to 25MIPS/mW in software. As a strong argument for real-life flexible application of our platform, we show experimental results for three secure analytics use cases: secure autonomous aerial surveillance with a state-of-the-art deep CNN consuming 3.16pJ per equivalent RISC op; local CNN-based face detection with secured remote recognition in 5.74pJ/op; and seizure detection with encrypted data collection from EEG within 12.7pJ/op.Comment: 15 pages, 12 figures, accepted for publication to the IEEE Transactions on Circuits and Systems - I: Regular Paper

    Design and analysis of adaptive hierarchical low-power long-range networks

    Get PDF
    A new phase of evolution of Machine-to-Machine (M2M) communication has started where vertical Internet of Things (IoT) deployments dedicated to a single application domain gradually change to multi-purpose IoT infrastructures that service different applications across multiple industries. New networking technologies are being deployed operating over sub-GHz frequency bands that enable multi-tenant connectivity over long distances and increase network capacity by enforcing low transmission rates to increase network capacity. Such networking technologies allow cloud-based platforms to be connected with large numbers of IoT devices deployed several kilometres from the edges of the network. Despite the rapid uptake of Long-power Wide-area Networks (LPWANs), it remains unclear how to organize the wireless sensor network in a scaleable and adaptive way. This paper introduces a hierarchical communication scheme that utilizes the new capabilities of Long-Range Wireless Sensor Networking technologies by combining them with broadly used 802.11.4-based low-range low-power technologies. The design of the hierarchical scheme is presented in detail along with the technical details on the implementation in real-world hardware platforms. A platform-agnostic software firmware is produced that is evaluated in real-world large-scale testbeds. The performance of the networking scheme is evaluated through a series of experimental scenarios that generate environments with varying channel quality, failing nodes, and mobile nodes. The performance is evaluated in terms of the overall time required to organize the network and setup a hierarchy, the energy consumption and the overall lifetime of the network, as well as the ability to adapt to channel failures. The experimental analysis indicate that the combination of long-range and short-range networking technologies can lead to scalable solutions that can service concurrently multiple applications

    On the feasibility of attribute-based encryption on Internet of Things devices

    Get PDF
    Attribute-based encryption (ABE) could be an effective cryptographic tool for the secure management of Internet of Things (IoT) devices, but its feasibility in the IoT has been under-investigated thus far. This article explores such feasibility for well-known IoT platforms, namely, Intel Galileo Gen 2, Intel Edison, Raspberry pi 1 model B, and Raspberry pi zero, and concludes that adopting ABE in the IoT is indeed feasible

    The future of Cybersecurity in Italy: Strategic focus area

    Get PDF
    This volume has been created as a continuation of the previous one, with the aim of outlining a set of focus areas and actions that the Italian Nation research community considers essential. The book touches many aspects of cyber security, ranging from the definition of the infrastructure and controls needed to organize cyberdefence to the actions and technologies to be developed to be better protected, from the identification of the main technologies to be defended to the proposal of a set of horizontal actions for training, awareness raising, and risk management

    A Framework for Facilitating Secure Design and Development of IoT Systems

    Get PDF
    The term Internet of Things (IoT) describes an ever-growing ecosystem of physical objects or things interconnected with each other and connected to the Internet. IoT devices consist of a wide range of highly heterogeneous inanimate and animate objects. Thus, a thing in the context of the IoT can even mean a person with blood pressure or heart rate monitor implant or a pet with a biochip transponder. IoT devices range from ordinary household appliances, such as smart light bulbs or smart coffee makers, to sophisticated tools for industrial automation. IoT is currently leading a revolutionary change in many industries and, as a result, a lot of industries and organizations are adopting the paradigm to gain a competitive edge. This allows them to boost operational efficiency and optimize system performance through real-time data management, which results in an optimized balance between energy usage and throughput. Another important application area is the Industrial Internet of Things (IIoT), which is the application of the IoT in industrial settings. This is also referred to as the Industrial Internet or Industry 4.0, where Cyber- Physical Systems (CPS) are interconnected using various technologies to achieve wireless control as well as advanced manufacturing and factory automation. IoT applications are becoming increasingly prevalent across many application domains, including smart healthcare, smart cities, smart grids, smart farming, and smart supply chain management. Similarly, IoT is currently transforming the way people live and work, and hence the demand for smart consumer products among people is also increasing steadily. Thus, many big industry giants, as well as startup companies, are competing to dominate the market with their new IoT products and services, and hence unlocking the business value of IoT. Despite its increasing popularity, potential benefits, and proven capabilities, IoT is still in its infancy and fraught with challenges. The technology is faced with many challenges, including connectivity issues, compatibility/interoperability between devices and systems, lack of standardization, management of the huge amounts of data, and lack of tools for forensic investigations. However, the state of insecurity and privacy concerns in the IoT are arguably among the key factors restraining the universal adoption of the technology. Consequently, many recent research studies reveal that there are security and privacy issues associated with the design and implementation of several IoT devices and Smart Applications (smart apps). This can be attributed, partly, to the fact that as some IoT device makers and smart apps development companies (especially the start-ups) reap business value from the huge IoT market, they tend to neglect the importance of security. As a result, many IoT devices and smart apps are created with security vulnerabilities, which have resulted in many IoT related security breaches in recent years. This thesis is focused on addressing the security and privacy challenges that were briefly highlighted in the previous paragraph. Given that the Internet is not a secure environ ment even for the traditional computer systems makes IoT systems even less secure due to the inherent constraints associated with many IoT devices. These constraints, which are mainly imposed by cost since many IoT edge devices are expected to be inexpensive and disposable, include limited energy resources, limited computational and storage capabilities, as well as lossy networks due to the much lower hardware performance compared to conventional computers. While there are many security and privacy issues in the IoT today, arguably a root cause of such issues is that many start-up IoT device manufacturers and smart apps development companies do not adhere to the concept of security by design. Consequently, some of these companies produce IoT devices and smart apps with security vulnerabilities. In recent years, attackers have exploited different security vulnerabilities in IoT infrastructures which have caused several data breaches and other security and privacy incidents involving IoT devices and smart apps. These have attracted significant attention from the research community in both academia and industry, resulting in a surge of proposals put forward by many researchers. Although research approaches and findings may vary across different research studies, the consensus is that a fundamental prerequisite for addressing IoT security and privacy challenges is to build security and privacy protection into IoT devices and smart apps from the very beginning. To this end, this thesis investigates how to bake security and privacy into IoT systems from the onset, and as its main objective, this thesis particularly focuses on providing a solution that can foster the design and development of secure IoT devices and smart apps, namely the IoT Hardware Platform Security Advisor (IoT-HarPSecA) framework. The security framework is expected to provide support to designers and developers in IoT start-up companies during the design and implementation of IoT systems. IoT-HarPSecA framework is also expected to facilitate the implementation of security in existing IoT systems. To accomplish the previously mentioned objective as well as to affirm the aforementioned assertion, the following step-by-step problem-solving approach is followed. The first step is an exhaustive survey of different aspects of IoT security and privacy, including security requirements in IoT architecture, security threats in IoT architecture, IoT application domains and their associated cyber assets, the complexity of IoT vulnerabilities, and some possible IoT security and privacy countermeasures; and the survey wraps up with a brief overview of IoT hardware development platforms. The next steps are the identification of many challenges and issues associated with the IoT, which narrowed down to the abovementioned fundamental security/privacy issue; followed by a study of different aspects of security implementation in the IoT. The remaining steps are the framework design thinking process, framework design and implementation, and finally, framework performance evaluation. IoT-HarPSecA offers three functionality features, namely security requirement elicitation security best practice guidelines for secure development, and above all, a feature that recommends specific Lightweight Cryptographic Algorithms (LWCAs) for both software and hardware implementations. Accordingly, IoT-HarPSecA is composed of three main components, namely Security Requirements Elicitation (SRE) component, Security Best Practice Guidelines (SBPG) component, and Lightweight Cryptographic Algorithms Recommendation (LWCAR) component, each of them servicing one of the aforementioned features. The author has implemented a command-line tool in C++ to serve as an interface between users and the security framework. This thesis presents a detailed description, design, and implementation of the SRE, SBPG, and LWCAR components of the security framework. It also presents real-world practical scenarios that show how IoT-HarPSecA can be used to elicit security requirements, generate security best practices, and recommend appropriate LWCAs based on user inputs. Furthermore, the thesis presents performance evaluation of the SRE, SBPG, and LWCAR components framework tools, which shows that IoT-HarPSecA can serve as a roadmap for secure IoT development.O termo Internet das coisas (IoT) é utilizado para descrever um ecossistema, em expansão, de objetos físicos ou elementos interconetados entre si e à Internet. Os dispositivos IoT consistem numa gama vasta e heterogénea de objetos animados ou inanimados e, neste contexto, podem pertencer à IoT um indivíduo com um implante que monitoriza a frequência cardíaca ou até mesmo um animal de estimação que tenha um biochip. Estes dispositivos variam entre eletrodomésticos, tais como máquinas de café ou lâmpadas inteligentes, a ferramentas sofisticadas de uso na automatização industrial. A IoT está a revolucionar e a provocar mudanças em várias indústrias e muitas adotam esta tecnologia para incrementar as suas vantagens competitivas. Este paradigma melhora a eficiência operacional e otimiza o desempenho de sistemas através da gestão de dados em tempo real, resultando num balanço otimizado entre o uso energético e a taxa de transferência. Outra área de aplicação é a IoT Industrial (IIoT) ou internet industrial ou Indústria 4.0, ou seja, uma aplicação de IoT no âmbito industrial, onde os sistemas ciberfísicos estão interconectados a diversas tecnologias de forma a obter um controlo de rede sem fios, bem como fabricações avançadas e automatização fabril. As aplicações da IoT estão a crescer e a tornarem-se predominantes em muitos domínios de aplicação inteligentes como sistemas de saúde, cidades, redes, agricultura e sistemas de fornecimento. Da mesma forma, a IoT está a transformar estilos de vida e de trabalho e assim, a procura por produtos inteligentes está constantemente a aumentar. As grandes indústrias e startups competem entre si de forma a dominar o mercado com os seus novos serviços e produtos IoT, desbloqueando o valor de negócio da IoT. Apesar da sua crescente popularidade, benefícios e capacidades comprovadas, a IoT está ainda a dar os seus primeiros passos e é confrontada com muitos desafios. Entre eles, problemas de conectividade, compatibilidade/interoperabilidade entre dispositivos e sistemas, falta de padronização, gestão das enormes quantidades de dados e ainda falta de ferramentas para investigações forenses. No entanto, preocupações quanto ao estado de segurança e privacidade ainda estão entre os fatores adversos à adesão universal desta tecnologia. Estudos recentes revelaram que existem questões de segurança e privacidade associadas ao design e implementação de vários dispositivos IoT e aplicações inteligentes (smart apps.), isto pode ser devido ao facto, em parte, de que alguns fabricantes e empresas de desenvolvimento de dispositivos (especialmente startups) IoT e smart apps., recolham o valor de negócio dos grandes mercados IoT, negligenciando assim a importância da segurança, resultando em dispositivos IoT e smart apps. com carências e violações de segurança da IoT nos últimos anos. Esta tese aborda os desafios de segurança e privacidade que foram supra mencionados. Visto que a Internet e os sistemas informáticos tradicionais são por vezes considerados inseguros, os sistemas IoT tornam-se ainda mais inseguros, devido a restrições inerentes a tais dispositivos. Estas restrições são impostas devido ao custo, uma vez que se espera que muitos dispositivos de ponta sejam de baixo custo e descartáveis, com recursos energéticos limitados, bem como limitações na capacidade de armazenamento e computacionais, e redes com perdas devido a um desempenho de hardware de qualidade inferior, quando comparados com computadores convencionais. Uma das raízes do problema é o facto de que muitos fabricantes, startups e empresas de desenvolvimento destes dispositivos e smart apps não adiram ao conceito de segurança por construção, ou seja, logo na conceção, não preveem a proteção da privacidade e segurança. Assim, alguns dos produtos e dispositivos produzidos apresentam vulnerabilidades na segurança. Nos últimos anos, hackers maliciosos têm explorado diferentes vulnerabilidades de segurança nas infraestruturas da IoT, causando violações de dados e outros incidentes de privacidade envolvendo dispositivos IoT e smart apps. Estes têm atraído uma atenção significativa por parte das comunidades académica e industrial, que culminaram num grande número de propostas apresentadas por investigadores científicos. Ainda que as abordagens de pesquisa e os resultados variem entre os diferentes estudos, há um consenso e pré-requisito fundamental para enfrentar os desafios de privacidade e segurança da IoT, que buscam construir proteção de segurança e privacidade em dispositivos IoT e smart apps. desde o fabrico. Para esta finalidade, esta tese investiga como produzir segurança e privacidade destes sistemas desde a produção, e como principal objetivo, concentra-se em fornecer soluções que possam promover a conceção e o desenvolvimento de dispositivos IoT e smart apps., nomeadamente um conjunto de ferramentas chamado Consultor de Segurança da Plataforma de Hardware da IoT (IoT-HarPSecA). Espera-se que o conjunto de ferramentas forneça apoio a designers e programadores em startups durante a conceção e implementação destes sistemas ou que facilite a integração de mecanismos de segurança nos sistemas préexistentes. De modo a alcançar o objetivo proposto, recorre-se à seguinte abordagem. A primeira fase consiste num levantamento exaustivo de diferentes aspetos da segurança e privacidade na IoT, incluindo requisitos de segurança na arquitetura da IoT e ameaças à sua segurança, os seus domínios de aplicação e os ativos cibernéticos associados, a complexidade das vulnerabilidades da IoT e ainda possíveis contramedidas relacionadas com a segurança e privacidade. Evolui-se para uma breve visão geral das plataformas de desenvolvimento de hardware da IoT. As fases seguintes consistem na identificação dos desafios e questões associadas à IoT, que foram restringidos às questões de segurança e privacidade. As demais etapas abordam o processo de pensamento de conceção (design thinking), design e implementação e, finalmente, a avaliação do desempenho. O IoT-HarPSecA é composto por três componentes principais: a Obtenção de Requisitos de Segurança (SRE), Orientações de Melhores Práticas de Segurança (SBPG) e a recomendação de Componentes de Algoritmos Criptográficos Leves (LWCAR) na implementação de software e hardware. O autor implementou uma ferramenta em linha de comandos usando linguagem C++ que serve como interface entre os utilizadores e a IoT-HarPSecA. Esta tese apresenta ainda uma descrição detalhada, desenho e implementação das componentes SRE, SBPG, e LWCAR. Apresenta ainda cenários práticos do mundo real que demostram como o IoT-HarPSecA pode ser utilizado para elicitar requisitos de segurança, gerar boas práticas de segurança (em termos de recomendações de implementação) e recomendar algoritmos criptográficos leves apropriados com base no contributo dos utilizadores. De igual forma, apresenta-se a avaliação do desempenho destes três componentes, demonstrando que o IoT-HarPSecA pode servir como um roteiro para o desenvolvimento seguro da IoT

    A Guideline on Pseudorandom Number Generation (PRNG) in the IoT

    Full text link
    Random numbers are an essential input to many functions on the Internet of Things (IoT). Common use cases of randomness range from low-level packet transmission to advanced algorithms of artificial intelligence as well as security and trust, which heavily rely on unpredictable random sources. In the constrained IoT, though, unpredictable random sources are a challenging desire due to limited resources, deterministic real-time operations, and frequent lack of a user interface. In this paper, we revisit the generation of randomness from the perspective of an IoT operating system (OS) that needs to support general purpose or crypto-secure random numbers. We analyse the potential attack surface, derive common requirements, and discuss the potentials and shortcomings of current IoT OSs. A systematic evaluation of current IoT hardware components and popular software generators based on well-established test suits and on experiments for measuring performance give rise to a set of clear recommendations on how to build such a random subsystem and which generators to use.Comment: 43 pages, 11 figures, 11 table
    • …
    corecore