
Research Article
Performance Evaluation of Cryptographic Algorithms over
IoT Platforms and Operating Systems

Geovandro C. C. F. Pereira, Renan C. A. Alves, Felipe L. da Silva, Roberto M. Azevedo,
Bruno C. Albertini, and Cíntia B. Margi

Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil

Correspondence should be addressed to Geovandro C. C. F. Pereira; geovandro@larc.usp.br

Received 1 May 2017; Accepted 17 July 2017; Published 23 August 2017

Academic Editor: Qing Yang

Copyright © 2017 Geovandro C. C. F. Pereira et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The deployment of security services over Wireless Sensor Networks (WSN) and IoT devices brings significant processing and
energy consumption overheads. These overheads are mainly determined by algorithmic efficiency, quality of implementation, and
operating system. Benchmarks of symmetric primitives exist in the literature for WSN platforms but they are mostly focused on
single platforms or single operating systems. Moreover, they are not up to date with respect to implementations and/or operating
systems versions which had significant progress. Herein, we provide time and energy benchmarks of reference implementations
for different platforms and operating systems and analyze their impact. Moreover, we not only give the first benchmark results of
symmetric cryptography for the Intel Edison IoT platform but also describe amethodology of how tomeasure energy consumption
on that platform.

1. Introduction

The progressive growth of IoT applications has been broad-
ening the spectrum of transmitted data, bringing an increas-
ing demand of security services like data confidentiality,
integrity, and source authentication. However, the attempt
to employ security mechanisms that are typical of conven-
tional networks is likely to cause undesirable effects due
to hardware-related resource limitations. The most relevant
overheads relate to energy consumption and/or increase of
communication delays. Another concern is the relatively
higher memory consumption that might be aggravated by
the device’s available memory and the amount of applications
running on it. Therefore, one of the main challenges for
deploying security mechanisms over WSN and IoT is to
minimize the conflict between resource consumption and the
desired security [1, 2].

In addition, with the advent of Software Defined Net-
working (SDN), heterogeneous networking devices can be
remotely reconfigured by a central SDN controller on the
fly and thus a new trend of a wider range of platforms and
communication technologies has emerged, like smart homes,

autonomous cars, and many others [3]. A new requirement
is thus introduced, and security solutions should take those
richer environments into account while still offering accept-
able performance and energy footprints among all devices
within a network.

It is worth mentioning that many works in the literature
concentrate their efforts either only on the evaluation of sym-
metric cryptographic primitives over a singlemicrocontroller
(e.g., the MSP430 embedded in TelosB motes [4, 5] or the
ATmega128L embedded in MICAz motes [6]) or even on
a single OS [5]. In addition, the performance evaluation is
usually done by direct compilation to the target platform
without an underlying OS. Even though that approach is
interesting for providing a reliable benchmarking in an
isolated environment, in real-world applications, an OS is
required to implement its own TCP-IP protocol stack where
TLS-based solutions are built on top of [7]. In practice,
each OS has different energy and memory consumption
footprints in addition to the delays introduced in the network
communication. In the context of WSN, experiments in the
literature were conducted over older versions of the operating
systems [8] but many important core features have been

Hindawi
Security and Communication Networks
Volume 2017, Article ID 2046735, 16 pages
https://doi.org/10.1155/2017/2046735

https://doi.org/10.1155/2017/2046735

2 Security and Communication Networks

changed since then, and thus those results do not reflect
the current state of the art in terms of energy consumption
among other performance metrics. One relevant example
is the ContikiOS, which has been drastically reformulated
recently; its 3.0 version was launched in August 2015 [9]. For
example, in our experiments, typical AES operations using
the SUPERCOOP implementation [10] over bothmost recent
TinyOS 2.1.2 and ContikiOS 3.0 are 2x faster and 2x less
energy consuming than the results reported by Casado and
Tsigas [8].

In addition to the operating systems, many algorithm
parameters and implementations were improved through
time; thus an evaluation and analysis of the combined effect
of them are crucial for implementors to take better decisions
when security services are required.

In this work, we perform an extensive experimental
evaluation of reference implementations of many crypto-
graphic primitives for different security services over real
sensor platforms. We also evaluate the influence of the most
recent versions of two popular operating systems for WSN,
TinyOS 2.1.2 and ContikiOS 3.0. We provide a performance
and energy analysis, including a methodology, for important
cryptographic operations deployed on the TI TelosB [4] and
the Intel Edison [11] platforms. As far as we know, this
is the first extensive benchmark of symmetric primitives
for the Intel Edison platform. The implementations were
obtained mostly from the original authors when possible.
We preferred 16-bit implementations for TelosB and 32-bit
implementations for the Intel Edison.

The paper is organized as follows. Section 2 discusses
related work; Section 3 describes the scenario, platforms,
and cryptographic algorithms. In Section 4 the experimental
setup and methodology for the benchmarks are detailed.
Section 5 introduces the results for the algorithms running
over TinyOS on TelosB platform, while Section 6 presents
the same evaluation for the ContikiOS. We then perform the
analysis for the Intel Edison platform in Section 7. Section 8
concludes this paper and suggests future work.

2. Related Work

In 2006, Law et al. [5] evaluated eight different block
ciphers and four modes of encryption over a constrained
WSN platform, the Texas Instruments 16-bit RISC-based
MSP430F149. They focused only on encryption operations
and did not analyze primitives for other security services
such as authentication, which is usually required by most of
modern applications. In addition, if we think about an IoT
application, an operating system will also be running over a
microcontroller (like ContikiOS) and it would be interesting
to measure the behavior of primitives working along with the
operating system. Also, the ciphers and libraries analyzed in
[5] are completely outdated, since the work is from almost a
decade ago. Today sensor motes became much more energy
efficient like the underlying TelosB microcontroller, that is,
the MSP430F1611 which consumes a 330 𝜇A current in active
mode, while the MSP430F149 draws a nominal current of
420𝜇A as mentioned in [5].

In 2011, Hyncica et al. [12] evaluated the performance of
15 different block ciphers on three different microcontrollers
(of 32-bit, 16-bit, and 8-bit instructions). They used the
TomCrypt LTC library version 1.16which is a general purpose
cryptographic library for 32-bit platforms and thus not opti-
mized for constrained microcontrollers. They adopted the
ECB encryption mode, which allows for a clear distinction of
the performance of the plain block ciphers when compared
to other modes of operation, for example, CTR, CBC, and
CCM. On the other hand, the ECB mode only targets
confidentiality service and is considered insecure in practice
today [13]. In addition to confidentiality, modern real-world
secure applications must include more advanced security
services such as authentication. Therefore, a performance
evaluation over constrained platforms of more sophisticated
modes like authenticated encryption is relevant since they
present significant impact on energy consumption compared
to ECB. Additionally, Hyncica et al. [12] do not provide
energymeasurements, which is very important in the context
of battery-powered devices. They also do not address the
performance behavior when operating systems also play a
role.

In 2010, Margi et al. analyzed the impact of the operating
systems on security applications for a single platform, that is,
the TelosB. Their work is based on TinyOS 2.0.2 and Contiki
2.3. In 2013, Simplicio Jr. et al. [14] provided a comparison
of message authentication code algorithms for the TelosB
platform using TinyOS. They implemented the algorithms
themselves and did not specify what TinyOS versionwas used
for. The compilations were performed with GNU mspgcc
version 3.2.3 and they preferred to use -𝑂𝑠 flag to get a
memory optimized result.

Regarding existing full-fledge security frameworks for
WSN, the TinySec [15] and MiniSec [16] were designed only
with TinyOS [17] inmind and each of themwas implemented
for a specific sensor device. Another popular one, Con-
tikiSec, was planned and implemented particularly for the
ContikiOS. Such differences make it impractical to compare
cryptographic algorithms. Moreover, the structures within
each framework can also adopt different project and imple-
mentation approaches, using different policies of processing
or memory usage. Modifications in operating system compo-
nents (in the case ofMiniSec) are an evenmore complex issue.

Another difficulty is that in recent years the devices and
operating systems have been updated a number of times,
while the security structures have not. In this way, the
structures have become unusable for a number of platforms,
such as the cases of TinySec andMiniSec, which are no longer
usable for series 2 of the versions of TinyOS (TinyOS2x).

In addition, the drivers are sometimes unavailable for
the operating system. This was the case in the IEEE 802.15.4
security specification, which was available in certain devices,
like the TelosB [4] and the MICAz [6], without certain
functions required to activate the security resources in the
operating systems, which made it very difficult to utilize the
security structure.

All those frameworks, as explained, are highly bounded
to specific platforms or operating systems, and therefore we
do not evaluate them in this work.

Security and Communication Networks 3

Table 1: Architecture comparison.

Class Device Energy (mW)
Name Architecture Idle Processing

SBC

Intel Edison Atom (x86@500MHz dual-core) 88 340
Intel Galileo Quark (x86@400MHz) 520 550

BeagleBone Black Cortex-A8 (ARM@1GHz) 310 400
Raspberry Pi A Broadcom (ARM@700MHz) 130 180
Raspberry Pi B Broadcom (ARM@700MHz) 380 410

WSN
MICAz ATmega128L (RISC@7.3MHz) 26 0.025
TelosB TI MSP430 (RISC@8MHz) 4.8 0.035

Arduino Yun ATmega32U4 (RISC@16MHz) + Atheros (MIPS@400MHz) 240 280

3. Scenario

Given related work discussed, the scenarios we consider for
our performance evaluation must be platforms or operating
systems independent. Next we present the platforms and
operating systems, as well as the cryptographic algorithms we
selected.

3.1. Platforms. This section presents an overview of the
selected embedded devices, which are typically used in IoT
and WSN applications.

Table 1 depicts a group of embedded architectures. We
selected some popular embedded devices found on literature
according to main usage: SBC (Single Board Computer)
and WSN (Wireless Sensor Network). SBC class includes
devices with general purpose computing power, for gateway
or sink, and WSN includes only platforms targeting low-
power communication, typically used as nodes. Data were
compiled from [18–21] and updated with [22].

Considering the goal of this work, we choose Intel Edison
and TelosB as representative of their respective classes. We
expect that the performance behavior remain the same for
a device of the same class, except for Arduino Yun, whose
consumption is far from WSN nodes (built for low energy)
but does not achieve enough performance to be compared
with SBC class. Platforms that do not include any type of
IoT communication without external support (e.g., Arduino
UNO) were excluded from our evaluation.

3.1.1. TelosB. MEMSICs TelosB Mote is an open-source plat-
form based on a low-powerMSP430 16-bit 8MHzmicrocon-
troller with 10 KB RAM and 48KB program flash memory.
TelosB has a low current consumption and is powered by two
AA batteries, but it can be plugged in the USB so power is
provided from the host computer [4]. TelosB has an IEEE
802.15.4 compliant RF transceiver and runs TinyOS 1.1.11 or
higher and Contiki OS.

3.1.2. Intel� Edison. The Intel Edison is a low-power 32-bit
x86 IoT platform, which contains a core system processing
and connectivity elements: a dual-core, dual-threaded Intel
Atom CPU at 500MHz, and a 32-bit Intel Quark micro-
controller at 100MHz processor; 1 GB RAM; 4GB eMMC
internal storage; and IEEE 802.11 and Bluetooth 4.0. But
it is not a self-contained, standalone device. It relies on

the end-user support of input power (i.e., the computing
module does not control battery recharging) [11]. The Linux
distribution Yocto is its default operating system (OS), but its
x86 architecture can enable a variety of OSs.

3.2. Operating Systems. This section presents a brief overview
of the main operating systems involved in the performance
analysis, that is, the TinyOS, ContikiOS, and Yocto.

3.2.1. TinyOS. TinyOS is an open-source operating system
designed for low-power wireless devices, such as sensor net-
works, ubiquitous computing, personal area networks, smart
buildings, and smart meters [23]. According to its authors
[24], TinyOS is a tiny (less than 400 bytes), flexible operating
system built from a set of reusable components that are
assembled into an application-specific system and supports
an event-driven concurrency model based on split-phase
interfaces, asynchronous events, and deferred computation
called tasks. TinyOS is implemented in the NesC language,
which supports the TinyOS component and concurrency
model as well as extensive cross-component optimizations
and compile-time race detection. It is a programming frame-
work and set of components for embedded systems that
enable building an application-specific OS into each applica-
tion [24].

TinyOS became the de facto operating system for WSN
until 2012, because it combines an efficient memory footprint
with an easy-to-use interface for small WSN devices like
MICAz and TelosB.

3.2.2. Contiki. Contiki [25] is an open-source operating
system for the Internet ofThings that connects tiny low-cost,
low-power microcontrollers to the Internet.

Contiki applications are written in standard C mainly
using structures called protothreads. Applications for Contiki
can be simulated using Cooja simulator to evaluate networks
behavior before deployment into the hardware. ContikiOS 3.0
supports the recently standardized IETF protocols for low-
power IPv6 networking, including the 6lowpan adaptation
layer [26], the RPL IPv6 multihop routing protocol [27], and
the CoAP RESTful application-layer protocol [25, 28, 29].

Contiki runs on a wide range of tiny platforms, ranging
from 8051-powered systems on a chip through the MSP430
and the AVR to a variety of ARM devices.

4 Security and Communication Networks

3.2.3. Yocto. The Yocto Project is an open-source collabo-
ration project that provides templates, tools, and methods
to help creating custom Linux-based systems for embedded
products regardless of the hardware architecture [30].

Its capabilities include a Yocto Project kernel which can
cover many profiles across multiple architectures including
ARM, PPC, MIPS, x86, and x86-64. It is the default OS for
the Intel Edison and it is adopted in our benchmarks.

3.3. Cryptographic Algorithms. The algorithms described in
this section were chosen among many other cryptographic
algorithms in the literature.This choice has been made about
electing algorithms that were designed to be lightweight on
resource constrained platforms, where memory and process-
ing resources are relatively scarce, but at same time providing
the minimum desired security level.

3.3.1. Symmetric Ciphers. AES [31] algorithm is a symmetric
block cipher capable of using cryptographic keys of 128, 192,
and 256 bits to encrypt and decrypt data using blocks of 128
bits.

Curupira is a special-purpose block cipher tailored for
platforms where power consumption and processing time
are very constrained resources, such as sensor and mobile
networks, or systems heavily dependent on tokens or smart
cards. Curupira is an instance of the Wide Trail family of
algorithms, which includes the AES cipher, and displays
involutional structure, in the sense that the encryption and
decryption modes differ only in the key schedule. Its first
version, named Curupira-1 [32, 33], also presents a cyclic key
schedule, meaning that the original key is recovered after
a certain number of rounds, whereby allowing them to be
computed in-place in any order.

Curupira-2 [34] adopts the same round structure as
Curupira-1 but takes a less conservative (with a slower
diffusion) key scheduling algorithm. This results in a higher
performance when the round keys are computed on demand,
a common situation in resource constrained networks.

Trivium is a stream cipher that takes a stream of plaintext,
a secret key, and an IV as input and then operates on the
plaintext with key stream generated by the key and IV,
typically bit by bit. It is designed for constrained devices to
generate up to 264 bits of key stream from an 80-bit secret key
and an 80-bit initial value (IV) [35].

Grain is another stream cipher submitted to eSTREAM
[36].This algorithm has been selected for the final eSTREAM
portfolio by the eSTREAM project and is designed primarily
for restricted hardware.

3.3.2. Cryptographic Hashing. Blake2 is an extremely fast
hash function, yet there are no known security issues in this
algorithm. Blake2 has different versions that are suitable for
different situations. We chose Blake2s, because it is suitable
for resource constrained platforms [37].

Keccak is the winner of SHA3 competition [38]. It consists
of a family of sponge functions that hashes message texts
with a high level of security. The Keccak Code Package [39]
provides the implementation of the Keccak sponge function
that we used. For our benchmark purposes we used the

version with rate of 1088, capacity of 512, and hash output
length of 256 bits.

3.3.3. Message Authentication Codes (MACs). Keyed-Hash
Message Authentication Code (HMAC) is standardized in
FIPS 198-1, a mechanism for message authentication using
cryptographic hash functions. HMAC can be used with any
iterative cryptographic hash function, in combination with
a shared secret key. Additional applications of keyed-hash
functions include their use in challenge-response identifica-
tion protocols for computing responses, which are a function
of both a secret key and a challenge message. An HMAC
function is used by the message sender to produce a value
(the MAC) that is formed by condensing the secret key and
the message input. The MAC is typically sent to the message
receiver along with the message. The receiver computes the
MACon the receivedmessage using the same key andHMAC
function as used by the sender and compares the result
computed with the received MAC. If the two values match,
the message has been correctly received, and the receiver is
ensured that the sender is a member of the community of
users that share the key [40].

Marvin message authentication code [41] was proposed
by Simplicio et al. and was exactly designed for resource
constrained devices. Marvin explores the structure of an
underlying block cipher to provide security at a small cost
in terms of memory needs. Also, Marvin can be used as an
authentication-only function or in an authenticated encryp-
tion with associated data (AEAD) scheme. AES, Curupira-1,
or Curupira-2 can be adopted as the underlying block cipher.

3.3.4. Authenticated Encryption with Associated Data
(AEAD). Counter mode (CTR) is a mode of operation
that turns a block cipher into a stream cipher so it used
for achieving confidentiality [42]. It generates the next
keystream block by encrypting successive values of a
“counter.” The counter can be any function which produces
a sequence which is guaranteed not to repeat for a long
time, although an actual increment by one counter is the
simplest and most popular. CTR mode is well suited to
operate on a multiprocessor machine where blocks can be
encrypted in parallel. If the IV/nonce is random, then they
can be combined together with the counter using any lossless
operation (concatenation, addition, or XOR) to produce
the actual unique counter block for encryption. In case of
a nonrandom nonce (such as a packet counter), the nonce
and counter should be concatenated (e.g., storing nonce in
upper 64 bits and the counter in lower 64 bits). Notice that
simply adding or XORing of the nonce and counter into a
single value would completely break the security under a
chosen-plaintext attack.

Counter with Cipher Block Chaining-Message Authentica-
tion Code (CCM) is a two-pass patent-free AEAD. CCM is
based on an approved symmetric key block cipher algorithm
with 128-bit block size, such as the Advanced Encryption
Standard (AES) algorithm currently specified in FIPS 197.
CCM can be considered a mode of operation of the block
cipher algorithm. As with other modes of operation, a single
key to the block cipher must be established beforehand

Security and Communication Networks 5

among the parties to the data; thus, CCM should be imple-
mented within a well-designed key management structure.
The security properties of CCM depend, at a minimum, on
the secrecy of the key [43].

Offset Codebook Mode (OCB) is a one-pass authenticated
encryption scheme designed by Rogaway et al. [44]. What
makes OCB remarkable is that it achieves authenticated
encryption in almost the same time as the fastest conven-
tional mode, CTR mode, achieves privacy alone. This results
in lower computational cost compared to using separate
encryption and authentication functions. OCB performance
overhead is minimal compared to classical, nonauthenticat-
ing modes like CBC. OCB does not require the nonce to be
random; a counter, say, will work fine. Unlike some modes,
the plaintext provided to OCB can be of any length, as well
as the associated data, and OCB will encrypt the plaintext
without padding it to some convenient-length string, an
approach that would yield a longer ciphertext. If one is
encrypting and MACing in a conventional way, like CTR-
mode encryption and the CBCMAC, the cost for privacy and
authenticity is going to be twice the cost for privacy alone, just
counting block cipher calls. Unfortunately, OCB is patented
for commercial use in the USA [45]. There are now free
licenses available for OCB with unusual restrictions, which
some implementors have expressed concerns over (e.g., one
license only applies only to open-source software; another
allows only use of OCB in OpenSSL implementation).

EAX is a two-pass AEAD; that is, encryption and authen-
tication are done in separate operations. This makes it much
slower than OCB, though unlike CCM it is “online.” Still,
EAX has three advantages: first, it is patent-free. Second, it
is pretty easy to implement. Third, it uses only the encipher
direction of the block cipher, meaning that one could tech-
nically fit it into an implementation with a very constrained
code size, if that sort of thing is a concern. One possible
drawback is that EAX is not entirely parallelizable due to the
use of CMAC [46].

LetterSoup is a parallelizable two-pass AEAD scheme
based on the Marvin for message authentication [41]. One
of the main interests of using Marvin is that it follows the
ALRED construction [47], meaning that each block of the
message blocks is processed using a few unkeyed rounds of
an underlying block cipher (the so-called Square Complete
Transform, SCT) instead of a full encryption as in CMAC.
LetterSoupwas designedwith constrained platforms inmind,
one advantage being that its encryption function (the LFSRC
mode) is involutional; that is, applying it twice recovers the
plaintext, so the code size gets reduced since only one direc-
tion is needed. Its official implementation employs Curupira-
2 as the underlying block cipher [48]. Another advantage is
that the security of LetterSoup is formally analyzed giving
more confidence for the algorithm. In addition, the message
and the header can be processed in any desired order, and the
tag can be verified before the decryption process takes place.
The IVs used must be nonrepeating [41]. In the figures and
tables we will refer to LetterSoup as LTS. Moreover, in our
analysis the LTS implementation by Simplicio [49] utilizes
Curupira-2 [50] as its underlying block cipher.

Ketje is composed of two authenticated encryption
schemes with support for associated data and was designed
by the inventors of Keccak, the winner of the SHA3 hash
function. Ketje is a nonce-based AEAD, meaning that the
encryption function is deterministic and needs a different
nonce for each invocation to be secure. It supports two secu-
rity levels, that is, 96 bits and 128 bits. Ketje builds on round-
reduced versions of the Keccak-𝑓 permutation as primitives,
that is, the Keccak-𝑓[400] and Keccak-𝑓[200], allowing for
code reuse when Keccak is already being used. It also offers
considerable side-channel protection. On the other hand, it is
morememory consuming compared to the above-mentioned
AEAD schemes [51]. The implementation employed Ketje v1
in this work along with Keccak-𝑓[400] for 128-bit security.
The code was obtained from the Keccak Code Package [39].

4. Experimental Setup and Methodology

As discussed in the previous section, the evaluation covers
algorithms from four categories. Next we address the imple-
mentation and configuration used for each of them.

4.1. Symmetric Ciphers. Thereference implementations of the
underlying block ciphers Curupira and Trivium are designed
for 8-bit platforms. For the case of AES operations, we
used the highly optimized implementation for 16-bit CPUs
with 128-bits keys (and 128-bit IVs) available at [10]. For
the Trivium synchronous stream cipher [35], we used the
implementation published in [52], configured with key size
of 112 bits and IV size of 96 bits. For the Curupira [34] block
cipher we have adopted the reference implementation [50].
This implementation is optimized for key size of 96 bits.

4.2. Cryptographic Hashing. We selected the official Blake2s
implementation [53]. For the Keccak hash function we
adopted the Keccak Code Package [39] which provides the
implementation of the Keccak sponge function.

4.3. Message Authentication Codes (MAC). MAC algorithms
can be built based on hashing or symmetric cipher algo-
rithms. We chose one algorithm from each category.

HMAC uses a cryptographic hash function to define a
MAC. Any hash function could be used by this algorithm.
We used the implementation published in [54], considering
the following parameters: SHA-256 hash function, 128-bit key
size, and 64-byte block size.

Marvin [41] uses a symmetric cipher algorithm to ensure
authenticity and integrity of a received message. It can use
AES or Curupira-2 as the base cipher. We used the imple-
mentation published in [55], configured with the following
parameters: Curupira-2 cipher, 96-bit key size, and 12-byte
tag size.

4.4. Authenticated Encryption with Associated Data (AEAD).
For EAX [56] we used the implementation published in [49],
and the Curupira-2 was adopted as the underlying block
cipher. For the LetterSoup [41], the default parametrization
uses Curupira-2 as block cipher, which is also used in the
implementation published in [48]. LetterSoupwill be referred
to as LTS in the next graphs and tables. OCB [57] is a patented

6 Security and Communication Networks

Table 2: Operations of interest for each primitive.

Symmetric ciphers Hash MAC AEADs
Init Init Init Init
Encryption Update Update Encryption
Decryption Final Final Decryption

mode of operation. Our implementation for this algorithm
[49] also uses Curupira-2 as cipher algorithm. Ketje is an
AEAD algorithm based on Keccak. It is designed for resource
constrained platforms, and the implementation used in this
report is the one at [39].

It is worth pointing out that a usual good approach
for comparing performance of different algorithms is that
the same implementor implements all of them since the
same amount of tricks is more evenly applied. On the other
hand, we think a single implementor producing tens of new
nontested implementations for the different platforms is not
reasonable. Actually, our goal in here is to evaluate existing
already deployed and better tested implementations and their
behavior in the selected platforms.

In order to evaluate algorithms for each category (sym-
metric cipher, hash, MAC, AEAD), we calculate the run time
and energy consumption of each relevant operation. The
procedures considered are listed in Table 2.

The run times and energy consumption are extracted
using a python script wrote by the authors, which reads
the output file from the LabView setup explained next.
The measurement setup for current consumption consists
of an Agilent 34401A digital multimeter [58] that reads the
drained current and communicates with a computer via
GPIB, running LabView. The current sampling is limited to
500Hz. The mote is powered by a fixed voltage source at 3 V.
Since it is ineffective to compare cryptographic algorithms
using a fixed message size, we compared all algorithms
varying the sizes. Messages up to roughly 100 bytes were
considered, according to the following rules:

(i) Symmetric block ciphers: Curupira-2 and AES data
sizes𝐷 will be multiples of the block size

(ii) Hash: multiples of the tag size
(iii) MAC: multiples of the underlying cipher (or hash)

block size
(iv) AEAD: multiples of the underlying cipher (or hash)

block size

Five independent measurements are conducted in order
to calculate the average, standard deviation, and confidence
interval of 95%. Each operation runs 𝑁 times, and 𝑁 is
determined by the time 𝑡 of a single run of the operation. It
should satisfy 𝑁 ≤ (100/𝑡). This is due to a limitation of a
LabView internal buffer size which becomes fully loaded after
100 seconds of measurements using the maximum sampling
rate of our setup.

For the TelosB platform the number𝑁 is defined accord-
ing to the algorithm as follows:

(i) AES, Curupira-2, LetterSoup, OCB, Blake2s, Marvin,
HMAC, and Trivium:𝑁 = 100.

(ii) EAX and Keccak:𝑁 = 80.
(iii) Ketje:𝑁 = 5.

For the Intel Edison with Yocto OS the following 𝑁 is
adopted for each algorithm:

(i) For execution time experiments:

(a) Symmetric ciphers:𝑁 = 200000.
(b) Hash:𝑁 = 200000.
(c) MAC:𝑁 = 100000.
(d) AEAD:𝑁 = 30000.

(ii) For energy consumption experiments:

(a) Symmetric ciphers:𝑁 = 250000.
(b) Hash:𝑁 = 80000.
(c) MAC:𝑁 = 500000.
(d) AEAD:𝑁 = 40000.

Before any test is performed, a script that stops unnec-
essary OS processes is executed on Yocto OS. Moreover, the
run time acquisition in this case is conducted by means
of the gettimeofday function which provides a microsecond
resolution [59]. Because symmetric algorithms are very fast,
one might think that gettimeofday may not be enough to get
a precise time taking, but since we are taking a large amount
of executions of the same operation we are able to get precise
result, and yet the precision ofmicroseconds is fair enough for
our experiments since the fastest operationwe havemeasured
is more than 1 microsecond.

All procedures were executed 𝑁 times in order to allow
a statistical analysis of the experiment and defined an error
margin, which was calculated with a standard error.

The compiler used for TelosB was the GNU msp430-gcc
LTS 20120406 and the -O3 optimization optionwas set, which
means optimizing for speed, since applications usually want
tominimize energy consumption for the target IoT andWSN
scenarios. We used GCC 5.1 for the Intel Edison.

5. Benchmarks and Results on
the TelosB Platform, TinyOS

We first collect the block cipher performance results over
TelosB for the encryption operation in Figure 1.

It is clear from the graphs in Figure 1 that run time and
energy consumption are proportional in the TelosB platform.
This can be explained by the fact that TinyOS is event-
oriented and very lightweight operating system. When a task
is to run, the operating system simply yields all the processing
resources to the task. The consequence is that practically
all energy consumption is due to the running algorithm in
the task and energy consumption gets proportional to the
running time of the algorithm.

When we compare the results in Figure 1 with the ones
reported by Casado and Tsigas [8] for the AES on 16-bit MSP
microcontrollers, we observe that the AES implementation
SUPERCOOP combined with most recent TinyOS 2.1.2 over
an MSP430 microcontroller performs 2x faster for both

Security and Communication Networks 7

Average time encryption

AES
Curupira
Trivium

8040 60 100 120200

Message size (bytes)

0

2

4

6

8

10

12

14

Ti
m

e (
m

s)

AES

Average energy encryption

8040 60 100 120200

Message size (bytes)

0

10

20

30

40

50

60

70

80

90

Trivium
Curupira

En
er

gy
 (

J)

Figure 1: TinyOS/TelosB: average time and energy for the encryption operation for each block cipher.

encryption/decryption operations (1ms per block versus
>2ms per block) and consequently spends 2x less energy
for these computations. This observation gives evidence that
many of the previous reports in the literature do not reflect
precisely the most up-to-date energy footprints of combined
best implementations and OSs for WSN.

For all the next operations with block ciphers, hash,
and AEAD, energy consumption is proportional to running
times; thus we provide only the time comparison for some of
the next benchmarks since we can expect the same behavior
for the energy comparison.

It is also worth pointing out that fromFigure 1 Curupira-2
performed slower when compared to other ciphers although
having smaller block size and being tailored for constrained
devices. We asked the original authors about this appar-
ent paradox and they clarified that although Curupira-2
implementation was developed with small word sizes in
mind they aimed at correctness over high performance. On
the other hand, a much better performance is expected if
properly optimized. Moreover, from our results, the relative
decryption behavior for the three algorithms is the same; thus
we do not provide the detailed figures herein for conciseness.

In practice, block ciphers are used along with modes of
operation. We provide the benchmarks of this combination
for the AES block cipher next.

5.1. AES-CTR and AES-CBC Encryption Modes. The AES in
CTR mode follows its standard specifications. For the CBC
(Cipher Block Chaining) mode, the following parameters
(experiments follow the same described setup) are adopted:

(i) Key size is 128 bits.
(ii) Block size is 16 bytes.
(iii) Plaintext size is 16 bytes.
(iv) Number of rounds is 10.
(v) Precomputed tables are used in AESMixColumns for

run time optimization.
The run time and energy consumption for different

operations from CTR and CBC modes are shown in Table 3.

Table 3: Time inms for one execution in differentmode AES of init,
encryption, and decryption tasks, with message size = 16 bytes.

Mode Init Encryption Decryption
CBC 1,28 ± 0,01 2,69 ± 0,02 2,82 ± 0,04
CTR 0,47 ± 0,01 0,91 ± 0,01 0,91 ± 0,01

Table 4: Time to execute one init operation for each hash algorithm.
Time is in ms.

Blake2s Keccak
0,96 ± 0,00 6,96 ± 0,02

From the results in Table 3, we notice that CTR mode is
about 3x faster and less energy consuming for the encryp-
tion/decryption operations when compared to CBC.

We now provide the benchmark results for the hash
functions.

The run time and energy consumption of the init oper-
ation for the different hash algorithms are relatively cheap
compared to other hash operations and are shown in Table 4.
But it is worth mentioning that Blake2’s initialization is 7x
faster than Keccak’s. This operation has a roughly constant
execution time for all data sizes.

Tables 5 and 6 show the comparison and the numerical
differences between hash algorithms for theupdate operation.

One can check that Blake2’s performance surpasses Kec-
cak’s. A better illustration of the update operation is provided
in Figure 2.

From the results of Tables 4, 5, and 6 and Figure 2 we
clearly see an advantage of Blake2s compared to Keccak. The
main reason for this behavior is that Blake2s was particularly
designed to run faster in smaller word processors (TelosB
is embedded with a MSP430 microcontroller with 16-bit
words).

Finally, Table 7 shows the execution time for the final
operation, which is roughly constant for any data size (12 ≤
𝐷 ≤ 108), thus the time for only one input size is shown.
Keccak is faster than Blake2 in this operation.

8 Security and Communication Networks

Average time update

Blake2s
Keccak

40 60 80 100 120 14020

Message size (bytes)

0

50

100

150

200

250

300

350

Ti
m

e (
m

s)

Blake2s
Keccak

Average energy update

40 60 80 100 120 14020

Message size (bytes)

0

50

100

150

200

250

300

350

En
er

gy
 (

J)

Figure 2: TinyOS/TelosB: average time and energy consumption of update operation for each hash algorithm.

Table 5: Time to execute one update operation for each hash
algorithm. Time is in ms and the data size 𝐷 is in bytes.

𝐷 Blake2s Keccak
32 3,03 ± 0,01 72,8 ± 0,2
64 6,00 ± 0,02 149,5 ± 0,4
96 8,98 ± 0,02 226,1 ± 0,6
128 11,94 ± 0,04 303,0 ± 1,0

Table 6: Energy to execute one update operation for each hash
algorithm. Energy is in 𝜇J and the data size𝐷 is in bytes.

𝐷 Blake2s Keccak
32 17,7 ± 0,2 410 ± 20
64 35,2 ± 0,3 840 ± 50
96 52,6 ± 0,5 1270 ± 70
128 70,0 ± 0,6 1700 ± 100

Table 7: Time to execute one final operation for each hash
algorithm. Time is in ms and 𝐷 is the data size in bytes.

𝐷 Blake2s Keccak
128 6,27 ± 0,02 4,1 ± 0,02

Notice that here we compare two MAC algorithms,
Marvin and HMAC, which operate with different sizes of
blocks. Marvin does not have exact blocks of sizes 64 bytes
and 128 bytes, but it offers a range of sizes varying from 12
bytes to any multiple of it. On the other hand, HMAC works
with blocks multiple of 64 bytes. For the case of 64-byte block
in HMAC and 72-byte block in Marvin, Marvin is still faster
and more energy efficient even when operating with large
blocks.

Table 8 shows the execution time of init operation for
eachMAC algorithm.The execution time is roughly constant
for every data size, and Marvin takes longer to initialize than
HMAC.

Table 9 shows the execution time and energy consump-
tion for the update operation for each MAC algorithm.

Table 8: Time to execute one init operation for each MAC
algorithm. Time is expressed in ms.

Marvin HMAC
5,62 ± 0,01 28,95 ± 0,04

Table 9: Time to execute one update operation for each MAC
algorithm. Time is in ms and 𝐷 is the data size in bytes.

𝐷 Marvin HMAC
12 1,68 ± 0,01
36 4,88 ± 0,01
60 8,08 ± 0,02
84 11,28 ± 0,02
108 14,50 ± 0,03
128 28,37 ± 0,04

Table 10: Time to execute one final operation for each MAC
algorithm. Time is expressed in ms and 𝐷 is the data size in bytes.

𝐷 Marvin HMAC
108 7,04 ± 0,01
128 35,43 ± 0,05

Table 11: Time to execute one init operation. Time is expressed in
ms.

EAX OCB LetterSoup Ketje
7,67 ± 0,01 4,88 ± 0,01 3,04 ± 0,01 18,4 ± 0,2

Benchmarks for the update operation are also shown in
Figure 3.

Finally, Table 10 shows the time and energy performance
for the final operation. The execution time for Marvin is
roughly constant for all data sizes and thus we only plot the
result for the 108-byte input size. Marvin performs about 5x
faster than HMAC for the final operation.

Table 11 shows the execution time and energy consump-
tion of the init operation for different AEAD algorithms.

Security and Communication Networks 9

Table 12: Time to execute one encryption operation for each AEAD algorithm (associated data size = 0). Time is expressed in ms and 𝐷 is
the data size in bytes.

𝐷 EAX OCB LetterSoup Ketje
12 7,85 ± 0,02 6,58 ± 0,01 4,94 ± 0,01 93,2 ± 0,2
36 15,43 ± 0,04 11,10 ± 0,01 8,66 ± 0,01 167,6 ± 0,2
60 23,00 ± 0,04 15,60 ± 0,02 12,38 ± 0,03 242,4 ± 0,2
84 30,80 ± 0,04 20,12 ± 0,03 16,08 ± 0,05 316,6 ± 0,3
108 38,18 ± 0,06 24,65 ± 0,05 19,78 ± 0,06 391,2 ± 0,3

Table 13: Time to execute one encryption operation for each AEAD algorithm (associated data size = message size). Time is expressed in ms
and𝐷 is the data size in bytes.

𝐷 EAX OCB LetterSoup Ketje
12 9,86 ± 0,03 8,76 ± 0,02 4,96 ± 0,01 118,4 ± 0,2
36 21,33 ± 0,04 17,50 ± 0,03 10,30 ± 0,02 267,4 ± 0,3
60 32,8 ± 0,1 26,24 ± 0,05 14,86 ± 0,04 416,0 ± 0,6
84 44,2 ± 0,2 34,98 ± 0,06 19,40 ± 0,06 566,0 ± 3,0
108 55,7 ± 0,1 43,68 ± 0,08 23,96 ± 0,07 714,8 ± 0,7

Average time update

Marvin
HMAC

20 40 60 80 100 120 1400

Message size (bytes)

0

5

10

15

20

25

30

Ti
m

e (
m

s)

Figure 3: TinyOS/TelosB: average time consumption of update
operation for each MAC algorithm.

LetterSoup initialization is the fastest AEAD with a small
difference compared to OCB. Ketje has the slowest initial-
ization which comes from the fact of managing with larger
states. On the other hand, LetterSoup’s better performance is
influenced by the smaller state but at a penalty of a slightly
smaller security level of 96 bits.

Table 12 shows the run time and energy consumption
of the encryption operation without associated data. Note
that Ketje’s performance is significantly worse. Although
its implementation is intended for 16-bit CPUs, the design
works with 50-byte internal states which are at least 3x larger
than states from other algorithms, which explains the slower
behavior.

Table 13 shows the execution time of the authenticated
encryption with associated data operation. Ketje remains
the slowest algorithm in this experiment by one order of
magnitude compared to others. Recall that a decision to
select one of these algorithms depends on the tradeoff
performance and the additional features of each algorithm.

Recall that LetterSoup is faster but comes with a slightly
smaller security level and also is not standardized. EAX and
OCB are standardized, andOCBhas some patent issues. Ketje
in turn could be reusingKeccak’s code and save codememory
in case a hash function is also desired in the same application.

Figure 4 shows the execution time and energy of
the encryption with associated data operation. LetterSoup
presents a better performance than others when there is
associated data.Therefore it presents a better optionwhen the
combined services are desired.

The operation decryption with associated data presents
similar performance as the encryption counterpart and is
thus omitted here.

According to the results described in this section, the best
performances in terms of speed and energy on TelosB with
TinyOS are achieved by the following:

(i) Encryption mode: AES-CTR
(ii) Hash: Blake2
(iii) MAC:Marvin
(iv) AEAD: LetterSoup

It is worth pointing out that, for each type above, speed
might not be the priority and the decision should be made
taking into account all the desired features for each algorithm
to have.

6. Benchmarks and Results on the TelosB
Platform, ContikiOS

We first perform benchmarks for each symmetric algorithm
running it along with ContikiOS 3.0 over the TelosB mote.
The only exception is the Blake2s hash function. Its reference
implementation consumes a large amount of flash (code)
memory compared to the other analyzed algorithms and
cannot be compiled along with ContikiOS 3.0 which is high
code memory consuming as well. In this case, the Blake2s

10 Security and Communication Networks

Average time encryption with associated data Average energy encryption with associated data

0

500

1000

1500

2000

2500

3000

3500

4000

4500

20 40 60 80 1000

Message size (bytes)
120

EAX
OCB

LetterSoup
Ketje

20 100 1200 6040 80

Message size (bytes)

0

100

200

300

400

500

600

700

800

Ti
m

e (
m

s)

EAX
OCB

LetterSoup
Ketje

En
er

gy
 (

J)

Figure 4: TinyOS/TelosB: average time and energy to execute one encryption operation for each AEAD algorithm with associated data.

Average energy encryption

AES
Curupira

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

20 40 60 80 100 1200

Message size (bytes)

Average time encryption

AES
Curupira

8040 60 100 120200

Payload (bytes)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Ti
m

e (
m

s)

En
er

gy
 (

J)

Figure 5: ContikiOS/TelosB: average time and energy to execute one encryption operation for each block cipher.

benchmarks are performed along with ContikiOS 2.7 which
is less flash memory consuming. It is worth mentioning that
ContikiOS 2.7 introduces some drawbacks like more current
spikes which potentially leads to more energy consumption.
Fortunately we were able to filter that overhead by estimating
the average current of operation and considering only the
area below this average current in the current versus time
graph, which gives the average charge.

In the present experiments, the same methodology used
for TinyOS is adopted. Same implementations are also used
and same ranges of parameters are defined.

Figure 5 compares the run time of the encryption opera-
tion for different block ciphers. We can see a similar outcome
when compared to the behavior of the ciphers on TelosB. AES
is still faster than Curupira-2. It is important to point out that
ContikiOS presents run times and energy consumption very
close to the ones observed for TinyOS in Figure 1.

Figure 6 presents the decryption operation for different
block ciphers.

The benchmarks for the update operation of MAC algo-
rithms are shown in Figure 7 while the benchmarks for the
update operation of hash algorithms are shown in Figure 8.

The authenticated encryption with associated data opera-
tion is shown in Figure 9.

The decryption with associated data displays similar
behavior and thus is omitted here.

6.1. Discussion. In comparison, the performance results on
TinyOS and ContikiOS are very close to one another,
meaning that the overhead of those operating systems on
processing-only operations is similar. This corroborates the
conclusions by Margi et al. [60]. On the other hand, we
also showed that even though the relative performance id
comparable, themagnitude of the results of time and energy is
very different from other works such as the comparison with
the results in [8] already discussed in Section 5.

7. Benchmarks and Results on Intel Edison
with Yocto

7.1. Ciphers. In this section we present the performance and
energy results on Intel Edison platform based on the Yocto
OS. Tables 14 and 15 show the execution time and energy
consumption for one init operation. This operation has a

Security and Communication Networks 11

AES
Curupira

0 100 12020 6040 80

Payload (bytes)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

Ti
m

e (
m

s)

Average time decryption

Figure 6: ContikiOS/TelosB: average time to execute one decryption
operation for each block cipher.

Average time update

0.0

20.0

40.0

60.0

80.0

100.0

120.0

Ti
m

e (
m

s)

120 1406040 10080200

Payload (bytes)

Marvin
HMAC

Figure 7: ContikiOS/TelosB: average time to execute one update for
each MAC algorithm.

Average time update

Blake2s
Keccak

10080 12040 14060

Message size (bytes)

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

Ti
m

e (
m

s)

20

Figure 8: ContikiOS/TelosB: average time to execute one update for
each hash algorithm.

Table 14: Time to execute one init operation for each block cipher.
Time is in 𝜇s and𝐷 is the data size in bytes.

𝐷 AES Curupira Trivium Grain
12 13.90 ± 0.01

16 7.33 ± 0.01 11.32 ± 0.01 8.58 ± 0.01

Table 15: Energy consumption to execute𝑁 init operations for each
block cipher. The consumption is expressed in J.

AES Curupira Trivium Grain
0.49 ± 0.00 1.12 ± 0.00 0.89 ± 0.00 0.62 ± 0.00

Average time encryption with associated data

OCB
LetterSoup

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

Ti
m

e (
m

s)

40 600 80 100 12020

Message size (bytes)

Figure 9: ContikiOS/TelosB: average time to execute one authen-
ticated encryption with associated data operation for each AEAD
algorithm.

(roughly) constant execution time that is not affected by the
data size. Even though the speed of this operation cannot
solely define the best algorithm, we can see that the fastest init
operation is performed byAES, while Curupira is the slowest.

Figure 10 fully specifies the performance of the encryption
operation for each block cipher algorithm. From the figures
one can note that AES is the fastest algorithm for data size up
to 32 bytes. For larger data sizes, AES is surpassed by Trivium
and for even the larger messages sizes (more than ≈95 bytes)
also by Grain.

The AES performance is expected to be more sensitive
to message sizes than Trivium and Grain, since AES is a
block cipher (this is also true for Curupira). Curupira in turn
presented the worst performance for all data sizes, but this is
due the nonfully optimized implementation.

The performance behavior observed for decryption is
identical to encryption as expected and therefore the actual
data is omitted.

Tables 16 and 17 show the execution time and energy
consumption by the init operation for hash algorithms.
Analyzing only this operation is not very meaningful for
defining the best algorithm, but Blake2’s initialization ismuch

12 Security and Communication Networks

20 40 60 80 100 1200
Message size (Bytes)

0

20

40

60

80

100

120
Ti

m
e f

or
 o

ne
 o

pe
ra

tio
n

(

AES
Curupira

Trivium
Grain

0

2

4

6

8

10

12

En
er

gy
 (J

)

20 40 60 80 100 1200
Message size (bytes)

Curupira
AES

Trivium
Grain


s)

Figure 10: Average time and energy to execute one encryption operation for each block cipher.

40 50 60 70 80 90 100 110 120 13030
Message size (bytes)

0

200

400

600

800

1000

1200

Blake2
Keccak

0

5

10

15

20

25

30

35

Blake2
Keccak

En
er

gy
 (J

)

20 40 60 80 100 120 1400
Message size (bytes)

Ti
m

e f
or

 o
ne

 o
pe

ra
tio

n
(

s)

Figure 11: Average time and energy to execute update operation for each hash algorithm.

Table 16: Time to execute one init operation for each hash
algorithm. Time is expressed in 𝜇s and𝐷 is the data size in bytes.

𝐷 Blake2 Keccak
128 5.95 ± 0.01 27.23 ± 0.01

Table 17: Energy consumption to execute𝑁 init operations for each
hash algorithm. The consumption is expressed in J.

Blake2 Keccak
0.12 ± 0.00 0.79 ± 0.01

faster than Keccak’s. This operation has a roughly constant
execution time for all data sizes.

Figure 11 illustrates the execution time and energy con-
sumption comparisons for the update operation between two
hash algorithms. Blake2 presents performance one order of
magnitude (or even more depending on the message sizes)
better than Keccak.

Finally, Tables 18 and 19 show the execution time for the
final operationwhich is roughly constant for all data sizes and
only results for one input size are shown. Keccak is about 11x

Table 18: Time of final operation for each hash algorithm expressed
in 𝜇s.𝐷 is the data size in bytes.

𝐷 Blake2 Keccak
128 24.09 ± 0.01 2.13 ± 0.01

Table 19: Energy consumption for 𝑁 final operations for the hash
algorithms expressed in J.

Blake2 Keccak
0.59 ± 0.00 0.01 ± 0.00

faster and less energy consuming thanBlake2 for the analyzed
operation.

It is worth observing that for smaller input sizes (<32
bytes) both algorithms have similar performance considering
the combination update + final, but as the input length grows
the Blake2 relative performance is progressively improved.

Tables 20 and 21 show the execution time of init operation
for each MAC algorithm. The Marvin execution time is
roughly constant for data sizes 12 ≤ 𝐷 ≤ 108 and only figures
for 𝐷 = 108 are shown. Marvin takes ≈2x longer to initialize
than HMAC.

Security and Communication Networks 13

Marvin
HMAC

20 40 60 80 100 120 1400
Message size (bytes)

0

5

10

15

20

25

30

35

En
er

gy
 (J

)

Marvin
HMAC

20 40 60 80 100 120 1400
Message size (Bytes)

0
20
40
60
80

100
120
140
160
180

Ti
m

e f
or

 o
ne

 o
pe

ra
tio

n
(

s)

Figure 12: Average time and energy of the update operation for each MAC algorithm.

Table 20: Time of init operation for eachMAC algorithm expressed
in 𝜇s.𝐷 is the data size in bytes.

𝐷 Marvin HMAC
108 62.84 ± 0.20

128 32.90 ± 0.02

Table 21: Energy consumption in J to execute𝑁 init operations for
each MAC algorithm.

Marvin HMAC
11.32 ± 0.02 5.82 ± 0.01

Table 22: Time of final operation for each MAC algorithm
expressed in 𝜇s.𝐷 is the data size in bytes.

𝐷 Marvin HMAC
108 80.26 ± 0.03
128 39.15 ± 0.05

Table 23: Energy consumption for𝑁 final operations for eachMAC
algorithm expressed in J.

Marvin HMAC
14.77 ± 0.02 7.06 ± 0.01

Figure 12 compiles the benchmarks for the update opera-
tion for the MAC algorithms. HMAC presents a much better
performance, executing this procedure for 64 bytes faster
than Marvin with 12 bytes.

Finally, Tables 22 and 23 present the performance ofMAC
final operation.Marvin execution time is roughly constant for
all data sizes 12 ≤ 𝐷 ≤ 108, so only the result for 𝐷 = 108 is
shown. HMAC performs 2x faster than Marvin for the final
operation.

Tables 24 and 25 show the execution time and energy
consumption of the init procedure forAEAD algorithms. Let-
terSoup initialization is the fastest one with a slight difference
comparing to OCB. Ketje has the slowest initialization.

Table 24: Time to execute one init operation for each AEAD
algorithm. Time is expressed in 𝜇s and𝐷 is the data size in bytes.

𝐷 EAX OCB LTS Ketje
108 33.25 ± 0.03 20.98 ± 0.03 20.30 ± 0.03 70.98 ± 0.05

Table 25: Energy consumption to execute𝑁 init operations for each
AEAD algorithm. The consumption is in J.

EAX OCB LTS Ketje
0.46 ± 0.00 0.28 ± 0.00 0.27 ± 0.00 1.01 ± 0.01

Figure 13 illustrates the execution time and energy con-
sumption of the encryption with associated data operation.
Ketje remains the slowest algorithm in this experiment. It
shows that LetterSoup presents a better performance than
OCB when there is associated data.

Since the decryption operation displays similar perfor-
mance for time and energy, the detailed results are also
omitted here.

According to the results described in this section, the
run time and energy consumption experiments agree with
each other. Let 𝐷 be the data size; the recommendation of
cryptographic algorithms for the Intel Edison is as follows:

(i) Symmetric block cipher: AES if 𝐷 ≤ 32, and Trivium
if𝐷 > 32

(ii) Hash: Blake2
(iii) MAC: HMAC
(iv) AEAD: OCB when there is no associated data, and

LetterSoup when there is associated data

8. Conclusions

We provided a detailed evaluation of symmetric crypto-
graphic primitives providing different security services in
relevant real-world platforms and operating systems, typical
of IoT and WSN. We observed that some previous results in
the literature only considered the (relatively) old implemen-
tations over a single platform or a single operating system.

14 Security and Communication Networks

0

5

10

15

20

25

En
er

gy
 (J

)

20 40 60 80 100 1200
Message size (bytes)

EAX
OCB

LTS
Ketje

20 30 40 50 60 70 80 90 100 11010
Message size (Bytes)

0

500

1000

1500

2000

2500

3000

EAX
OCB

LTS
Ketje

Ti
m

e f
or

 o
ne

 o
pe

ra
tio

n
(

s)

Figure 13: Average time and energy to execute one encryption operation for each AEAD algorithm with associated data.

We give some potential recommendations of algorithms
depending on input data sizes. This work also provided
for the first time a detailed benchmark methodology and a
significant set of experiments for the Intel Edison board, a 32-
bit IoT power-efficient IoT platform.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This research was supported by Fundação para o Desen-
volvimento Tecnológico da Engenharia (FDTE) under Grant
no. 1450. Cı́ntia B. Margi is supported by CNPq Research
Fellowship no. 307304/2015-9.

References

[1] F. Hu and N. K. Sharma, “Security considerations in ad hoc
sensor networks,”AdHocNetworks, vol. 3, no. 1, pp. 69–89, 2005.

[2] J. Lee, K. Kapitanova, and S. H. Son, “The price of security in
wireless sensor networks,” Computer Networks, vol. 54, no. 17,
pp. 2967–2978, 2010.

[3] C. B.Margi, R. C.A.Alves, and J. Sepulveda, “Sensing as a service:
secure wireless sensor network infrastructure sharing for the
internet of things,” in Proceedings of theProceedings of the Inter-
nationalWorkshop onVery Large Internet ofThings (VLIoT 2017)
in conjunction with the VLDB 2017, vol. 3, Munich, Germany,
2017, https://www.ronpub.com/OJIOT 2017v3i1n08 Margi.pdf.

[4] S. Hu, X. Zhang, H. Yao, and C. She, “An Android Terminal
in TelosB Wireless Sensor Networks,” in Proceedings of the
2nd International Conference on Computer and Information
Applications (ICCIA ’12), December 2012.

[5] Y. W. Law, J. Doumen, and P. Hartel, “Survey and benchmark of
block ciphers for wireless sensor networks,” ACM Transactions
on Sensor Networks, vol. 2, no. 1, pp. 65–93, 2006.

[6] W. Su andM. Alzaghal, “Channel propagation characteristics of
wireless MICAz sensor nodes,” Ad Hoc Networks, vol. 7, no. 6,
pp. 1183–1193, 2009.

[7] H. J. Ban, J. Choi, and N. Kang, “Fine-grained support of
security services for resource constrained internet of things,”
International Journal of Distributed Sensor Networks, vol. 2016,
Article ID 7824686, 2016.

[8] L. Casado and P. Tsigas, “ContikiSec: a secure network layer
for wireless sensor networks under the Contiki operating
system,” in Identity and Privacy in the Internet Age, vol. 5838 of
Lecture Notes in Computer Science, pp. 133–147, Springer, Berlin,
Germany, 2009.

[9] A. Dunkels, “Contiki 3.0 released, new hardware from texas
instruments, zolertia,”TheOfficial ContikiOSBlog, 2015, http://
contiki-os.blogspot.ca/2015/08/contiki-30-released-new-hard-
ware-from.html.

[10] SUPERCOP, “Mirror of SUPERCOP: System for Unified Per-
formance Evaluation Related to Cryptographic Operations and
Primitives,” 2015, https://github.com/floodyberry/supercop.

[11] I. Corporation, “Intel edison product brief,” 2015, http://download
.intel.com/support/edison/sb/edison pb 331179001.pdf.

[12] O. Hyncica, P. Kucera, P. Honzik, and P. Fiedler, “Performance
evaluation of symmetric cryptography in embedded systems,”
in Proceedings of the 6th IEEE International Conference on Intel-
ligent Data Acquisition and Advanced Computing Systems: Tech-
nology and Applications, IDAACS’2011, pp. 277–282, September
2011.

[13] Electronic codebook (ecb), 2016, https://en.wikipedia.org/wiki/
Block cipher mode of operation#Electronic Codebook .28ECB.29.

[14] M. A. Simplicio Jr., B. T. De Oliveira, C. B. Margi, P. S. L. M.
Barreto, T. C. M. B. Carvalho, and M. Näslund, “Survey and
comparison of message authentication solutions on wireless
sensor networks,” Ad Hoc Networks, vol. 11, no. 3, pp. 1221–1236,
2013.

[15] C. Karlof, N. Sastry, and D.Wagner, “TinySec: a link layer secu-
rity architecture for wireless sensor networks,” in Proceedings
of the Second International Conference on Embedded Networked
Sensor Systems (SenSys ’04), pp. 162–175, November 2004.

[16] M. Luk, G.Mezzour, A. Perrig, andV. Gligor, “MiniSec: a secure
sensor network communication architecture,” in Proceedings of
the 2007 6th International Symposium on Information Processing
in Sensor Networks, pp. 479–488, New York, NY, USA, April
2007.

[17] J. Hill, R. Szewczyk, W. Alec, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for networked sensors,” ACM
SIGPLAN Notices, vol. 35, no. 11, pp. 93–104, 2000.

https://www.ronpub.com/OJIOT_2017v3i1n08_Margi.pdf
http://contiki-os.blogspot.ca/2015/08/contiki-30-released-new-hardware-from.html
http://contiki-os.blogspot.ca/2015/08/contiki-30-released-new-hardware-from.html
http://contiki-os.blogspot.ca/2015/08/contiki-30-released-new-hardware-from.html
https://github.com/floodyberry/supercop
http://download.intel.com/support/edison/sb/edison_pb_331179001.pdf
http://download.intel.com/support/edison/sb/edison_pb_331179001.pdf
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Electronic_Codebook_.28ECB.29
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Electronic_Codebook_.28ECB.29

Security and Communication Networks 15

[18] P. Serrano, A. Garcia-Saavedra, G. Bianchi, A. Banchs, and A.
Azcorra, “Per-frame energy consumption in 802.11 devices and
its implication on modeling and design,” IEEE/ACM Transac-
tions on Networking, vol. 23, no. 4, pp. 1243–1256, 2015.

[19] F. Kaup, P. Gottschling, and D. Hausheer, “PowerPi: measuring
and modeling the power consumption of the raspberry Pi,”
in Proceedings of the 39th Annual IEEE Conference on Local
Computer Networks, (LCN ’14), pp. 236–243, September 2014.

[20] G. De Meulenaer, F. Gosset, F. Standaert, and O. Pereira, “On
the energy cost of communication and cryptography in wireless
sensor networks,” in Proceedings of the 4th IEEE International
Conference on Wireless and Mobile Computing, Networking and
Communication (WiMob ’08), pp. 580–585, Avignon, France,
October 2008.

[21] “Embedded linux board comparison,” 2014, https://learn.adafruit
.com/embedded-linux-board-comparison/power-usage.

[22] “Measured power consumption of intel edison,” 2016, https://
www.scivision.co/measured-power-consumption-of-intel-edison/.

[23] TinyOS, 2015, http://www.tinyos.net/.
[24] P. Levis, S. Madden, J. Polastre et al., “TinyOS: an operating

system for sensor networks,” in Ambient Intelligence, pp. 115–
148, Springer, Berlin, Germany, 2005.

[25] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki—a lightweight
and flexible operating system for tiny networked sensors,” in
Proceedings of the 29th IEEE Annual International Conference
on Local ComputerNetworks (LCN ’04), pp. 455–462,November
2004.

[26] N. Kushalnagar, G. Montenegro, and C. Schumacher, “IPv6
over low-power wireless personal area networks (6LoWPANs):
overview, assumptions, problem statement, and goals,” RFC
4919 4919, IETF, 2007, http://www.ietf.org/rfc/rfc4919.txt.

[27] T. Winter, P. Thubert, A. Brandt et al., “RPL: IPv6 routing
protocol for low-power and lossy networks,” RFC 6550 6550,
2012, http://www.ietf.org/rfc/rfc6550.txt.

[28] C. Bormann, A. P. Castellani, and Z. Shelby, “CoAP: an
application protocol for billions of tiny internet nodes,” IEEE
Internet Computing, vol. 16, no. 2, pp. 62–67, 2012.

[29] A. Dunkels, O. Schmidt, and T. Voigt, “Using protothreads for
sensor node programming in,” in In Proceedings of the REAL-
WSN 2005 Workshop on RealWorld Wireless Sensor Networks,
2005.

[30] The yocto project, 2015, https://www.yoctoproject.org/.
[31] N. F. Standard, “Announcing the advanced encryption standard

(AES),” Federal Information Processing Standards Publication
197 NIST FIPS 197, 2001.

[32] P. Barreto and M. Simplicio, “Curupira, a block cipher for
constrained platforms, in: Anais do 25o Simpósio Brasileiro
de Redes de Computadores e Sistemas Distribuı́dos - SBRC’07,
2007”.

[33] S. Panasenko and S. Smagin, “Lightweight cryptography:
underlying principles and approaches,” International Journal of
Computer Theory and Engineering, pp. 516–520, 2011.

[34] M. Simplicio, P. Barreto, T. Carvalho, C.Margi, andM.Naslund,
“The Curupira-2 block cipher for constrained platforms: Speci-
fication and benchmarking,” in Proceedings of the 1st Interna-
tional Workshop on Privacy in Location-Based Applications -
13th European Symposium on Research in Computer Security
(ESORICS ’08), vol. 397, 2008, http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-397.

[35] C.DeCannière and B. Preneel, “Trivium,” inNew StreamCipher
Designs, vol. 4986 ofLectureNotes inComputer Science, pp. 244–
266, Springer, Berlin, Germany, 2008.

[36] M. Hell, T. Johansson, and W. Meier, “Grain: a stream cipher
for constrained environments,” International Journal ofWireless
and Mobile Computing, vol. 2, no. 1, pp. 86–93, 2007.

[37] J. P. Aumasson, S. Neves, Z. Wilcox-OΓHearn, and C. Win-
nerlein, “BLAKE2: simpler, smaller, fast as MD5,” Applied
Cryptography and Network Security, pp. 119–135, 2013.

[38] NIST, “Announcing request for candidate algorithm nomina-
tions for a new cryptographic hash algorithm (SHA-3) family,”
Tech. Rep., Department of Commerce, 2007, http://csrc.nist
.gov/groups/ST/hash/documents/FR Notice Nov07.pdf.

[39] “gvanas, Keccak code package,” 2014, https://github.com/
gvanas/KeccakCodePackage.

[40] P. FIPS, “The Keyed-Hash Message Authentication Code
(HMAC),” FIPS PUB 198-1 NIST FIPS 198-1, National Institute
of Standards and Technology, 2008.

[41] M. A. Simplicio, B. Pedro Aquino, P. S. L. M. Barreto, T. C.M. B.
Carvalho, andC. B.Margi, “TheMarvinmessage authentication
code and the LetterSoup authenticated encryption scheme,”
Security andCommunicationNetworks, vol. 2, no. 2, pp. 165–180,
2009.

[42] H. Lipmaa, P. Rogaway, and D. Wagner, “CTR-mode encryp-
tion,” First NIST Workshop on Modes of Operation, Citeseer,
2000.

[43] M. Dworkin, “NIST Special Publication 800-38C: The CCM
Mode for Authentication and Confidentiality,” US National
Institute of Standards and Technology, http://csrc.nist.gov/pub-
lications/nistpubs/800-38C/SP800-38C.pdf.

[44] P. Rogaway, M. Bellare, and R. S. Ferguson, “OCB: a block-
cipher mode of operation for efficient authenticated encryp-
tion,” ACM Transactions on Information and System Security
(TISSEC), vol. 6, no. 3, pp. 365–403, 2003.

[45] P. Rogaway, “OCB: Background,” 2015, http://web.cs.ucdavis
.edu/rogaway/ocb/ocb-faq.htm.

[46] M. J. Dworkin, “Nist special publication 800-38b,” Recommen-
dation for Block Cipher Modes of Operation: The cmac mode
for authentication NIST SP 800-38b, 2016.

[47] M. A. Simplicio Jr., B. T. De Oliveira, P. S. L. M. Barreto, C. B.
Margi, T. C. M. B. Carvalho, and M. Naslund, “Comparison of
authenticated-encryption schemes inwireless sensor networks,”
in Proceedings of the 36th Annual IEEE Conference on Local
Computer Networks, (LCN ’11), pp. 450–457, October 2011.

[48] M. Simplicio, LetterSoup implementation, 2015, http://www
.larc.usp.br/mjunior/files/algs/8%20bits/LetterSoup/LetterSoup.c.

[49] M. Simplicio, “AEAD implementations,” 2015, http://www.larc
.usp.br/mjunior/files/algs/8%20bits/algs8bits.zip.

[50] M. Simplicio, “Curupira-2 implementation,” 2015, http://www
.larc.usp.br/mjunior/files/algs/8%20bits/Curupira-2/Curupira-2
.zip.

[51] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, CAESAR
submission: Ketje v1, 2014, http://competitions.cr.yp.to/round1/
ketjev11.pdf.

[52] S. Pelissier, “Application using trivium with 16-bit microcon-
troller,” 2009, https://github.com/tyll/tinyos-2.x-contrib/tree/
master/crypto/apps.

[53] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winner-
lein, “BLAKE2: simpler, smaller, fast as MD5,” Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 7954, pp.
119–135, 2013.

[54] O. Gay, “HMAC implementation,” 2015, https://github.com/
ogay/hmac.

https://learn.adafruit.com/embedded-linux-board-comparison/power-usage
https://learn.adafruit.com/embedded-linux-board-comparison/power-usage
https://www.scivision.co/measured-power-consumption-of-intel-edison/
https://www.scivision.co/measured-power-consumption-of-intel-edison/
http://www.tinyos.net/
http://www.ietf.org/rfc/rfc4919.txt
http://www.ietf.org/rfc/rfc6550.txt
https://www.yoctoproject.org/
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-397
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-397
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
https://github.com/gvanas/KeccakCodePackage
https://github.com/gvanas/KeccakCodePackage
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C.pdf
http://web.cs.ucdavis.edu/rogaway/ocb/ocb-faq.htm
http://web.cs.ucdavis.edu/rogaway/ocb/ocb-faq.htm
http://www.larc.usp.br/mjunior/files/algs/8%20bits/LetterSoup/LetterSoup.c
http://www.larc.usp.br/mjunior/files/algs/8%20bits/LetterSoup/LetterSoup.c
http://www.larc.usp.br/mjunior/files/algs/8%20bits/algs8bits.zip
http://www.larc.usp.br/mjunior/files/algs/8%20bits/algs8bits.zip
http://www.larc.usp.br/mjunior/files/algs/8%20bits/Curupira-2/Curupira-2.zip
http://www.larc.usp.br/mjunior/files/algs/8%20bits/Curupira-2/Curupira-2.zip
http://www.larc.usp.br/mjunior/files/algs/8%20bits/Curupira-2/Curupira-2.zip
http://competitions.cr.yp.to/round1/ketjev11.pdf
http://competitions.cr.yp.to/round1/ketjev11.pdf
https://github.com/tyll/tinyos-2.x-contrib/tree/master/crypto/apps
https://github.com/tyll/tinyos-2.x-contrib/tree/master/crypto/apps
https://github.com/ogay/hmac
https://github.com/ogay/hmac

16 Security and Communication Networks

[55] M. Simplicio, Marvin implementation, 2015, http://www.larc
.usp.br/mjunior/files/algs/8%20bits/Marvin/Marvin.c.

[56] M. Bellare, P. Rogaway, andD.Wagner, “TheEAXmode of oper-
ation,” in Fast Software Encryption: 11th International Workshop
(FSE 2004), B. Roy and W. Meier, Eds., pp. 389–407, Springer,
Berlin, Germany, 2004.

[57] T. Krovetz and P. Rogaway, “TheOCB authenticated-encryption
algorithm,” RFC Editor RFC7253, 2014, http://www.cs.ucdavis
.edu/rogaway/papers/ocb-id.htm.

[58] Agilent, “Agilent 34401A Multimeter,” 2007, http://cp.literature
.agilent.com/litweb/pdf/5968-0162EN.pdf.

[59] L. P.Manual and gettimeofday., 2015, http://man7.org/linux/man-
pages/man2/gettimeofday.2.html.

[60] C. B. Margi, B. T. De Oliveira, G. T. De Sousa et al., “Impact
of operating systems on Wireless Sensor Networks (security)
applications and testbeds,” in Proceedings of the 2010 19th
International Conference on Computer Communications and
Networks, (ICCCN ’10), August 2010.

http://www.larc.usp.br/mjunior/files/algs/8%20bits/Marvin/Marvin.c
http://www.larc.usp.br/mjunior/files/algs/8%20bits/Marvin/Marvin.c
http://www.cs.ucdavis.edu/rogaway/papers/ocb-id.htm
http://www.cs.ucdavis.edu/rogaway/papers/ocb-id.htm
http://cp.literature.agilent.com/litweb/pdf/5968-0162EN.pdf
http://cp.literature.agilent.com/litweb/pdf/5968-0162EN.pdf
http://man7.org/linux/man-pages/man2/gettimeofday.2.html
http://man7.org/linux/man-pages/man2/gettimeofday.2.html

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal of

Volume 201

Submit your manuscripts at
https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

