878 research outputs found

    Surround by Sound: A Review of Spatial Audio Recording and Reproduction

    Get PDF
    In this article, a systematic overview of various recording and reproduction techniques for spatial audio is presented. While binaural recording and rendering is designed to resemble the human two-ear auditory system and reproduce sounds specifically for a listener’s two ears, soundfield recording and reproduction using a large number of microphones and loudspeakers replicate an acoustic scene within a region. These two fundamentally different types of techniques are discussed in the paper. A recent popular area, multi-zone reproduction, is also briefly reviewed in the paper. The paper is concluded with a discussion of the current state of the field and open problemsThe authors acknowledge National Natural Science Foundation of China (NSFC) No. 61671380 and Australian Research Council Discovery Scheme DE 150100363

    A Measure Based on Beamforming Power for Evaluation of Sound Field Reproduction Performance

    Get PDF
    This paper proposes a measure to evaluate sound field reproduction systems with an array of loudspeakers. The spatially-averaged squared error of the sound pressure between the desired and the reproduced field, namely the spatial error, has been widely used, which has considerable problems in two conditions. First, in non-anechoic conditions, room reflections substantially deteriorate the spatial error, although these room reflections affect human localization to a lesser degree. Second, for 2.5-dimensional reproduction of spherical waves, the spatial error increases consistently due to the difference in the amplitude decay rate, whereas the degradation of human localization performance is limited. The measure proposed in this study is based on the beamforming powers of the desired and the reproduced fields. Simulation and experimental results show that the proposed measure is less sensitive to room reflections and the amplitude decay than the spatial error, which is likely to agree better with the human perception of source localization

    Spatial Acoustic Vector Based Sound Field Reproduction

    Get PDF
    Spatial sound field reproduction aims to recreate an immersive sound field over a spatial region. The existing sound pressure based approaches to spatial sound field reproduction focus on the accurate approximation of original sound pressure over space, which ignores the perceptual accuracy of the reproduced sound field. The acoustic vectors of particle velocity and sound intensity appear to be closely linked with human perception of sound localization in literature. Therefore, in this thesis, we explore the spatial distributions of the acoustic vectors, and seek to develop algorithms to perceptually reproduce the original sound field over a continuous spatial region based on the vectors. A theory of spatial acoustic vectors is first developed, where the spatial distributions of particle velocity and sound intensity are derived from sound pressure. To extract the desired sound pressure from a mixed sound field environment, a 3D sound field separation technique is also formulated. Based on this theory, a series of reproduction techniques are proposed to improve the perceptual performance. The outcomes resulting from this theory are: (i) derivation of a particle velocity assisted 3D sound field reproduction technique which allows for non-uniform loudspeaker geometry with a limited number of loudspeakers, (ii) design of particle velocity based mixed-source sound field translation technique for binaural reproduction that can provide sound field translation with good perceptual experience over a large space, (iii) derivation of an intensity matching technique that can reproduce the desired sound field in a spherical region by controlling the sound intensity on the surface of the region, and (iv) two intensity based multizone sound field reproduction algorithms that can reproduce the desired sound field over multiple spatial zones. Finally, these techniques are evaluated by comparing to the conventional approaches through numerical simulations and real-world experiments

    SMART-I²: A Spatial Multi-users Audio-visual Real Time Interactive Interface

    No full text
    International audienceThe SMART-I2 aims at creating a precise and coherent virtual environment by providing users with both audio and visual accurate localization cues. It is known that for audio rendering, Wave Field Synthesis, and for visual rendering, Tracked Stereoscopy, individually permit high quality spatial immersion within an extended space. The proposed system combines these two rendering approaches through the use of a large Multi-Actuator Panel used as both a loudspeaker array and as a projection screen, considerably reducing audio-visual incoherencies. The system performance has been confirmed by an objective validation of the audio interface and a perceptual evaluation of the audio-visual rendering

    Investigating the interaction between positions and signals of height-channel loudspeakers in reproducing immersive 3d sound

    Get PDF
    Since transmission capacities have significantly increased over the past few years, researchers are now able to transmit a larger amount of data, namely multichannel audio content, in the consumer applications. What has not been investigated in a systematic way yet is how to deliver the multichannel content. Specifically, researchers\u27 attention is focused on the quest of a standardized immersive reproduction format that incorporates height loudspeakers coupled with the new high-resolution and three-dimensional (3D) media content for a comprehensive 3D experience. To better understand and utilize the immersive audio reproduction, this research focused on the (1) interaction between the positioning of height loudspeakers and the signals fed to the loudspeakers, (2) investigation of the perceptual characteristics associated with the height ambiences, and (3) the influence of inverse filtering on perceived sound quality for the realistic 3D sound reproduction. The experiment utilized the existence of two layers of loudspeakers: horizontal layer following the ITU-R BS.775 five-channel loudspeaker configuration and height layer locating a total of twelve loudspeakers at the azimuth of ±30°, ±50°, ±70°, ±90°, ±110° and ±130° and elevation of 30°. Eight configurations were formed, each of which selected four height-loudspeakers from twelve. In the subjective evaluation, listeners compared, ranked and described the eight randomly presented configurations of 4-channel height ambiences. The stimuli for the experiment were four nine-channel (5 channels for the horizontal and 4 for the height loudspeakers) multichannel music. Moreover, an approach of Finite Impulse Response (FIR) inverse filtering was attempted, in order to remove the particular room\u27s acoustic influence. Another set of trained professionals was informally asked to use descriptors to characterize the newly presented multichannel music with height ambiences rendered with inverse filtering. The experimental results indicate the significance of the positioning of the loudspeakers with respect to the signals being fed to those loudspeakers in delivering a 3D sound field. Furthermore, it has been revealed that the perceptual characteristics that listeners linked for multichannel music with height ambiences include envelopment, elevated-ness and fullness. Last but not least, after applying the inverse filtering the subjective preference was not affected significantly. This allows for the author to believe that, in fact, the room\u27s influence with respect to the subjective evaluation is not as important as the appropriate loudspeaker-positioning for the multichannel-reproduced music with height ambiences

    Sonic interaction with a virtual orchestra of factory machinery

    Get PDF
    This paper presents an immersive application where users receive sound and visual feedbacks on their interactions with a virtual environment. In this application, the users play the part of conductors of an orchestra of factory machines since each of their actions on interaction devices triggers a pair of visual and audio responses. Audio stimuli were spatialized around the listener. The application was exhibited during the 2013 Science and Music day and designed to be used in a large immersive system with head tracking, shutter glasses and a 10.2 loudspeaker configuration.Comment: Sonic Interaction for Virtual Environments, Minneapolis : United States (2014

    A loudspeaker-based room auralization system for auditory research

    Get PDF
    corecore