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Abstract

Spatial sound field reproduction aims to recreate an immersive sound field over

a spatial region. The existing sound pressure based approaches to spatial sound

field reproduction focus on the accurate approximation of original sound pressure

over space, which ignores the perceptual accuracy of the reproduced sound field.

The acoustic vectors of particle velocity and sound intensity appear to be closely

linked with human perception of sound localization in literature. Therefore, in

this thesis, we explore the spatial distributions of the acoustic vectors, and seek

to develop algorithms to perceptually reproduce the original sound field over a

continuous spatial region based on the vectors.

A theory of spatial acoustic vectors is first developed, where the spatial distri-

butions of particle velocity and sound intensity are derived from sound pressure.

To extract the desired sound pressure from a mixed sound field environment, a 3D

sound field separation technique is also formulated. Based on this theory, a series

of reproduction techniques are proposed to improve the perceptual performance.

The outcomes resulting from this theory are: (i) derivation of a particle veloc-

ity assisted 3D sound field reproduction technique which allows for non-uniform

loudspeaker geometry with a limited number of loudspeakers, (ii) design of particle

velocity based mixed-source sound field translation technique for binaural reproduc-

tion that can provide sound field translation with good perceptual experience over

a large space, (iii) derivation of an intensity matching technique that can reproduce

the desired sound field in a spherical region by controlling the sound intensity on

the surface of the region, and (iv) two intensity based multizone sound field repro-

duction algorithms that can reproduce the desired sound field over multiple spatial

zones. Finally, these techniques are evaluated by comparing to the conventional

approaches through numerical simulations and real-world experiments.
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Chapter 1

Introduction

1.1 Motivation and Scope

In our daily life, sound is all around us, moving freely in any direction. For example,

when watching a live show of a concert, you can hear the sound of instruments

from different directions and can feel the voice change as the vocalist moves on

the stage. The recreation of such a lifelike audio experience is a challenge for a

spatial sound field reproduction system, whereas the ability of this recreation is

vital to many commercial applications such as home entertainment systems (e.g.,

5.1/7.1 systems), modern cinemas (e.g., Dolby Atmos and DTS:X), and Virtual

Reality/Augmented Reality (VR/AR). In this thesis, we focus on this challenge

and find ways to create an immersive sound field over a spatial region so that the

listener inside the region can experience a realistic but virtual replication of the

original sound.

Sound field reproduction is achieved by controlling the placement of a set of

loudspeakers usually put on the boundary that encloses the spatial region of interest

and deriving the signals emitted from the loudspeakers [2]. As an example, a general

layout of a 7.1 surround sound system is shown in Fig. 1.1.

Until now, there have been various studies of sound field reproduction and they

have evolved in two directions: physically motivated techniques and perceptually

motivated techniques [3]. Physically motivated techniques aim to reproduce an

accurate physical approximation of a sound field. A notable example is Wave

1
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Figure 1.1: Layout of a 7.1 surround sound system [1].

Field Synthesis (WFS) [4–6], which synthesizes the desired sound field in a target

region based on the Huygens–Fresnel principle by individually driven loudspeak-

ers. Theoretically, it requires a continuous distribution of monopole and normally

oriented dipole secondary sources on the boundary of the region [7]. An approxi-

mation to the continuous distribution is implemented by an array of equally placed

loudspeakers, and the reproduction artifacts due to the approximation is analyzed

in [8]. To facilitate the implementation of WFS in a real reproduction environ-

ment, an adaptive WFS algorithm is proposed in [6]. Two dimensional WFS using

linear and planar arrays is thoroughly studied in [9–12]. To enhance the synthesis

accuracy of azimuthal localization around the listener’s position, a series of local

WFS methods are presented and compared with each other [13]. A practical imple-

mentation is called 2.5D WFS, which controls 2D sound fields using point sources

serving as the secondary sources instead of line sources [14, 15]. However, there is

a limited number of work implementing WFS in 3D space due to the fact that a

significant number of loudspeakers are required for broadband reproduction over a

large region [16–18].
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Ambisonics [19], which is another physically motivated approach to soundfield

reproduction, is based on the first order spherical harmonic analysis of the sound-

field to be reproduced. To achieve a large listening area, high order spherical har-

monics have been introduced in Higher Order Ambisonics (HOA) [20–24], which is

also widely used in multi-zone soundfield reproduction systems [25–27]. Array ge-

ometry is an important factor for HOA. Spherical arrays were extensively studied

in literature [20, 28–30], where there is a requirement to place loudspeakers uni-

formly on a sphere that surrounds the target region so that the desired sound field

within the region can be reconstructed perfectly. To facilitate the implementation

of spherical arrays, multiple circular arrays have been proposed in HOA [31–33].

Chen et al. developed a method to reproduce 3D exterior sound field with a planar

arrays of dipole (or first-order) loudspeakers [33]. However, the performance of

HOA deteriorates when the geometry of loudspeaker array becomes neither spheri-

cal nor circular due to the poorly conditioned matrix inversion. An improved least

squares method with a weighted penalty function was developed for such irregu-

lar loudspeaker layouts [34]. This method requires the regularization parameter

to be dependent on each loudspeaker arrangement. In [35], the authors proposed

a panning method, named all-round Ambisonic panning, which can recreate the

sound with stable loudness using arbitraty loudspeaker arrangements. Ueno et

al. proposed a weighted mode matching method, which is flexible with various

loudspeaker geometries, to avoid a relatively large effort devoted to matching the

insignificant modes [36]. This method was also exploited for multizone reproduc-

tion [37,38]. Sparse methods based HOA was investigated in [39,40], which results

in a significantly reduced number of the required microphones for the measuring

process. In addition to the problem in terms of loudspeaker placement, there is

another limitation for HOA. For a given order of a reproduction system, which

is determined by the maximum frequency of the desired sound and the radius of

the target region, HOA requires sufficient loudspeakers to match all the spherical

harmonics to the given order in order to avoid spatial aliasing [20].

Sound field reproduction can also be implemented by controlling sound pressure

at a set of discrete sampling points, which is basically based on the least squares

method [41, 42]. To improve the performance of the reproduction system in a

large area, other optimization techniques are exploited, such as the wave field
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reconstruction filter [43], the singular value decomposition based optimization [44],

and the least absolute shrinkage and selection operator (LASSO) [45,46].

In addition to their own shortcomings, the aforementioned physically motivated

techniques have a common limitation. They derive the loudspeaker driving signals

usually by minimizing the error between the desired sound pressure and the recon-

structed sound pressure without considering the perceptual performance. Recently,

the perceptual performance of these techniques has been evaluated [47, 48]. A de-

tailed comparison of these techniques on the perceptual performance was presented

in [49]. It shows that the original sound image can be perceptually reconstructed

in some applications of these techniques, even for the off-center positions [50, 51].

However, the performance largely depends on the loudspeaker arrangement. For

an irregular loudspeaker array that cannot perfectly reconstruct the desired sound

pressure, these techniques with the goal of optimally reconstructing sound pressure

may lead to perception deterioration.

The perceptually motivated techniques are more appropriate for such cases,

which aim to render the perceptually relevant aspects of the original sound. For

example, there are binaural techniques [52], which provide a convincing experience

over two channels. Binaural synthesis is based on the knowledge of the acoustic

transfer paths between the source and the two ears. These paths are characterized

by head related transfer function (HRTF) in the frequency domain [3]. HRTF is

not only determined by the relative position of the source and the ear, but it also

varies between people [53]. Therefore, individualized HRTF is normally used for

binaural synthesis. Also, dynamic and environmental cues should be considered to

achieve high fidelity [2]. The signal flow of a binaural synthesis system for head-

phones is shown in Fig. 1.2. A representative binaural synthesis method is the

magnitude least square, which designs the binaural rendering filters based on Am-

bisonic signals using magnitude-only optimization [54–56]. The binaural synthesis

has been widely applied in personal entertainment, such as commercial true wire-

less stereo (TWS) headphones and VR/AR products. There have also been some

works on multi-channel perceptually motivated systems. One notable example is

Vector Base Amplitude Panning (VBAP) [57–59], which is designed to recreate the

sound image of a virtual source over flexible loudspeaker layouts. VBAP is based

on a triplet-wise panning law and the virtual source cannot be positioned outside
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Figure 1.2: The signal flow of a binaural synthesis system for headphones [2].

a specific region, which decreases its applicability. Another example is directional

audio coding (DirAC) based on spatial impulse response rendering [60, 61]. It

records the impulse response of a room and analyzes the diffuseness and direction

of arrival of sound from the recordings. During the synthesis step, DirAC assigns

the analyzed direction and diffuseness level for each time-frequency bin to recon-

struct the original perception. An improved DirAC was presented in the spherical

harmonic domain by combining the perceptual effectiveness of DirAC with HOA

signals [62]. Recently, Sena et al. also developed a new multi-channel perceptual

soundfield reconstruction system [63], which captures the directional cues by a de-

signed microphone array, and reconstructs them using a loudspeaker array in the

same configuration as the microphone array. However, the reproduction quality

of these methods for the off-center positions is not as good as that for the central

listening position.

Acoustic vectors, such as particle velocity vector and sound intensity vector,

are important acoustic quantities that contain energy and directivity information

of a sound field. These two acoustic vectors also imply the information of inter-

aural time difference (ITD) and interaural level difference (ILD), which are the

two important human localization cues. In [64], Gerzon first developed particle
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velocity and sound intensity theories of sound localization for reproducing psy-

choacoustically optimum sound, and showed the particle velocity based rV vector

and sound intensity based rE vector satisfy low frequency (below 700 Hz) ITD

localization and high frequency (above 500 Hz) ILD localization, respectively. The

rE vector, a measure of superimposed intensities, was then extended to predict

perceptual sweet area and describe the changes in the timbre [50, 65]. Recently,

these acoustic vectors (i.e., particle velocity and sound intensity) have been widely

controlled in soundfield reproduction systems to improve the performance of per-

ceptual localization. In addition to good performance for regularly or evenly placed

loudspeakers [66–69], the particle velocity or sound intensity based methods also

perform well in irregular loudspeaker arrangements [70, 71]. A sound signal con-

version method between different loudspeaker systems is proposed in [72], which

reproduces the spatial impression of the original sound by maintaining the pressure

and direction of sound (controlled by particle velocity). A recent particle velocity

based sound field reproduction technique was proposed to achieve good localization

performance over a large region [70, 71], however, it requires a prior knowledge of

discrete particle velocity distributions on a sphere. For the sound intensity based

sound field techniques, they have been extensively investigated with subjective ex-

periments in [50, 73, 74]. However all the previous works based on sound intensity

only focus on a single reproduction position, and therefore perception degrades

when the listener is moved from this exact reproduction position.

To reproduce the sound field over a large continuous region, the prerequisite is

to capture the accurate distributions of the sound field over a continuous space. The

spatial sound field is usually captured by a microphone array with a 3D geometry,

such as EigenMike (a spherical microphone array) [75]. The estimation of spatial

sound field using spherical arrays has been extensively analyzed in [76, 77]. To

facilitate the real-world implementations, a special planar microphone array that

can record 3D spatial sound field is also developed [78]. All these works aim to

capture the spatial pressure distribution of a sound field. As for the spatial distri-

butions of acoustic vectors, they can be approximated by measuring the vectors at

multiple sampling points over space. For a large region, it requires a large number

of sampling points to ensure the measurement accuracy. The dominating method

of measuring the vectors is based on the combination of two pressure microphones
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and it can mainly be divided into two categories. One is to use the cross spectrum

of the pressure measurements [79–84] and another is to approximate particle ve-

locity using two closely placed microphones [85–87]. In [88], authors studied the

finite difference approximation error of the latter. With the development of hard-

ware, a micro-machined particle velocity transducer called Microflown has become

available [89]. Witold et al. determined the spatial distribution of sound intensity

using the Microflown coupled with a condenser microphone [90]. Then, an intensity

probe based on the Microflown in combination with a small pressure microphone

is available for intensity measurement [91,92]. This intensity probe was compared

to the method with the combination of two pressure microphones in [93]. The in-

tensity probe is more difficult to be calibrated but it can eliminate phase mismatch

in the measurement system of two pressure microphones. These methods can ac-

curately measure the vectors at a point, however, it is time-consuming and costly

to obtain the spatial distributions of the vectors by point-by-point measurement

using either of the methods.

Based on the above discussions, we pose the following research problem to

address in this thesis:

How to recreate an immersive experience for listeners over single or

multiple spatial regions using practical reproduction systems based on

spatial acoustic vectors?

1.2 Problem Description and Proposed Solution

We breakdown this research problem into two further sub-questions:

(i) How to accurately achieve desired acoustic vector distributions over space

from a mixed sound field environment using a practical microphone array?

We start with a mixed sound field environment over space, where the desired

and undesired sound field co-exist. We develop an algorithm to extract the de-

sired sound field from the mixed sound field using a practical microphone array.

The desired sound field is characterized by spherical harmonic coefficients of sound

pressure. The control objective for spatial acoustic vector based sound field repro-

duction should be the acoustic vectors over the entire target region rather than
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multiple sampling points within the region. Therefore, we derive the closed form

representations of the acoustic vectors over space from spherical harmonic coeffi-

cients of sound pressure. This means that we can obtain the continuous acoustic

vector distributions over space from a measurement of a microphone array. There

are infinite closed form coefficients for the acoustic vectors representations. The

truncation theorems are also proposed for practical implementations.

(ii) How to perceptually reproduce the desired sound field over a continuous

region by exploiting the spatial acoustic vector distributions?

Once we have the desired acoustic vector distributions over space, we can design

the reproduction system to optimize the distributions over the target region. We

develop a series of reproduction techniques to improve the perceptual performance,

all of which are based on the theory of spatial acoustic vectors. The spatial acoustic

vectors include spatial particle velocity vector and spatial sound intensity vector.

Therefore, the developed techniques fall into two categories. One is the particle

velocity based technique. We first propose a particle velocity assisted 3D sound

field reproduction technique, which can provide accurate sound field reproduction

over a large region with a limited number of loudspeakers. We then develop a

new algorithm to recreate the sense of spatial direction in binaural reproduction

by combining the spatial particle velocity vector with the virtual mixed-source

model and HRTF synthesis. Another is the sound intensity based technique. We

overcome the limitation of single sweet spot in the previous works of sound intensity

based reproduction and propose a reproduction technique that can reconstruct the

original sound image over a continuous spatial region. We also extend this technique

to multizone reproduction.

1.3 Thesis Overview and Outline

This thesis provides some useful tools for spatial sound field analysis, and various

spatial sound field reproduction techniques based on the tools. The flow diagram

of the thesis overview is shown in Fig. 1.3 where the blocks represent core chapters.

Blocks in orange and blue correspond to the chapters answering sub-question (i)

and (ii), respectively. Chapter 3 produces two useful tools, i.e., sound field sep-

aration and spatial acoustic vectors including particle velocity vector and sound
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Figure 1.3: Thesis overview. Blocks in orange and blue correspond to the chapters
answering sub-question (i) and (ii), respectively.

intensity vector. These tools can be used as standalone applications as well as an

assist to the spatial sound field reproduction algorithms introduced in the follow-

ing chapters of this thesis (see the arrow paths in Fig. 1.3). The contributions to

spatial sound field reproduction in this thesis are distributed into four chapters.

Chapter 4 and 5 produce two advanced sound field reproduction algorithms based

on particle velocity, whereas Chapter 6 and 7 provide solutions to spatial sound

field reproduction using sound intensity vectors.

The structure of the thesis is as follows:

Chapter 2: Background Theory

This chapter briefly reviews the theory of spherical harmonic analysis for spatial

sound, which are used throughout this thesis. We also outline the concept of the

conventional mode matching method for spatial sound field reproduction, which

is based on the spherical harmonic analysis. This method is also the benchmark

when we evaluate the proposed methods in this thesis.



10 Introduction

Chapter 3: Theory of Spatial Acoustic Vectors

In this chapter, we propose a series of tools for spatial sound field reproduction.

First, we develop a spatial sound field separation method to extract the desired

sound field from a complex sound environment. This method can achieve 3D

sound field separation using a planar array of differential microphones. The sepa-

rated spatial sound field by this method is described by pressure coefficients in the

spherical harmonic domain. From pressure coefficients we then theoretically derive

the representations of spatial particle velocity vector and spatial sound intensity

vector. We conclude that the spatial particle velocity/sound intensity vector can be

characterized by the their corresponding coefficients, which are directly linked with

pressure coefficients. We also indicate a truncation order for these representations.

Chapter 4: Particle Velocity Assisted Spatial Sound Field Reproduction

This chapter aims to reproduce the desired sound field in the target region by

exploiting the theory of spatial particle velocity. To achieve this goal, we build

a weighted cost function to optimize the distributions of sound pressure and par-

ticle velocity on the boundary of the target region. The proposed method al-

lows for non-uniform loudspeaker geometry with a limited number of loudspeakers.

Compared to the benchmark of mode matching method, this method can provide

more accurate sound field reproduction with a wider frequency range using a non-

uniform loudspeaker array. The proposed method can also reconstruct the original

sound direction in various environments. We consider both free fields and reverber-

ant environments when modeling the reproduction system. The reverberation can

compensate for the non-uniformity of the loudspeaker array. We implement this

method using the impulse response measurements of a real-world room to show its

superiority.

Chapter 5: Particle Velocity Based Sound Field Translation for Binaural

Reproduction

Chapter 5 investigates the sound field translation technique for binaural repro-

duction to recreate the virtual sense of spatial direction using headphones. We

develop a new mixed-source expansion, which includes a mix of near-field and far-
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field virtual sources, based on particle velocity. We represent the mixed sources

using velocity coefficients and calculate the driving signals of the mixed source

distribution by minimizing the difference between desired velocity coefficients and

reconstructed velocity coefficients. We provide two solutions to this problem. One

is the least square solution, which distributes energy throughout all virtual sources

and inherits the spatial artifacts caused by the truncated measurement. Another is

the sparse solution, which leads to better perceptual experience by modeling fewer

virtual sources from propagation directions that are similar to the original sound.

We introduce two localization metrics to evaluate the solutions. A MUSHRA ex-

periment is also implemented to verify the performance of the proposed method on

source localization and audio quality.

Chapter 6: Spatial Sound Field Reproduction Based on Sound Intensity

In this chapter, we explore the possibility of applying spatial sound intensity theory

to the sound field reproduction system. We propose an intensity matching tech-

nique to optimally reproduce sound intensity over a continuous spatial region using

an irregular loudspeaker array. Inspired by Kirchhoff-Helmholtz integral equation,

we derive the loudspeaker driving signals and reproduce the sound intensity inside

a spherical region by controlling the sound intensity distribution on the surface of

the region. We compare the proposed method with the benchmark of mode match-

ing method and HOA max-rE decoding that optimizes sound intensity at a single

position with two different irregular loudspeaker layouts (i.e., a 5 channel system

and a 22 channel system) through numerical simulations. We also assess the impact

of microphone noise on reproduction performance. The 5 channel system is then

built for perceptual experiments.

Chapter 7: Intensity Based Sound Field Reproduction over Multiple

Spatial Zones

This chapter offers two algorithms for intensity based multizone sound field repro-

duction. First, in Section 7.2, we reproduce the desired sound field by controlling

the sound intensity at multiple sweet spots to recreate the original sound image over

multiple different locations simultaneously. The sweet spots can be arbitrarily cho-

sen within the target region. Then, in Section 7.3, we extend the method in Chapter
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6 to multiple spatial zones, concurrently taking room acoustics into consideration.

We integrate the sound intensity distributions of all the target zones to formulate

the cost function. Both methods are evaluated through simulations/experiments

with a spatially non-uniform loudspeaker arrangement.

Chapter 8: Conclusion and Future Work

This chapter provides a summary of the results drawn from this thesis and possible

directions for future work.



Chapter 2

Background Theory: Spatial

Sound Field Reproduction Using

Spherical Harmonic Synthesis

This chapter provides a brief overview of the background knowledge concerning

spatial sound field reproduction in the spherical harmonic domain. We first review

the spherical harmonic expansion of a sound field. The properties of the expansion

and the estimation of spherical harmonic coefficients are also discussed. We then

review the conventional spatial sound synthesis method using the spherical har-

monic expansion (i.e., the mode matching method) for the cases of a single spatial

zone and multiple spatial zones.

2.1 Spherical Harmonic Decomposition of a Sound

Field

Spherical harmonic decomposition is a powerful tool that can be used to describe

the wave propagation over 3D space. The essential principle of the decomposition

is to express the wave field as a weighted sum of a set of orthogonal basis functions

(i.e., spherical harmonics), which are solutions of the Helmholtz wave equation

in spherical coordinates. In acoustics, spherical harmonic decomposition is an

important technique for sound field analysis and synthesis, and it has been used to

13
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Figure 2.1: Definition of the spherical coordinate system throughout this thesis.

solve various acoustic problems such as spatial sound field reproduction [20–24,28,

30], spatial active noise control [94–97], source localization [98–101], room acoustic

modelling [102–104], beamforming [98, 105, 106], and dereverberation [107, 108].

Since spherical harmonic decomposition reveals the underlying characteristics of a

sound field, it naturally provides more insight into the sound field and allows for

more accurate analysis and synthesis of the sound field, compared to the structure

of multiple sampling points over space. In this thesis, we make an extensive use of

the spherical harmonic decomposition and develop the algorithms and models in

the spherical harmonic domain.

We briefly introduce the theory and techniques related to spherical harmonic

decomposition in this section.

2.1.1 Sound field expansion

A sound field is usually characterized by sound pressure. In this subsection, we

give the representations of sound pressure in the spherical harmonic domain.
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Coordinate system

The mathematical expressions of the representations vary for different definitions

of the coordinate systems. Hence, we start with defining the spherical coordinate

system used throughout this thesis, which is given in Fig. 2.1. The spherical

coordinates of a point in space can be represented by (r, θ, φ), where radius r is the

Euclidean distance from the origin to the point, elevation θ is the angle between

the zenith direction and the line segment from the origin to the point, and azimuth

φ is the angle between positive x and the projection of the line segment on x-y

plane.

The spherical coordinates are related to the Cartesian coordinates through

x = r sin θ cosφ, (2.1)

y = r sin θ sinφ, (2.2)

x = r cos θ, (2.3)

so that r =
√
x2 + y2 + z2, θ = tan−1(

√
x2 + y2/z), and φ = tan−1(y/x). To

define a unique set of coordinates in the spherical coordinate system, we impose

the following constraints on the ranges of r, θ, and φ

r ∈ [0,∞), (2.4)

θ ∈ [0, 180◦], (2.5)

φ ∈ [0, 360◦]. (2.6)

Interior and exterior field solutions

Consider the propagation of sound waves in a homogeneous isotropic medium as-

sumed to be an inviscid fluid, with stationary initial conditions. Sound pressure

p(x, ω) at an arbitrary point x = (r, θ, φ) follows the reduced wave equation or
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Helmholtz equation [109]

∇2p(x, ω) + k2p(x, ω) = 0, (2.7)

where ∇2 denotes the Laplacian operator, expressed in spherical coordinates as

∇2(·) =
1

r2

∂

∂r
[r2 ∂

∂r
(·)] +

1

r2 sin θ

∂

∂θ
[sin θ

∂

∂θ
(·)] +

1

r2 sin2 θ

∂2

∂φ2
(·), (2.8)

and k denotes wavenumber, which is related to the angular frequency ω and wave-

length λ by

k =
ω

c
=

2πf

c
=

2π

λ
, (2.9)

where f is the frequency and c denotes the speed of sound.

According to the relative positions of sound sources, the representations of a

sound field can be divided into two cases: the interior field representation and the

exterior field representation, both of which are the solutions to (2.7). The interior

field is an incoming sound field caused by sources positioned completely outside

the region of interest. The solution for the interior field is

p(x, k) =
∞∑
n=0

n∑
m=−n

αnm(k)jn(kr)Ynm(θ, φ), (2.10)

where αnm(k) are the spherical harmonic coefficients of the interior field, jn(·) is the

nth order spherical Bessel function of the first kind, and Ynm(θ, φ) is the spherical

harmonic of order n and degree m, defined by

Ynm(θ, φ) ,

√
(2n+ 1)

4π

(n−m)!

(n+m)!︸ ︷︷ ︸
Anm

Pnm(cos θ)eimφ, (2.11)

where Pnm(cos θ) is the associated Legendre function. Therefore, the sound field

at an arbitrary point within a homogeneous interior sound field can be expressed

by (2.10).

Conversely, the exterior field is an outgoing sound field caused by sources that

are positioned within a limited enclosed area where the region of interest is the
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space enclosing the source area. The solution for the exterior field is

p(x, k) =
∞∑
n=0

n∑
m=−n

βnm(k)hn(kr)Ynm(θ, φ), (2.12)

where hn(·) is the nth order spherical Hankel function of the first kind. Similarly,

(2.12) represents the sound field at any arbitrary point within a homogeneous

exterior sound field.

Note that the sound field coefficients αnm(k) and βnm(k) are independent of the

observation point, therefore, they can be used to characterize the sound field over

an entire continuous space for a given frequency k.

Spherical wave and plane wave models

There are two basic models of acoustic sources that are widely used when we study

acoustic problems, and they are spherical wave model (also called point source

model) and plane wave model. We here present the spherical harmonic expansions

of the sound fields due to the two types of sources.

We first consider the spherical wave model. The sound field due to a source

located at xs = (rs, θs, φs) can be described by the Green’s function [110]

g(x|xs, k) =
eik‖x−xs‖2

4π‖x− xs‖2

, (2.13)

where || · ||2 denotes the Euclidean norm. The expression (2.13) can be decomposed

in terms of spherical harmonic functions as [111]

eik‖x−xs‖2

4π‖x− xs‖2

=


ik
∞∑
n=0

n∑
m=−n

hn(krs)Y
∗
nm(θs, φs)jn(kr)Ynm(θ, φ), rs > r

ik
∞∑
n=0

n∑
m=−n

jn(krs)Y
∗
nm(θs, φs)hn(kr)Ynm(θ, φ), rs < r,

(2.14)

where ∗ denotes complex conjugate. We should note that (2.14) does not define the

sound field at the source location xs, thus representing two separate homogeneous

sound fields inside and outside the virtual sphere of radius rs. The upper case of
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(2.14) is an interior field, which complies with the interior field solution (2.10) with

αnm(k) = ikhn(krs)Y
∗
nm(θs, φs). (2.15)

In contrast, the lower case is an exterior field, which satisfies the exterior field

solution (2.12) with

βnm(k) = ikjn(krs)Y
∗
nm(θs, φs). (2.16)

Another model we discuss here is the plane wave model, which can be inter-

preted as point sources at infinity (rs →∞) with appropriate normalization [112].

Substituting rs =∞ into (2.13) and performing the normalization, the sound field

due to a plane wave yields

p(x, k) = e−ikŷi·x, (2.17)

where ŷi = (θi, φi) is the incident direction of the plane wave. The spherical

harmonic decomposition of (2.17) is [113]

eikŷiẋs =
∞∑
n=0

n∑
m=−n

4π(−i)nY ∗nm(θi, φi)jn(kr)Ynm(θ, φ), (2.18)

which also satisfies the interior field solution (2.10) with

αnm(k) = 4π(−i)nY ∗nm(θi, φi). (2.19)

The spherical wave model and plane wave model can be used to describe the

near-field propagation and far-field propagation, respectively. Therefore, (2.14) and

(2.18) can accurately represent any arbitrary source-free sound field due to one or

more sources lying in the near-field or far-field.

2.1.2 Properties of the expansion

In this thesis, we deal with various of properties of the expansion, and present them

subsequently.



2.1 Spherical Harmonic Decomposition of a Sound Field 19

Figure 2.2: Plots of the spherical Bessel function jn(x) for n from 0 to 10.

Spherical Bessel functions

The spherical Bessel function can be expressed in terms of trigonometric functions

jn(x) = (−x)n(
1

x

d

dx
)n(

sinx

x
). (2.20)

Figure 2.2 shows the plots of jn(x) for n from 0 to 10. From Fig. 2.2, it shows

that the spherical Bessel functions jn(x) inherit a high pass behavior in terms of x

(i.e., given a value of x, higher order jn(x) remains close to zero). In other words,

for a given kr, jn(kr) is non-zero only up to an order of N , therefore, the infinite

summation expressions that involve spherical Bessel functions can be appropriately

truncated. A rule of thumb used to determine the truncation order is N = dkre
with a error of around 4% [20], where d·e denotes rounding up to the nearest integer.

An alternative rule is N = dker/2e with improved accuracy [114].

According to this property of the spherical Bessel functions, the interior field of

(2.10) can be truncated to Ni = dkRe or Ni = dkeR/2e, assuming the target region

is a spherical region with radius of R. For the exterior field of (2.12) there exist no

spherical Bessel functions, however, the exterior fields can be given in terms of one

or more points sources as mentioned in the lower case of (2.14), which includes the
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spherical Bessel functions. Hence, the exterior field of (2.12) can also be truncated

to Ne = dkRse or Ne = dkeRs/2e, where Rs denotes the radius of the minimum

sphere enclosing all the sources.

There also exist a set of recurrence relations for spherical Bessel functions. In

particular,
2n+ 1

x
jn(x) = jn−1(x) + jn+1(x), (2.21)

and

j′n(x) = jn−1(x)− n+ 1

x
jn(x), (2.22)

where (·)′ denotes the corresponding first derivative term.

Spherical harmonics

Spherical harmonics are a set of orthonormal basis functions, therefore, we have

the orthonormality of spherical harmonics∫ 2π

0

dφ

∫ π

0

Ynm(θ, φ)Y ∗n′m′(θ, φ) sin θdθ = δnn′δmm′ , (2.23)

where δnn′ is the Kronecker delta function, expressed as

δnn′ =

 1, n = n′

0, n 6= n′.
(2.24)

Another important property for spherical harmonics is about the integral of product

of three different spherical harmonics over a sphere [115]∫ 2π

0

dφ

∫ π

0

Yn1m1(θ, φ)Yn2m2(θ, φ)Yn3m3(θ, φ) sin θdθ

=

√
(2n1 + 1)(2n2 + 1)(2n3 + 1)

4π

(
n1 n2 n3

0 0 0

)(
n1 n2 n3

m1 m2 m3

)
,

(2.25)

where
(
·
)

in (2.25) denotes Wigner-3j symbols [116]. In addition, the spherical

harmonics have the following symmetry [109]

Yn(−m)(θ, φ) = (−1)mY ∗nm(θ, φ). (2.26)
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The asscociated Legendre functions, one of the components of spherical har-

monics, also have an important recurrence relation that we extensively use in this

thesis

(1− x2)
dPnm(x)

dx
= (n+ 1)xPnm(x)− (n−m+ 1)P(n+1)m(x). (2.27)

Addition theorems

The addition theorems are used to transform a sound field representation with

respect to a given origin O in space into a similar representation with respect to

a different origin O1 in space. Here we introduce the addition theorems for the

spherical Bessel functions and Hankel functions, which are related to this thesis.

Let x0 = (r0, θ0, φ0) and x1 = (r1, θ1, φ1) be the positions of a general point in

space with respect to O, and O1, respectively. Let x2 = (r2, θ2, φ2) be the position

of O1 with respect to O, so that x0 = x1 +x2. The addition theorem for spherical

Bessel functions is then given by [117]

jn(kr0)Ynm(θ0, φ0) =
∞∑
v=0

v∑
µ=−v

Ŝmµnv (k,x2)jv(kr1)Yvµ(θ1, φ1) (2.28)

where v and µ denote higher order indices and

Ŝmµnv (k,x2) = 4πiv−n
n+v∑
l=0

il(−1)2m−µjl(kr2)Y ∗l(µ−m)(θ2, φ2)W1W2ξ (2.29)

with

W1 =

(
n v l

0 0 0

)
and W2 =

(
n v l

m −µ (µ−m)

)
(2.30)

denoting Wigner-3j symbols and ξ =
√

(2n+ 1)(2v + 1)(2l + 1)/4π.

Similarly, the addition theorem for spherical Hankel functions is [117]



22
Background Theory: Spatial Sound Field Reproduction Using Spherical

Harmonic Synthesis

hn(kr0)Ynm(θ0, φ0) =



∞∑
v=0

v∑
µ=−v

Smµnv (k,x2)jv(kr1)Yvµ(θ1, φ1) r1 ≤ r2

∞∑
v=0

v∑
µ=−v

Ŝmµnv (k,x2)hv(kr1)Yvµ(θ1, φ1) r1 ≥ r2

(2.31)

where

Smµnv (k,x2) = 4πiv−n
n+v∑
l=0

il(−1)2m−µhl(kr2)Y ∗l(µ−m)(θ2, φ2)W1W2ξ. (2.32)

Note that Ŝmµnv (·) and Smµnv (·) are also known as re-expansion operators, which

denote translatory re-expansion of a sound field with respect to different coordinate

systems.

2.1.3 Soundfield coefficient estimation from measurements

As mentioned earlier, a complete set of spherical harmonic coefficients can fully

describe a sound field. To achieve a real-world sound field in such a way, it requires

to extract the coefficients from microphone recordings. In this subsection, we briefly

introduce the estimation of the coefficients using a spherical microphone array [76].

Multiplying both sides of (2.10) by Y ∗n′m′(θ, φ) and integrating them over a

sphere, we have∫ 2π

0

∫ π

0

p(x, k)Y ∗n′m′(θ, φ) sin θdθdφ

=
∞∑
n=0

n∑
m=−n

αnm(k)jn(kr)

∫ 2π

0

∫ π

0

Ynm(θ, φ)Y ∗n′m′(θ, φ) sin θdθdφ.

(2.33)

Due to the property of orthonormality (2.23), (2.33) can be reduced to

αnm(k) =
1

jn(kr)

∫ 2π

0

∫ π

0

p(x, k)Y ∗nm(θ, φ) sin θdθdφ. (2.34)

To facilitate the real-world implementation, we approximate the integral in (2.34)
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by a finite summation

αnm(k) =
1

jn(kRM)

Q∑
q=1

ωqp(xq, k)Y ∗nm(θq, φq), (2.35)

whereQ is the number of microphones, RM is the radius of the spherical microphone

array, p(xq, k) is the qth microphone measurement, and ωq, q = 1, ..., Q are the

corresponding microphone weights. Given a truncation order of N , it requires

at least (N + 1)2 microphones on a sphere to avoid losing information, and their

corresponding weights are determined by the spatial sampling scheme in order to

ensure
Q∑
q=1

ωqYnm(θq, φq)Y
∗
n′m′(θq, φq) ≈ δnn′δmm′ . (2.36)

An example of the spatial sampling scheme is given in [118].

We note that (2.35) is developed for a open spherical microphone array. For a

rigid spherical array, jn(·) in (2.35) need to be replaced with bn(·), where

bn(·) = jn(·)− j′n(·)
h′n(·)

hn(·). (2.37)

2.2 Spherical Harmonic Synthesis of Mode Match-

ing

The previous section introduces the spherical harmonic decomposition of a sound

field, which can be used to describe the sound field over a continuous spatial region.

Therefore, it has an advantage in solving the problem of spatial sound field repro-

duction. In this section, we review the spherical harmonic decomposition based

spatial sound field reproduction technique of mode matching (also called pressure

matching in the modal domain), including a solution to single zone reproduction

and a solution to multizone reproduction. This technique is also the benchmark

for the proposed reproduction techniques in the following chapters.
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2.2.1 Single zone solution

We first briefly outline the concept of the mode matching method for a single con-

tinuous spatial region [20]. In the spherical harmonic domain, the sound pressure

at any point x in a spherical region, due to a desired source outside the region, can

be obtained from (2.10)

pd(x, k) =
N∑
n=0

n∑
m=−n

αnm(k)jn(kr)Ynm(θ, φ), (2.38)

where αnm(k) denote the spherical harmonic coefficients of the desired sound field.

The reproduced sound field is generated by a set of NL loudspeakers located at

x` = (r`, θ`, φ`) outside the spherical region, with ` = 1, ..., NL. We assume that

the loudspeakers used for reproduction are point sources. According to the point

source model of (2.14), the reproduced sound field due to the `th loudspeaker can

be expressed as

g(x|x`, k) =
N∑
n=0

n∑
m=−n

β(`)
nm(k)jn(kr)Ynm(θ, φ). (2.39)

with

β(`)
nm(k) = ikhn(kr`)Y

∗
nm(θ`, φ`), (2.40)

where β
(`)
nm(k) denote the spherical harmonic coefficients of the sound field due to

the `th loudspeaker. The reproduced sound pressure due to the loudspeaker array

can be written as

pa(x, k) =

NL∑
`=0

w`(k)g(x|x`, k), (2.41)

where w`(k) is the driving signal applied to the `th loudspeaker.

Substituting (2.39) into (2.41), and then equating (2.41) with (2.38), we have

N∑
n=0

n∑
m=−n

αnm(k)jn(kr)Ynm(θ, φ) =
N∑
n=0

n∑
m=−n

NL∑
`=0

w`(k)β(`)
nm(k)jn(kr)Ynm(θ, φ).

(2.42)

Multiplying both sides in (2.42) by Y ∗n′m′(θ, φ) and integrating them over the unit
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sphere with respect to θ and φ, gives

αnm(k) =

NL∑
`=0

w`(k)β(`)
nm(k). (2.43)

Rewriting (2.43) in matrix form as

α = βG, (2.44)

where α = [α00, α1−1, ..., αNN ]T , G = [w1, ..., wNL ]T , and

β =


β

(1)
00 · · · β

(NL)
00

β
(1)
1−1 · · · β

(NL)
1−1

...
. . .

...

β
(1)
NN · · · β

(NL)
NN

 . (2.45)

For notations convenience, we omit the dependence on k. The number of loud-

speakers NL specifies how the linear system (2.44) can be solved. There are three

cases of interest. When the system is over-determined (i.e.,(N + 1)2 > NL), there

will be no exact solution in general. It becomes a least square problem

min
G
||βG−α||22. (2.46)

If β is a square non-singular matrix, a unique solution to (2.44) is given by G =

β−1α. Finally, for an under-determined system (i.e.,(N + 1)2 < NL), there may

either be no solution or an infinite number of solutions. For the latter case, we can

find the weights to satisfy

min
G
||G||22 s.t. α = βG. (2.47)

Tikhonov regularization can be introduced here to improve the robustness of the

solution. The solutions of both the problems (2.46) and (2.47) are well studied

in [35,47,119].
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2.2.2 Multizone solution

The essential idea of the multizone solution is to derive an equivalent global sound

field that consists of a number of individual multizone sound fields by the addition

theorems [25]. Assume that there are B non-overlapping spatial zones, and the

origin of the bth zone is denoted as Ob and located at x
(b)
o with respect to the global

origin O. The desired sound field of the bth zone can be described by spherical har-

monic coefficients α
(b)
nm(k), such that the sound pressure at an arbitrary observation

point xb = (rb, θb, φb) with respect to Ob within the bth zone can be expressed as

p(b)(xb, k) =

Nb∑
n=0

n∑
m=−n

α(b)
nm(k)jn(krb)Ynm(θb, φb), (2.48)

where Nb = dkeRbe, and Rb is the radius of the bth zone.

The sound pressure at the same point with respect to O (i.e., xbo = x
(b)
o +xb =

(rbo, θbo, φbo)) can be written as

p(g)(xbo, k) =

Ng∑
n=0

n∑
m=−n

β(g)
nm(k)jn(krbo)Ynm(θbo, φbo), (2.49)

where Ng = dkeRge, Rg is the radius of the smallest sphere that encloses all spatial

zones of interest, and β
(g)
nm(k) are the global pressure coefficients. The coefficients

α
(b)
nm(k) and β

(g)
nm(k) are related by the addition theorem of (2.28)

α(b)
vµ(k) =

∞∑
v=0

v∑
µ=−v

Ŝmµnv (x(b)
o )β(g)

nm(k). (2.50)

Our objective is to achieve the global pressure coefficients that can reproduce all

sound field zones. We write (2.50) for b = 1, ..., B and express them in matrix form

as

A = ŜC, (2.51)

whereC=[β
(g)
00 , β

(g)
1−1, ..., β

(g)
NgNg

]T ,A=[α
(1)
00 , α

(1)
1−1, ..., α

(1)
N1N1

, ..., α
(B)
00 , α

(B)
1−1, ..., α

(B)
NBNB

]T ,
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and

Ŝ =



Ŝ00
00(x

(1)
o ) Ŝ−10

10 (x
(1)
o ) · · · Ŝ

Ng0
Ng0(x

(1)
o )

Ŝ0−1
01 (x

(1)
o ) Ŝ−1−1

11 (x
(1)
o ) · · · Ŝ

Ng−1
Ng1 (x

(1)
o )

...
. . .

...

Ŝ0N1
0N1

(x
(1)
o ) Ŝ−1N1

1N1
(x

(1)
o ) · · · Ŝ

NgN1

NgN1
(x

(1)
o )

...
. . .

...

Ŝ00
00(x

(B)
o ) Ŝ−10

10 (x
(B)
o ) · · · Ŝ

Ng0
Ng0(x

(B)
o )

Ŝ0−1
01 (x

(B)
o ) Ŝ−1−1

11 (x
(B)
o ) · · · Ŝ

Ng−1
Ng1 (x

(B)
o )

...
. . .

...

Ŝ0NB
0NB

(x
(B)
o ) Ŝ−1NB

1NB
(x

(B)
o ) · · · Ŝ

NgNB
NgNB

(x
(B)
o )



. (2.52)

The global sound field coefficients can be obtained by solving (2.51) using the least

squares method

C = Ŝ
†
A, (2.53)

where Ŝ
†

= [Ŝ
H
Ŝ]−1Ŝ

H
is the Moore–Penrose (Pseudo) inverse of Ŝ. Note that

the (2.53) involves a matrix inversion of Ŝ
H
Ŝ, which is dependent of the zone

positions, therefore, each zone needs to be carefully positioned to avoid the poorly

conditioned inverse problem [25].

Once we obtain the global sound field coefficients, the multizone reproduction

is reduced to single zone reproduction in Section 2.2.1.

2.3 Summary

This chapter offered an introduction on the theory of spherical harmonic analysis

that the rest of thesis is based on, including sound field expansion, important

properties related to the expansion, and spherical harmonic coefficients estimation.

The spherical harmonic synthesis of sound fields was also discussed, where the

conventional mode matching method was outlined for both single zone reproduction

and multizone reproduction. This method is compared to the proposed methods

in the Chapters 4, 5, and 7 as the benchmark.





Chapter 3

Theory of Spatial Acoustic

Vectors

In this chapter, we introduce the theory of spatial acoustic vectors, which is the

foundation of the spatial sound field reproduction systems in the following chapters

of this thesis. The theory is derived in terms of the pressure distribution of a sound

field. In most cases, the sound field radiated by a desired sound source (exterior or

outgoing sound field) may be mixed with the reverberations and the sound fields

incident from other sources that may be present (interior or incident sound field).

To achieve the spatial pressure distribution radiated by the desired sound source,

we first propose a 3D sound field separation method that can extract the desired

outgoing sound field in a mixed sound field environment using a planar microphone

array that is more practical than the traditional spherical array. The desired sound

field is given by sound pressure in spherical harmonic domain. We then derive

the closed form representations of the spatial acoustic vectors, including spatial

particle velocity vector and spatial sound intensity vector, from sound pressure in

spherical harmonic domain. We also give the truncated expressions of the vectors

for practical implementations.

29
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3.1 Desired Sound Field Extraction

An accurate capture of desired sound field is the prerequisite for a sound field

reproduction system. In this section, we introduce the desired sound field extraction

from a mixed sound field.

3.1.1 Introduction

In a complex 3D acoustic environment, there usually exist multiple sources and

even reverberations. The mixed sound field can be divided into interior sound

field and exterior sound field [109] on the basis of the location of receivers. It is

a challenging task to separate and extract the desired sound field from a mixed

measurement in such an environment. However, in nature, the ability to separate

these sound fields will benefit a plethora of applications including noise cancel-

lation [120], selective sound field reproduction, room equalization and scattering

measurement/correction. The representation of the interior or exterior sound field

has been studied in literature [76,121]. Efren et al. proposed a separation method

based on the measurement of particle velocity in two layers or the pressure and

the velocity in a single layer [122, 123]. The method introduced in [124], is called

equivalent source method which separates wave components by measuring pressure

on arbitrarily shaped surfaces in the spatial domain. All these works do not involve

whole 3D sound field separation. Weinreich et al. determined the interior and exte-

rior components independently using a spherical measurement array with a single

rotating microphone [125]. In [126], authors introduced a method to extract the

exterior field from a mixed sound field for 2D height-invariant sound propagation

and then they extended the method to 3D sound field by using a sparse array of

higher order spherical microphones [127].

Array geometry is an important factor when we consider sound field recording.

Spherical arrays were extensively studied in literature [20,28,29]. Gupta et al. used

a set of multiple circular arrays to reproduce 3D sound fields [128], however the

arrays were placed on different planes. Chen et al. developed a method to capture

3D spatial sound field with 2D planar microphone arrays [78] with two possible

configurations of arrays. One was to use a hybrid of omni-directional microphones
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and first order microphones and another was to use omni-directional pairs. The

first order microphones were utilized to capture 3D spatial exterior sound field

in [129]. All these geometries can help to record sound fields. However, none of

these arrays address the problem of sound field separation.

In the following subsections, we propose a solution to separate 3D interior and

exterior sound field using a planar array of differential microphones, which can

be used to extract the desired sound field for spatial sound field reproduction

systems. We then demonstrate the algorithm exhibits a good performance through

simulations.

3.1.2 Problem formulation

We consider a region χ between two concentric spherical surfaces with radii ri and

re, where re < ri. We choose the origin in such a way that all sound sources are

located inside the sphere of radius re or outside the sphere of radius ri. In this work,

we assume that the desired sound sources are located inside the sphere of radius

re and the other sources are located outside the sphere of radius ri. According to

(2.10) and (2.12), the 3D sound field at any point x in χ due to the sources outside

the sphere of radius ri is given by

Pi(x, k) =
∞∑
n=0

n∑
m=−n

αnm(k)jn(kr)Ynm(θ, φ), (3.1)

and the sound field at the same point x due to the sources inside the sphere of

radius re is given by

Pe(x, k) =
∞∑
n=0

n∑
m=−n

βnm(k)hn(kr)Ynm(θ, φ), (3.2)

where Pi and Pe are known as the interior and exterior sound fields, respectively,

and

Ynm(θ, φ) = Pn|m|(cos θ)Em(φ), (3.3)

where Pn|m|(cos θ) = [(2n+1)(n−|m|)!/2π(n+|m|)!]1/2Pn|m|(cos θ)eimφ and Em(φ) =

(1/(2π)1/2)eimφ are the normalized associated Legendre functions and normalized
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Omnidirectional microphone
x

y

z

O

Figure 3.1: Example of planar arrays of differential microphones

exponential functions respectively.

The total sound field at x in χ would follow the superposition principle

Pt(x, k) = Pi(x, k) + Pe(x, k). (3.4)

Given the measured total sound pressure Pt(x, k), our objective is to obtain the

interior sound field Pi(x, k) and exterior sound field Pe(x, k) separated.

3.1.3 Sound field recording using a planar array of differ-

ential microphones.

Array geometry for a mixed sound field

The planar array of differential microphones is placed on the x-y plane and consists

of circles of closely placed omni-directional microphone pairs (see Fig. 3.1). The

desired sources should be surrounded by the array, and the other sources should be

located outside the array. Each microphone pair is used in two different ways: one of

the omni-directional microphones in the pair is used to calculate even1 coefficients,

while the difference between the output signals of two omni-directional microphones

placed perpendicular to the x-y plane are used to calculate odd coefficients [78].

The number of microphones on the qth circular array is Nq = 2dkeRq/2e+1, which

depends on the radius of array Rq and the wave number k (see [78] for details).

1Even and odd coefficients are defined when the value of n+ |m| is even and odd, respectively.
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Output representations of the array

Consider an arbitrary point on the circle in Fig. 3.1 given by (Rq, π/2, φ), and the

output of an omni-directional microphone at this point is given by

Pt(Rq, π/2, φ, k) =

Ni∑
n=0

n∑
m=−n

αnm(k)jn(kRq)Pn|m|(0)Em(φ)

+
Ne∑
n=0

n∑
m=−n

βnm(k)hn(kRq)Pn|m|(0)Em(φ),

(3.5)

where Ni = dkeri/2e and Ne = dkere/2e are truncation limits of the sound field

orders [103,114].

Then the output of one microphone pair, which serves as a differential micro-

phone, on the circle at (Rq, π/2, φ) is given by

P
(d)
t (Rq, π/2, φ, k) =

∂Pt(r, θ, φ, k)

∂θ

∣∣∣∣
r=Rq ,θ=

π
2

=−
Ni∑
n=0

n∑
m=−n

dnmαnm(k)jn(kRq)P(n−1)|m|(0)Em(φ)

−
Ne∑
n=0

n∑
m=−n

dnmβnm(k)hn(kRq)P(n−1)|m|(0)Em(φ),

(3.6)

where dnm = [(2n + 1)(n2 −m2)/(2n − 1)]1/2, and the superscript ‘d’ here means

differential.

Sound field recording

Due to the orthogonality of exponential functions, multiplying both sides of (3.5)

by Em(−φ) and integrating with respect to φ, we can get

Xm(Rq, k) =

∫ 2π

0

Pt(Rq, π/2, φ, k)Em(−φ)dφ

=

Ni∑
n=|m|

αnm(k)jn(kRq)Pn|m|(0) +
Ne∑

n=|m|

βnm(k)hn(kRq)Pn|m|(0).

(3.7)
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Note that (3.7) only includes the even mode harmonics, because Pn|m|(0) = 0 for

odd values of n+ |m| [130].

Similarly, by multiplying both sides of (3.6) by Em(−φ) and integrating with

respect to φ, we obtain

Xm
(d)(Rq, k) =

∫ 2π

0

P
(d)
t (Rq, π/2, φ, k)Em(−φ)dφ

=−
Ni∑

n=|m|

dnmαnm(k)jn(kRq)P(n−1)|m|(0)−
Ne∑

n=|m|

dnmβnm(k)hn(kRq)P(n−1)|m|(0).

(3.8)

Note that only the odd mode harmonics are present in (3.8), since P(n−1)|m|(0) = 0

for even values of n+ |m| [130].

However, in practice, we only have a finite set of microphone pairs and thus we

approximate the integration in (3.7) and (3.8) by summations

Xm(Rq, k) ≈ 2π

Nq

Nq∑
s=1

Pt(Rq, π/2, φs, k)Em(−φs), (3.9)

X(d)
m (Rq, k) ≈ 2π

Nq

Nq∑
s=1

P
(d)
t (Rq, π/2, φs, k)Em(−φs), (3.10)

where φs is the azimuth angle of the location of the sth microphone on the qth array.

3.1.4 Sound field separation

Even coefficients separation

Let there be a total of Q circles placed at different radii but all on the x-y plane.

Rewriting (3.7) in matrix form

Xm(k) = C(e)
m (k)Um(k), (3.11)
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where Xm(k) = [Xm(R1, k), Xm(R2, k), ..., Xm(RQ, k)], C(e)
m (k) = [α(e)

mβ
(e)
m ] with

α(e)
m =  [αmm, α(m+2)m, ..., αNim], if (m+Ni) is even

[αmm, α(m+2)m, ..., α(Ni−1)m], otherwise,
(3.12)

and β(e)
m =  [βmm, β(m+2)m, ..., βNem], if (m+Ne) is even

[βmm, β(m+2)m, ..., β(Ne−1)m], otherwise,
(3.13)

and

Um(k) =



U
(j)
m|m|(kR1) · · · U

(j)
m|m|(kRQ)

...
. . .

...

U
(j)
Ni|m|(kR1) · · · U

(j)
Ni|m|(kRQ)

U
(h)
m|m|(kR1) · · · U

(h)
m|m|(kRQ)

...
. . .

...

U
(h)
Ne|m|(kR1) · · · U

(h)
Ne|m|(kRQ)


(3.14)

with U
(j)
n|m|(kRq) = jn(kRq)Pn|m|(0) and U

(h)
n|m|(kRq) = hn(kRq)Pn|m|(0) for the case

when both Ni +m and Ne +m are even. If Ni +m is odd, we replace Ni in (3.14)

by Ni − 1, and similarly we replace Ne in (3.14) by Ne − 1, if Ne + m is odd. We

can estimate the even coefficients of interior and exterior sound field from (3.11),

as

C(e)
m (k) = Xm(k)U †

m(k), (3.15)

where U †
m is the pseudo inverse of Um.

Odd coefficients separation

Similarly, rewriting (3.8) in the matrix form

X(d)
m (k) = C(o)

m (k)Vm(k), (3.16)
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where X(d)
m (k) = [X

(d)
m (R1, k), X

(d)
m (R2, k), ..., X

(d)
m (RQ, k)], C(o)

m (k) = [α(o)
m β(o)

m ]

with α(o)
m =  [α(m+1)m, α(m+3)m, ..., α(Ni−1)m], if (m+Ni) is even

[α(m+1)m, α(m+3)m, ..., αNim], otherwise,
(3.17)

and β(o)
m =  [β(m+1)m, β(m+3)m, ..., β(Ne−1)m], if (m+Ne) is even

[β(m+1)m, β(m+3)m, ..., βNem], otherwise,
(3.18)

and

Vm(k) =



V
(j)

(m+1)|m|(kR1) · · · V
(j)

(m+1)|m|(kRQ)
...

. . .
...

V
(j)

(Ni−1)|m|(kR1) · · · V
(j)

(Ni−1)|m|(kRQ)

V
(h)

(m+1)|m|(kR1) · · · V
(h)

(m+1)|m|(kRQ)
...

. . .
...

V
(h)

(Ne−1)|m|(kR1) · · · V
(h)

(Ne−1)|m|(kRQ)


(3.19)

with

V
(j)
n|m|(kRq) = −dnmjn(kRq)P(n−1)|m|(0) and V

(h)
n|m| (kRq) = −dnmhn(kRq)P(n−1)|m|(0)

for the case when both Ni +m and Ne +m are even. If Ni +m is odd, we replace

Ni− 1 in (3.19) by Ni, and similarly we replace Ne− 1 in (3.19) by Ne, if Ne +m is

odd. We can estimate the odd coefficients of interior and exterior sound field from

(3.16), as

C(o)
m (k) = X(d)

m (k)V †
m(k), (3.20)

where U †
m is the pseudo inverse of Um. Note that, to avoid an under-determined

system of (3.14) and (3.19) , no less than 2dNi/2e circles of microphone pairs are

required.

We also note that there are zeros in the spherical Bessel functions at some

radius and frequency values, which leads to the loss of the information for certain

modes and the ill-conditioning for matrix inversion. Therefore, the radius of each

circular array should be carefully determined such that the spherical Bessel zeros
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for the target frequency band are avoided [78].

Thus the complete set of interior and exterior sound field coefficients are derived

and separated by solving (3.15) and (3.20). Then we can use the coefficients to

reconstruct corresponding sound field.

3.1.5 Simulation results

Sound field separation in a reverberant room

We consider the case separating the desired sound field and undesired sound field in

a reverberant room with (4×5×3) m dimensions. We used the image source method

[131] to simulate reverberant conditions. The reflection coefficient of each wall is

(0.9, 0.8, 0.7, 0.5, 0.7, 0.9) and the number of image depths is 2 in this simulation.

The point source producing the desired sound field is located at (0.01, 0.01, 0.01)

m and there is another undesired point source located at (−1, 1, 1) m, both with

f = 850 Hz, as the origin is located at the centre of the room. In this case,

we define the region χ is between the sphere with radii ri = 0.12 m and the

sphere with radii re = 0.06 m. Sound propagation speed c = 340 m/s, thus the

maximum order of the sound field is Ni = 3. It requires at least 4 circular arrays

to obtain the interior (undesired) sound field and exterior (desired) sound field

separated. The radii of the arrays are set to be 0.12, 0.1, 0.08, and 0.06 m. Thus

the numbers of microphone pairs on each array are 7, 7, 5, and 5, respectively. In

this simulation, we record and separate the interior and exterior sound fields, and

then reconstruct them on a spherical surface with radius of 0.08 m. Fig. 3.2(a)

and Fig. 3.2(b) show the original interior and exterior sound field, respectively.

Figure 3.2(c) and Fig. 3.2(d) are the reconstructed interior and exterior sound

field, respectively. To evaluate the robustness against microphone thermal noise,

we add a White Gaussian Noise (WGN) with signal to noise ratio (SNR) of 40

dB at each microphone. The reconstructed results are shown in Fig. 3.2(e) and

Fig. 3.2(f). We observe that both reconstructed interior and exterior sound fields

are similar to the original ones, with or without noise. Note that the closer the

desired point source is to the array, the worse the performance achieves.
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Figure 3.2: Interior and exterior sound field reconstruction on a spherical surface
with radius of 0.08 m. The frequency of the sources is 850 Hz. (a) Original
interior sound field, (b) original exterior sound field, (c) reconstructed interior
sound field without noise, (d) reconstructed exterior sound field without noise, (e)
reconstructed interior sound field with SNR of 40 dB, (f) reconstructed exterior
sound field with SNR of 40 dB.
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Figure 3.3: Reconstruction error of interior and exterior sound field against different
radii of spherical surfaces. The frequency of the sources is 850 Hz.

Reconstruction accuracy

To examine the reconstruction accuracy of interior and exterior sound field on

different spherical surfaces, we calculate the reconstruction error choosing radius

of the surface from 0.02 m to 0.2 m with SNR of 100 dB (noiseless) and 40 dB,

respectively. The reconstruction error is measured by

ε(k) =

∑
∀x

∣∣∣P (x, k)− P̂ (x, k)
∣∣∣2∑

∀x
|P (x, k)|2

(3.21)

where P̂ (x, k) is reconstructed sound pressure at point x on the spherical surface.

Fig. 3.3 depicts the error for different radii. Observe that the error of interior sound

field is no more than 0.06 when the radius is below 0.12 m. Beyond this value,

the error increases because the order of active spherical harmonics also increases.

Differently, the error of exterior sound field is large on the sphere close to the source

and the error becomes less than 0.04 as the radius increases. Note that there is a

peak at R = 0.1 m, which is caused by truncation error of exterior sound field.
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3.2 Spatial Particle Velocity Vector

In the previous section, we extracted the desired sound field, described by spherical

harmonic coefficients of sound pressure, from a mixed sound field using a practical

microphone array. To achieve the desired particle velocity distribution over space

from the desire sound pressure, we next are going to derive the representations

of spatial particle velocity vector from spherical harmonic coefficients of sound

pressure in this section.

3.2.1 Introduction

Particle velocity is one of fundamental acoustic quantities that can be widely

used in different acoustic scenarios, such as direction of arrival (DOA) estima-

tions [132, 133], sound field reconstruction [69, 71], sound field separation [123],

near field acoustic holography [134], etc. However, all these applications are based

on particle velocity at a single point or multiple discrete points over space. Cur-

rently, the dominating and economical method of measuring particle velocity over

space is based on the combination of two closely placed pressure microphones or

a particle velocity sensor [135] (e.g., the Microflown [89]), which requires perform-

ing a measurement in the volume of interest point by point. While this process

can be done automatically by an industrial robot, the design and implementation

of it with high accuracy is comparably time-consuming and costly. Therefore, if

we can develop a representation for particle velocity over a continuous spatial re-

gion, it could be a powerful tool that can facilitate the measurement of particle

velocity over space. In such instances, spherical harmonics can play a role because

they cover the entire space together with the radial functions and they are also

spatial basis functions that can be used to describe a variety of acoustics based

functions [102, 136] in the three-dimensional space. In the following subsections,

we represent particle velocity in terms of sound pressure, and then decompose it

in spherical harmonic domain. We also derive closed form velocity coefficients and

introduce truncated expressions to enable ease of implementation.
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3.2.2 Problem formulation

Consider a source-free spherical region with radius R. The sound pressure at

x = (r, θ, φ) in the spherical region, resulting from sources outside the region,

is given by [109]

P (x, k) =
N∑
n=0

n∑
m=−n

αnm(k)jn(kr)Ynm(θ, φ). (3.22)

The particle velocity vector V (x, k) is related to the sound pressure at x by the

Euler’s equation [109],

V (x, k) =
i

kρ0c
~∇P (x, k), (3.23)

where ρ0 is the medium density, V (x, k) = Vr(x, k)r̂ + Vθ(x, k)θ̂ + Vφ(x, k)φ̂, and

~∇ ≡ ∂

∂r
r̂ +

1

r

∂

∂θ
θ̂ +

1

r sin θ

∂

∂φ
φ̂, (3.24)

where r̂, θ̂, and φ̂ are the unit vectors in the r, θ, and φ directions, respectively.

All of the above velocity components are defined on a sphere and therefore, can be

decomposed in terms of spherical harmonic functions2

VΨ(x, k) =
∞∑
p=0

p∑
q=−p

X(Ψ)
pq (k, r)Ypq(θ, φ); Ψ = {r, θ, φ}, (3.25)

where X
(Ψ)
pq (k, r) denote velocity coefficients in the Ψ direction.

Our objective is to derive complete sets of closed form velocity coefficients

X
(Ψ)
pq (k, r) related to each r, θ, φ component of the particle velocity vector.

2Spherical harmonics are orthogonal spatial basis functions which can be used to decompose
any arbitrary function on the sphere.
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3.2.3 Velocity coefficients

Substituting (3.22) into (3.23), we have

Vr(x, k) =
i

kρ0c

N∑
n=0

n∑
m=−n

αnm(k)j′n(kr)Ynm(θ, φ), (3.26)

Vθ(x, k) =
i

kρ0c

N∑
n=0

n∑
m=−n

Anmαnm(k)
jn(kr)

r
P ′nm(cos θ)eimφ, (3.27)

Vφ(x, k) = − 1

kρ0c

N∑
n=0

n∑
m=−n

mAnmαnm(k)
jn(kr)

r

Pnm(cos θ)

sin θ
eimφ. (3.28)

where j′n(kr) and P ′nm(cos θ) denote the derivative of jn(kr) in terms of r and

Pnm(cos θ) in terms of θ, respectively, expressed as

j′n(kr) =
nkjn−1(kr)− (n+ 1)kjn+1(kr)

2n+ 1
, (3.29)

and

P ′nm(cos θ) = (n−m+ 1)
P(n+1)m(cos θ)

sin θ
− (n+ 1)

cos θPnm(cos θ)

sin θ
. (3.30)

To achieve velocity coefficientsX
(Ψ)
pq (k, r), the problem is now reduced to decompose

(3.26), (3.27), and (3.28) in the form of (3.25). The velocity coefficients in the r

direction can be obtained from (3.26) directly as

X(r)
pq (k, r) =

i

kρ0c
αpq(k)j′p(kr). (3.31)

Derivations for the velocity coefficients in the θ and φ direction are given in Ap-

pendix 3.6.1. We introduce the results in the following theorem.

Theorem 1: The velocity coefficients in the θ direction X
(θ)
pq (k, r) and φ direction

X
(φ)
pq (k, r) can be expressed, respectively, as

X(θ)
pq (k, r) =

2πi

kρ0c
Hpq

N∑
n=|q|

Hnqαnq(k)
jn(kr)

r
G1, (3.32)
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X(φ)
pq (k, r) = − 2πq

kρ0c
Hpq

N∑
n=|q|

Hnqαnq(k)
jn(kr)

r
G2, (3.33)

where

Hpq =
(−1)

q+|q|
2

2|q|(|q|)!

√
(2p+ 1)

4π

(p+ |q|)!
(p− |q|)!

, (3.34)

G1 = (n+ |q|+ 1)G(a, b+
1

2
− δn+|q|+1;−µ1 − δn+|q|+1,−µ2; ν1 + δn+|q|, ν2; ξ1, ξ2)

− (n+ 1)G(a, b+
1

2
;−µ1,−µ2; ν1, ν2; ξ1, ξ2),

(3.35)

and

G2 = G(a, b;−µ1,−µ2; ν1, ν2; ξ1, ξ2)

= [(−1)2b+1 + 1]

µ1∑
j1=0

µ2∑
j2=0

(−µ1)j1(ν1)j1
(ξ1)j1j1!

(−µ2)j2(ν2)j2
(ξ2)j2j2!

× B(j1 + j2 + a, b)

2
,

(3.36)

with

δM =

 1, if M is even

0, if M is odd,
(3.37)

(a)j =

 1, if j = 0

a(a+ 1)...(a+ j − 1), if j = 1, 2, ...,
(3.38)

and a = (2|q| + 1)/2, b = (3 − δn+|q| − δp+|q|)/2, µ1 = −(1 − n + |q| − δn+|q|)/2,

µ2 = −(1−p+ |q|−δp+|q|)/2, ν1 = (2+n+ |q|−δn+|q|)/2, ν2 = (2+p+ |q|−δp+|q|)/2,

ξ1 = ξ2 = |q|+ 1, and B(·) denotes the beta function. We note that both X
(θ)
pq (k, r)

and X
(φ)
pq (k, r) are zero for any q whose absolute value is more than N . From the

above derivations we show that given the spatial pressure field coefficients, spatial

velocity coefficients can be directly calculated.

3.2.4 Velocity truncation error

The representation (3.25) has an infinite number of orthogonal modes. To facilitate

the implementation, we can truncate this decomposition to a finite number at a cost

of a truncation error. For the particle velocity in the θ direction and φ direction,
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the infinite summations can be truncated to Qθ and Qφ, respectively, as

V̂θ(x, k) =

Qθ∑
p=0

p∑
q=−p

X(θ)
pq (k, r)Ypq(θ, φ), (3.39)

V̂φ(x, k) =

Qφ∑
p=0

p∑
q=−p

X(φ)
pq (k, r)Ypq(θ, φ), (3.40)

where V̂θ(x, k) and V̂φ(x, k) denote truncated particle velocity in the θ and φ di-

rection, respectively. However, for the particle velocity in the r direction, the

representation with finite modes can be written directly by rearranging (3.26) as

Vr(x, k) =

Qr∑
p=0

p∑
q=−p

X(r)
pq (k, r)Ypq(θ, φ), (3.41)

where Qr = N . To investigate the relationship between the truncation error and

the truncation order, we define the normalized truncation error as

εΨ̃(k) =

∑
∀x

∣∣∣VΨ̃(x, k)− V̂Ψ̃(x, k)
∣∣∣2∑

∀x

∣∣VΨ̃(x, k)
∣∣2 ; Ψ̃ = {θ, φ}. (3.42)

where VΨ̃(x, k) is non-truncated particle velocity, which can be obtained from

(3.27) and (3.28), and V̂Ψ̃(x, k) is truncated particle velocity, which is measured

by (3.39) and (3.40). Given a pressure truncation order, N , which are determined

by the radius of the region of interest and the frequency as indicated in Section

3.2.2, the normalized truncation error with respect to the velocity truncation order

is shown in Fig. 3.4. We observe that the normalized truncation error decreases

as the velocity truncation order increases, and falls to a small value rapidly for

all the cases, which means the lower modes contain the majority of the energy

and therefore we can truncate the infinite summations to a particular order with a

tolerant error. Note that the higher the truncation order is, the less the truncation

error becomes but the greater computational complexity the system has.
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Figure 3.4: The normalized truncation error with respect to velocity truncation
order for (a) velocity in the θ direction and (b) velocity in the φ direction with
various pressure truncation orders N .

3.3 Spatial Sound Intensity Vector

Similar to Section 3.2, in this section, we derive the representations of spatial sound

intensity vector from the spherical harmonic coefficients of sound pressure.

3.3.1 Introduction

Sound intensity is another fundamental quantity in acoustics that is defined as the

power carried by sound waves per unit area in a direction perpendicular to that

area. It indicates the rate of energy flow and also gives a measure of direction of

energy flow. Therefore, sound intensity has both magnitude and direction compo-

nents, and that is why it is also referred to as “intensity vector”. Sound intensity

is useful for localization of sources, reproduction of sound fields, measurement

of sound power, measurement of transmission loss, identification of transmission

paths, etc. [137] A practical example for sound intensity based applications is seen

in high speed trains, where noise sources are measured and identified to create a

quiet environment for passengers [138]. The reason why sound intensity is useful

for a range of applications as mentioned above is because it plays an important role

in directional psychoacoustics. As shown by Gerzon, the human ability to localize
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is related to the ratio of the sound intensity vector gain to the total energy [64].

Using this relationship, Arteaga et al. propose a novel method for sound repro-

duction using intensity matching [73,74]. In addition, intensity is an effective tool

to estimate DOA because there is no need to compute a spatial cost function by

directly computing the direction of energy flow [99,101].

However, similar to particle velocity, all the applications mentioned above are

based on sound intensity at a single point or several points, but these applications

can be extended and facilitated by using spatial sound intensity vectors. For ex-

ample, sound intensity based reproduction can be realized over space instead of at

a single point using spatial intensity matching so that the original sound can be

reproduced over a large region for more listeners. Besides, spatial sound intensity

vectors facilitates sound intensity measurement over space that is necessary in most

of aforementioned applications. In the following subsections, we formulate spatial

sound intensity vectors in spherical harmonic domain such that the vectors con-

tain energy and directivity information over continuous spatial regions. The closed

form expressions of spatial sound intensity are given and finite modes of spherical

harmonics in each expression are also indicated.

3.3.2 Problem formulation

Given sound pressure P (x, k) and the particle velocity vector in spherical coor-

dinates V (x, k)=[Vr(x, k),Vθ(x, k), Vφ(x, k)] at x in a homogeneous medium in

space. The intensity relationship for the steady state field is defined as [109]

I(x, k) = P ∗(x, k)V (x, k), (3.43)

where I(x, k) = [Ir(x, k), Iθ(x, k), Iφ(x, k)] is sound intensity vector in spherical

coordinates. We note that the sound intensity vector I(x, k) is a complex-valued

quantity, which contains the active intensity (the real part of I(x, k)) and the

reactive intensity (the imaginary part of I(x, k)).

Similar to particle velocity in (3.25), sound intensity can also be represented as
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a linear combination of spherical harmonics as

IΨ(x, k) =
∞∑
p=0

p∑
q=−p

S(Ψ)
pq (k, r)Ypq(θ, φ); Ψ = {r, θ, φ}, (3.44)

where S
(Ψ)
pq (k, r) are intensity coefficients in Ψ direction.

The aim is to derive complete sets of closed form intensity coefficients S
(Ψ)
pq (k, r)

related to each r, θ, φ component of the sound intensity vector.

3.3.3 Intensity coefficients

Substituting (3.26), (3.27), and (3.28), separately, with (3.22) into (3.43), we can

get

Ir(x, k) =
∞∑
n=0

n∑
m=−n

∞∑
n′=0

n′∑
m′=−n′

Rnmn′m′(k, r)Y
∗
nm(θ, φ)Yn′m′(θ, φ), (3.45)

Iθ(x, k) =
∞∑
n=0

n∑
m=−n

∞∑
n′=0

n′∑
m′=−n′

An′m′
Tnmn′m′(k, r)

r
Y ∗nm(θ, φ)P ′n′m′(cos θ)eim

′φ,

(3.46)

Iφ(x, k) =
∞∑
n=0

n∑
m=−n

∞∑
n′=0

n′∑
m′=−n′

im′An′m′
Tnmn′m′(k, r)

r
Y ∗nm(θ, φ)

Pnm(cos θ)

sin θ
eim

′φ,

(3.47)

where Rnmn′m′(k, r) = iα∗nm(k)αn′m′(k)jn(kr)j′n′(kr)/(kρ0c) and Tnmn′m′(k, r) =

iα∗nm(k)αn′m′(k)jn(kr)jn′(kr)/(kρ0c).

We now represent (3.45), (3.46), (3.47) in the form of (3.44), and we have the

following theorem. The proof of the theorem is given in Appendix 3.6.2.

Theorem 2: The intensity coefficients in the r direction S
(r)
pq (k, r), θ direction

S
(θ)
pq (k, r), and φ direction S

(φ)
pq (k, r) can be expressed, respectively, as

S(r)
pq (k, r) =

∞∑
n=0

n∑
m=−n

∞∑
n′=0

n′∑
m′=−n′

(−1)m+qCnn′pW1W2Rnmn′m′(k, r), (3.48)
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S(θ)
pq (k, r) =

∞∑
n=0

n∑
m=−n

∞∑
n′=0

n′∑
m′=−n′

AnmAn′m′ApqP(θ)
nmn′m′pqEmm′q

Tnmn′m′(k, r)

r
, (3.49)

S(φ)
pq (k, r) =

∞∑
n=0

n∑
m=−n

∞∑
n′=0

n′∑
m′=−n′

im′AnmAn′m′ApqP(φ)
nmn′m′pqEmm′q

Tnmn′m′(k, r)

r
,

(3.50)

where Cnn′p =
√

(2n+ 1)(2n′ + 1)(2p+ 1)/4π, Emm′q = 2π when m′ −m − q = 0,

otherwise Emm′q = 0, W1 =

(
n n′ p

0 0 0

)
and W2 =

(
n n′ p

−m m′ −q

)
denoting

Wigner 3-j symbols, P(θ)
nmn′m′pq = (n′ −m′ + 1)J1 − (n′ + 1)J2 with

J1 =H(n,m)H(n′ + 1,m′)H(p, q)J (
m+m′ + q + 1

2
,
4− δm+n − δm′+n′+1 − δp+q

2
;

1 +m− n− δm+n

2
,
m′ − n′ − δm′+n′+1

2
,
1 + q − p− δp+q

2
;
2 +m+ n

2

− δm+n

2
,
3 +m′ + n′ − δm′+n′+1

2
,
2 + p+ q − δp+q

2
;m+ 1,m′ + 1, q + 1),

(3.51)

J2 =H(n,m)H(n′,m′)H(p, q)J (
m+m′ + q + 1

2
,
5− δm+n − δm′+n′ − δp+q

2
;

1 +m− n− δm+n

2
,
1 +m′ − n′ − δm′+n′

2
,
1 + q − p− δp+q

2
;
2 +m+ n

2

− δm+n

2
,
2 +m′ + n′ − δm′+n′

2
,
2 + p+ q − δp+q

2
;m+ 1,m′ + 1, q + 1),

(3.52)

where H(n,m) = (−1)m(n+m)!/[2mm!(n−m)!], and

J (α, β;−n1,−n2,−n3; a1, a2, a3; c1, c2, c3) =

n1∑
j1=0

n2∑
j2=0

n3∑
j3=0

(−n1)j1(a1)j1
(c1)j1j1!

× (−n2)j2(a2)j2
(c2)j2j2!

(−n3)j3(a3)j3
(c3)j3j3!

((−1)2β+1 + 1)B(j1 + j2 + j3 + α, β)

2
,

(3.53)
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P(φ)
nmn′m′pq =H(n,m)H(n′,m′)H(p, q)J (

m+m′ + q + 1

2
,
4− δm+n − δm′+n′ − δp+q

2
;

1 +m− n− δm+n

2
,
1 +m′ − n′ − δm′+n′

2
,
1 + q − p− δp+q

2
;
2 +m+ n

2

− δm+n

2
,
2 +m′ + n′ − δm′+n′

2
,
2 + p+ q − δp+q

2
;m+ 1,m′ + 1, q + 1).

(3.54)

We note that the intensity coefficients are directly determined by the pressure

coefficients αnm(k) together with the radial functions (i.e., the spherical Bessel

function), and all the rest terms in the expressions are either constants or indices-

only dependent variables.

3.3.4 Intensity truncation error

Likewise, it would be beneficial to truncate the intensity expression (3.44), ex-

pressed as

ÎΨ(x, k) =

PΨ∑
p=0

p∑
q=−p

S(Ψ)
pq (k, r)Ypq(θ, φ), (3.55)

where PΨ denotes the truncation order for intensity in the Ψ direction. Given

the pressure truncation order of N , the order of sound intensity expressions in r

direction is Pr = 2N because of the selection rule of Wigner 3-j symbols thatW1 and

W2 equal zero when p > n+ n′. However, it is quite different and hard to identify

the active modes directly for sound intensity expressions in θ and φ direction. In

order to show the active modes, intuitively, we calculate the normalized truncation

error in terms of the truncation order of intensity in the θ direction Pθ for five

different pressure truncation orders N determined by different radii of the region

of interest3, which is shown in Fig. 3.5. Note that the normalized truncation error

is measured by

εθ(k) =

∑
∀x

∣∣∣Iθ(x, k)− Îθ(x, k)
∣∣∣2∑

∀x
|Iθ(x, k)|2

, (3.56)

3S
(θ)
pq (k, r) and S

(φ)
pq (k, r) have similar expressions, and here we take the θ as an example to

show the truncation error.
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Figure 3.5: The relationship between normalized truncation error and intensity
truncation order Pθ for various pressure truncation orders N .

where Îθ(x, k) is reconstructed sound intensity at point x using (3.44) with given

truncation orders. Observe that the intensity truncation error becomes less and

falls to an acceptable value as intensity truncation order increases no matter what

N is. Also, as N grows, it has less influence on intensity truncation error.

As mentioned at the beginning of this section, the theory of spatial sound

intensity vectors in spherical harmonic domain can be largely useful in many ap-

plications including intensity measurement over continuous spatial regions, sound

field reproduction, DOA estimation, etc. We here provide simulation results for the

application of spatial intensity measurement, using pressure coefficients of a sound

field (spherical harmonic domain). Figure 3.6 shows sound intensity on a sphere

obtained from the proposed theory using (3.55) (note that the spherical pressure co-

efficients were obtained using a spherical microphone array) against point by point

measurement (note that point by point intensity was simulated using the theoreti-

cal expression for pressure due to a plane wave and the relationship in (3.43)). We

observe that reconstructed sound intensity vectors by using the proposed theory are

similar to actual point by point measurements. The simulation results also indicate

that the truncation leads to little error for an appropriate truncation order.
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Figure 3.6: Sound intensity on a sphere with radius of 0.05 m, generated by a plane
wave from (3π/4, 5π/6), with frequency 600 Hz. (a-c) Sound intensity in r, θ and
φ direction, separately, calculated using the proposed theory, (d-f) sound intensity
in r, θ and φ direction, separately, obtained from point by point measurement.

3.4 Summary and Contributions

In this chapter, we have presented three useful techniques that are closely related

to the spatial sound field systems in the following chapters of this thesis. To the

end, we list the major contributions of this chapter below:

• We proposed a method of separating 3D interior and exterior sound field using

a planar array of differential microphones, which can be used to extract the

desired sound pressure in a mixed sound field environment. The proposed

method was proved to be effective in a noisy reverberant room.

• We formulated continuous particle velocity expressions over space as a func-

tion of spherical harmonic coefficients of sound pressure. The velocity trun-
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cation error was also analyzed for the implementation.

• We formulated the theory of spatial sound intensity vectors in spherical har-

monic domain that is applicable to a variety of acoustic scenarios. The com-

plete sets of closed form intensity coefficients were derived, and finite modes

of spherical harmonics were suggested for practical implementations.
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Much of this chapter’s work has been published in the following journal papers and
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ing (TASLP), vol. 28, pp. 2119-2133, 2020.

• H. Zuo, P. N. Samarasinghe, T. D. Abhayapala, and G. Dickins, “Spatial
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2019.
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3.6 Appendix

3.6.1 Proof of Theorem 1

By multiplying both sides of (3.25) by Y ∗p′q′(θ, φ) and integrating them with respect

to θ and φ, for the particle velocity in the θ direction, we have∫ 2π

0

∫ π

0

Vθ(x, k)Y ∗p′q′(θ, φ) sin θdθdφ

=

∫ 2π

0

∫ π

0

∞∑
p=0

p∑
q=−p

X(θ)
pq (k, r)Ypq(θ, φ)Y ∗p′q′(θ, φ) sin θdθdφ,

(3.57)

Due to the orthogonality of the spherical harmonics, (3.57) can be simplified as

X(θ)
pq =

∫ 2π

0

∫ π

0

Vθ(x, k)Y ∗pq(θ, φ) sin θdθdφ (3.58)

Substituting (3.27) into (3.58), we have

X(θ)
pq =

i

kρ0c

∫ 2π

0

∫ π

0

N∑
n=0

n∑
m=−n

AnmApqαnm(k)
jn(kr)

r

× P ′nm(cos θ)Ppq(cos θ)ei(m−q)φ sin θdθdφ

(3.59)

Replacing P ′nm(cos θ) in (3.59) with (3.30) and letting cos θ be t, it reduces to

calculate the following two integrals,

P(θ)
nmpq =

∫ 1

−1

[(n−m+ 1)
P(n+1)m(t)Ppq(t)√

1− t2
− (n+ 1)

tPnm(t)Ppq(t)√
1− t2

]dt, (3.60)

and

Emq =

∫ π

0

ei(m−q)φdφ =

 2π, if m = q

0, otherwise.
(3.61)

In order to calculate the integral of (3.60), we begin with the Euler integral,∫ 1

0

(1− t)a−1tb−1dt = B(a, b) (Re(a) > 0,Re(b) > 0), (3.62)
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where Re(·) denotes the real part. From (3.62), we can obtain∫ 1

−1

(1− t2)a−1t2b−1dt =
((−1)2b+1 + 1)B(a, b)

2
(Re(a) > 0,Re(b) > 0). (3.63)

Into (3.63) we add the product of two hypergeometric polynomials defined by

F (−µ, ν; ξ;x) =

µ∑
j=0

(−µ)j(ν)j
(ξ)jj!

xj. (3.64)

to obtain∫ 1

−1

(1− t2)a−1t2b−1F (−µ1, ν1; ξ1; 1− t2)F (−µ2, ν2; ξ2; 1− t2)dt

=G(a, b;−µ1,−µ2; ν1, ν2, ξ1, ξ2) (Re(a) > 0,Re(b) > 0),

(3.65)

The associated Legendre function can be represented by the hypergeometric poly-

nomials, which is given as [139]

Pnm(t) = Dnm[δ|m|+n(1− t2)|m|/2F (
|m| − n

2
,
1 + |m|

2
+
n

2
; |m|+ 1; 1− t2)

+ δ|m|+n+1(1− t2)|m|/2tF (
1 + |m| − n

2
,
2 + |m|+ n

2
; |m|+ 1; 1− t2)],

(3.66)

where

Dnm =


(−1)|m|(n+|m|)!
2|m||m|!(n−|m|)! , when m ≥ 0

1
2|m||m|! , when m < 0.

(3.67)

Substituting (3.66) into (3.60) together with (3.65), we have

P(θ)
nmpq = (n−m+ 1)D(n+1)mDpqG(a, b+

1

2
− δn+|m|+1;−µ1 − δn+|m|+1,−µ2;

ν1 + δn+|m|, ν2; ξ1, ξ2)− (n+ 1)DnmDpqG(a, b+
1

2
;−µ1,−µ2; ν1, ν2; ξ1, ξ2).

(3.68)

Substituting (3.68) and (3.61) into (3.59) completes the proof of (3.32).
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Similarly, for the particle velocity in the φ direction, we have

X(φ)
pq = − 1

kρ0c

N∑
n=0

n∑
m=−n

mAnmApqαnm(k)
jn(kr)

r
P(φ)
nmpqEmq, (3.69)

where

P(φ)
nmpq =

∫ 1

−1

Pnm(t)Ppq(t)√
1− t2

dt

= DnmDpqG(a, b;−µ1,−µ2; ν1, ν2; ξ1, ξ2).

(3.70)

Substituting (3.70) and (3.61) into (3.69) completes the proof of (3.33).

3.6.2 Proof of Theorem 2

Multiplying both sides of (3.44) by Y ∗pq(θ, φ) and integrating with respect to θ and

φ,

S(Ψ)
pq (k, r) =

∫ 2π

0

∫ π

0

IΨ(x, k)Y ∗pq(θ, φ) sin θdθdφ; Ψ = {r, θ, φ}. (3.71)

In the r direction, substituting (3.45) into (3.71),

S(r)
pq (k, r)

=

∫ 2π

0

∫ π

0

∞∑
n=0

n∑
m=−n

∞∑
n′=0

n′∑
m′=−n′

Rnmn′m′(k, r)Y ∗nm(θ, φ)Yn′m′(θ, φ)Y ∗pq(θ, φ) sin θdθdφ.

(3.72)

The integral of products of three spherical harmonics is given by [140],∫ 2π

0

∫ π

0

Yl1m1(θ, φ)Yl2m2(θ, φ)Yl3m3(θ, φ) sin θdθdφ

=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3

0 0 0

)(
l1 l2 l3

m1 m2 m3

)
,

(3.73)

as well as Y ∗nm(θ, φ) = (−1)mYn(−m)(θ, φ). Substituting (3.73) into (3.72) completes

the proof of (3.48).
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For the θ direction, we substitute (3.46) into (3.71), (3.49) can be achieved with

P(θ)
nmn′m′pq =

∫ 1

−1

Pnm(cos θ)P ′n′m′(cos θ)Ppq(cos θ)d cos θ, (3.74)

Emm′q =

∫ 2π

0

e−imφeim
′φe−iqφdφ =

 2π, if m′ −m− q = 0

0, otherwise.
(3.75)

To solve the integral of (3.74), we begin with the transformed Euler integral, adding

the product of three hypergeometric polynomials, defined by∫ 1

−1

(1−t2)α−1t2β−1F (−n1, a1; c1; 1−t2)F (−n2, a2; c2; 1−t2)F (−n3, a3; c3; 1−t2)dt=

n1∑
j1=0

n2∑
j2=0

n3∑
j3=0

(−n1)j1(a1)j1
(c1)j1j1!

(−n2)j2(a2)j2
(c2)j2j2!

(−n3)j3(a3)j3
(c3)j3j3!

((−1)2β+1+1)B(j1+j2+j3+α, β)

2
,

(3.76)

and then the relation between the associated Legendre function and the hyperge-

ometric function can be given as [139]

Pnm(t) =H(n,m)[δm+n(1− t2)m/2F (
m− n

2
,
1 +m+ n

2
;m+ 1; 1− t2)

+ δm+n+1(1− t2)m/2tF (
1 +m− n

2
,
2 +m+ n

2
;m+ 1; 1− t2)],

(3.77)

Substituting (3.77) into (3.74) together with (3.76) completes the proof.

Similarly, for the φ direction, by substituting (3.47) into (3.71) we have

P(φ)
nmn′m′pq =

∫ 1

−1

Pnm(cos θ)P ′n′m′(cos θ)Ppq(cos θ)√
1− cos2 θ

d cos θ, (3.78)

Substituting (3.77) into (3.78) together with (3.76) completes the proof.



Chapter 4

Particle Velocity Assisted Spatial

Sound Field Reproduction

In literature, particle velocity has been introduced to improve performance of spa-

tial sound field reproduction systems. This chapter develops a practical and ac-

curate 3D sound field reproduction system with the aid of the theory of spatial

particle velocity vector introduced in Chapter 3. The sound field within a target

region is controlled by a weighted cost function we built to optimize the continu-

ous particle velocity, as well as sound pressure, on the boundary of the region. In

contrast to the conventional spatial sound field reproduction methods in the spher-

ical harmonic domain, the proposed method allows for non-uniform loudspeaker

geometry with a limited number of loudspeakers, thus providing a flexible array

arrangement. The performance of the proposed method is evaluated through nu-

merical simulations in both a free field and a reverberant room. Finally, we prove

the proposed method in an objective experiment with real-world measurements of

room impulse response.

4.1 Introduction

As we reviewed in Chapter 1, there have been various studies on spatial sound field

reproduction, such as Ambisonics [19], HOA [20–24], and WFS [4, 5, 7, 15], all of

which aim to reconstruct the original sound pressure. However, there are limita-
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tions for these methods to implement in real-world applications. WFS requires

a continuous distribution of monopole and normally oriented dipole secondary

sources on the boundary of the region. Although the continuous distribution can

be approximated by an array of equally placed loudspeakers, a significant num-

ber of loudspeakers are required for broadband reproduction over a large region.

Similarly, for a given order of a reproduction system, HOA requires sufficient loud-

speakers to match all the spherical harmonics to the given order in order to avoid

spatial aliasing [20]. The performance of HOA also deteriorates when the geometry

of loudspeaker array is non-uniform.

In addition to sound pressure, particle velocity is another acoustic quantity

describing a sound field, which has been incorporated in active control to enlarge the

zones of quiet [141,142]. Particle velocity can also play a significant role in the sound

field reproduction systems. Shin et al. proposed a particle velocity controlled sound

field reproduction technique to simplify the regularization of the inverse problem

for a non-uniformly spaced loudspeaker array [70, 71]. The work only considers

particle velocity without sound pressure. A joint optimization, based on both sound

pressure and particle velocity, was presented for broadband multi-zone sound field

reproduction in [68,69], where how the particle velocity impacts on the reproduction

performance was explicitly analyzed. This work is restricted to reproduce the

desired sound field in a 2D plane. Besides, all of these previous particle velocity

based sound field reproduction methods focus on controlling the particle velocity

at multiple discrete points on the boundary of the target region. To guarantee the

accuracy of reproduced sound field over a large region, it requires a large quantity

of control points, which implies that a practical system implementation requires to

measure the particle velocity point by point for all the control points. The process

of this measurement is time-consuming and costly. In this chapter, we incorporate

the theory of continuous particle velocity over space in Chapter 3 into HOA to

investigate a flexible scheme for 3D sound field reproduction that can relax the

limitations of loudspeaker number and placement.

The remainder of this chapter is structured as follows. Section 4.2 contains

problem definition and the objective of the work. In Section 4.3, the algorithm of

velocity assisted 3D sound field reproduction is explicitly investigated for free fields

and reverberant rooms. Section 4.4 validates the proposed method by comparing
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Figure 4.1: Geometry of the sound field reproduction system in this paper. An
array of loudspeakers is located outside χ with driving signals w`(k) and acoustic
transfer function H`(x, k) from the `th loudspeaker to a point x within the region.

it with the conventional HOA (i.e., the mode matching) in the aforementioned

two environments. In Section 4.5, we validate the algorithm with an objective

experiment using impulse response measurements of a real-world room.

4.2 Problem Definition

Our objective is to reproduce the pressure Pd(x, k) of a desired sound field at any

point x within a source free spherical region χ of radius R as shown in Fig. 4.1.

The desired sound field can be a plane wave, a point source or a field measured in

a real-world scenario. Let there be an array of loudspeakers outside of χ, with the

`th loudspeaker located at x` = (r`, θ`, φ`) with respect to the origin O. The sound

pressure at x due to the `th loudspeaker can be written as

P`(x, k) = w`H`(x, k), (4.1)
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where w` is the driving signal applying to the `th loudspeaker, and H`(x, k) is the

acoustic transfer function between the `th loudspeaker to x for arbitrary environ-

ments. Assume there is a total of L loudspeakers, therefore, the total reproduced

sound pressure at x is given by

Pa(x, k) =
L∑
`=1

w`H`(x, k). (4.2)

The design task of sound field reproduction is to find the loudspeaker driving signals

that can reproduce the desired sound field optimally. The popular approach to

solving this problem is to minimize the least squares error between the desired

sound field and the reproduced sound field within the region χ, i.e.,

min
x∈χ
|Pd(x, k)− Pa(x, k)|2. (4.3)

This can be formulated as mode matching [20] by expressing Pd(x, k) and Pa(x, k)

in terms of spherical harmonics similar to (3.22) in the spherical harmonic domain.

Although a 3D sound field can be accurately reproduced by this method, it requires

at least (N +1)2 loudspeakers uniformly distributed on a sphere. The performance

of mode matching degrades when there is only a limited number of loudspeakers or

the loudspeaker geometry is irregular. It is the constraint we wish to relax through

the introduction of spatial particle velocity vectors, which we present next.

4.3 Velocity Assisted Reproduction Algorithm

The velocity-assisted sound field reproduction algorithm is presented in this section.

We first model the point-to-region transfer function between each loudspeaker to

the target region for both a free field and a reverberant environment in Section

4.3.1. The driving signals of loudspeakers are then designed by jointly optimizing

the sound pressure and the particle velocity in Section 4.3.2. Finally, 3D sound

field reproduction error is given in Section 4.3.3.
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4.3.1 Point-to-region transfer function

Acoustic transfer function plays an important role in sound field reproduction be-

cause it reflects how much sound from a source is observed by a receiver. The

acoustic transfer function between the `th loudspeaker to x, H`(x, k), can be ex-

pressed by the modal decomposition as

H`(x, k) =
N∑
n=0

n∑
m=−n

β(`)
nm(k)jn(kr)Ynm(θ, φ), (4.4)

where β
(`)
nm(k) are the sound field coefficients of the acoustic transfer function.

We also refer to (4.4) as the point-to-region transfer function, because the acous-

tic transfer function between the `th loudspeaker to any point in the region χ is

readily available if β
(`)
nm(k) are known. The coefficients β

(`)
nm(k) can also represent

the directional characteristics of the loudspeaker [143], therefore, (4.4) can be the

acoustic transfer function due to not only omni-directional sources but also di-

rectional loudspeakers. For simplicity, in the following two sections, we assume

all loudspeakers to be omni-directional. Note that in practice the aforementioned

point-region transfer function coefficients related to a given loudspeaker can be

extracted from recordings of higher order microphones such as an EigenMike [75],

by feeding a sweep signal into the loudspeaker.

Free field

In a free field, the point-to-region transfer function Hdir
` (x, k) only contains the

direct path component, which is determined by the Green’s function [109],

Hdir
` (x, k) =

eik||x−x`||2

4π||x− x`||2
=

N∑
n=0

n∑
m=−n

ikhn(kr`)Y
∗
nm(θ`, φ`)jn(kr)Ynm(θ, φ). (4.5)

In this case, the coefficients of the point-to-region transfer function due to the `th

loudspeaker can be expressed as

β(`)
nm(k) = ikhn(kr`)Y

∗
nm(θ`, φ`). (4.6)
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Reverberant environment

We model the reverberant environment as a shoebox room, and derive the point-

to-region transfer function using the spherical harmonics based generalized image

source method [143]. The point-to-region transfer function in the reverberant en-

vironment due to the `th loudspeaker Hrvb
` (x, k) can be expressed as

Hrvb
` (x, k) =

N∑
n=0

n∑
m=−n

ik√
4π
α00
nm(k)jn(kr)Ynm(θ, φ), (4.7)

where α00
nm(k) denote the coupling coefficients. The exact expression of α00

nm(k), as

well as the proof of (4.7), is given in Appendix 4.8.1. Therefore, in the reverberant

environment, the expression of the point-to-region transfer function coefficients due

to the `th loudspeaker is

β(`)
nm(k) =

ik√
4π
α00
nm(k), (4.8)

where the location information of the `th loudspeaker is incorporated in α00
nm(k).

Note that (4.8) holds only for the simulated shoebox room. For a real-world room

with arbitrary geometries, one can estimate the coefficients from impulse response

measurements, which we present in Section 4.5.

4.3.2 Velocity assisted optimization

The proposed method is inspired by Kirchhoff-Helmholtz integral equation. We

borrow the idea from the equation that the sound pressure is completely determined

within a volume free of sources, if sound pressure and particle velocity are controlled

in all points on its surface. We therefore propose to reproduce the sound field within

a spherical region (free of sources) by controlling the continuous distributions of

sound pressure and particle velocity on its surface in the spherical harmonic domain,

which is different from controlling multiple discrete points on the surface [68].

The 3D sound field reproduction problem is then reduced to optimizing the sound

pressure and particle velocity on the surface of the region χ. From (3.22), the
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desired sound pressure can be given by

Pd(x, k) =
N∑
n=0

n∑
m=−n

α(d)
nm(k)jn(kr)︸ ︷︷ ︸
α̂

(d)
nm(k,r)

Ynm(θ, φ), (4.9)

where α
(d)
nm(k) are the pressure coefficients of the desired sound field. Replacing

αnm(k) with α
(d)
nm(k) in (3.31), (3.32), and (3.33) and substituting them into (3.25),

we have the desired particle velocity as

V
(d)

Ψ (x, k) =

QΨ∑
p=0

p∑
q=−p

X(Ψ,d)
pq (k, r)Ypq(θ, φ). (4.10)

Similarly, by replacing αnm(k) with β
(`)
nm(k), the reproduced sound pressure and

particle velocity due to the loudspeaker array can be written, respectively, as

Pa(x, k) =
N∑
n=0

n∑
m=−n

L∑
`=1

w`β
(`)
nm(k)jn(kr)︸ ︷︷ ︸

β̂
(a)
nm(k,r)

Ynm(θ, φ), (4.11)

V
(a)

Ψ (x, k) =

QΨ∑
p=0

p∑
q=−p

L∑
`=1

w`X
(Ψ,`)
pq (k, r)︸ ︷︷ ︸

X
(Ψ,a)
pq (k,r)

Ypq(θ, φ). (4.12)

Note that α̂
(d)
nm(k, r)/X

(Ψ,d)
pq (k, r) and β̂

(a)
nm(k, r)/X

(Ψ,a)
pq (k, r) are the desired and re-

produced pressure/particle velocity coefficients on the surface with the radius of

r, respectively, which represent the continuous sound pressure/particle velocity on

the surface. Using these coefficients, a weighted least squares optimization crite-

rion, including both sound pressure and particle velocity on the surface of χ, can

be formulated

min
W
{τ 2||βA(k,R)W (k)−αD(k,R)||22 + (1− τ)2||XA(k,R)W (k)−XD(k,R)||22},

(4.13)
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where τ ∈ [0, 1] is the weighting coefficient to adjust the relative weight of sound

pressure and particle velocity,

αD(k,R) = [α
(d)
00 (k)j0(kR), α

(d)
1(−1)(k)j1(kR), ..., α

(d)
NN(k)jN(kR)]T is a (N + 1)2 long

vector,

XD(k,R) = [X
(r,d)
00 (k,R), ..., X

(r,d)
QrQr

(k,R), X
(θ,d)
00 (k,R), ..., X

(θ,d)
QθQθ

(k,R), X
(φ,d)
00 (k,R),

..., X
(φ,d)
QφQφ

(k,R)]T is a [(Qr + 1)2 + (Qθ + 1)2 + (Qφ + 1)2] long vector containing all

three components of the particle velocity vector,W (k) = [w1(k), w2(k), ..., wL(k))]T

is a L long vector, βA(k,R) is a (N + 1)2 by L matrix given by

βA(k,R) =


β

(1)
00 j0(kR) · · · β

(L)
00 j0(kR)

β
(1)
1(−1)j1(kR) · · · β

(L)
1(−1)j1(kR)

...
. . .

...

β
(1)
NNjN(kR) · · · β

(L)
NNjN(kR)

 , (4.14)

and XA(k,R) = [Xr(k,R)T ,Xθ(k,R)T ,Xφ(k,R)T ]T is a [(Qr + 1)2 + (Qθ + 1)2 +

(Qφ + 1)2] by L matrix with

XΨ(k,R) =


X

(Ψ,1)
00 (k,R) · · · X

(Ψ,L)
00 (k,R)

X
(Ψ,1)
1(−1)(k,R) · · · X

(Ψ,L)
1(−1)(k,R)

...
. . .

...

X
(Ψ,1)
QΨQΨ

(k,R) · · · X
(Ψ,L)
QΨQΨ

(k,R)

 . (4.15)

The optimization problem (4.13) can be rearranged using stacked matrices as

min
W
||X̂A(k,R)W (k)− X̂D(k,R)||22, (4.16)

where X̂A(k,R) = [τβA(k,R)T , (1−τ)XA(k,R)T ]T , and X̂D(k,R) = [ταD(k,R)T ,

(1 − τ)XD(k,R)T ]T . This problem can be solved using a Moore-Penrose inverse

with Tikhonov regularization [119]. Although the regularization can improve the

condition number of the X̂A matrix, we still need to pay close attention to the

conditioning of the matrix. The conditioning of X̂A is determined primarily by

the loudspeaker arrangement. Specifically, the loudspeaker locations should be

maximally distributed over space in some sense to avoid the ill-conditioning [20].

We introduce the weighting coefficient τ to make the optimization criterion ad-
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justable for different scenarios. Note that the pressure coefficients in (4.16) are

weighted by the Bessel functions and therefore τ = 1 corresponds to the weighted

mode matching by the Bessel functions rather than the conventional pressure

matching in the spherical harmonic domain. The Bessel functions in the optimiza-

tion criterion can be replaced with other functions such as the Gaussian-weighted

Bessel functions [38], and the proposed velocity-assisted method can also work.

4.3.3 Reproduction error

We define the normalized reproduction error over the spherical target region as

ε(k) =

√√√√∫ R0 ∫ 2π

0

∫ π
0
|Pd(x, k)− Pa(x, k)|2dΩ∫ R

0

∫ 2π

0

∫ π
0
|Pd(x, k)|2dΩ

, (4.17)

where dΩ = r2 sin θdθdφdr. Substituting (4.9) and (4.11) into (4.17), it can be

simplified as

ε(k) =

√√√√∑N
n=0

∑n
m=−n |α

(d)
nm(k)−

∑L
`=1 wlβ

(`)
nm(k)|2Jn(k,R)∑N

n=0

∑n
m=−n |α

(d)
nm(k)|2Jn(k,R)

, (4.18)

where

Jn(k,R) =

 [2kR− sin(2kR)]/4k3, if n = 0

R3[j2
n(kR)− jn−1(kR)jn+1(kR)]/2, if n > 0.

(4.19)

Equation (4.18) is a closed-form expression for 3D sound field reproduction error,

and the proof of (4.18) is given in Appendix 4.8.2.

4.4 Simulations

In this section, we illustrate the performance of the proposed method in various

simulated environments using two different loudspeaker geometries. First, the anal-

ysis of determining the weighting coefficient for the reproduction system is given.

Using this weighting coefficient, the system is implemented and compared with the
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Table 4.1: Loudspeaker positions of the 22 channel system

Loudspeaker No. r [m] θ [deg] φ [deg]
1 0.97 0 0
2 1.55 51.3 0
3 1.55 51.3 45
4 1.55 51.3 90
5 1.55 51.3 135
6 1.55 51.3 180
7 1.55 51.3 225
8 1.55 51.3 270
9 1.55 51.3 315
10 1.21 90 0
11 1.21 90 22.5
12 1.21 90 45
13 1.21 90 90
14 1.21 90 135
15 1.21 90 180
16 1.21 90 225
17 1.21 90 270
18 1.21 90 315
19 1.21 90 337.5
20 1.34 115 0
21 1.34 115 45
22 1.34 115 315
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conventional pressure matching in the spherical harmonic domain (or mode match-

ing) [20, 21], in terms of the reproduced sound pressure, virtual source position,

frequency, and reproduced sound direction.

4.4.1 Simulation setup

In this simulation example, the radius of the region χ is set to R = 0.18 m. To eval-

uate the proposed method in both regular and irregular loudspeaker arrangements,

we simulate two different 3D loudspeaker geometries. One is the regular array with

25 loudspeakers uniformly placed on the surface of a 1 m sphere at locations de-

termined by [118]. Another loudspeaker array is based on the cylindrical layout of

22.2 channel system proposed by NHK [144] without the two low-frequency chan-

nels, where most loudspeakers are non-uniformly placed in the upper hemisphere.

The loudspeaker position of the NHK array is given in Table 4.1. The loudspeakers

are all modeled as ideal point sources. Note that both the loudspeaker arrange-

ments have an upper frequency limit for the target region, beyond which they are

not capable of accurately reproducing the sound field. It usually requires more

loudspeakers to support such a scenario. For the reverberant environments, we

simulate a large room of size (5, 6, 5) m and a small room of size (2.5, 3, 2.4) m,

with the same reflection coefficients of d = [0.8, 0.7, 0.8, 0.7, 0.78, 0.81]. To show

the rooms in terms of reverberant time, we also calculate the T60 of the rooms

using the Sabine formula [145]. The T60 is 0.35 s for the large room and it is 0.17

s for the small room. We note that, in the following simulations, we truncate the

image depth of the rooms to Rdepth = (4, 4, 4) when calculating the reverberation

in the rooms for simplicity. A virtual point source with frequency of 1200 Hz at

(2, π/9, 2π/3) is the desired sound source throughout the simulations, except the

evaluation in terms of the virtual source position and frequency. Sound speed is

c = 343 m/s and air density is ρ0 = 1.29 kg/m3. Therefore, the pressure truncation

order is N = 6. The velocity truncation order is set to Qθ = Qφ = 2N .

The reproduction error over the whole spherical target region is calculate by

(4.18) throughout the paper. To show the difference between the reproduced sound

field and the desired sound field intuitively, we define the mismatch between them
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at any point x as

ε(x, k) =
|Pd(x, k)− Pa(x, k)|2

|Pd(x, k)|2
× 100(%). (4.20)

From the perspective of realistic perception of source location, to reproduce the

original sound, it requires to ensure the reproduction of the direction of the sound.

A convenient measure for the direction of energy propagation in an arbitrary sound

field is provided by the active sound intensity, which is defined for steady state fields

as [109]

I(x, k) =
1

2
Re{P ∗(x, k)V (x, k)}. (4.21)

Note that the active sound intensity is a vector containing the information of

direction, and it has been shown as a good predictor of localization perception

[50, 71, 146]. To show the difference in angles between two vectors, we define the

intensity direction error ζ at x as

ζ(x, k) = cos−1[Îa(x, k) · Îd(x, k)]/π × 100%, (4.22)

where Îa(x, k) = Ia(x, k)/|Ia(x, k)| and Îd(x, k) = Id(x, k)/|Id(x, k)| are the unit

active intensity vector of the reproduced sound field and the unit active intensity

vector of the desired sound field, respectively.

4.4.2 Determination of the weighting coefficient

Before evaluating the overall performance of the proposed method, we first investi-

gate how the weighting coefficient τ impacts the reproduction system. As shown in

Section 4.3.2, the weighting coefficient controls the relative weight of sound pres-

sure and particle velocity. Note that the larger the weighting coefficient is, the less

weight it assigns to the particle velocity. We calculate the 3D reproduction error

with respect to τ for various frequencies in both the free field and the reverber-

ant environment (the large room) using the 22 channel loudspeaker array, which is

shown in Fig. 4.2. The curves in the rectangular boxes are enlarged and shown on

the left correspondingly. We observe that the reproduction system has minimum

error when τ is 0.003 approximately for all the evaluated frequencies in both the
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Figure 4.2: The impact of the weighting coefficient on the reproduction system for
various frequencies in (a) the free field and (b) the reverberant environment (the
large room) in the 22 channel loudspeaker layout. The sub-figures on the left are
the enlarged curves in the rectangular boxes correspondingly.

free field and the reverberant environment. For the values more than 0.1, τ has

little influence on the reproduction system, which means more weight should be

assigned to the particle velocity to make it take effect because of the significant

difference between the values of sound pressure and particle velocity. This result
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also means the velocity-assisted method with an appropriate weighting coefficient

has better performance than the weighted mode matching by the Bessel functions

(i.e., τ = 1). We also notice that the reproduction system has more error when

the frequency increases, because the system order goes up. The optimization cri-

terion with τ = 0.003 also works well for the 25 channel spherical array and the

small room, therefore, we use the weighting coefficient τ = 0.003 for the reproduc-

tion system in the following analysis. Note that this value is optimal only for the

simulation scenarios in this paper. One should recalculate the optimal weighting

coefficient if the scenario totally changes because the difference between the values

of pressure coefficients and velocity coefficients may also change, which may result

in a different optimal value.

4.4.3 Simulation results in free field

The simulations in this section study the overall performance of the proposed

method in free field for the two loudspeaker arrangements.

Reproduced sound pressure

We now evaluate the performance of the system on the reproduction of sound pres-

sure. The observation plane is the plane of z = 0. Figure 4.3 and Fig. 4.4 show

the desired sound field and the reconstructed sound fields controlled by the pres-

sure matching method and the velocity-assisted method in both loudspeaker lay-

outs. The black circle denotes the target region. As expected, the velocity-assisted

method provides a better sound field reproduction than the pressure matching

method within the target region. The mismatches between the desired sound field

and the reconstructed sound field for both methods are also shown in Fig. 4.3 and

Fig. 4.4, which are calculated by (4.20). We observe that the pressure matching

method fails to reproduce the desired sound field for the whole target region in the

22 channel system. When the loudspeaker array changes to the 25 channel regular

spherical array, the performance of the pressure matching method has a significant

improvement, however, it is still not as good as the velocity-assisted method. In

this case, it requires at least (N + 1)2 = 49 uniformly distributed loudspeakers to

accurately reproduce the desired sound field in the target region for the pressure
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Figure 4.3: Desired sound field, reconstructed sound field, and the difference be-
tween them on the observation plane controlled by both methods for the 22 channel
system. The source frequency is 1200 Hz. (a) Desired sound field; (b) Reproduced
sound field controlled by the pressure matching method (PMM); (c) Reproduced
sound field controlled by the velocity-assisted method (VAM); (d) Difference field
controlled by PMM; (e) Difference field controlled by VAM.

matching method, whereas there are only 22 non-uniformly placed loudspeakers

or 25 regular loudspeakers available. However, the velocity-assisted method repro-

duces the desired sound field in the target region with much less error than the

pressure matching method verifying that the proposed method can overcome this

limitation.

Virtual source position

To investigate the overall performance of the proposed method with respect to

the virtual source position, we keep the distance (2 m) from the virtual source
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Figure 4.4: Desired sound field, reconstructed sound field, and the difference be-
tween them on the observation plane controlled by both methods for the 25 channel
system. The source frequency is 1200 Hz. (a) Desired sound field; (b) Reproduced
sound field controlled by PMM; (c) Reproduced sound field controlled by VAM;
(d) Difference field controlled by PMM; (e) Difference field controlled by VAM.

to the origin fixed and calculate the 3D reproduction error in terms of θ and φ.

The three-dimensional surface plots showing the results are given in Fig. 4.5. By

comparing the error plots for the two loudspeaker arrays, we notice that the change

of the reproduction error is regular with the virtual source position change for the

25 channel regular loudspeaker array, whereas for the 22 channel loudspeaker array

the error fluctuates dramatically as the virtual source position changes due to the

non-uniformly distributed loudspeakers. For the 22 channel irregular loudspeaker

array, the velocity-assisted method performs better than the pressure matching

method when the virtual source is located in the upper hemisphere (0 ≤ θ ≤ π/2),

however, the performance of both methods degrades for the virtual sources from
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Figure 4.5: 3D reproduction error with respect to the virtual source positions
controlled by (a, c) PMM and (b, d) VAM for (a, b) the 22 channel system and (c,
d) the 25 channel system. The source frequency is 1200 Hz.

the lower hemisphere (π/2 < θ ≤ π) because there are only 3 out of 22 loudspeakers

located below x-y plane. In contrast, the 3D reproduction error is less than 0.1

for all the virtual source positions using the 25 channel regular loudspeaker array,

which is much better than the pressure matching method.

Frequency

To analyze the broadband performance of the proposed method, we also calculate

the 3D reproduction error with respect to the change of frequency from 100 Hz to
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Figure 4.6: 3D reproduction error with respect to the change of frequency controlled
by both methods for (a) the 22 channel system and (b) the 25 channel system.

3000 Hz, which is shown in Fig. 4.6. From Fig. 4.6, we observe that the error

remains very low for both methods in the 22 channel system at frequencies less

than 650 Hz approximately, where the system order N is smaller than 3. The

22 loudspeakers are enough to accurately reproduce the desired sound field in the

target region for both methods. As the frequency increases (N also increases), the

22 loudspeakers are not enough any more and the error increases dramatically for

the pressure matching method. However, the error builds up more gradually for

the velocity-assisted method. For example, the error due to the pressure matching

method is more than 1, whereas the error due to the velocity-assisted method

is only around 0.3 when the frequency increases to 1500 Hz. Therefore, given a

loudspeaker array and a target region, the velocity-assisted method can reproduce

the desired sound field with a wider frequency range than the pressure matching

method. We note that, when the frequency continues to increase to 3000 Hz, the

velocity-assisted method loses this advantage and its error also increases to around

1 because of the extreme scarcity of loudspeakers. The overall trend of error curve

in the 25 channel system is same as that in the 22 channel system for both methods,

however, the former is lower than the latter for all evaluated frequencies due to the

increase of the number of loudspeakers. Besides, the frequency range in which the

velocity-assisted method outperforms the pressure matching is around 1-2 kHz in
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Fig. 4.6(a), whereas the frequency range is around 1-3 kHz in Fig. 4.6(b), which

indicates that the proposed method has advantages over a wider frequency range

as the number of loudspeakers increases. This point also infers the limitation of

the proposed method that it requires a large number of loudspeakers to reproduce

the sound with very high frequency in a large area.

Intensity direction

As we mentioned in Section 4.4.1, it is clear that if we are concerned to create a

realistic perception of the original sound, it requires to ensure the reproduction of

the direction of travel of the sound. Therefore, we calculate the intensity direction

error on plane z = 0 using (4.22), which is shown in Fig. 4.7. In the 22 channel

system, the intensity direction error of the velocity-assisted method is less than 20%

within the region of interest, whereas it is around 40% for the pressure matching

method. When the loudspeaker array becomes regular, the intensity direction

error of the pressure matching method reduces, however, it is still larger than the

velocity-assisted method. This analysis shows that the velocity-assisted method

can reproduce the direction of original sound inside the region of interest in free

field.

From the above analysis, we conclude that the velocity-assisted method has

better overall performance than the pressure matching method in free field, espe-

cially for a non-uniformly distributed loudspeaker array with a limited number of

loudspeakers.

4.4.4 Simulation results in reverberant rooms

The following simulations investigate the overall performance of the proposed method

in the two different rooms. Here we only consider the 22 channel non-uniformly

distributed loudspeaker array.

Reproduced sound pressure

We also first evaluate the reproduction of sound pressure within the region of in-

terest, and the results in the different sizes of rooms are given in Fig. 4.8. The



76 Particle Velocity Assisted Spatial Sound Field Reproduction

-0.4 -0.2 0 0.2 0.4
x(m)

-0.4

-0.2

0

0.2

0.4

y(
m

)

0

20

40

60

80

100%

(a)

-0.4 -0.2 0 0.2 0.4
x(m)

-0.4

-0.2

0

0.2

0.4

y(
m

)

0

20

40

60

80

100%

(b)

-0.4 -0.2 0 0.2 0.4
x(m)

-0.4

-0.2

0

0.2

0.4

y(
m

)

0

20

40

60

80

100%

(c)

-0.4 -0.2 0 0.2 0.4
x(m)

-0.4

-0.2

0

0.2

0.4

y(
m

)

0

20

40

60

80

100%

(d)

Figure 4.7: The intensity direction error on plane z = 0 controlled by (a, c) PMM
and (b, d) VAM for (a, b) the 22 channel system and (c, d) the 25 channel system.
The source frequency is 1200 Hz.

difference between the desired sound field and the reconstructed sound field is

shown in Fig. 4.9. It shows that the velocity-assisted method provides more ac-

curate pressure reproduction in both the reverberant rooms. By comparing with

the results in the free field, we observe that for this particular virtual source the

performance in the reverberant environment is a little worse than that in the free
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Figure 4.8: Reconstructed sound field on the observation plane controlled by (a, c)
PMM and (b, d) VAM in (a, b) the large room and (c, d) the small room in case
of the 22 channel system. The source frequency is 1200 Hz.

field. However, this result is not consistent for all the virtual source positions. The

reproduction performance with respect to the position of the virtual source in the

reverberant rooms is discussed next.
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Figure 4.9: Difference between the desired sound field and the reconstructed sound
field controlled by (a, c) PMM and (b, d) VAM in (a, b) the large room and (c, d)
the small room in case of the 22 channel system. The source frequency is 1200 Hz.

Virtual source position

The same virtual source positions as in Section 4.4.3 are evaluated for the rever-

berant environments. The results are given in Fig. 4.10. By comparing the results

in the free field and the reverberant environment, we notice that the performance

in the free field is parallel to the performance in the reverberant environment for
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Figure 4.10: 3D reproduction error with respect to the virtual source positions
controlled by (a, c) PMM and (b, d) VAM in (a, b) the large room and (c, d) the
small room in case of the 22 channel system. The source frequency is 1200 Hz.

the virtual sources from the upper hemisphere, where there are more loudspeakers.

However, for the virtual sources from the lower hemisphere where there are few

loudspeakers, the sound pressure reproduction in the reverberant environment has

less error than that in the free field. This is because the reflections (image sources)

in the reverberant room make up for the insufficiency of loudspeakers in the lower

hemisphere in this case. Compared with the pressure matching method, the 3D

reproduction error of the velocity-assisted method is less than 0.5 for all the vir-

tual source positions in the reverberant environment, which is much better than
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Figure 4.11: 3D reproduction error with respect to the change of frequency con-
trolled by both methods in (a) the large room and (b) the small room in case of
the 22 channel system.

the pressure matching method. We also note that the velocity-assisted method has

more improvement from the remedy due to the reflections in the reverberant room

than the pressure matching method. This is because not only sound pressure but

also particle velocity is exploited for the reflections that are incorporated in the

optimization criterion of the velocity-assisted method.

Frequency

Fig. 4.11 shows the results of the two methods with respect to the change of

frequency in the two different sizes of rooms. The performance in the large room

is similar to that in the small room for both methods. Similar to the results in the

free field, the error starts to increase at the frequency of 650 Hz, and reaches 1 at

the frequency of 2000 Hz. Therefore, the overall trend of error curve in the free

field is same as that in the reverberant environment for both methods, however, the

former is more smooth than the latter due to the more complicated environment

in a reverberant room.
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Figure 4.12: The intensity direction error on plane z = 0 controlled by (a, c) PMM
and (b, d) VAM in (a, b) the large room and (c, d) the small room in case of the
22 channel system. The source frequency is 1200 Hz.

Intensity direction

The intensity direction error is also calculated for both methods in the reverberant

rooms, which is given in Fig. 4.12. From Fig. 4.12, we show that the pressure

matching method cannot guarantee accurate reproduction of sound direction in-

side the whole target region in the reverberant environment, whereas the intensity
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direction error of the velocity-assisted method is less than 20% for the whole target

region. Although the performance of the pressure matching method in the large

room is slightly better than that in the small room, it is at the nearly same level for

the performance of the velocity-assisted method in the two rooms. Therefore, we

prove that the velocity-assisted method can reconstruct the original sound direction

in various sizes of rooms. According to the above analysis, we conclude that the

velocity-assisted method performs better than the pressure matching method in the

reverberant environment for all the assessed aspects. The size of the reverberant

room has little effect on the performance of the reproduction system.

The evaluation in this section has shown that the proposed method is better

than the pressure matching method for overall performance in both free fields

and reverberant environments. However, we should note that the computational

complexity of the proposed method is higher than that of the pressure matching

method due to the introduction of particle velocity.

4.5 Experimental Verification

In this section, we use the impulse response measurements in a real-world room to

validate the proposed method. The impulse responses were measured in an office

space at the Australian National University with dimensions of (3.54, 4.06, 2.70) m.

For simplicity, we consider a circular loudspeaker array with radius of 1 m, consist-

ing of six non-uniformly placed loudspeakers. We use such a circular loudspeaker

array as it has a significantly reduced implementation complexity compared to the

loudspeaker geometries in Section 4.4.1. However, the implementation steps for the

proposed method remain unchanged. We set the center of the circular array as the

origin, and the loudspeakers are positioned on the horizontal plane (θ = 90◦) with

φ = 48◦, 92◦, 148◦, 184◦, 256◦, and 336◦, respectively. An EigenMike [75] located

at the origin is used for sound field recording, where the EigenMike is a 32 channel

rigid spherical microphone array with radius of 0.042 m. A 2 second linear sweep

signal is fed into each loudspeaker and the resulting sound field is recorded by

the EigenMike. The impulse response between each loudspeaker and each Eigen-

Mike sensor can be obtained from the recordings, therefore we have 32× 6 impulse

responses measurements. The coefficients of the point-to-region transfer function
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Figure 4.13: Desired sound field, reconstructed sound field, and the difference
between them on the observation plane controlled by both methods for source
#1. The source frequency is 1200 Hz. (a) Desired sound field; (b) Reproduced
sound field controlled by PMM; (c) Reproduced sound field controlled by VAM;
(d) Difference field controlled by PMM; (e) Difference field controlled by VAM.

between each loudspeaker and the receiver region (i.e., the EigenMike area) are

estimated from the corresponding 32 channel measurements by

β̂(`)
nm(k) =

1

bn(kRE)

QM∑
qM=1

Ĥ`(k,xqM )Y ∗nm(θqM , φqM ), (4.23)

where Ĥ`(k,xqM ) is the measurement between the `th loudspeaker and the qth
M

EigenMike sensor located at xqM = (rqM , θqM , φqM ), QM = 32 is the number of

EigenMike sensors, RE = 0.042 m is the radius of the EigenMike, and

bn(kRE) = jn(kRE)− j′n(kRE)

h′n(kRE)
hn(kRE). (4.24)
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Figure 4.14: Desired sound field, reconstructed sound field, and the difference
between them on the observation plane controlled by both methods for source
#2. The source frequency is 1200 Hz. (a) Desired sound field; (b) Reproduced
sound field controlled by PMM; (c) Reproduced sound field controlled by VAM;
(d) Difference field controlled by PMM; (e) Difference field controlled by VAM.

We assume the desired sound fields are given, and they are produced by a virtual

point source located at (2, π/2, π/8) (source #1) and (2, π/2, 5π/3) (source #2), re-

spectively, with frequency of 1200 Hz. We calculate the loudspeaker weights using

(4.16) by replacing {β(`)
nm(k)} with {β̂(`)

nm(k)}, and plot the sound fields reproduced

by the circular array controlled by the velocity-assisted method. The plots includ-

ing the results of both methods are given in Fig. 4.13 and Fig. 4.14, where the

difference between the reconstructed sound fields and the desired sound fields for

both methods are also shown. Note that in this case the target region is a spherical

region with radius of 0.042 m, which is same as the size of the EigenMike. With the

observation of the error fields between the reproduced and desired pressure fields,

the velocity-assisted method can provide accurate pressure reproduction inside the
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Figure 4.15: 3D reproduction error with respect to the change of frequency con-
trolled by both methods for (a) source #1 and (b) source #2.

target region, whereas the pressure matching method has around 50% error for

both virtual sources.

The EigenMike can record spatial sound field up to 4th order, therefore, the

{β̂(`)
nm(k)} obtained from the measurements is also up to 4th order. Given the

radius of 0.042 m, the frequency limit is 3800 Hz approximately. We process the

measurements frequency bin by frequency bin, ranging from 100 Hz to 3000 Hz.

The results showing the reproduction error with respect to different frequency bins

for both methods are given in Fig. 4.15. The six channel loudspeaker array can

provide accurate pressure reproduction for the first order system (i.e., when the

frequency is less than 950 Hz) using both methods. When the frequency goes up,

the pressure matching method results in a large error for most of the frequency

bins, however, the error of the velocity-assisted method remains low for all the

evaluated frequency bins. As shown in Fig. 4.16, the intensity direction error

of the velocity-assisted method within the target region is also less than that of

the pressure matching method, which is consistent with the simulation results in

Section 4.4. Consequently, we conclude that the proposed method also has good

performance for a real-world environment.
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Figure 4.16: The intensity direction error on plane z = 0 controlled by (a, c) PMM
and (b, d) VAM for (a, b) source #1 and (c, d) source #2. The source frequency
is 1200 Hz.

4.6 Summary and Contributions

In this chapter, we have proposed a 3D sound field reproduction method based

on particle velocity in the spherical harmonic domain which is appropriate for

non-uniform loudspeaker geometries. The chapter offers the following major con-

tributions:
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• We built an error cost function and designed loudspeaker driving signals

by controlling the continuous particle velocity and sound pressure on the

surrounding contour.

• We evaluated the proposed method in both a free field and a reverberant room

by comparing it with the conventional pressure matching in the spherical har-

monic domain. We demonstrated that the proposed method can provide more

accurate sound field reproduction with a wider frequency range in the tar-

get region using a limited number of loudspeakers, as verified by simulation

results. Nevertheless, we should note that there still exist an upper repro-

duction frequency limit for the proposed method with the given loudspeaker

array. It usually requires more loudspeakers to increase this frequency limit.

• We proved that the proposed method can reconstruct the original direction

of the sound in various environments. The simulations also revealed that the

reflections in the reverberant room can compensate for the non-uniformity of

the loudspeaker array and thus improve the reproduction performance.

• We carried out an objective experiment with the impulse response measure-

ments of a real-world room to validate the proposed method. The results

suggested that the proposed method can also provide good performance in a

real-world environment.

4.7 Related Publications

Much of this chapter’s work has been published in the following journal paper.

• H. Zuo, T. D. Abhayapala, and P. N. Samarasinghe, “Particle velocity as-

sisted three dimensional sound field reproduction using a modal-domain ap-

proach,” IEEE/ACM Transactions on Audio, Speech and Language Process-

ing (TASLP), vol. 28, pp. 2119-2133, 2020.
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4.8 Appendix

4.8.1 Proof of equation (4.7)

We denote the size of the shoebox room as (Lx, Ly, Lz) for length, width and height.

The room origin Oroom is set at the left-front-bottom corner of the room, and the

origin O is located at xqo = (xqo, yqo, zqo) = (Lx/2, Ly/2, Lz/2) with respect to

Oroom. Therefore, the `th loudspeaker is located at x`o = x` + xqo with respect

to Oroom. Reverberant characteristics are modeled with the reflection coefficients

of the wall surface, denoted as d = (dx1, dx2, dy1, dy2, dz1, dz2). According to the

spherical harmonics based generalized image source method [143], the point-to-

region transfer function in the reverberant environment is given by

Hrvb
` (x, k) =

N∑
n=0

n∑
m=−n

V∑
v=0

v∑
u=−v

γ(`)
vu (k)αvunm(k)jn(kr)Ynm(θ, φ), (4.25)

where V = dkeRs/2e is the source region truncation order, Rs is the radius of the

source region, γ
(`)
vu (k) = ikjv(kRs)Y

∗
vu(θs, φs) are the outgoing sound field coeffi-

cients due to the `th loudspeaker at xs = (Rs, θs, φs) with respect to the origin of

the source region Os, and αvunm(k) are coupling coefficients, defined by [147]

αvunm(k) =
1∑
p=0

∞∑
r=−∞

d
|r1−p1|
x1 d

|r1|
x2 d

|r2−p2|
y1 d

|r2|
y2 d

|r3−p3|
z1 d

|r3|
z2

× (−1)(p2+p3)u+p3vS((−1)p1+p2u)m
vn (xp + xr),

(4.26)

where

Sumvn (y) = 4πin−v
v+n∑
l=0

il(−1)2u−mhl(kry)Y
∗
l(m−u)(θy, φy)W1W2ξ, (4.27)

W1 =

(
v n l

0 0 0

)
, W2 =

(
v n l

u −m m− u

)
, ξ =

√
(2v + 1)(2n+ 1)(2l + 1)/4π,

xp = (xqo−x`o+2p1x`o, yqo−y`o+2p2y`o, zqo−z`o+2p3z`o), xr = (2r1Lx, 2r2Ly, 2r3Lz),∑1
p=0 for p = (p1, p2, p3) and

∑∞
r=−∞ for r = (r1, r2, r3) both represent triplet sum-
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mations for indexing room images over three dimensional space. The infinite image

depth r is truncated to Rdepth for simplicity.

We assume that each loudspeaker constitute a source region and the location

of the source coincides with the origin the source region (e.g., xs = (0, 0, 0) for the

`th loudspeaker). Therefore, we have V = 0, and (4.25) can be rewritten as (4.7),

which completes the proof.

4.8.2 Proof of equation (4.18)

We begin with the following integral

Ia(k) =

∫ R

0

∫ 2π

0

∫ π

0

|Pd(x, k)− Pa(x, k)|2dΩ (4.28)

Substituting (4.9) and (4.11) into (4.28), we have

Ia(k) =
N∑
n=0

n∑
m=−n

N∑
n′=0

n′∑
m′=−n′

[α(d)
nm(k)−

L∑
`=1

wlβ
(`)
nm(k)][α

(d)
n′m′(k)−

L∑
`=1

wlβ
(`)
n′m′(k)]∗

×
∫ R

0

jn(kr)jn′(kr)r2dr

∫ 2π

0

∫ π

0

Ynm(θ, φ)Yn′m′(θ, φ) sin θdθdφ.

(4.29)

According to the orthogonality of the spherical harmonics, it becomes

Ia(k) =
N∑
n=0

n∑
m=−n

|α(d)
nm(k)−

L∑
`=1

w`β
(`)
nm(k)|2intR0 j2

n(kr)r2dr. (4.30)

Also, the integral in term of r is given by [148]∫ R

0

j2
n(kr)r2dr = Jn(k,R). (4.31)

Therefore, we have

Ia(k) =
N∑
n=0

n∑
m=−n

|α(d)
nm(k)−

L∑
`=1

wlβ
(`)
nm(k)|2Jn(k,R). (4.32)
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Similarly,

Id(k) =

∫ R

0

∫ 2π

0

∫ π

0

|Pd(x, k)|2dΩ

=
N∑
n=0

n∑
m=−n

|α(d)
nm(k)|2Jn(k,R).

(4.33)

Substituting (4.32) and (4.33) into (4.17) completes the proof.



Chapter 5

Particle Velocity Based Sound

Field Translation for Binaural

Reproduction

Binaural reproduction can offer high quality stereophonic sound audio, however,

the reproductions are usually spatially confined to the perspective of each record-

ing microphone. With the rise of virtual reality, there is a demand for sound

field translation techniques that can allow users to interact and move throughout

the reproduction. In this chapter, we propose a particle velocity based mixed-

source sound field translation method for binaural reproduction. We develop a

new mixed-source expansion based on the theory of spatial particle velocity vector.

The driving signals of the virtual mixed sources are estimated by constructing cost

functions to optimize the spatial particle velocity vectors. Compared to the state-

of-the-art method, sound pressure based mixed-source expansion, we show through

numerical simulations that the proposed particle velocity based mixed-source ex-

pansion has better reconstruction performance in sparse solutions, allowing for

sound field translation with better perceptual experience over a larger space. We

also perceptually validate the proposed method through a Multiple Stimulus with

Hidden Reference and Anchor (MUSHRA) experiment for the single source sce-

nario. The experimental results support the better perceptual experience of the

proposed method in the single source scenario.

91
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5.1 Introduction

Binaural reproduction is to recreate the real-life experience of hearing sound, which

is achieved by binaural recording. However, the perspective is usually fixed to the

recording microphone position. To obtain an interactive experience, it requires

to record and reproduce the real-world experiences that enables a listener to move

about an acoustic space with a sustained perceptual immersion experience. In such

a case, sound field translation can play an important role. A typical example of its

applications is in virtual-reality reproductions of real-world experiences, where the

listener is allowed to virtually explore by moving their body/head and they can

experience a spatially-accurate perception that is same as in the real-world space

through sound field translation [149].

There have been various studies of sound field translation that allows for a

listener to interact and move within a sound field reproduction, and they can be

divided into two main categories: interpolation based techniques [150] and ex-

trapolation based techniques [151]. The interpolation based techniques aim to

interpolate the sound field to listeners during reproduction using a grid of higher

order microphones over space [152]. For example, a simple interpolation based

technique is shown in [153], where the room impulse response is interpolated to

enable real-time auralizations with head. The interpolation based techniques usu-

ally suffer from significant localization error [152, 154] and comb-filtering spectral

distortions [155], in particular when the sound source is nearer to one microphone

than to another. Although the comb-filtering spectral distortions can be avoided

using a parametric Ambisonic room impulse response interpolation system [156],

it requires extra efforts to compensate for varying interference. Also, the inter-

polation assumes multiple distributed microphones or even arrays of microphones,

which is a significant hardware limitation in many AR/VR applications [77, 150].

To enhance the performance of perceptual source localization for displaced lis-

teners, a modified method is proposed, where the directional components of the

microphone nearest to the listener are emphasized [157]. This method also inter-

polates the sound field to listeners and is subject to the fundamental limitation.

Methods that alleviate the fundamental limitation have been investigated, how-

ever, they usually require additional source localization and separation of direct
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sound field components [158, 159]. On the other hand, the extrapolation based

techniques spherically extend the translation from the recording microphone to the

nearest source, which can be achieved by Ambisonics [160, 161], discrete virtual

sources [162], plane-wave expansion [163–165], and equivalent source method [166].

A comparison between different extrapolation based techniques is given in [167]. To

improve the performance of translation and source localization, especially for off-

center positions, optimized decoding methods, such as max-rE decoding [50] and

near-field-compensated decoding [168], have been proposed. However, most of the

extrapolated based techniques are limited by the order of the recordings, which is

determined by both the upper frequency band and the microphone radius [20,22].

Consequently, for a low-order recording, the range of translation is significantly

limited. Attempting to move beyond this limited range, even after extrapolation,

results in spectral distortions [169–171], degraded source localization [167,172], and

a poor perceptual listening experience.

Parametric models have been shown to provide an efficient way to describe

sound scenes [173, 174], which can be used in binaural reproduction. To over-

come the limitation of translation range discussed above, a parametric model is

built to describe first-order Ambisonics recordings for translation with known in-

formation of listener’s position and source distances [175]. A similar approach

described in [176], which extends to support arbitrary listener movement, how-

ever with multiple source directions and distances. In [177], the authors improve

the spatial localization accuracy by additional spatial information obtained from

multi-perspective Ambisonics recordings. Higher order Ambisonics signals are used

in [178] that translates the sound field based on multi-directional decomposition

that estimates source distances. Another parametric decomposition from a higher

order Ambisonics signal has been proposed in [179], where it offers excellent local-

ization performance even for strong spatial displacements. However, it also requires

a prior knowledge of source distance information and an additional analysis stage

of direction of arrival estimation. The sound field translation with very few mea-

surements in a room is investigated in [180]. Recently, an alternative secondary

source model for extrapolated virtual reproduction has been developed, where it

sparsely expands the recording into the equivalent virtual environment using a mix

of near-field and far-field virtual sources [181]. It has been shown that this method
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can relax the limitation and offer an improved perceptual experience through per-

ceptual listening tests [113]. However, this method expands the sound field based

on sound pressure, which is not directly linked with human perception.

As we mentioned in Chapter 4, particle velocity, which is an acoustic quantity

containing the direction information of the sound field, has been widely controlled

in sound field reproduction systems [64,68,69,182]. Particle velocity also reflects in-

teraural time difference (ITD), which is one of human localization cues. Therefore,

particle velocity is an important predictor of perceived source directions, espe-

cially for low frequencies (below 700 Hz) [146]. Furthermore, the particle velocity

controlled sound field shows an accurate reproduction of sound intensity in the

reproduction region [70, 71], where sound intensity is another good predictor of

localization perception, however, it is most appropriate at high frequencies (above

500 Hz) [73, 74]. In this chapter, we propose a new mixed-source expansion based

on particle velocity for sound field translation and synthesis. We will show that

sparsely expanding the sound field in term of particle velocity offers more immersive

perceptual experience at the translated positions, especially for source localization.

The remainder of this chapter is structured as follows. First the sound field

translation problem is formulated in Section 5.2. In Section 5.3, we develop the

particle velocity based expansion by exploiting the theory of spatial particle veloc-

ity vector in the mixed-source model. Section 5.4 translates the sound field and

synthesizes binaural signals for translated listeners. In Section 5.5, we introduce

two localization metrics, in addition to the relative pressure error, as evaluation

criteria. With these criteria, we demonstrate the reproduction accuracy of the

proposed method by comparing it with the state-of-the-art method, sound pres-

sure based mixed-source expansion, through numerical simulations. The perceptual

validation through a MUSHRA experiement is presented in Section 5.6.

5.2 Problem Formulation

Consider a listener within an acoustic environment, where the listening space of the

environment is centered by the origin o. The listener is positioned at d = (r, θ, φ),

where θ ∈ [0, π] and φ ∈ [0, 2π) in spherical coordinates, with respect to the origin.

Let there be a total of K sound sources outside the listening space, with the κth
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source located at bκ. The free-field binaural sound perceived by the listener can be

synthesized by filtering the source signals with the listener’s head-related transfer

functions (HRTFs), expressed as

PL,R(d, k) =
K∑
κ=1

HL,R(k, bκ;d)sκ(k), (5.1)

where PL,R(d, k) is the sound pressure at the listener’s left and right ear, HL,R(k, bκ;d)

are the HRTFs between the κth source and the listener’s ears, sκ(k) is the sound

signal of the κth source.

We aim to record and reproduce the auditory experience of (5.1) for every

possible listening position. The acoustic environment can be characterized using a

spherical harmonic decomposition of the sound pressure, expressed as

P (x, k) =
∞∑
n=0

n∑
m=−n

αnm(k)jn(k|x|)Ynm(x̂), (5.2)

where x is an arbitrary position in the space, | · | ≡ r, ·̂ ≡ (θ, φ), αnm(k) are

the pressure coefficients which completely describe the source-free acoustic envi-

ronment centered about o. In practice, the pressure coefficients describing the

acoustic environment {αnm(k)} can be estimated from recordings of a higher order

microphone or a microphone array [76]. We now consider a N th order receiver

centered at o, such as a spherical array [75] or planar array [78], that we use to

estimate the acoustic environment for {αnm(k)} up to order N . However, the lim-

ited order N introduces a spatial reproduction constraint that the sound field can

only be accurately reproduced within the receiver region (i.e., |x| ≤ R), where R

is the radius of the receiver region that is related by N = dkRe. This constraint

restricts the listener to move within the receiver region (i.e., |d| ≤ R). If the lis-

tener attempts to move beyond the receiver region, they would experience spectral

distortions and a loss in perceptual immersion.

The objective of this work is to perceptually enhance the performance of trans-

lation to |d| > R for binaural reproduction from a mode limited measurement so

that a listener can move over a large space in virtual reconstruction with a sustained

perceptual experience, through the proposed particle velocity based mixed-source
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expansion.

5.3 Particle Velocity Based Mixed-Source Expan-

sion

In this section, we first introduce the mixed-source model in Section 5.3.1. The

particle velocity based mixed-source expansion is developed in Section 5.3.2.

5.3.1 Mixed-source model

Different from the plane wave model, which represents a sound field with an equiv-

alent superposition of virtual plane wave sources, the mixed-source model expands

the sound field in terms of a mixture of near-field and far-field virtual sources [181].

This mixed-source model can overcome the difficulties of the plane wave expansion

in synthesizing the near-field sources.

The mixed-source is defined as

P (x, k;y) = |y|e−ik|y| e
ik|y−x|

4π|y − x|
, (5.3)

where y denotes the position of the virtual mixed source. In the spherical harmonic

domain, it can be expressed as

P (x, k;y) =
∞∑
n=0

n∑
m=−n

ik|y|e−ik|y|hn(k|y|)Y ∗nm(ŷ)︸ ︷︷ ︸
βnm(k)

jn(k|x|)Ynm(x̂), (5.4)

where βnm(k) are the pressure coefficients of the mixed source. We note that the

mixed source has the property of [20]

lim
|y|→+∞

P (x, k;y) =
e−ikŷ·x

4π
, (5.5)

which shows that the plane-wave expansion can be modeled using the mixed-source

expansion.
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We construct a virtual equivalent sound field using two concentric spheres of

virtual mixed sources. Therefore, the sound field can be expressed, using the

mixed-source model, as [181]

P (x, k) =

∫
ψ(k,RN ŷ;o)RNe

−ikRN eik||RN ŷ−x||

4π||RN ŷ − x||︸ ︷︷ ︸
P (x,k;RN ŷ)

dŷ

+

∫
ψ(k,RF ŷ;o)RF e

−ikRF eik||RF ŷ−x||

4π||RF ŷ − x||︸ ︷︷ ︸
P (x,k;RF ŷ)

dŷ,

(5.6)

where RN is the radius of the virtual sphere placed in the near-field, RF is the

radius of the virtual sphere placed in the far-field, ψ(k,RN ŷ;o) and ψ(k,RF ŷ;o)

are the driving functions of the mixed-source distributions as observed at o, and

P (x, k;RN ŷ) and P (x, k;RF ŷ) are the mixed sources on the two spheres. Note

that the mixed-source model expands the sound field with respect to o, which

allows us to observe the source distribution at o and estimate the sound at any

translated position x.

5.3.2 Particle velocity based expansion

According to the results in Chapter 3, we have the continuous particle velocity in

the spherical harmonic domain, shown as

VΨ(x, k) =

QΨ∑
p=0

p∑
q=−p

X(Ψ)
pq (k, |x|)Ypq(x̂); Ψ ∈ {r, θ, φ}, (5.7)

whereQΨ is the particle velocity truncation order in the Ψ direction, andX
(Ψ)
pq (k, |x|)

denote the velocity coefficients in the Ψ direction.

Similar to (3.23), for the mixed source, we have

V (x, k;RX ŷ) =
i

kρ0c
~∇P (x, k;RX ŷ), (5.8)

where RX ∈ {RN , RF}, therefore, taking the gradient operation on both sides of
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(5.6), we can obtain the particle velocity based mixed-source expansion

VΨ(x, k) =

∫
ψ(k,RN ŷ;o)VΨ(x, k;RN ŷ)dŷ +

∫
ψ(k,RF ŷ;o)VΨ(x, k;RF ŷ)dŷ,

(5.9)

where VΨ(x, k;RN ŷ) and VΨ(x, k;RF ŷ) represent the particle velocity of the virtual

sources in the near-field and the far-field, respectively, in the Ψ direction.

In practice, the particle velocity based mixed-source expansion (5.9) can be

approximated by a finite set of L known virtual sources for each virtual sphere,

therefore, (5.9) can be expressed as

VΨ(x, k) =
L∑
`=1

w`ψ(k,RN ŷ`;o)VΨ(x, k;RN ŷ`)

+
L∑
`=1

w`ψ(k,RF ŷ`;o)VΨ(x, k;RF ŷ`),

(5.10)

where w` are the the sampling weights for the source distribution, and ŷ` denotes

the position of the `th virtual source on each sphere.

Note that the parameters of the mixed-source expansion need to be carefully

selected in the implementations. The near-field radius of the virtual sphere can be

selected based on the desired maximum translation distance, because the listener

cannot move beyond the near-field sphere. As for the far-field sphere, it can be

placed anywhere so long as it is in the far-field. Besides, the selection of the number

of the virtual sources per sphere is a trade-off between angular resolution and

computation cost. The more virtual sources there are, the more opportunity they

have to match the true sound direction of arrival, however, the higher computation

cost the system has.

By replacing αnm(k) with β
(`)
nm (i.e., the pressure coefficients of the `th virtual

source) in (3.31), (3.32), and (3.33), and then substituting them into (5.7), the

particle velocity due to the `th virtual source can be written as

VΨ(x, k;RX ŷ`) =

QΨ∑
p=0

p∑
q=−p

X(Ψ,`)
pq (k, |x|;RX ŷ`)Ypq(x̂), (5.11)
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where X
(Ψ,`)
pq (k, |x|) are the velocity coefficients of the `th virtual source. Substi-

tuting (5.7) and (5.11) into (5.10), (5.10) can be simplified as

X(Ψ)
pq (k, |x|) =

2L∑
`=1

ω`ψ(k,R`ŷ`;o)X(Ψ,`)
pq (k, |x|;R`ŷ`), (5.12)

where R` = RN for ` ∈ [1, L], and for ` ∈ [L + 1, 2L] we have R` = RF , and

w` = w`−L.

We denote (5.12), in matrix form, as

X = Aψ, (5.13)

where X = [XT
r ,X

T
θ ,X

T
φ ]T is a [(Qr + 1)2 + (Qθ + 1)2 + (Qφ + 1)2] long vec-

tor containing all three components of the particle velocity vector with XΨ =

[X
(Ψ)
00 , X

(Ψ)
1(−1), ..., X

(Ψ)
QΨQΨ

]T , ψ = [ψ1, ..., ψL]T is a L = 2L long vector with ψL =

ψ(k,RLŷL;o), and A = [AT
r ,A

T
θ ,A

T
φ ]T is the [(Qr + 1)2 + (Qθ + 1)2 + (Qφ + 1)2]

by L expansion matrix with

AΨ =


w1X

(Ψ,1)
00 · · · wLX

(Ψ,L)
00

w1X
(Ψ,1)
1(−1) · · · wLX

(Ψ,L)
1(−1)

...
. . .

...

w1X
(Ψ,1)
QΨQΨ

· · · wLX
(Ψ,L)
QΨQΨ

 . (5.14)

Note that the dependence is omitted here for notational simplicity. The expansion

is now reduced to calculate the driving function of the mixed source distribution

ψ(k,y;o) for a given measured sound field. We introduce two solutions here.

Least squares solution

The least squares method is to estimate the driving function ψ so as to minimize

the difference between X and Aψ, and it can be formulated as

ψ = arg min
ψ
||Aψ −X||22. (5.15)
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This problem can be solved using a Moore-Penrose inverse with Tikhonov regular-

ization [119].

Sparse solution

It is shown that modeling fewer virtual sources from propagation directions that

are similar to the original sound will lead to better perceptual experience [181].

Therefore, we also construct a sparse constrained objective function, expressed as

ψ = arg min
ψ
||Aψ −X||22 + λ||ψ||1, (5.16)

where λ is the parameter controlling the strength of the sparsity constraint for

the driving function ψ. This sparse linear regression problem can be solved using

LASSO [45]. Other optimization techniques such as the iteratively reweighted least

squares (IRLS) [183] can also be applied to solving this problem. We direct readers

to [184] for more details about compressive sensing. Note that the applicability of

the above solutions will depend on the condition number of matrix A, which deter-

mined by the distribution of the virtual sources. It shows that a well-conditioned

A matrix should result from a geometry in which the virtual sources are maximally

distributed over space in literature [20].

5.4 Sound Field Translation and Synthesis for

Binaural Reproduction

In this section, we translate the sound field in the spherical harmonic domain, and

then synthesize the left and right ear signals at the translated position.

Solving (5.15) or (5.16) gives us the reproduced virtual-reality sound field, ex-

pressed as

P̃ (x, k) =
2L∑
`=1

ω`ψ(k,R`ŷ`;o)R`e
−ikR` eik||R`ŷ`−x||

4π||R`ŷ` − x||
. (5.17)

With respect to the translated position d, the virtual sources are located at
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z` = R`ŷ` − d, therefore, the translated sound field can be written as

P̃ (x, k;d) =
2L∑
`=1

ω`ψ(k,R`ŷ`;o)R`e
−ikR` eik||z`−x||

4π||z` − x||
. (5.18)

We decompose (5.18) in the spherical harmonic domain about the position d,

and the pressure coefficients of the translated sound field due to the virtual sources

at z` can expressed as

γvu(k;d) =
2L∑
`=1

ω`ψ(k,R`ŷ`;o)ikR`e
−ikR`hv(k|z`|)Y ∗vu(ẑ`), (5.19)

where v and u index the translated harmonics, centered at d. The left and right

ear signals can be synthesized, in the spherical harmonic domain, directly from

the translated pressure coefficients γvu(k;d) and the coefficients of the listener’s

HRTFs, Hvu
L,R(k), with [185,186]

P̃L,R(k;d) =
∞∑
v=0

v∑
u=−v

γvu(k;d)Hvu
L,R(k). (5.20)

Note that Hvu
L,R(k) is obtained from the spherical harmonic decomposition of the

HRTF HL,R(k,y;d).

Alternatively, the left and right ear signals can be obtained by applying the

mixed-source driving functions to the HRTFs based on the listener’s translated

position, given as

P̃L,R(k;d) =
2L∑
`=1

ω`ψ(k,R`ŷ`;o)HL,R(k,y`;d). (5.21)

We direct the reader to [55, 187] for other options of rendering the ear signals at

the translated positions.
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5.5 Simulation Study

In this section, we firstly examine the reproduced sound pressure to assess the

proposed particle velocity based mixed-source expansion in two simulated acoustic

environment, including a single source and multiple sources, respectively. Secondly,

we also evaluate the proposed method in terms of perception of sound localization

using two localization metrics for the single source scenario. The simulated envi-

ronment and the evaluation criteria are explained in Section 5.5.1. The simulation

results and discussions are given in Section 5.5.2 and Section 5.5.3, respectively.

5.5.1 Simulation setup and criteria

In this simulation, we simulate two acoustic scenarios. We firstly consider an

acoustic environment that contains a single free-field point source with location

of b1 = (1, π/3, π/4). We then consider a scenario where multiple sources exist,

which is constructed by adding two more point sources with randomly selected

locations of b2 = (0.5, 3π/4, 4π/3) and b3 = (1.8, π/2, π/2), respectively, in the

former acoustic environment. The true sound pressure at an arbitrary position x

due to the jth point source is

Pj(x, k) =
eik||bj−x||

4π||bj − x||
, j = {1, 2, 3}. (5.22)

The total sound pressure due to multiple sources follows the principle of linear

superposition. We assume that the receiver can record the sound field up to the

4th order (i.e., N = 4), and the radius of the receiver region is R = 0.042 m.1 The

pressure coefficients describing the acoustic environment {αnm(k)} can be extracted

from the receiver’s recording. Here, for simplicity, we use the theoretical pressure

coefficients up to the N th order, expressed as

1We simulate the radius of the EigenMike, which is a popular commercial microphone array
[75].
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αnm(k) =


ikhn(k|b1|)Y ∗nm(b̂1), n ∈ [0, N ], single source scenario,

∑3
j=1 ikhn(k|bj|)Y ∗nm(b̂j), n ∈ [0, N ], multiple sources scenario.

(5.23)

The mixed-source model consists of two sets of L = 36 virtual sources distributed

on the two spheres, both with the positions arranged on Fliege nodes [188]. The

first set is placed in near-field at RN = 2 m, and the second set is placed in far-field

at RF = 20 m.

Throughout the simulations, the frequency of the sources is f = 1500 Hz except

the evaluation in terms of the frequency. Sound speed is c = 343 m/s and air density

is ρ0 = 1.29 kg/m3. The truncation orders of the velocity coefficients in the r, θ,

φ direction are Qr = N , Qθ = 2N , and Qφ = 2N , respectively. For the sparse

solution, we use a 500 iterations LASSO.

As the first objective performance measure for the reproduction method, we

define the mismatch between the reproduced sound field and the true sound field

at any point x as

ε(x, k) =
|P (x, k)− P̃ (x, k)|2

|P (x, k)|2
× 100(%). (5.24)

A good perception of sound localization requires accurate reproduction of sound

direction. To evaluate the performance of the reproduction of sound direction at

the translated position d, two localization metrics are introduced [167]. The first

one is related to the velocity vector at the translated position, which is given by

rV (k;d) = Re

(∑L
`=1 U`(k)ẑ`∑L
`=1 U`(k)

)
, (5.25)

where U`(k) are the effective source gains (accounting for point-source radiation),

expressed as

U`(k) =
eik(|z`|−R`)

|z`|/R`

ψ(k,R`ŷ`;o). (5.26)

rV (k) is used to predict localization at low frequencies (below 700 Hz). For high
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frequencies (above 500 Hz), the second metric related to the intensity vector is

given by

rE(k;d) =

∑L
`=1 |U`(k)|2ẑ`∑L
`=1 |U`(k)|2

. (5.27)

The directions of rV (k;d) and rE(k;d) indicate the expected localization direction,

and their magnitudes, |rV (k;d)| and |rE(k;d)|, indicate the quality of localization

[167]. For the point source at b, the directional error ζV,E(k;d) at the translated

position d is defined as2

ζV,E(k;d) =

∣∣∣∣ rV,E(k;d)

|rV,E(k;d)|
− b− d
|b− d|

∣∣∣∣. (5.28)

Ideally, rV (k;d) and rE(k;d) should be unit vectors that point to the direction of

the point source b (i.e., |rV (k;d)| = |rE(k;d)| = 1, and ζV,E(k;d) = 0).

We also implement the two corresponding solutions (i.e., the closed-form solu-

tion and the sparse solution) of the state-of-the-art technique, the sound pressure

based mixed-source expansion [113,181], for comparison.

5.5.2 Simulation results

In this subsection, we first examine the accuracy of the proposed particle velocity

based mixed-source expansion to reconstruct the pressure field in the two scenarios,

and then we evaluate the localization performance in terms of the frequency and

translated position using the metrics in Section 5.5.1 in the single source scenario.

Reproduced pressure field

In terms of the single source scenario, Figure 5.1 shows the true pressure field

calculated by (5.22), and the recorded pressure field calculated using the theoretical

pressure coefficients in (5.23). The black circle denotes the receiver region. The

receiver can record the sound field within the receiver region. However, truncation

error degrades the accuracy of the pressure field beyond the receiver region, which

is the constraint in Section 5.2 that we wish to relax through the proposed method.

2The direction error is related to the direction difference in angles between the two unit vectors
in (5.28) by arccos(1− ζ2/2).
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Figure 5.1: The true pressure field and recorded pressure field at 1500Hz in the
single source scenario. The black circle denotes the receiver region. (a) the true
pressure field; (b) the recorded pressure field.

To compare the proposed method with the sound pressure based expansion, we first

show the results of the sound pressure based expansion for the closed-form solution

and the sparse solution in Fig. 5.2. We observe that the closed-form solution can

guarantee the reproduction accuracy within the receiver region. However, for a

position outside the receiver region, the reconstructed pressure field is similar (but

not exact) to the recorded pressure field, which is not good enough for translation.

The sparse solution improves the performance and reconstructs the pressure field

accurately around the receiver region, which allows for the listener to move to

the position exterior to the receiver region. Figure 5.3 shows the reconstructed

pressure field and the error field controlled by the least squares solution and the

sparse solution using the particle velocity based expansion. We notice that the least

squares solution of the particle velocity based expansion has the same performance

as the closed-form solution of the sound pressure based expansion. However, for

the sparse solution of the particle velocity based expansion, it provides a larger area

with smaller error around the receiver region compared with the sparse solution

of the sound pressure based expansion, which allows for the listener to translate

further away from the original receiver region.

As for the multiple sources scenario, the true pressure field and recorded pres-
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Figure 5.2: The reconstructed pressure field and the error field controlled by the
closed-form solution (P-CFS) and the sparse solution (P-SS) using the sound pres-
sure based expansion in the single source scenario. The source frequency is 1500
Hz. (a) Reconstructed pressure field controlled by P-CFS ; (b) Error field con-
trolled by P-CFS; (c) Reconstructed pressure field controlled by P-SS; (d) Error
field controlled by P-SS.

sure field are given in Fig. 5.4. The difference between them also increases gradually

as the observation point moves away from the target region due to the truncation

error. Similar to the evaluation for the single source scenario, we first show the

reconstructed pressure fields controlled by the closed-form solution and the sparse

solution based on the sound pressure based expansion in the multiple sources sce-
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Figure 5.3: The reconstructed pressure field and the error field controlled by the
least squares solution (V-LSS) and the sparse solution (V-SS) using the particle
velocity based expansion in the single source scenario. The source frequency is
1500 Hz. (a) Reconstructed pressure field controlled by V-LSS ; (b) Error field
controlled by V-LSS; (c) Reconstructed pressure field controlled by V-SS; (d) Error
field controlled by V-SS.

nario. The results with the error fields are shown in Fig. 5.5. It shows that

the closed-form solution still can only guarantee accurate reproduction around the

target region, whereas the sparse solution can provide greater translation area.

However, this area is much smaller than that in the single source scenario. Figure

5.6 shows the results of the least squares solution and the sparse solution based
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Figure 5.4: The true pressure field and recorded pressure field at 1500Hz in the
multiple sources scenario. The black circle denotes the receiver region. (a) the true
pressure field; (b) the recorded pressure field.

on the particle velocity based expansion. Similarly, the result of the least squares

solution under the particle velocity based expansion is identical to the result of

the closed-form solution under the sound pressure based expansion. Although the

sparse solution of particle velocity based expansion in the multiple sources scenario

can provide smaller translation area than that in the single source scenario, it still

has an improved performance compared to the sparse solution of the sound pressure

based expansion in the multiple sources scenario.

Frequency

To evaluate the broadband performance of the proposed method on direction re-

production at a translated position, we calculate the directional error ζV,E and the

magnitude of rV,E (i.e., |rV,E|) in the single source scenario using the two localiza-

tion metrics introduced in Section 5.5.1, with respect to the change of frequency.

The translated position is (0.2, 0.3, 0) m in Cartesian coordinates. Figure 5.7 shows

the results of ζV and |rV |. As expected, the sparse solution of the particle velocity

based expansion is better than all the other solutions, especially for low frequen-

cies. The results of ζE and |rE| are given in Fig. 5.8. We observe that the the

sparse solution of the particle velocity based expansion has the least directional er-
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Figure 5.5: The reconstructed pressure field and the error field controlled by the
closed-form solution (P-CFS) and the sparse solution (P-SS) using the sound pres-
sure based expansion in the multiple sources scenario. The source frequency is
1500 Hz. (a) Reconstructed pressure field controlled by P-CFS ; (b) Error field
controlled by P-CFS; (c) Reconstructed pressure field controlled by P-SS; (d) Er-
ror field controlled by P-SS.

ror, and the |rE| for this solution is closest to 1 among all the evaluated methods.

Compared to curves for the other method, the curve for the sparse solution of the

particle velocity based expansion has little fluctuation in terms of frequency, which

means the the sparse solution of the particle velocity based expansion can provide

an uniform performance for broadband signals. Also, the least squares solution of
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Figure 5.6: The reconstructed pressure field and the error field controlled by the
least squares solution (V-LSS) and the sparse solution (V-SS) using the particle
velocity based expansion in the multiple sources scenario. The source frequency
is 1500 Hz. (a) Reconstructed pressure field controlled by V-LSS ; (b) Error field
controlled by V-LSS; (c) Reconstructed pressure field controlled by V-SS; (d) Error
field controlled by V-SS.

the particle velocity based expansion is the same as the closed-form solution of the

sound pressure based expansion for the performance in terms of frequency.
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Figure 5.7: The directional error ζV and the magnitude of rV with respect to
frequency at the translated position of (0.2, 0.3, 0) m in the single source scenario.
(a) Directional error ζV ; (b) Magnitude of rV .
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Figure 5.8: The directional error ζE and the magnitude of rE with respect to
frequency at the translated position of (0.2, 0.3, 0) m in the single source scenario.
(a) Directional error ζE; (b) Magnitude of rE.
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Figure 5.9: The directional error ζV and the magnitude of rV as a function of
translation distance along the positive y-axis in the single source scenario. The
frequency of the source is 300 Hz. (a) Directional error ζV ; (b) Magnitude of rV .
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Figure 5.10: The directional error ζE and the magnitude of rE as a function of
translation distance along the positive y-axis in the single source scenario. The
frequency of the source is 1500 Hz. (a) Directional error ζE; (b) Magnitude of rE.

Translated position

We also evaluate the performance of each method when the translated position

moves away from the receiver region in the single source scenario. Figures 5.9 and
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5.10 show the results of ζV and |rV | at 300 Hz, and the results of ζE and |rE|
at 1500 Hz, respectively, as a function of translation distance along the positive

y-axis. Note that we plot Fig. 5.9 and Fig. 5.10 at different frequencies because

rV is a good predictor for low frequencies whereas rE is a good predictor for high

frequencies, as mentioned in Section 5.5.1. From Figs. 5.9(a) and 5.10(a), we show

that all the methods have little error at the origin where the receiver is positioned,

however, the performance worsens as the translation distance increases for all the

methods. Comparing to the sparse solution of the sound pressure based expansion,

the sparse solution of the particle velocity based expansion has less directional error

and this advantage becomes more significant for a further translated position, which

leads to a better direction reproduction, especially for the translated position far

away from the receiver region. The results of Figs. 5.9(b) and 5.10(b) also indicate

that the sparse solution of the particle velocity based expansion can provide a

better quality of localization for the listener than the sparse solution of the sound

pressure based expansion. Once again, we notice that the least squares solution

and the closed-form solution have same performance, and both are worse than the

the sparse solutions of the particle velocity based expansion and the sound pressure

based expansion.

From the above analysis, we conclude that the least squares solution of the

particle velocity based expansion is identical to the closed-form solution of the

sound pressure based expansion, whereas the sparse solution of the particle velocity

based expansion has better overall performance than the sparse solution of the

sound pressure based expansion.

5.5.3 Discussion

Based on the above simulation results, we give the following comments:

• The particle velocity based expansion is derived directly from the sound pres-

sure based expansion by the gradient calculation. Therefore, the least squares

solution of the particle velocity based expansion is mathematically parallel

to the closed-form solution of the sound pressure based expansion, both of

which aim to reconstruct the original truncated recording by distributing en-

ergy throughout all virtual sources and inherit the spatial artifacts caused
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by the truncated measurement. This leads to poor reproduction outside the

receiver region.

• Sparse solutions can improve the performance of reproduction outside the

receiver region due to the fact that most sound fields can be reproduced

accurately by a single or a few virtual sources, and thus exhibit sparsity in

space. Therefore, provided that the desired sound is sparse in space, the

sparse solutions can be used to relax the restriction we mentioned in Section

5.2. We should note that the region of accurate translation in the multiple

sources scenario becomes smaller than that in the single source scenario for

the sparse solution. Also, the sparse solution is less applicable to highly

reverberant fields where the sparsity does not hold.

• Particle velocity contains the direction information of a sound field. For the

sparse solutions, we can achieve more accurate sound field reproduction by

controlling particle velocity than sound pressure. Furthermore, particle veloc-

ity reflects ITD, therefore, velocity vector is directly related to the localization

predictor for human perception at low frequencies. Particle velocity is also

one of the quantities that determine sound intensity vector (the localization

predictor at high frequencies), which reflects another human localization cue

of interaural level difference (ILD). Therefore, the sparse solution of parti-

cle velocity based expansion is expected to provide an enhanced perceptual

experience for the listener.

We examine the perceptual advantages of the proposed sparse solution of particle

velocity based expansion by experiments in the next section.

5.6 Experimental Verification

In this section, we evaluate the perceptual performance of the proposed method

against the state-of-the-art method in a listening experiment. The experimental

methodology is introduced in detail in Section 5.6.1, and then we present the sta-

tistical results in Section 5.6.2.
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5.6.1 Experimental methodology

To generate the binaural test signals, we construct a virtual experimental environ-

ment, where there is a 4th order receiver located at the origin and a free-field point

source located at (1, 0, 0) m, with respect to the origin. The receiver region is a

spherical region with a radius of 0.042 m. We assume the microphone array works

ideally, and the theoretical pressure coefficients (5.23) can be extracted from the

ideal microphone recording. The parameters of the mixed-source model is the same

as those in Section 5.5.1. We reproduce the sound image for the listener away from

the recording area by extrapolation using the proposed method. The listener faces

positive x-axis, and the listener’s head is aligned vertically with the point source on

the x-y plane. We used the HRTFs of the FABIAN head and torso simulator [189]

from the HUTUBS dataset [190,191]. The source signal is a clip of music with 10 s

duration and its spectrum energy mainly distributes in the frequency band below

8 kHz. We process the signals at a frame size of 4096 with 50% overlap and a 16

kHz sampling frequency. We carry out a MUSHRA [192] experiment to compare

four translation methods, therefore, for a translated position there are a total of

six binaural test signals in this experiment:

• Reference / Hidden reference: The ground truth, which is obtained directly

from filtering the theoretical point source signal with the HRTFs.

• Anchor : Signals of the truncated recording at the origin, which are simulated

using the pressure coefficients up to order N in (5.23). No translation is

processed, but filtered by the HRTFs.

• P-CFS : Signals reconstructed using the closed-form solution of the sound

pressure based expansion, and rendered by the HRTFs.

• V-LSS : Signals reconstructed using the least squares solution of the particle

velocity based expansion, and rendered by the HRTFs.

• P-SS : Signals reconstructed using the sparse solution of the sound pressure

based expansion, and rendered by the HRTFs.

• V-SS : Signals reconstructed using the sparse solution of the particle velocity

based expansion, and rendered by the HRTFs.
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We generate the above binaural test signals at six different translated positions

outside the receiver region using (5.21). All the translated positions are on the x-y

plane, and they are (0, 1, 0) m, (0,−1, 0) m, (0.5, 0.8, 0) m, (0.5,−0.8, 0) m, (1, 1, 0)

m, and (1,−1, 0) m, respectively. 31 subjects with normal hearing are invited to

participate in this listening experiment, and a random set out of the six sets of

test signals is selected for each hearing subject. The test signals are played on a

computer and the hearing subjects need to wear headphones to listen to the test

signals. The experiment includes two tests, and they are the source localization

test and the basic audio quality test, respectively. The order in which the test

signals are played is also random for each test. For the source localization test, the

hearing subjects are asked to score all the test signals against the reference for the

perceived direction of the sound source, whereas the hearing subjects need to score

on the spectral distortions and other audible processing artifacts with respect to

the reference for the basic audio quality test. The score ranges from 0 to 100, and

the reference is preseted to 100. We disqualify the hearing subjects who score the

hidden reference below 90, and their results are removed from the final data set of

scores.

5.6.2 Experimental results

After removing the scores of the disqualified subjects, we collect the scores of 30

subjects in total for the source localization test, and 29 scores for the basic audio

quality test. Box plots showing the results for both tests are given in Fig. 5.11.

On each box, the central short red line indicates the median value, and the edges

of the box are the 25th and 75th percentile of the scores. The extremes of the

whiskers correspond to q3 + 1.5(q3 − q1) and q1 − 1.5(q3 − q1), where q1 and q3

are the 25th and 75th percentile of the scores, respectively. If a score goes beyond

the extremes of the whiskers, it is considered an outlier, indicated by the symbol

+ in the plots. The symbol ∗ denotes the mean value, and the v-shaped notches

refer to the 95% confidence interval. The endpoints of the notches are calculated

by q2 − 1.57(q3 − q1)/
√
Ns and q2 + 1.57(q3 − q1)/

√
Ns, where q2 is the median

value and Ns is the number of the scores. The intervals can be used to compare

the median values. If two intervals do not overlap, their true medians are different
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Figure 5.11: Results of the listening experiment scores for the source localization
test and the basic audio quality test. Each box bounds the 25th and 75th percentile
of the scores with the central red line indicating the median value, and the whiskers
are the outward extension of the 25th and 75th percentile by 1.5 times of the in-
terquartile range. The v-shaped notches represent the 95% confidence intervals.
The symbols + denote the outliers and the symbols ∗ denote the mean values. (a)
Source localization test; (b) Basic audio quality test.

with 95% confidence.

From Fig. 5.11(a), we observe that, for the source localization, the closed-form

solution of the sound pressure based expansion and the least squares solution of

the particle velocity based mixed-source solution have similar mean values and

median values, and their confidence intervals have nearly 100% overlapping. The

sparse solutions of both expansions have a higher mean values and median values.

However, the sparse solution of the particle velocity based expansion has a more

significant improvement in score and more centralized score distribution compared

to the sparse solution of the sound pressure based expansion. Similar results are

shown for the basic audio quality test in Fig. 5.11(b), where no significant difference

is found between the closed-form solution and the least squares solution. For the

sparse solutions, the particle velocity based expansion is still observed to perform

better than the sound pressure based expansion, however, both of which outperform

the closed-form solution and the least squares solution. We also notice that for the

sparse solution of the particle velocity based expansion the scores in the source
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localization test are relatively higher than those in the basic audio quality test.

According to the above experimental results, we conclude that in the percep-

tual criteria of source localization and audio quality the sparse solutions have better

performance than the closed-formed solution and the least squares solution, both

of which have similar performance. In the sparse solutions, the particle velocity

based expansion shows an improvement against the sound pressure based expan-

sion, especially for the source localization. The experimental results are consistent

with the discussions in Section 5.5.3.

5.7 Summary and Contributions

In this chapter, we have proposed a new mixed-source expansion, which exploits

particle velocity to enhance the performance of sound field translation for binaural

reproduction. We provide an itemized list of our contributions:

• We built two different cost functions that optimize spatial particle velocity

vectors. The solutions to the cost functions were introduced.

• The corresponding two solutions for the state-of-the-art expansion based on

sound pressure were also implemented for comparison. The simulation re-

sults showed that the least squares solution of the particle velocity based

expansion is parallel to the closed-form solution of the sound pressure based

expansion, whereas the sparse solution of the particle velocity based expan-

sion can reproduce the sound field over a larger area with less error, and has

more accurate direction reproduction at the translated positions than the

sparse solution of the sound pressure based expansion.

• We conducted MUSHRA experiments to validate the simulation results. The

experimental results proved that for the sparse solution the particle velocity

based expansion can provide greater perception accuracy at the translated po-

sitions on both source localization and audio quality than the sound pressure

based expansion, and the improvement for source localization is particularly

significant.
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Chapter 6

Spatial Sound Field Reproduction

Based on Sound Intensity

In addition to particle velocity, sound intensity can also be controlled to create a

high level of realism to humans in soundfield reproduction systems due to the fact

that sound intensity is closely linked with human perception of sound location. In

this chapter, we present an intensity matching technique to optimally reproduce

sound intensity over a continuous spatial region using an irregular loudspeaker ar-

ray. This avoids several known limitations in the previous works on intensity based

soundfield reproduction, such as a single sweet spot for the listener and a regular

loudspeaker geometry that is difficult to implement in real-world applications. In

contrast to the previous works, the new technique uses a cost function we built to

optimize sound intensity over space by exploiting the spatial sound intensity dis-

tributions we proposed in Section 3.3. The spatial sound intensity distribution is

represented by spherical harmonic coefficients of sound pressure, which are widely

used to describe a spatial soundfield. Compared to the conventional spatial sound-

field reproduction method of pressure matching in the spherical harmonic domain

(i.e., the mode matching) and the HOA max-rE decoding method optimizing sound

intensity at a single position, we show that the intensity matching technique has

better overall performance with two different irregular loudspeaker layouts through

simulations. The impact of microphone noise on reproduction performance is also

assessed. Finally, we carry out perceptual localization experiments to validate the

121
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proposed method.

6.1 Introduction

Since Gerzon developed particle velocity and sound intensity theories of sound local-

ization for reproducing psychoacoustically optimum sound [64], acoustic quantities

containing directivity information, such as particle velocity and sound intensity,

have been controlled in soundfield reproduction systems to improve the perfor-

mance of perceptual localization. In addition to good performance for regularly or

evenly placed loudspeakers [66–69], the particle velocity or sound intensity based

methods also perform well in irregular loudspeaker arrangements [70–74]. In Chap-

ter 4 and Chapter 5, we have also shown the proposed continuous particle velocity

based soundfield reproduction techniques can offer good localization performance,

which in particular proves that particle velocity is an important predictor of per-

ceived source directions. This predictor is based on interaural phase cues and is

most appropriate at frequencies below 700 Hz [64]. The sound intensity (i.e., the

product of the sound pressure and particle velocity) is also a good predictor of lo-

calization perception [146]. It was exploited in the max-rE decoding method [73],

which is to reproduce the energy and acoustic intensity of the desired soundfield,

and psychoacoustically to create the impression of the desired sound, especially for

high frequencies (above 500 Hz). By extending [73], the localization performance

was improved by means of HOA [74]. However, these works are all restricted to

a center position, and therefore perception degrades when the listener is moved

from this exact reproduction position. To overcome this limitation, an Ambison-

ics based energy vector model was proposed [51], where it shows that the method

can provide accurate localization at off-center positions through perceptual experi-

ments. In addition to accurate localization, the improved max-rE model, proposed

by Frank et al. [50], can provide less coloration (i.e., changes in the timbre) at off-

center positions on the horizontal plane. In this chapter, we aim to reproduce the

original sound image over a continuous spatial region by exploiting spatial intensity

distributions.

We have formulated spatial sound intensity in the spherical harmonic domain

in Section 3.3, which means we can represent sound intensity that contains both
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Figure 6.1: Geometry of soundfield reproduction system in this paper. An irregular
array of loudspeakers is located outside the spherical region.

energy and directivity information over continuous spatial regions. Therefore, sim-

ilar to pressure matching in the spherical harmonic domain, intensity matching can

also be realized over continuous space instead of at a single point so that the orig-

inal sound can be perceptually reproduced over a large region for more listeners.

In this work, we reproduce the sound intensity inside a continuous spatial region

by matching sound intensity on the surrounding contour of the region using an

irregular loudspeaker array.

The remainder of this chapter is structured as follows. First we formulate

the reproduction problem in Section 6.2. In Section 6.3, the proposed intensity

matching method is introduced in detail. Section 6.4 demonstrates the accuracy

of the proposed method by comparing it with the pressure matching and the HOA

max-rE decoding through numerical simulations. Perceptual listening test results

are presented in Section 6.5.
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6.2 Problem Formulation

Consider a spherical target region χ of radius R as seen in Fig. 6.1. Let there

be an irregular array of loudspeakers outside of χ, with the `th loudspeaker lo-

cated at x` with respect to the origin O. The free field assumption is made and

diffraction/scattering is assumed to be negligible.

The complex acoustic intensity at any point x in χ can be represented by [193]

I(x, k) = P ∗(x, k)V (x, k), (6.1)

where

I(x, k) = [Ir(x, k), Iθ(x, k), Iφ(x, k)] and V (x, k) = [Vr(x, k), Vθ(x, k), Vφ(x, k)]

are sound intensity and particle velocity vector, respectively, P (x, k) is sound pres-

sure. The real part of I(x, k) is often referred to as the active sound intensity,

which represents the propagating sound energy and shows the direction of prop-

agation at the point in space. The imaginary part of it, on the other hand, is

referred to as the reactive sound intensity, which represents the non-propagating

sound energy [194].

A soundfield in a spherical region is usually characterized by spherical harmonic

coefficients of sound pressure (which can be extracted by using higher order micro-

phones such as an EigenMike) instead of the spatial distribution of sound intensity1.

Given spherical harmonic coefficients of sound pressure for the desired soundfield

{αnm(k)} in the spherical region χ, and an appropriate irregular loudspeaker array

geometry, our objective is to calculate the spatial sound intensity (6.1) in χ and

find the loudspeaker driving signals that can reproduce the desired sound intensity

over the continuous spatial region within χ.

6.3 Loudspeaker Weights Design

We have formulated spatial sound intensity vectors in the spherical harmonic do-

main in Section 3.3. We have shown that the spatial distribution of sound intensity

1The sound intensity can be estimated by measuring the particle velocity over the volume of
interest point by point, which is time-consuming [93].
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can be expressed directly from the spherical harmonic coefficients of sound pressure.

Considering the spherical harmonic coefficients of sound pressure for the desired

soundfield {αnm(k)} are given, we can use the results in Section 3.3 to calculate the

desired sound intensity at any point in χ. According to the results, the components

of desired sound intensity Id(x, k) = [Idr (x, k), Idθ (x, k), Idφ(x, k)] at any arbitrary

x within χ can be decomposed, respectively, as

Idr (x, k) =
P∑
p=0

p∑
q=−p

S(r,d)
pq (k, r)Ypq(θ, φ), (6.2)

Idθ (x, k) =
P∑
p=0

p∑
q=−p

S(θ,d)
pq (k, r)Ypq(θ, φ), (6.3)

Idφ(x, k) =
P∑
p=0

p∑
q=−p

S(φ,d)
pq (k, r)Ypq(θ, φ), (6.4)

where S
(r,d)
pq (k, r), S

(θ,d)
pq (k, r), and S

(φ,d)
pq (k, r) denote spherical harmonic coefficients

of desired sound intensity in r, θ, and φ direction obtained by substituting αnm(k)

into (3.48), (3.49), and (3.50), respectively, P = 2N is the truncation order for

intensity expressions. Note that we select the same truncation order for all the

components of sound intensity for simplicity in this work, at the cost of relatively

more error on the components in θ and φ direction compared to r direction.

The loudspeakers are modeled as point sources, and the spherical harmonic

coefficients of sound pressure due to the `th loudspeaker in free field is given in

(4.6). By replacing αnm(k) with β
(`)
nm(k) in (6.2) and (3.48), we obtain sound

intensity in r direction due to the `th loudspeaker at x as

I(`)
r (x, k) =

P∑
p=0

p∑
q=−p

S(r,`)
pq (k, r)Ypq(θ, φ), (6.5)

where S
(r,`)
pq (k, r) are spherical harmonic coefficients of sound intensity in r direction

due to the `th loudspeaker.

In order to drive loudspeakers, we apply a weight to each loudspeaker. There-
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fore, the total reproduced sound intensity in r direction at x can be written as

Iar (x, k) =
P∑
p=0

p∑
q=−p

NL∑
`=0

|w`(k)|2S(r,`)
pq (k, r)︸ ︷︷ ︸

S
(r,a)
pq (k,r)

Ypq(θ, φ), (6.6)

where NL is the number of loudspeakers. We note that here we assume each

loudspeaker is an independent source, and only time-average quantities (i.e., sound

intensity) from them add up at the listeners’ ears based on the fact that statistically

out-of-phase sound signal summation occurs at the ears due to head diffraction

[146,195].

Similar to (6.6), the reproduced sound intensity in θ and φ directions at x can

be expressed, respectively, as

Iaθ (x, k) =
P∑
p=0

p∑
q=−p

NL∑
`=0

|w`(k)|2S(θ,`)
pq (k, r)︸ ︷︷ ︸

S
(θ,a)
pq (k,r)

Ypq(θ, φ), (6.7)

and

Iaφ(x, k) =
P∑
p=0

p∑
q=−p

NL∑
`=0

|w`(k)|2S(φ,`)
pq (k, r)︸ ︷︷ ︸

S
(φ,a)
pq (k,r)

Ypq(θ, φ). (6.8)

The reproduction problem is now reduced to calculate the loudspeaker driving

signals/weights that can reconstruct the desired sound intensity over the target

region. Inspired by Kirchhoff-Helmholtz integral equation, which shows that the

soundfield inside a region can be controlled by evoking the sound pressure and the

gradient of sound pressure on the surrounding contour of the region, we reproduce

the sound intensity inside a spherical region by controlling the sound intensity

(i.e., the product of sound pressure and its gradient) on the surface of the region2.

Therefore, in this work, the problem is translated into minimizing the difference

2While sound intensity matching on the surface of the target region is inspired by the Kirchhoff-
Helmholtz principle, a formal proof showing that sound intensity matching on the boundary
implies intensity matching within the volume is not currently available, and is a subject of future
work.
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between the desired sound intensity and the reproduced sound intensity on the

surface of the target region. The difference for sound intensity in r direction can

be given as

Er =

∫ 2π

0

∫ 1

−1

∣∣Idr (R, θ, φ, k)− Iar (R, θ, φ, k)
∣∣2 d(cos θ)dφ. (6.9)

Substitute (6.2) and (6.6) into (6.9), we have

Er =
P∑
p=0

p∑
q=−p

P∑
p′=0

p′∑
q′=−p′

[S(r,d)
pq (k,R)− S(r,a)

pq (k,R)]∗[S
(r,d)
p′q′ (k,R)− S(r,a)

p′q′ (k,R)]

×
∫ 2π

0

∫ 1

−1

Ypq(θ, φ)∗Yp′q′(θ, φ)d(cos θ)dφ.

(6.10)

Equation (6.10) can be simplified, by using the orthogonality of spherical harmon-

ics, as

Er =
P∑
p=0

p∑
q=−p

∣∣S(r,d)
pq (k,R)− S(r,a)

pq (k,R)
∣∣2 . (6.11)

Similarly, the difference for sound intensity in θ and φ direction are given, respec-

tively, as

Eθ =
P∑
p=0

p∑
q=−p

∣∣S(θ,d)
pq (k,R)− S(θ,a)

pq (k,R)
∣∣2 , (6.12)

and

Eφ =
P∑
p=0

p∑
q=−p

∣∣S(φ,d)
pq (k,R)− S(φ,a)

pq (k,R)
∣∣2 . (6.13)

A cost function containing all the components is given by

f = crEr + cθEθ + cφEφ, (6.14)

where cr, cθ, and cφ are weighting coefficients. Different values of the weighting

coefficients can be selected if different weights on the components are preferred.

Also, one or two of the weighting coefficients can be set to zero (e.g., if one only

focuses on the radial part of sound intensity, cθ and cφ can be set to zero). To
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minimize the cost function f , the problem can be formulated as

min
W
||SAW − SD||22, s.t.W ≥ 0, (6.15)

where SD = [S(r,d)(k)T ,S(θ,d)(k)T ,S(φ,d)(k)T ]T is a 6(Q+ 1)2 long vector with

S(Ψ,d)(k) =
√
cΨ[Re{S(Ψ,d)

00 (k)}, Im{S(Ψ,d)
00 (k)}, ...,Re{S(Ψ,d)

QQ (k)}, Im{S(Ψ,d)
QQ (k)}]T ,

(6.16)

where Im{·} denotes the imaginary part, W = [|w1(k)|2, |w2(k)|2, ..., |wNL(k)|2]T

is a NL long vector and SA = [S(r,a)(k)T ,S(θ,a)(k)T ,S(φ,a)(k)T ]T is a 6(Q+ 1)2 by

NL matrix with

S(Ψ,a)(k) =
√
cΨ



Re{S(Ψ,1)
00 (k)} · · · Re{S(Ψ,NL)

00 (k)}
Im{S(Ψ,1)

00 (k)} · · · Im{S(Ψ,NL)
00 (k)}

...
. . .

...

Re{S(Ψ,1)
QQ (k)} · · · Re{S(Ψ,NL)

QQ (k)}
Im{S(Ψ,1)

QQ (k)} · · · Im{S(Ψ,NL)
QQ (k)}


. (6.17)

W ≥ 0 means that each component of the vector W should be non-negative. Note

that we deal with the real part and imaginary part of sound intensity separately

as W is a real vector.

In mathematical optimization, this problem is known as non-negative least

squares (NNLS). A widely used algorithm for solving this problem is the active-set

method proposed by Lawson and Hanson in 1974 [196]. Other algorithms such

as Landweber’s gradient descent method [197] and coordinate-wise optimization

method [198] can also be applied to solving this problem. In this work, we solve

(6.15) using Lawson and Hanson’s method in [196]. We note that the weights

obtained from the proposed method is real. To make the system causal and sta-

ble, a minimum-phase filter can be achieved from the real weight using a Hilbert

transformer [199].
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Table 6.1: Loudspeaker positions of the 5 channel system

Loudspeaker No. r [m] θ [deg] φ [deg]
1 1 58.3 288
2 1 58.3 72
3 1 90 342
4 1 90 234
5 1 90 126

6.4 Simulations

The reproduction performance of the intensity matching, the pressure matching and

the HOA max-rE decoding is now evaluated for a simulated free field environment,

where the simulation setup and criteria are explained in Section 6.4.1. Afterward,

a comparison for the intensity matching and the pressure matching is conducted in

Section 6.4.2, and a comparison for the intensity matching and the HOA max-rE

decoding is shown in Section 6.4.3. Finally, it is investigated in Section 6.4.4 how

inherent noise of the microphones, which are required to measure the soundfield in

practice, affects the reproduction performance.

6.4.1 Simulation setup and criteria

The target region is a spherical region χ with radius R = 0.15 m. To evaluate

the overall performance of the proposed method, we simulate two different 3D

loudspeaker layouts. One is composed of 5 separate loudspeakers selected from

a spherical array that exists in our lab (also for the perceptual experiments in

Section 6.5) and their positions are listed in Table 6.1, which is used to evaluate

the performance of the proposed method when there are only a small number of

loudspeakers available. Note that the loudspeaker number of this layout is too

small to cover most of the 3D space, therefore, it may lead to poor reproduction

performance for some incident directions of the desired sound. Another loudspeaker

layout is based on the cylindrical layout of 22.2 channel system, which is same as

the layout we used in Chapter 4. The loudspeaker positions of the 22 channel

system is given in Table 4.1. A 2D sketch for both loudspeaker layouts is given

in Fig. 6.2. The 22-channel system . We assume that the desired soundfield is a
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(a) (b)

Figure 6.2: 2D sketch of (a) the 5 channel system layout and (b) the 22 channel
system layout.

monochromatic plane wave. The spherical harmonic coefficients of sound pressure

for the desired soundfield can be expressed by (2.19)

αnm = 4π(−i)nY ∗nm(θd, φd), (6.18)

where (θd, φd) is the incident direction of the plane wave. Sound speed c is 343

m/s and air density is 1.29 kg/m3. We set weighting coefficients cr = cθ = cφ = 1.

As discussed in Section 6.2, the active sound intensity represents the propagating

sound energy and shows the propagation energy, therefore, we only evaluate the

real part of the complex acoustic intensity in the following simulations.

As the first objective performance measure for the reproduction methods, the

relative error ε of sound intensity is evaluated

ε(k) = 10 log10


∑
∀x̂

∣∣Re{IdΨ(x̂, k)− IaΨ(x̂, k)}
∣∣2∑

∀x̂

∣∣Re{IdΨ(x̂, k)}
∣∣2

 (dB), (6.19)



6.4 Simulations 131

0 1 2 3
Elevation(rad)

0

1

2

3

4

5

6
A

zi
m

ut
h(

ra
d)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
10-3

(a)

0 1 2 3
Elevation(rad)

0

1

2

3

4

5

6

A
zi

m
ut

h(
ra

d)

-2

-1.5

-1

-0.5

0

0.5

1

10-3

(b)

0 1 2 3
Elevation(rad)

0

1

2

3

4

5

6

A
zi

m
ut

h(
ra

d)

-1.5

-1

-0.5

0

0.5

1

1.5
10-3

(c)

Figure 6.3: Desired sound intensity in (a) r direction, (b) θ direction, and (c) φ
direction induced by a plane wave with frequency of 900 Hz.

where x̂ denotes the evaluated point. To reproduce a soundfield with a realistic

perception of the sound, it requires to ensure the reproduction of the direction of

the sound. Therefore, the intensity direction error η is also defined to show the

difference in angles between two vectors

η(x̂, k) = cos−1(DOT)/π × 100(%), (6.20)

where

DOT =
Re{Ia(x̂, k)}
‖ Re{Ia(x̂, k)} ‖2

· Re{Id(x̂, k)}
‖ Re{Id(x̂, k)} ‖2

, (6.21)

with the desired intensity vector Id(x̂, k) = [Idr (x̂, k), Idθ (x̂, k), Idφ(x̂, k)] and the

reproduced intensity vector Ia(x̂, k) = [Iar (x̂, k), Iaθ (x̂, k), Iaφ(x̂, k)], respectively, at

x̂.

The following simulations study the performance of the proposed method, in

terms of the reconstructed sound intensity, incident direction of the desired sound,

frequency and reproduced sound direction. A plane wave with frequency of 900 Hz

from (2π/9, 5π/3) is the desired soundfield throughout the simulations, except the

evaluation in terms of the incident direction and frequency.
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Figure 6.4: Reconstructed sound intensity in (a, d) r direction, (b, e) θ direction,
and (c, f) φ direction controlled by (a-c) the proposed method, and (d-f) the
pressure matching method in case of the 5 channel system. The source frequency
is 900 Hz.

6.4.2 Performance comparison for the intensity matching

and the pressure matching

Reproduced sound intensity

We first evaluate the reproduction of sound intensity on the surface of the target

region. Figures 6.3(a), 6.3(b), and 6.3(c) show the desired sound intensity in r,

θ, and φ direction due to the plane wave, respectively. Figure 6.4 and Fig. 6.5

show the reconstructed sound intensity controlled by the intensity matching and

the pressure matching using the 5 and 22 channel systems, respectively. Observe
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Figure 6.5: Reconstructed sound intensity in (a, d) r direction, (b, e) θ direction,
and (c, f) φ direction controlled by (a-c) the proposed method, and (d-f) the
pressure matching method in case of the 22 channel system. The source frequency
is 900 Hz.

that, for the 5 channel system, the proposed method has much better performance

than the pressure matching on the surface of the target region. As the number of

channels increases, both of the methods perform better. However, the reconstructed

sound intensity using the proposed method is still closer to the desired intensity

than the pressure matching. The relative error on different spherical surfaces within

the target region, which is calculated by (6.19), is also analyzed. The results are

given in Fig. 6.6. For the 5 channel system, the relative error of the pressure

matching for all the components of sound intensity is around -5 dB in the target

region, which is much larger than that of the intensity matching. That is because

the matrix β in (2.44) for the 5 channel system is ill-conditioned. However, in



134 Spatial Sound Field Reproduction Based on Sound Intensity

0.05 0.1 0.15
Radius(m)

-60

-50

-40

-30

-20

-10

0

10

R
el

at
iv

e 
E

rr
or

(d
B

)

I
r
 (PM)

I  (PM)

I  (PM)

I
r
 (IM)

I  (IM)

I  (IM)

(a)

0.05 0.1 0.15
Radius(m)

-60

-50

-40

-30

-20

-10

0

10

R
el

at
iv

e 
E

rr
or

(d
B

)

I
r
 (PM)

I  (PM)

I  (PM)

I
r
 (IM)

I  (IM)

I  (IM)

(b)

Figure 6.6: Relative error with respect to the radius for (a) the 5 channel system
and (b) the 22 channel system controlled by the intensity matching (IM) and the
pressure matching (PM). The source frequency is 900 Hz.

this case, the intensity matching can provide a relatively accurate sound intensity

reproduction with the error no more than -10 dB within the target region. When

more channels are available, the pressure matching performs better and the relative

error for the whole region is around -10 dB. Meanwhile, the performance of the

intensity matching is also improved, and the relative error is below -25 dB within the

target region. We note that, for both the 5 and 22 channel systems, the performance

degrades as the radius increases because the active modes of spherical harmonics

also increase when the radius increases. In this work, the system truncation limit

is determined by the radius of the target region and the signal frequency, therefore,

the error on the surrounding contour is larger than that on the spherical surface

inside the region due to the property of spherical Bessel function.

Incident direction of the desired sound

To investigate the influence on the performance of the two methods for different

incident directions of the desired soundfield, we consider all the incident directions

on the plane z = 0 (i.e., θd = π/2, and φd is from 0 to 2π). We choose the plane with

the maximum error (R = 0.15 m) as the observation sphere. Polar plots showing

the relative error are given in Fig. 6.7, where symbol � denotes the loudspeakers
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Figure 6.7: Relative error on the surface of the target region with respect to the
incident directions for (a) the 5 channel system and (b) the 22 channel system
controlled by IM and PM. Symbol � denotes the loudspeakers placed on the plane
z = 0. The source frequency is 900 Hz.
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Figure 6.8: Relative error on the surface of the target region with respect to the
frequency for (a) the 5 channel system and (b) the 22 channel system controlled
by IM and PM.

placed on the plane z = 0. From Fig. 6.7, it shows that the intensity matching

and the pressure matching have similar performance when the incident direction

is coincident with the location of one of the loudspeakers. Except for this case,
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the intensity matching performs better than the pressure matching at any other

evaluated incident directions for both the loudspeaker layouts. An improvement of

about 10 dB is obtained when the number of loudspeakers is increased from 5 to

22. We note that it has relatively better performance for the directions where there

are more loudspeakers for both the methods. For example, in Fig. 6.7(b), there are

more loudspeakers located at the positions with φd from 0◦ to 60◦ and from 300◦

to 360◦, therefore, there is less error for the plane waves from these two direction

intervals on plane z = 0. An irregular loudspeaker array cannot well cover all the

incident directions, which leads to relatively poor performance for the directions

at which there are few loudspeakers. Moreover, the relative error of the pressure

matching decreases sharply when the incident direction changes to be coincident

with a loudspeaker location. For the intensity matching, it changes more smoothly,

which can avoid the sudden deterioration of reproduction performance when the

desired incident direction changes. Note that the patterns shown in Fig. 6.7 are

dependent of the loudspeaker layouts.

Frequency

Figure 6.8 shows the relative error with respect to the change of frequency. The

intensity matching is still better than the pressure matching within the frequency

range evaluated for both the loudspeaker layouts. For the pressure matching, the

system is either over-determined or under-determined in the loudspeaker arrange-

ments discussed in this work, which causes more error on the reproduction of sound

intensity. However, the intensity matching optimizes the sound intensity directly

using a cost function, which shows a better performance. Within a particular trun-

cation limit N , similar to the increase of the radius, the relative error also increases

as the signal frequency increases because of the property of spherical Bessel func-

tion. When the frequency increases to a value that makes the truncation limit

become N + 1, the relative error decreases compared to the error at the last fre-

quency value, which makes the curves for the intensity matching sawtooth-shaped

in Fig. 6.8. Also, the 22 channel system provides much less reproduction error

in a larger frequency range than the 5 channel system, which indicates that we

can achieve a small reproduction error in a large frequency range by increasing the
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Figure 6.9: The intensity direction error of (a,c) the 5 channel system and (b,d)
the 22 channel system on plane z = 0 controlled by (a-b) IM and (c-d) PM. Black
circles denote the target region. The source frequency is 900 Hz.

number of loudspeakers.
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Intensity direction

The discussion above has shown that all the components of sound intensity can be

reproduced with limited error using the intensity matching. However, it is clear that

if we are concerned to create a realistic perception of the original sound, it requires

to ensure the reproduction of the direction of travel of the sound. Therefore, we

calculate the intensity direction error on plane z = 0 using (6.20), which is shown

in Fig. 6.9. The black circles denote the target region on plane z = 0. For the

5 channel system, the intensity direction error of the pressure matching is more

than 10% for the whole region, whereas it is only approximately 5% within the

target region for the intensity matching. When the number of channels increases

to 22, the intensity direction error of the pressure matching is decreased to less than

10%, and the performance of the intensity matching also becomes better, with the

error around 2%. It also shows that the intensity direction error inside the target

region is less than that on the surrounding contour of the region for the intensity

matching, which is consistent with the result of the relative error with respect to

the radius.

6.4.3 Performance comparison for the intensity matching

and the HOA max-rE decoding

We also compare the proposed method with the HOA max-rE decoding [73, 74],

which optimizes the energy and acoustic intensity at the origin. In the HOA max-

rE decoding, the driving signals fed to loudspeakers are given as

G = Dα, (6.22)

where D is the decoding matrix. The max-rE decoding also assumes incoherent

superposition of loudspeaker signals, and the loudspeakers are assumed as points

sources. Therefore, the signal energy at the origin is given as

E =

NL∑
i=1

|wi|2

(4πdi)2
, (6.23)
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Figure 6.10: Reconstructed sound intensity in (a, d) r direction, (b, e) θ direction,
and (c, f) φ direction controlled by the HOA max-rE decoding in case of (a-c) the
5 channel system, and (d-f) the 22 channel system. The source frequency is 900
Hz.

where di is the distance from the ith loudspeaker to the origin. The normalized

sound intensity at the origin can be written as

I =
1

E

NL∑
i=1

|wi|2

(4πdi)2
ûi

= rEv̂E,

(6.24)

where ûi is the unit vector corresponding to the position of the ith loudspeaker,

v̂E is the unit vector representing the direction of the reproduced sound. This

decoding is to maximize the value of rE with the condition that the direction of

the reproduced sound is the direction of the desired sound. The cost function in [73]
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is used, without the energy and in-phase components,

f = (1− I · v̂j)2 + (||I × v̂j||)2, (6.25)

where v̂j is the unit vector representing the direction of the desired sound. We

note that (6.25) is independent of frequency. This non-linear problem is solved by

simulated annealing [73], which is a probabilistic technique, inspired from annealing

in metallurgy, for approximating the global optimum of a given function.

Reproduced sound intensity

We also first evaluate the reproduction of sound intensity on the surface of the

region. Fig. 6.10 shows the reconstructed sound intensity controlled by the HOA

max-rE decoding for the 5 channel loudspeaker layout and the 22 channel loud-

speaker layout, respectively. It shows that the intensity matching has better per-

formance than the HOA max-rE decoding for both loudspeaker geometries, by

comparing the results with the reconstructed sound intensity controlled by the

intensity matching. The relative error of sound intensity on different spherical sur-

faces within the target region is given in Fig. 6.11. We notice that the performance

of the HOA max-rE decoding is also worse than that of the intensity matching,

although it is slightly better than the pressure matching.

Incident direction of the desired sound

The same incident directions as in Section 6.4.2 are evaluated for the HOA max-

rE decoding, also compared with the intensity matching. The results are given in

Fig. 6.12. In the 5 channel system, the intensity matching is approximately 10 dB

better than the HOA max-rE decoding for the evaluated incident directions. When

the number of loudspeaker increases to 22, the performance of the HOA max-rE

decoding also becomes better, however, it is not as good as the intensity matching.

Different from the pressure matching, the HOA max-rE decoding does not have

a significant improvement for the incident directions that are coincident with the

location of one of the loudspeakers compared to other incident directions. The HOA

max-rE decoding has better performance than the pressure matching for most of
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Figure 6.11: Relative error with respect to the radius for (a) the 5 channel system
and (b) the 22 channel system controlled by the intensity matching (IM) and the
HOA max-rE decoding (rE). The source frequency is 900 Hz.
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Figure 6.12: Relative error on the surface of the target region with respect to the
incident directions for (a) the 5 channel system and (b) the 22 channel system
controlled by IM and rE. Symbol � denotes the loudspeakers placed on the plane
z = 0. The source frequency is 900 Hz.

the non-coincident directions. In terms of the smoothness of the error curves, the

intensity matching also performs better than the HOA max-rE decoding.
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Figure 6.13: The intensity direction error of (a) the 5 channel system and (b) the
22 channel system on plane z = 0 controlled by the HOA max-rE decoding. Black
circles denote the target region. The source frequency is 900 Hz.

Intensity direction

Intensity direction error of the HOA max-rE decoding is also calculated for both

loudspeaker layouts, which is shown in Fig. 6.13. We compare the results with

the intensity direction error of the intensity matching and the pressure matching

correspondingly. For both loudspeaker geometries, the intensity matching is much

better than the HOA max-rE decoding. It is important to note that the perfor-

mance of the HOA max-rE decoding is similar to the performance of the pressure

matching for the 5 channel system. However, the HOA max-rE decoding is better

than the pressure matching for the 22 channel system.

6.4.4 Robustness analysis to microphone noise

All above simulations are based on theoretical spherical harmonic coefficients of

sound pressure of the desired soundfield. In practice, however, we calculate the

coefficients based on sound pressure measured by a microphone array, which may

introduce noise. To simulate this process, a spherical microphone array is consid-
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Figure 6.14: Averaged relative error across the entire target region with respect
to SNR for (a) the 5 channel system and (b) the 22 channel system. The source
frequency is 900 Hz.

ered and a WGN with different SNR is added at each microphone. The truncation

limit is N = 4 for this case. Theoretically, a fourth order system should only re-

quire (N+1)2 = 25 microphones on the surface of the target region. More accurate

results are obtained, however, if more microphones are used. Therefore, we use a

total of (N + 2)2 = 36 microphones placed on the surface of the 0.15 m sphere at

location determined by [118]. The noisy pressure coefficients can be calculated by

α̂nm(k) =
1

jn(kR)

NM∑
nM=1

P̂ (rM , θM , φM , k)Y ∗nm(θM , φM), (6.26)

where P̂ (rM , θM , φM , k) is the sound pressure measured at the M th microphone,

and NM = 36 is the number of microphones. We first assess the proposed method

by varying the SNR. The relative error is averaged across the entire target region

and the results for both loudspeaker layouts are shown in Fig. 6.14. We note that

the averaged relative error is less than -10 dB for both loudspeaker layouts even

though the SNR is as low as 10 dB, and the average relative error decreases as the

SNR increases. To compare the performance on different observation sphere for the

noiseless and noisy conditions, we calculate the relative error by adding a WGN

with SNR of 30 dB to the microphones. The results are given in Fig. 6.15. For the
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Figure 6.15: Relative error with respect to the radius for (a) the 5 channel system
and (b) the 22 channel system under the noiseless and noisy conditions. The source
frequency is 900 Hz.

5 channel system, the curves for the noiseless and noisy cases are nearly coincided

with each other, which means 30 dB WGN has little influence on it. For the 22

channel system, there is 5 dB deterioration near the center of the region for all the

components of sound intensity when noise is introduced, however, the deterioration

becomes less as the radius of the observation sphere increases. We also calculate

the intensity direction error, which is shown in Fig. 6.16. By comparing them

with Fig. 6.9(a) and Fig. 6.9(b), we observe that the intensity direction error does

not change a lot when the noise with SNR of 30 dB exists. These results indicate

that microphone noise is not a severe problem for the proposed method in practice.

Note that the proposed method does not work any more if the energy of the noise

is high enough (e.g., 0 dB) to ruin the pressure measurements.

6.5 Perceptual Localization Experiments

The 5 channel system is built for perceptual experiments in this section. Section

6.4 has shown the HOA max-rE decoding has similar performance to the pressure

matching in the 5 channel system, therefore, we only assess the error between the

actual directions and the perceived directions of sound sources as rendered by the

intensity matching and the pressure matching in the experiments.
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Figure 6.16: The intensity direction error of (a) the 5 channel system and (b) the
22 channels when noise exists. The source frequency is 900 Hz.

Figure 6.17: Experimental setup for the 5 channel system.

Table 6.2: The locations of three desired sound sources
Label r [m] θ [deg] φ [deg]

R1 3 90 60
R2 3 90 126
R3 3 90 306
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Table 6.3: CMOS scale
The direction of A compared to that of B is Score
much (more than 50◦) closer to the reference 3

(more than 30◦) closer to the reference 2
slightly (more than 10◦) closer to the reference 1

(less than or equal to 10◦) about the same 0
slightly (more than 10◦) further to the reference -1

(more than 30◦) further to the reference -2
much (more than 50◦) further to the reference -3

6.5.1 Experimental setup and criteria

The 5 channel system in Table 6.1 is built from a spherical loudspeaker array as

shown in Fig 6.17, where only the five loudspeakers (circled and marked from L1

to L5) are activated and all the other loudspeakers are turned off. These five

loudspeakers are used to play back stimuli generated by the intensity matching

method and the pressure matching method. The center of the spherical array is

set as the origin, and the direction where the listening subject faces is the positive

x axis. The target region χ is a spherical region centered by the origin with radius

of R = 0.15 m, which is large enough to fit a human head. There are another three

loudspeakers (marked from R1 to R3) located outside of the spherical array, whose

position is given in Table 6.2. They serve as the desired sound sources/reference

sources. All the loudspeakers are calibrated to produce the same sound pressure

level within an error of ±1 dB. Sound absorbing materials are used in walls, floor

and ceiling to reduce reflection. Diffraction/scattering is assumed to be negligible.

This experiment is composed of three blind listening tests. For each test, the test

samples consist of A, B and a reference, where the reference is the actual sound

signal from the reference sources, and A and B are reproduced by the 5 channel

system using the intensity matching method and the pressure matching method,

respectively. The hearing subjects do not have the knowledge of which method

produces A, B, or the reference, and the hearing subjects are instructed to put

their heads at the center and face the positive x direction. During the period when

the test samples are presented, the hearing subjects are allowed to slightly move

their heads from the center. In each test, the hearing subjects are required to
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listen to all of the three test samples, and are given 10 s to record their perceived

directions for each test sample from 72 angles ((θ,φ)=(90◦, 5◦ × (n − 1)), where

n = 1, ..., 72) on a provided answer sheet after listening to the samples. Note that

all the reference sources here are placed on the horizontal plane and therefore the

hearing subjects are only required to record the azimuth angles to facilitate the

implementation of the experiment. Each test sample is played twice, and there is a

2 s of pause between every two samples. A clean speech of 5 s duration is used as a

source signal and the sample rate adopted is 48 kHz for signal inputs to all of the

loudspeakers. The reference is used not only to compare with A and B, but also to

identify an outlier within a data set (i.e., if the reference direction that a hearing

subject perceives greatly deviates from its actual direction, the result from this

subject is removed from the data set). To straightforwardly show the preferences

(between A and B) of the hearing subjects, we compare the perceived directions of

A and B with the perceived direction of the reference, respectively, and evaluate

the performance using Comparison Mean Opinion Score (CMOS). The score has 7

levels, which is shown in Table 6.3. The positive scores indicate that A is preferred,

whereas the negative scores indicate that B is preferred. For the positive scores, the

higher the CMOS score is, the better the intensity matching is versus the pressure

matching, and vice versa.

6.5.2 Experimental results

17 subjects with normal hearing are recruited to participate in the listening tests.

A valid data set containing 15 subjects is obtained after the outliers are removed.

Figure 6.18 shows 10-90 percentile ranks that are described by lines for different de-

sired sound sources. The symbols (© and �) on the lines indicate the 50 percentile

rank or median value. The red lines with © represent the subjective results of the

intensity matching method, whereas the blue lines with � represent the subjective

results of the pressure matching method. The percentile rank is used when there is

a relatively small number of subjects because it does not consider any predefined

distribution of the sample data set, which is regarded as a more representative ex-

pression [71]. As shown in Fig. 6.18(a), the test result controlled by the intensity

matching shows much closer localization performance in terms of median value,
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Figure 6.18: Results of the perceptual localization experiments in the case of the
5 channel system controlled by the intensity matching (red lines with ©) and the
pressure matching (blue lines with �) for desired sound source (a) R1, (b) R2, and
(c) R3. The symbols + denote the source positions and the symbols × denote the
loudspeakers on the plane z = 0 of the 5 channel system.
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Figure 6.19: CMOS scores for the three desired sources with 95% confidence inter-
vals.

although with slightly larger variations indicated by the angular range of the curve

than the pressure matching when the desired sound source is located at position

R1. In the case of desired source R2 in Fig. 6.18(b), which is coincident with

the location of one of the loudspeakers in the 5 channel system, both the intensity

matching and the pressure matching have good localization performance, which is

consistent with the simulation results in Section 6.4.2. For desired source R3 in
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Fig. 6.18(c), the intensity matching provides more accurate localization perfor-

mance with smaller variations than the pressure matching. Results in Fig. 6.18

also indicate that the proposed method can reproduce a strong direction perception

of the desired sound in the case of there only being a small number of loudspeakers

available.

We also calculate the CMOS scores for each desired source according to Table

6.3. The CMOS scores with 95% confidence intervals are given in Fig. 6.19. A

95% confidence interval is a range of values that you can be 95% certain contains

the true mean of the population. The average score for desired source R2 is -

0.07, which means the direction reproduced by the intensity matching is about

the same compared to that reproduced by the pressure matching. The average

scores for desired sources R1 and R3 are 2.2 and 1.87, respectively, which means

the intensity matching can reproduce a better original sound image compared to

the pressure matching when the direction of desired sound is not coincident with

the location of one of the loudspeakers for reproduction.

6.6 Summary and Contributions

In this chapter, we have studied the intensity matching technique for spatial sound-

field reproduction using an irregular loudspeaker array. The proposed method has

an edge over the previous reproduction methods in the following aspects: i) a

continuous listening area over space, ii) flexibility of the spatial loudspeaker ar-

rangement, iii) a good human perception of sound localization. We provide an

itemized list of our contributions:

• We used the theory of spatial sound intensity vector and reproduced the

soundfield inside the target region by controlling the sound intensity vectors

on the surrounding contour of the region.

• The intensity matching, as well as the pressure matching and the HOA max-

rE decoding, has been implemented in two loudspeaker arrangements, respec-

tively, consisting of 5 and 22 non-uniformly placed loudspeakers in numerical

simulations. The simulation results showed that the proposed method can
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reproduce all the components of sound intensity and the direction of the de-

sired sound inside the target region with less error than the pressure matching

method and the HOA max-rE decoding method. It was also proved that the

proposed method has good robustness to microphone noise.

• We conducted the perceptual localization experiments with the 5 channel

system. The results suggested that the proposed method can reproduce a

better original sound image compared to the pressure matching with a small

number of loudspeakers.

6.7 Related Publications

Much of this chapter’s work has been published in the following journal paper.

• H. Zuo, P. N. Samarasinghe, and T. D. Abhayapala, “Intensity based spatial

soundfield reproduction using an irregular loudspeaker array,” IEEE/ACM

Transactions on Audio, Speech and Language Processing (TASLP), vol. 28,

pp. 1356–1369, 2020.



Chapter 7

Intensity Based Sound Field

Reproduction over Multiple

Spatial Zones

In the previous chapter, we proposed a spatial sound field reproduction technique

based on intensity matching. However, this technique only focuses on a single

reproduction zone. This chapter addresses this limitation and extends intensity

matching to multizone sound field reproduction. We first propose a method to

optimally match the desired sound intensity at multiple sweet spots (i.e., mul-

tiple points) in space. We then propose to reproduce sound field over multiple

spatial zones by matching the spherical harmonic coefficients of sound intensity

within the zones. Both the proposed methods are evaluated by multiple simula-

tions/experiments using a non-uniform loudspeaker array.

7.1 Introduction

Spatial multizone soundfield reproduction aims to reproduce desired soundfields

over multiple spatial regions, which has various applications such as simultaneous

entertainment systems in cars and personal audio systems in shared office spaces.

To achieve such personal sound zones, the multizone reproduction was firstly for-

mulated as creating a bright zone and a dark zone by maximizing the ratio of energy

151
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in the two zones, which is known as the acoustic contrast control method [200–202].

Since then, different approaches based on the acoustic contrast control have been

proposed, including the pressure matching approach [46,203–205], and the modal-

domain approach [26, 27, 206, 207]. Besides of creating such two kinds of sound

zones (i.e., the bright zone and dark zone), the generation of two zones of silence

was investigated in [208]. In [25], the authors recreated two active sound zones

by translating the local soundfields to an equivalent global soundfield and then

reconstructing the equivalent soundfield using mode matching approach. However,

these works are based on sound pressure optimization, which is not directly linked

with human perception. This may lead to perception degradation when there are

only a limited number of non-uniformly distributed loudspeakers [71].

As we reviewed in Section 6.1, sound intensity has been controlled to improve

reproduction performance in the perspective of perception, and the intensity based

reproduction methods can provide good localization perception in spatially non-

uniform loudspeaker arrangements [50,73,74]. However, these intensity based works

are all restricted to a single reproduction position, and therefore perception de-

grades when listeners are moved from this exact reproduction position. In Chapter

6, we have proposed an intensity matching technique to optimally reproduce sound

intensity over a continuous spatial region using a non-uniformly placed loudspeaker

array, which allows listeners to freely move over the region with good perception.

In this chapter, we extend the intensity matching technique to multiple sweet

spots/spatial zones. We first consider a practical reproduction system that is mod-

eled to reproduce the desired soundfield at multiple sweet spots by driving an

irregular loudspeaker array (e.g., in cinemas, we only need to create a good sound

perception at seat positions rather than the whole region, and it is easier to imple-

ment if the loudspeaker array can be irregular). It is important to note that these

sweet spots can be arbitrarily located in a predefined spatial region. We optimize

the sound intensity at the sweet spots and compare this technique with the pressure

and velocity matching through numerical simulations and perceptual experiments.

We then consider a spatial multizone reproduction system in a reverberant room.

The aim is to psychoacoustically create the impression of the desired sound in each

spatial zone by controlling sound intensity within the zone. We derive sound inten-

sity expressions in a reverberant room and formulate the multizone reproduction
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as an optimization problem based on sound intensity. We compare the proposed

method with the conventional multizone reproduction method of mode matching in

a spatially non-uniform loudspeaker arrangement through numerical simulations.

The remainder of this chapter is organised as follows. Section 7.2 introduces the

problem and develops an intensity matching technique for sound field reproduction

over multiple sweet spots. The problem is redefined for multiple spatial zones in a

reverberant room in Section 7.3 and a new intensity matching technique is proposed

by optimizing the spherical harmonic coefficients of sound intensity. Both the

techniques are scrutinised under different acoustic environments and the evaluation

results are presented in Section 7.4.

7.2 Sound Field Reproduction over Multiple Sweet

Spots

7.2.1 Problem formulation

Consider a set of distinct sweet spots, located at xb = (rb, θb, φb) for the bth sweet

spot, within a spherical region χ of radius R as seen in Fig. 7.1. Note that the

sweet spots can be arbitrarily chosen within χ. Let there be an irregular array of

loudspeakers with the `th loudspeaker located at x` = (r`, θ`, φ`) outside of χ. The

free field assumption is made and scattering is assumed to be negligible.

The complex acoustic intensity at any point x = (r, θ, φ) in χ can be represented

by (6.1). Given spherical harmonic coefficients of sound pressure for the desired

soundfield {αnm(k)} in the spherical region χ, the number of arbitrary sweet spots

NP from χ, and an appropriate irregular loudspeaker array geometry, our objective

is to calculate the spatial sound intensity (6.1) in χ and find the loudspeaker driving

signals that reproduce the desired sound intensity at the sweet spots in the region.

7.2.2 Multiple sweet spots reproduction algorithm

This subsection introduces the algorithm for multiple sweet spots reproduction.

We model each sweet spot as a point and optimize sound intensity at the target

points.
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Figure 7.1: Geometry of soundfield reproduction system in this paper. The sweet
spots are arbitrarily chosen within the spherical region of radius R. An irregular
array of loudspeakers is located outside the spherical region.

Representations of desired and reproduced sound intensity

According to Section 6.3 in Chapter 6, the components of desired sound intensity

Id(x, k) = [Idr (x, k), Idθ (x, k), Idφ(x, k)] at any arbitrary x within χ can be written

as (6.2), (6.3), and (6.4), respectively. Assuming that the loudspeakers in the

reproduction system are point sources, sound intensity in r direction due to the `th

loudspeaker at x can also be expressed by (6.5).

In order to drive loudspeakers, we apply a weight to each loudspeaker. There-

fore, the reproduced sound intensity in r direction at x can be written as

Iar (x, k) =

NL∑
`=0

|w`(k)|2I(`)
r (x, k), (7.1)

where w`(k) is the weight applying to the `th loudspeaker and NL is the number of

loudspeakers. Here we also assume incoherent superposition of loudspeaker signals,

similar to max-rE decoding method in [73] and [74], which is used to reproduce the



7.2 Sound Field Reproduction over Multiple Sweet Spots 155

energy and acoustic intensity of the desired soundfield, and psychoacoustically to

create the impression of the desired sound, especially for high frequencies (above

500 Hz).

Similar to (7.1), the reproduced sound intensity in θ and φ directions at x can

be expressed, respectively, as

Iaθ (x, k) =

NL∑
`=0

|w`(k)|2I(`)
θ (x, k), (7.2)

Iaφ(x, k) =

NL∑
`=0

|w`(k)|2I(`)
φ (x, k). (7.3)

Therefore, the reproduced intensity vector is Ia(x, k) = [Iar (x, k), Iaθ (x, k), Iaφ(x, k)].

Loudspeaker weights design

Given the desired soundfield, the reproduction problem is now reduced to calculate

the loudspeaker driving signals/weights that can reconstruct the original sound

intensity at all sweet spots. Pressure based least squares method [209] is a common

approach to calculate loudspeaker weights in a soundfield reproduction system.

However, for irregular loudspeaker arrays, this method may lead to errors, which

is detrimental to the perception of the location of the source. In order to overcome

this limitation, an alternative version of the least squares, the intensity matching

technique, is given, which is based on the quantity of sound intensity closely linked

with human perception of sound localization [64].

We equate the desired sound intensity to the reproduced sound intensity at the

sweet spots to design the loudspeaker weights, i.e.,

Id(xb, k) = Ia(xb, k), b = 1, 2, ..., NP , (7.4)

where Id(xb, k)=[Idr (xb, k), Idθ (xb, k), Idφ(xb, k)] and Ia(xb, k) = [Iar (xb, k), Iaθ (xb, k),

Iaφ(xb, k)]. This can be expressed in matrix form as

ID = IAW , (7.5)
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where ID = [Idr(k)T , Idθ(k)T , Idφ(k)T ]T is a 6NP long vector with

IdΨ(k) = [Re{IdΨ(x1, k)}, Im{IdΨ(x1, k)}, ...,Re{IdΨ(xNP , k)}, Im{IdΨ(xNP , k)}]T ,
(7.6)

where W = [|w1(k)|2, |w2(k)|2, ..., |wNL(k)|2]T is a NL long vector and

IA = [Iar(k)T , Iaθ(k)T , Iaφ(k)T ]T is a 6NP by NL matrix with

IaΨ(k) =



Re{I(1)
Ψ (x1, k)} · · · Re{I(NL)

Ψ (x1, k)}
Im{I(1)

Ψ (x1, k)} · · · Im{I(NL)
Ψ (x1, k)}

...
. . .

...

Re{I(1)
Ψ (xNP , k)} · · · Re{I(NL)

Ψ (xNP , k)}
Im{I(1)

Ψ (xNP , k)} · · · Im{I(NL)
Ψ (xNP , k)}


. (7.7)

To minimize the difference between the desired sound intensity and the repro-

duced sound intensity, the problem is formulated as

min
W
||IAW − ID||22, s.t.W ≥ 0. (7.8)

A technique for solving this problem is known as NNLS [196].

7.3 Spatial Multizone Reproduction in a Rever-

berant Room

7.3.1 Problem Formulation

We assume that there are a set of distinct 3D spherical zones in a reverberant room

and corresponding desired spatial soundfields. As shown in Fig. 7.2, the radius

and the origin of the bth spherical zone are denoted as Rb and Ob, respectively,

where Ob is located at the spherical coordinate (r
(b)
o , θ

(b)
o , φ

(b)
o ) with respect to the

global origin O. Any arbitrary observation point within this bth spherical zone is

denoted as xb = (rb, θb, φb) with respect to the corresponding local origin Ob. The

loudspeakers are placed outside of a sphere with radius of Rmax from O in the room,

where Rmax is the maximum value of r
(b)
o +rb for all the zones (i.e., the loudspeaker
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Figure 7.2: Geometry of the multizone reproduction system in this work. The
loudspeaker array surrounds the zones.

array encompasses all the spherical zones). The location of the `th loudspeaker is

denoted as x` = (r`, θ`, φ`) with respect to O.

Given the desired spatial soundfield {α(b)
nm(k)}, where α

(b)
nm(k) are desired pres-

sure coefficients, for the bth spherical zone, the components of desired sound inten-

sity Id(xb, k) = [Idr (xb, k), Idθ (xb, k), Idφ(xb, k)] at any arbitrary xb within the zone

can be written, according to (3.55), as

IdΨ(xb, k)=
P∑
p=0

p∑
q=−p

S(Ψ,d)
pq (k, rb)Ypq(θb, φb). (7.9)

The desired sound intensity distributions of all the spatial zones are available

in the form of (7.9). Our objective is to design the driving functions for a loud-

speaker array that will simultaneously reproduce all of those intensity distributions

in multiple zones.

7.3.2 Multizone reproduction algorithm for a reverberant

room

This subsection considers multizone sound field reproduction in a reverberant room.

We describe the sound intensity distributions using the theory of spatial sound

intensity vectors and optimize the distribution in the target zones.
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Representations of reproduced sound intensity

In a reverberant room, reflections should be taken into consideration in addition to

the direct path. We first present the point-to-region transfer function in this case,

which incorporates both the direct path and reflections.

With respect to Ob, the acoustic transfer function of the `th loudspeaker to xb,

H`(xb, k), can be expressed by the spherical harmonic decomposition as

H`(xb, k) =
N∑
n=0

n∑
m=−n

β(`,b)
nm (k)jn(krb)Ynm(θb, φb), (7.10)

where β
(`,b)
nm (k) are the sound field coefficients of the acoustic transfer function of

the `th loudspeaker to the bth zone. Note that the position of the `th loudspeaker is

x` −Ob with respect to Ob. We also call (7.10) point-to-region transfer function,

because the acoustic transfer function of the `th loudspeaker to any point in the bth

zone is readily available if β
(`,b)
nm (k) are known.

We simulate β
(`,b)
nm (k) using the spherical harmonics based generalized image

source method. We assume all the loudspeakers as omni-directional point sources,

and model the reverberant environment as a shoebox room with the size de-

noted by (Lx, Ly, Lz) for length, width and height. Reverberant characteristics

are modeled with the reflection coefficients of the wall surface, denoted as d =

(dx1, dx2, dy1, dy2, dz1, dz2). The infinite image depth is truncated to Rdepth for sim-

plicity. Every single loudspeaker in the loudspeaker array is regarded as a separate

source region. According to the results in Section 4.3.1 of Chapter 4, the coeffi-

cients of the point-to-region transfer function of the `th loudspeaker to the bth zone

in the reverberant environment can be written as

β(`,b)
nm (k) =

ik√
4π
α00
nm(k), (7.11)

where α00
nm(k) are the coupling coefficients. The location information of the `th

loudspeaker and the bth zone, as well as the room parameters, is incorporated in

α00
nm(k). We should note that we assume the point-to-region transfer functions are

known at all times in this work, however, the transfer functions may change over

time in practice due to the changes in room acoustic conditions, which may degrade
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the performance of the proposed method. Thus future advancements in real time

learning of room environments will be beneficial in the realization of this work.

The sound intensity for the bth zone due to the `th loudspeaker can be written,

by replacing α
(b)
nm(k) with β

(`,b)
nm (k) in S

(Ψ,d)
pq (k, rb) of (7.9), as

I
(`)
Ψ (xb, k) =

P∑
p=0

p∑
q=−p

S(Ψ,`)
pq (k, rb)Ypq(θb, φb), (7.12)

where S
(Ψ,`)
pq (k, rb) are intensity coefficients in Ψ direction.

Applying a frequency-dependent weight w`(k) to the `th loudspeaker, the total

sound intensity at xb due to the loudspeaker array is given by

IaΨ(xb, k) =

NL∑
`=0

|w`(k)|2I(`)
Ψ (xb, k), (7.13)

where NL is the number of loudspeakers. Note that here we still assume incoherent

superposition of loudspeaker signals.

Loudspeaker weights design

The multizone reproduction is now reduced to calculate the loudspeaker weights

that can reconstruct the desired sound intensity for multiple spatial zones. To ac-

curately reconstruct the desired sound intensity within a bounded zone, it requires

that the desired intensity coefficients on the surface of the zone (i.e., S
(Ψ,d)
pq (k,Rb))

are accurately reconstructed. Therefore, the problem can be formulated mathe-

matically as

min
W
{
NP∑
b=1

τ 2
b ||SA(k,Rb)W (k)−SD(k,Rb)||22}, s.t.W ≥ 0, (7.14)

where NP is the number of the spatial zones, and τb is the weighting coefficient to

adjust the relative weight of different zones, SD(k,Rb)=[S(r,d)(k,Rb)
T ,S(θ,d)(k,Rb)

T ,

S(φ,d)(k,Rb)
T ]T is a 6(Q+ 1)2 long vector with

S(Ψ,d)(k,Rb) = [Re{S(Ψ,d)
00 }, Im{S(Ψ,d)

00 }, ...,Re{S(Ψ,d)
QQ }, Im{S

(Ψ,d)
QQ }]

T , (7.15)
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Table 7.1: Loudspeaker locations of the 8-channel array.
Number r [m] θ [deg] φ [deg]

1 1 58.3 288
2 1 58.3 216
3 1 58.3 72
4 1 90 18
5 1 90 126
6 1 121.7 324
7 1 121.7 180
8 1 148.3 72

W (k) = [|w1(k)|2, |w2(k)|2, ..., |wNL(k)|2]T is a NL long vector, and

SA(k,Rb)= [S(r,a)(k,Rb)
T ,S(θ,a)(k,Rb)

T ,S(φ,a)(k,Rb)
T ]T is a 6(Q+ 1)2 by NL ma-

trix with

S(Ψ,a)(k,Rb) =



Re{S(Ψ,1)
00 } · · · Re{S(Ψ,NL)

00 }
Im{S(Ψ,1)

00 } · · · Im{S(Ψ,NL)
00 }

...
. . .

...

Re{S(Ψ,1)
QQ } · · · Re{S(Ψ,NL)

QQ }
Im{S(Ψ,1)

QQ } · · · Im{S(Ψ,NL)
QQ }


. (7.16)

The optimization problem (7.14) can be rearranged as

min
W
||ŜAW − ŜD||22, s.t.W ≥ 0, (7.17)

where ŜA = [τ1SA(k,R1)T , ..., τNPSA(k,RNP )T ]T , and

ŜD = [τ1SD(k,R1)T , ..., τNPSD(k,RNP )T ]T . This problem can be solved using

NNLS [196]. Note that (7.17) can provide optimal sound intensity reproduction in

each zone given an appropriate loudspeaker array, which allows for a non-uniform

array arrangement.

7.4 Evaluations

This section contains the evaluations and analysis of the performance of the two

algorithms.
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Figure 7.3: 3D sketch of the 8-channel loudspeaker array. The blue squares denote
the loudspeakers.

7.4.1 Multiple sweet spots reproduction

Experimental setup and criteria

We consider a spherical region χ with radius R = 0.4 m. The sweet spots can

be selected at random within the region. In this case, we select sweet spot #1,

#2 and #3 located at (0.2 m, π/2, 0), (0.25 m, π/2, π/2) and (0.2 m, π/2, π),

respectively. Eight channels are selected from the spherical array in our lab (shown

in Fig. 6.17) to build the irregular loudspeaker array for reproduction in this work.

The locations of the loudspeakers are given in Table 7.1, and a 3D sketch of the

loudspeaker array is shown in Fig. 7.3. The desired soundfield is produced by a

virtual point source which is 2 m away from the origin. Sound speed c is 343 m/s

and air density is 1.29 kg/m3. To reproduce a soundfield with a realistic perception

of the sound, it requires to ensure the reproduction of the direction of the sound.

Therefore, we define two direction related quantitie as follows

DO =
Re{Ia(x, k)}
‖ Re{Ia(x, k)} ‖2

· Re{Id(x, k)}
‖ Re{Id(x, k)} ‖2

, (7.18)

CR =
Re{Ia(x, k)}
‖ Re{Ia(x, k)} ‖2

× Re{Id(x, k)}
‖ Re{Id(x, k)} ‖2

, (7.19)
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where · is dot product of two vectors and × is cross product of two vectors. DO

and CR describe the difference between the reproduced direction and the desired

direction. Ideally, if the direction of the sound at x is reconstructed perfectly,

we have DO = 1 and CR = 0. Note that only the real part of complex acoustic

intensity, which represents the propagation direction of sound energy, is considered

here for evaluation. The intensity direction error η is also used, which can be

obtained from either of DO and CR. We here represent it in terms of DO as

η = cos−1(DO)/π × 100(%). (7.20)

The pressure and velocity matching is implemented by the least squares method.

Experimental results

We first evaluate the reproduction methods for different positions of the virtual

source. The source frequency is 600 Hz. Polar plots showing the results are given

in Fig. 7.4. Among them, Fig. 7.4(a), Fig. 7.4(c) and Fig. 7.4(e) are the results for

virtual source moving on the horizontal plane (the elevation is π/2, and the azimuth

changes from 0 to 2π). Figure 7.4(b), Fig. 7.4(d) and Fig. 7.4(f) are the results

moving on the vertical plane (the azimuth is 0 and the elevation changes from 0

to π for the upper half circle, and the azimuth is π and the elevation changes from

π to 0 for the lower half circle). We observe that for all the evaluated positions of

the virtual source, the intensity matching performs much better than the pressure

and velocity matching at all sweet spots. We note that an irregular loudspeaker

array cannot well cover all the incident directions, which leads to relatively poorer

performance for the directions at which there are fewer loudspeakers.

The radius of human head is about 0.1 m, therefore, we define a sphere with

radius of 0.1 m, centred by the sweet spot, as a human head zone. To evaluate the

reproduction performance in human head zones, we calculate the intensity error

on plane z = 0 for both the intensity matching and the pressure and velocity

matching, which is given in Fig. 7.5. The black circles denote the human head

zones on plane z = 0. The virtual source is located at (2 m, π/2, 2π/3). It shows

that the intensity direction error controlled by the intensity matching is less than

that controlled by the pressure and velocity matching in human head zones around
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Figure 7.4: Polar plots of DO and CR at sweet spots using the intensity matching
(IM) and the pressure and velocity matching (PVM) for the virtual source moving
on the horizontal plane ((a) sweet spot #1, (c) #2 and (e) #3) and the vertical
plane ((b) sweet spot #1, (d) #2 and (f) #3). The source frequency is 600 Hz.
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Figure 7.5: The intensity direction error on plane z = 0 controlled by (a) the
intensity matching and (b) the pressure and velocity matching. Black circles denote
human head zones around the sweet spots. The source frequency is 600 Hz.

Table 7.2: Average absolute perceived direction error.
Method Sweet spot #1 Sweet spot #2 Sweet spot #3

IM 41.3◦ 31.7◦ 39.0◦

PVM 68.0◦ 69.7◦ 82.7◦

the sweet spots. To examine the reproduction performance with respect to the

change of frequencies, we also calculate the intensity direction error at the sweet

spots for the frequency range from 50 to 3000 Hz, which mostly covers the frequency

range of human voice. The comparison between the intensity matching and the

pressure and velocity matching is shown in Fig. 7.6. The intensity direction error of

intensity matching is no more than 3% within the frequency range at all the sweet

spots. Compared with the intensity matching, the pressure and velocity matching

has relatively larger error and the error noticeably fluctuates with frequency.

A perceptual listening test is carried out to validate the theory. The loudspeaker

layout in Table 7.1 is built. The test samples consist of A, B and a reference,

where the reference is the original sound signal produced by a loudspeaker located

at (2 m, π/2, 2π/3), and A and B are reproduced by the eights channels using

the intensity matching and the pressure and velocity matching, respectively. The
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Figure 7.7: CMOS scores for the three sweet spots with 95% confidence intervals.

hearing subjects do not have the knowledge of which method produces A, B or the

reference. The hearing subjects are required to listen to A, B and the reference at

each sweet spot and record their perceived directions from 72 angles ((θ,φ)=(90◦,

5◦× (n− 1)), where n = 1, ..., 72) on a provided answer sheet. During the test, the

hearing subjects face positive y direction and keep their heads at the center of each

sweet spot. A clean speech of 5 s duration is used as a source signal and the sample

rate adopted is 48 kHz for signal inputs to all of the loudspeakers. The reference is

used not only to compare with A and B, but also to identify an outlier within a data

set (i.e., if the reference direction that a hearing subject perceives greatly deviates

from its actual direction, the result from this subject is removed from the data

set). A valid data set containing 15 hearing subjects is obtained after two outliers

are removed. We calculate the average absolute perceived direction difference in
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angles between A/B and the reference, which is given in Table 7.2. It shows that

the absolute error of the proposed method is less than that of the pressure and

velocity matching for all the sweet spots. We also analyze the relative perceived

direction error of A and B using Comparison Mean Opinion Score (CMOS), which

has 7 levels shown in Table 6.3. The higher the CMOS score is, the better the

intensity matching is versus the pressure and velocity matching. The test results

with 95% confidence intervals are given in Fig. 7.7. The average scores at the three

sweet spots are 1.53, 1.60 and 1.53, respectively, which means for this experimental

setup the intensity matching can reproduce a better original sound image at all the

sweet spots compared to the pressure and velocity matching.

7.4.2 Multizone reproduction

Simulation setup and criteria

In this simulation example, we simulate a rectangular room of size (5, 6, 3) m,

with the reflection coefficients of d = (0.6, 0.7, 0.6, 0.7, 0.6, 0.7). The image depth

is Rdepth = (3, 3, 3). The loudspeaker array consists of eight loudspeakers non-

uniformly distributed on a sphere with radius of 1 m, as shown in Fig. 7.3. There

are two 3D spherical zones (zone #1 and zone #2) with radius R1 = R2 = 0.1

m inside the loudspeaker array, and their origins are located at (0.3, 0, 0) m and

(−0.3, 0, 0) m, respectively. The desired soundfield is a plane wave coming from

(π/3, 4π/3) with frequency f = 900 Hz for both zones. We treat the two zones

equally, i.e., τ1 = τ2 = 1. Sound speed is c = 343 m/s and air density is ρ0 = 1.29

kg/m3. The mode matching method [25] is also implemented for comparison.

We have shown that accurate reconstruction of sound intensity guarantees a

good localization perception within the target region by perceptual experiments.

Therefore, we here use the intensity relative error of (6.19) and the intensity direc-

tion error of (6.20) in Chapter 6 to evaluate this algorithm.

Simulation results

We first evaluate the reproduction of sound intensity within the two target zones for

both the intensity matching method and the mode matching method. The results
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Figure 7.8: Relative error with respect to the radius for (a) zone #1 and (b) zone
#2 controlled by the intensity matching (IM) and the mode matching (MM). The
frequency of the sources is 900 Hz.
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Figure 7.9: Relative error on the surface of the target region with respect to the
frequency for (a) zone #1 and (b) zone #2 controlled by IM and MM.

showing the relative error of sound intensity in the r, θ, and φ directions are given

in Fig. 7.8. The relative error controlled by the mode matching is around 0 dB

for all the components of sound intensity vector within the two target zones. For

the intensity matching, the relative error lies between -20 dB and -10 dB within

the target zones, which is much better than the mode matching. We note that the

relative error gradually increases for the intensity matching, whereas it remains for
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Figure 7.10: The intensity direction error on plane z = 0 for (a, c) zone #1 and (b,
d) zone #2 controlled by (a-b) IM and (c-d) MM. Black circles denote the target
zones. The frequency of the sources is 900 Hz.

the mode matching, as the radius goes up.

To examine the performance of the proposed method with respect to the changes

of frequencies, we calculate the relative error by varying the frequency between 100

Hz and 1600 Hz. The observation sphere is the surface of each target zone (i.e., the

spherical surface with the maximum error). The results are shown in Fig. 7.9. We

observe that the proposed method has around 10 dB improvement compared with

the mode matching for the evaluated frequency range in both zones. The different
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components of intensity vectors have similar curve fluctuation. This analysis proves

that the proposed method can work for broadband multizone soundfield reproduc-

tion. Note that the big fluctuations along the frequency for the proposed method

are due to the non-linear optimization. Also, similar to the method proposed in

Chapter 6, it requires more loudspeakers to guarantee the accurate reproduction

in a larger frequency range in the given target region.

The discussion above has shown that all the components of sound intensity can

be reproduced with a limited error within the two target zones using the intensity

matching method. However, it is clear that if we are concerned to create a realistic

perception of the original sound, it requires to ensure the reproduction of the sound

direction. Therefore, we calculate the intensity direction error on plane z = 0 using

(6.20). The results of the intensity matching are given in Fig. 7.10(a) and Fig.

7.10(b). The black circles denote the target zones in the figures. It shows that

the intensity matching has less direction error within both the zones by comparing

with the results of the mode matching in Fig. 7.10(c) and Fig. 7.10(d).

7.5 Summary and Contributions

In this chapter, we have developed two sound intensity based approaches to multi-

zone soundfield reproduction, which are the extensions of single zone sound inten-

sity reproduction in Chapter 6. Key to these methods is also the theory of spatial

sound intensity vectors, which provides the representations of continuous sound

intensity for multiple regions. We provide an itemized list of our contributions:

• We have studied a new intensity matching technique used for sound inten-

sity reproduction at multiple sweet spots for irregular loudspeaker arrays to

achieve a distributed listening area.

• We compared the intensity matching technique with the pressure and veloc-

ity matching method. We demonstrated in the numerical simulations that

the intensity matching is better than the pressure and velocity matching for

overall reproduction performance. The perceptual experiment results also

showed that intensity matching can reproduce the direction of the sound at

all sweet spots with less error than the pressure and velocity matching.
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• A new intensity based reproduction method for multiple spatial zones in a

reverberant room was proposed. We demonstrated, in the simulation exam-

ple with a spatially non-uniform loudspeaker arrangement, that the proposed

method can reproduce the desired sound intensity (both magnitude and di-

rection) within the target zones with a smaller error than the conventional

multizone reproduction method of mode matching, which may lead to better

perception for listeners.

7.6 Related Publications

Much of this chapter’s work has been published in the following conference pro-

ceedings.

• H. Zuo, P. N. Samarasinghe, and T. D. Abhayapala, “Intensity based sound-

field reproduction over multiple sweet spots using an irregular loudspeaker

array,” in Proc. 28th European Signal Processing Conference (EUSIPCO),

pp.486–490, Amsterdam, Netherlands, January, 2021.

• H. Zuo, T. D. Abhayapala, and P. N. Samarasinghe, “3D multizone sound-

field reproduction in a reverberant environment using intensity matching

method,” in Proc. International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pp. 416–420, Toronto, Canada, June, 2021.



Chapter 8

Conclusions and Future Work

In this chapter, we state the general conclusions drawn from this thesis. We also

outline some future research directions arising from this work.

8.1 Conclusions

This thesis focused on spatial sound field reproduction based on the acoustic vectors

of particle velocity and sound intensity. We first developed the spatial distributions

of the acoustic vectors from sound pressure in the spherical harmonic domain.

Based on the spatial particle velocity vector, we developed a spatial sound field

reproduction algorithm applicable for various environments, and proposed a sound

field translation technique over a virtual space for binaural reproduction. Based on

the spatial sound intensity vector, we designed a sound field reproduction system

over a continuous spatial region with an irregular loudspeaker array, and explored

multizone reproduction methods.

In the literature, spatial sound field reproduction has been addressed using dif-

ferent approaches, as reviewed in Chapter 1. However, most of these approaches

aim to reproduce the physical approximation of sound pressure, which is not di-

rectly linked with human perception. Meanwhile, the previous sound field repro-

duction works based on the acoustic vectors have the limitation of a single sweet

spot. To overcome the above constraints, in this thesis, we addressed the two

sub-questions posed at the beginning of the thesis.

171
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We solved the problem of ‘(i) How to accurately achieve desired

acoustic vector distributions over space from a mixed sound field envi-

ronment using a practical microphone array?’ by theoretically deriving

the spatial distributions of the acoustic vectors from a mixed sound field

recording in Chapter 3.

We addressed this problem in two steps. We first proposed to extract the pres-

sure coefficients of the desired sound field from a mixed sound field recording using

a planar array of differential microphones. The proposed method can provide accu-

rate sound field separation and is robust to the noise. We then derived the spatial

distributions of the acoustic vectors from sound pressure in spherical harmonic do-

main. The spatial distributions of the acoustic vectors can be obtained from the

spherical harmonic coefficients of the acoustic vectors, which are directly deter-

mined by the pressure coefficients. We showed the infinite number of orthogonal

modes of the derived representations can be truncated to a finite number with a

small truncation error in order to enable ease of implementation.

We solved the problem of ‘(ii) How to perceptually reproduce the

desired sound field over a continuous region by exploiting the spatial

acoustic vector distributions?’ using the distributions of the spatial

particle velocity in Chapter 4 and Chapter 5.

In Chapter 4, we formulated a weighted cost function to optimize the distribu-

tion of particle velocity, as well as sound pressure on the boundary of the target

region. We analyzed the point-to-region transfer functions that are capable of de-

scribing various environments including free fields and reverberant rooms. The

performance of the proposed method was validated in various environments (i.e., a

free field and two reverberant rooms with different reverberant times) using both

uniform and non-uniform loudspeaker arrays through numerical simulations. We

also carried out an objective experiment in a six channel non-uniform loudspeaker

arrangement using the impulse response measurements in a real-world room. The

proposed velocity assisted method can achieve better performance on sound field

and sound direction reproduction comparing to the mode matching method, es-

pecially for the non-uniform loudspeaker arrays with a limited number of loud-

speakers. In Chapter 5, we incorporated the spatial particle velocity vector into

the mixed-source model, resulting in the particle velocity based mixed-source ex-
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pansion. We offered two solutions (i.e., the least squares solution and the sparse

solution) to calculating the driving signals of the mixed-source distribution, and

filtered the driving signals by HRTFs to generate the ear signals for binaural repro-

duction. The sparse solution can translate the sound field over a large region with

a small error in the simulation examples, and provide great perception accuracy

at the translated positions on both source localization and audio quality in the

MUSHRA experiment.

We solved the problem of ‘(ii) How to perceptually reproduce the

desired sound field over a continuous region by exploiting the spatial

acoustic vector distributions?’ by exploiting the distributions of the

spatial sound intensity in Chapter 6 and Chapter 7.

We formulated the sound field reproduction problem using spatial sound inten-

sity in Chapter 6. We extended intensity based sound field reproduction at a single

sweet spot to a continuous spatial region. We reconstructed the sound field by

controlling the intensity distributions on the spherical surface of the target region.

The proposed method was implemented using two non-uniform loudspeaker geome-

tries (i.e., a 5 channel array and a 22 channel array), and assessed by comparing to

the mode matching and HOA max-rE decoding through numerical simulations and

perceptual localization experiments. Using the proposed method, we can achieve a

good perceptual localization in a large and continuous area, even for a loudspeaker

array with a limited number of loudspeakers. The proposed method is also robust

to microphone noise. We then proposed two algorithms for multizone sound field

reproduction based on sound intensity in Chapter 7. The intensity based multizone

sound field reproduction can be implemented by optimizing the intensity distribu-

tions either at multiple positions over space or on the surface of the target zones.

We evaluated the reproduction performance of the two algorithms using a eight

channel non-uniform loudspeaker array. The former algorithm can reproduce the

original sound direction at multiple different locations in the numerical simulations

and perceptual experiments, and the latter algorithm can reproduce the desired

sound intensity within all the target zones in a reverberant room in the simulation

examples.

All of the above conclusions demonstrate that the spatial acoustic vectors of

particle velocity and sound intensity are connected to spatial perception, and the
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proposed algorithms are promising in solving the problem of spatial sound field re-

production from the perspective of perception. It also shows that the proposed al-

gorithms are applicable for various reproduction scenarios in this thesis. Therefore,

we believe that the outcomes of this research will underpin the future development

of spatial sound field reproduction in industry and can be applied across a number

of applications such as home entertainments, modern cinemas and VR/AR.

8.2 Future Work

Based on the foregoing discussion, we list the following future research directions

to improve the current state of the solution.

Perceptual validation of the intensity based multizone reproduction in

reverberant environments

In Chapter 7, we developed an intensity matching technique for 3D multizone

sound field reproduction in a reverberant room, and showed the proposed method

can reconstruct the original sound intensity within the target zones through numer-

ical simulations. We also verified that the intensity matching method can provide

good localization performance in free fields by perceptual localization experiments.

However, we have not carried out perceptual experiments to validate the intensity

matching method for multiple zones in a reverberant room. The acoustic environ-

ment in a reverberant room is more complicated than that in a free field. In such

a environment, the perceptual performance may or may not be as good as that in

a free field. Therefore, how the reverberation affects the perceptual performance

needs further study. The results of such a study would benefit the deployment of

the intensity matching method in real-world applications.

Sound quality improvement

In this thesis, we mainly focused on the direction of the reproduced sound when

we built the cost functions and defined the evaluation metrics. However, sound

quality which represents the accuracy, fidelity, or intelligibility of an audio output,

is also important in a sound reproduction system. Although we have showed that

the proposed particle velocity based method can offer better sound quality than the
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conventional method in Chapter 5, the reproduced sound is obviously different from

the original sound, and therefore there is still a plenty of room for improvement. A

possible approach to address this problem is to find sound quality related quantities,

and incorporate these quantities into the cost functions. Meanwhile, it is also

necessary to design the objective metrics for sound quality evaluation.

Broadband reproduction using both particle velocity and sound intensity

As we discussed throughout this thesis, the velocity theory is based on ITD,

which is most appropriate at frequencies below 700 Hz, whereas the intensity theory

is based on ILD and most suitable for high frequencies (above 500 Hz). All the

proposed methods in this thesis exploit either the former or the latter. Therefore,

it may be possible to integrate the two theories into one algorithm where particle

velocity is controlled for low frequency and sound intensity is controlled for high

frequency, which would lead to improved broadband reproduction. The challenge

to this problem is the hybrid design for the transition frequency band.
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[140] D. Sébilleau, “On the computation of the integrated products of three spher-

ical harmonics,” Journal of Physics A: Mathematical and General, vol. 31,

no. 34, pp. 7157, 1998.

[141] S. J. Elliott and J. Garcia-Bonito, “Active cancellation of pressure and pres-

sure gradient in a diffuse sound field,” Journal of Sound and Vibration, vol.

186, no. 4, pp. 696–704, 1995.



Bibliography 193

[142] M. E. Johnson and S. J. Elliott, “Active control of sound radiation using vol-

ume velocity cancellation,” The Journal of the Acoustical Society of America,

vol. 98, no. 4, pp. 2174–2186, 1995.

[143] P. N. Samarasinghe, T. D. Abhayapala, Y. Lu, H. Chen, and G. Dickins,

“Spherical harmonics based generalized image source method for simulating

room acoustics,” The Journal of the Acoustical Society of America, vol. 144,

no. 3, pp. 1381–1391, Aug. 2018.

[144] K. Hamasaki, K. Hiyama, and R. Okumura, “The 22.2 multichannel sound

system and its application,” in Audio Engineering Society Convention 118.

AES, 2005.

[145] E. A. Lehmann, A. M. Johansson, and S. Nordholm, “Reverberation-time

prediction method for room impulse responses simulated with the image-

source model,” in IEEE Workshop on Applications of Signal Processing to

Audio and Acoustics (WASPAA), 2007, pp. 159–162.

[146] M. A. Gerzon, “General metatheory of auditory localisation,” in Audio

Engineering Society Convention 92. AES, 1992.

[147] L. I. Birnie, T. D. Abhayapala, and P. N. Samarasinghe, “Reflection assisted

sound source localization through a harmonic domain music framework,”

IEEE/ACM Transactions on Audio, Speech, and Language Processing, Nov.

2019.

[148] J. K. Bloomfield, S. H. P. Face, and Z. Moss, “Indefinite integrals of spherical

bessel functions,” arXiv preprint arXiv:1703.06428, 2017.

[149] J. G. Tylka and E. Y. Choueiri, “Models for evaluating navigational tech-

niques for higher-order ambisonics,” in Proceedings of Meetings on Acoustics

173EAA, 2017, vol. 30, p. 050009.

[150] J. G. Tylka and E. Y. Choueiri, “Fundamentals of a parametric method for

virtual navigation within an array of ambisonics microphones,” Journal of

the Audio Engineering Society, vol. 68, no. 3, pp. 120–137, 2020.



194 Bibliography

[151] J. G. Tylka and E. Y. Choueiri, “Performance of linear extrapolation methods

for virtual sound field navigation,” Journal of the Audio Engineering Society,

vol. 68, no. 3, pp. 138–156, 2020.

[152] N. Mariette and B. Katz, “Sounddelta—large scale, multi-user audio aug-

mented reality,” in Proceedings of the EAA Symposium on Auralization, 2009,

pp. 15–17.

[153] A. Southern, J. Wells, and D. Murphy, “Rendering walk-through auralisa-

tions using wave-based acoustical models,” in 17th European Signal Process-

ing Conference. IEEE, 2009, pp. 715–719.

[154] N. Mariette, B. F. G. Katz, K. Boussetta, and O. Guillerminet, “Sound-

delta: a study of audio augmented reality using wifi-distributed ambisonic

cell rendering,” in Audio Engineering Society Convention 128. AES, 2010.

[155] J. G. Tylka and E. Choueiri, “Soundfield navigation using an array of higher-

order ambisonics microphones,” in Audio Engineering Society Conference:

2016 AES International Conference on Audio for Virtual and Augmented

Reality. AES, 2016.

[156] K. Müller and F. Zotter, “Auralization based on multi-perspective ambisonic

room impulse responses,” Acta Acustica, vol. 4, no. 6, pp. 25, 2020.

[157] E. Patricio, A. Ruminski, A. Kuklasinski, L. Januszkiewicz, and T. Zernicki,

“Toward six degrees of freedom audio recording and playback using multiple

ambisonics sound fields,” in Audio Engineering Society Convention 146. AES,

2019.

[158] Y. Wang and K. Chen, “Translations of spherical harmonics expansion co-

efficients for a sound field using plane wave expansions,” The Journal of the

Acoustical Society of America, vol. 143, no. 6, pp. 3474–3478, 2018.

[159] O. Thiergart, G. Del Galdo, M. Taseska, and E. A. Habets, “Geometry-

based spatial sound acquisition using distributed microphone arrays,” IEEE

Transactions on Audio, Speech, and Language Processing, vol. 21, no. 12, pp.

2583–2594, 2013.



Bibliography 195

[160] M. Noisternig, A. Sontacchi, T. Musil, and R. Holdrich, “A 3d ambisonic

based binaural sound reproduction system,” in Audio Engineering Society

Conference: 24th International Conference: Multichannel Audio, The New

Reality. AES, 2003.

[161] D. Menzies and M. Al-Akaidi, “Ambisonic synthesis of complex sources,”

Journal of the Audio Engineering Society, vol. 55, no. 10, pp. 864–876, 2007.

[162] T. Pihlajamaki and V. Pulkki, “Synthesis of complex sound scenes with

transformation of recorded spatial sound in virtual reality,” Journal of the

Audio Engineering Society, vol. 63, no. 7/8, pp. 542–551, 2015.

[163] R. Duraiswami, Z. Li, D. N. Zotkin, E. Grassi, and N. A. Gumerov, “Plane-

wave decomposition analysis for spherical microphone arrays,” in IEEE

Workshop on Applications of Signal Processing to Audio and Acoustics

(WASPAA), 2005, pp. 150–153.

[164] D. Menzies and M. Al-Akaidi, “Nearfield binaural synthesis and ambisonics,”

The Journal of the Acoustical Society of America, vol. 121, no. 3, pp. 1559–

1563, 2007.

[165] F. Schultz and S. Spors, “Data-based binaural synthesis including rotational

and translatory head-movements,” in Audio Engineering Society Conference:

52nd International Conference: Sound Field Control-Engineering and Per-

ception. AES, 2013.

[166] E. Fernandez-Grande, “Sound field reconstruction using a spherical micro-

phone array,” The Journal of the Acoustical Society of America, vol. 139, no.

3, pp. 1168–1178, 2016.

[167] J. G. Tylka and E. Choueiri, “Comparison of techniques for binaural navi-

gation of higher-order ambisonic soundfields,” in Audio Engineering Society

Convention 139. AES, 2015.

[168] J. Daniel, “Spatial sound encoding including near field effect: Introduc-

ing distance coding filters and a viable, new ambisonic format,” in Audio



196 Bibliography

Engineering Society Conference: 23rd International Conference: Signal Pro-

cessing in Audio Recording and Reproduction. AES, 2003.

[169] N. Hahn and S. Spors, “Modal bandwidth reduction in data-based binaural

synthesis including translatory head-movements,” in The annual German

Conference on Acoustics (DAGA), 2015, pp. 1122–1125.

[170] N. Hahn and S. Spors, “Physical properties of modal beamforming in the

context of data-based sound reproduction,” in Audio Engineering Society

Convention 139. AES, 2015.

[171] A. Kuntz and R. Rabenstein, “Limitations in the extrapolation of wave fields

from circular measurements,” in 15th European Signal Processing Conference.

IEEE, 2007, pp. 2331–2335.

[172] F. Winter, F. Schultz, and S. Spors, “Localization properties of data-based

binaural synthesis including translatory head-movements,” in Forum Acus-

ticum, 2014, vol. 31.

[173] K. Kowalczyk, O. Thiergart, M. Taseska, G. Del Galdo, V. Pulkki, and

E. A. P. Habets, “Parametric spatial sound processing: A flexible and ef-

ficient solution to sound scene acquisition, modification, and reproduction,”

IEEE Signal Processing Magazine, vol. 32, no. 2, pp. 31–42, 2015.
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