2,910 research outputs found

    SPRK: A Low-Cost Stewart Platform For Motion Study In Surgical Robotics

    Full text link
    To simulate body organ motion due to breathing, heart beats, or peristaltic movements, we designed a low-cost, miniaturized SPRK (Stewart Platform Research Kit) to translate and rotate phantom tissue. This platform is 20cm x 20cm x 10cm to fit in the workspace of a da Vinci Research Kit (DVRK) surgical robot and costs $250, two orders of magnitude less than a commercial Stewart platform. The platform has a range of motion of +/- 1.27 cm in translation along x, y, and z directions and has motion modes for sinusoidal motion and breathing-inspired motion. Modular platform mounts were also designed for pattern cutting and debridement experiments. The platform's positional controller has a time-constant of 0.2 seconds and the root-mean-square error is 1.22 mm, 1.07 mm, and 0.20 mm in x, y, and z directions respectively. All the details, CAD models, and control software for the platform is available at github.com/BerkeleyAutomation/sprk

    3D Bioprinting Tissue Scaffolds with Living Cells for Tissue Engineering Applications

    Get PDF
    In tissue engineering, tissue scaffolds are used as temporary supports to promote regeneration of dysfunctional tissues. Of the available strategies, scaffolds produced from hydrogels and living cells show the great potential for their enhanced biological properties. To produce such scaffolds, three-dimensional (3D) bioprinting has evolved and is showing promise as a fabrication technique. However, its applications for fabricating customized hydrogel scaffolds containing living cells is still in its infancy. The major challenge with this approach is to print scaffolds while preserving cell viability and functionality as well as ensuring the structural integrity of the scaffold. To overcome this challenge, the present thesis aims to investigate the influences of hydrogel properties and the bioprinting process on cell viability and functionality, while also ensuing structural integrity, and on this basis, to develop bioprinting processes to produce tissue scaffolds with living cells for potential tissue engineering applications. This thesis first examined the influence of the mechanical properties of hydrogel on cell viability and functionality, utilizing alginate hydrogels and Schwann cells (the major glial cells of peripheral nervous system). Due to its poor cell adhesion, the alginate hydrogel was modified in this study with cell-adhesion supplements, including fibronectin, poly-l-lysine (PLL), and RGD (Arg-Gly-Asp) peptides. The RGD-modified alginate substrates were prepared with varying alginate concentrations in order to alter the mechanical properties of hydrogels, which were then seeded and encapsulated with Schwann cells. Cell viability and functionality, including proliferation, morphology, and expression of the extracellular matrix protein, were examined and correlated to the hydrogel mechanical properties. The results demonstrate that the viability and functionality of Schwann cells within alginate-based hydrogel vary with hydrogel mechanical properties, thus highlighting the importance of regulating the mechanical properties of hydrogel for improved cell viability and functionality in scaffold bioprinting. During the bioprinting process, cells are subject to process-induced forces, such as shear and extensional stresses, which can result in cell damage and therefore loss of cell function and even cell death. A method was developed to study the cell damage introduced by the shear and extensional stresses in the bioprinting process. A plate-and-cone rheometer was adopted to examine the effect of shear stress on cell damage. In these experiments, the relationship of cell damage to the shear stress was examined and quantified, which was then applied to identify the cell damage attributed to shear stress in bioprinting. On this basis, the damage to cells caused by extensional stress was inferred from the difference between the total cell damage occurring during the bioprinting process and the cell damage attributed to shear stress. This developed method allowed a relationship to be established between cell damage and both shear and extensional stresses during bioprinting. The experiments on this method provide insight into both the cell damage that occurs during bioprinting and the effect on cell viability and proliferative ability thereafter, which can be used to optimize the bioprinting process so as to preserve cell functionality. Based on the previous investigations, bioprinting processes were developed to fabricate tissue scaffolds containing Schwann cells for potential applications in nerve tissue engineering. Composite hydrogels consisting of alginate, fibrin, hyaluronic acid, and RGD peptide were prepared, and their hydrogel microstructures, mechanical stiffness after gelation, and capability to support the Schwann cell spreading were examined for identifying appropriate composite hydrogel for bioprinting processes. The flow behavior of composite hydrogel solutions and bioprinting process parameters (e.g., dispensing pressure, dispensing head speed, crosslinking process) were then examined with regard to their influence on the structure of the printed scaffolds and on this basis, bioprinting process were developed to fabricate scaffolds with Schwann cells. The functionality of Schwann cells within the printed scaffolds were assessed in terms of cell viability, proliferation, morphology, orientation, and protein expression, demonstrating that the printed scaffolds have potential for nerve tissue engineering applications. This thesis presents a comprehensive study on the bioprinting of scaffolds with living cells. The method developed and the study results will pave the way to fabricate scaffolds with living cells for more tissue engineering applications

    Vitreo-retinal eye surgery robot : sustainable precision

    Get PDF
    Vitreo-retinal eye surgery encompasses the surgical procedures performed on the vitreous humor and the retina. A procedure typically consists of the removal of the vitreous humor, the peeling of a membrane and/or the repair of a retinal detachment. Vitreo-retinal surgery is performed minimal invasively. Small needle shaped instruments are inserted into the eye. Instruments are manipulated by hand in four degrees of freedom about the insertion point. Two rotations move the instrument tip laterally, in addition to a translation in axial instrument direction and a rotation about its longitudinal axis. The manipulation of the instrument tip, e.g. a gripping motion can be considered as a fifth degree of freedom. While performing vitreo-retinal surgery manually, the surgeon faces various challenges. Typically, delicate micrometer range thick tissue is operated, for which steady hand movements and high accuracy instrument manipulation are required. Lateral instrument movements are inverted by the pivoting insertion point and scaled depending on the instrument insertion depth. A maximum of two instruments can be used simultaneously. There is nearly no perception of surgical forces, since most forces are below the human detection limit. Therefore, the surgeon relies only on visual feedback, obtained via a microscope or endoscope. Both vision systems force the surgeon to work in a static and non ergonomic body posture. Although the surgeon’s proficiency improves throughout his career, hand tremor will become a problem at higher age. Robotically assisted surgery with a master-slave system can assist the surgeon in these challenges. The slave system performs the actual surgery, by means of instrument manipulators which handle the instruments. The surgeon remains in control of the instruments by operating haptic interfaces via a master. Using electronic hardware and control software, the master and slave are connected. Amongst others, advantages as tremor filtering, up-scaled force feedback, down-scaled motions and stabilized instrument positioning will enhance dexterity on surgical tasks. Furthermore, providing the surgeon an ergonomic body posture will prolong the surgeon’s career. This thesis focuses on the design and realization of a high precision slave system for eye surgery. The master-slave system uses a table mounted design, where the system is compact, lightweight, easy to setup and equipped to perform a complete intervention. The slave system consists of two main parts: the instrument manipulators and their passive support system. Requirements are derived from manual eye surgery, conversations with medical specialists and analysis of the human anatomy and vitreo-retinal interventions. The passive support system provides a stiff connection between the instrument manipulator, patient and surgical table. Given the human anatomical diversity, presurgical adjustments can be made to allow the instrument manipulators to be positioned over each eye. Most of the support system is integrated within the patient’s headrest. On either the left or right side, two exchangeable manipulator-support arms can be installed onto the support system, depending on the eye being operated upon. The compact, lightweight and easy to install design, allows for a short setup time and quick removal in case of a complication. The slave system’s surgical reach is optimized to emulate manually performed surgery. For bimanual instrument operation, two instrument manipulators are used. Additional instrument manipulators can be used for non-active tools e.g. an illumination probe or an endoscope. An instrument manipulator allows the same degrees of freedom and a similar reach as manually performed surgery. Instrument forces are measured to supply force feedback to the surgeon via haptic interfaces. The instrument manipulator is designed for high stiffness, is play free and has low friction to allow tissue manipulation with high accuracy. Each instrument manipulator is equipped with an on board instrument change system, by which instruments can be changed in a fast and secure way. A compact design near the instrument allows easy access to the surgical area, leaving room for the microscope and peripheral equipment. The acceptance of a surgical robot for eye surgery mostly relies on equipment safety and reliability. The design of the slave system features various safety measures, e.g. a quick release mechanism for the instrument manipulator and additional locks on the pre-surgical adjustment fixation clamp. Additional safety measures are proposed, like a hard cover over the instrument manipulator and redundant control loops in the controlling FPGA. A method to fixate the patient’s head to the headrest by use of a custom shaped polymer mask is proposed. Two instrument manipulators and their passive support system have been realized so far, and the first experimental results confirm the designed low actuation torque and high precision performance

    Design and Modeling of Multi-Arm Continuum Robots

    Get PDF
    Continuum robots are snake-like systems able to deliver optimal therapies to pathologies deep inside the human cavity by following 3D complex paths. They show promise when anatomical pathways need to be traversed thanks to their enhanced flexibility and dexterity and show advantages when deployed in the field of single-port surgery. This PhD thesis concerns the development and modelling of multi-arm and hybrid continuum robots for medical interventions. The flexibility and steerability of the robot’s end-effector are achieved through concentric tube technology and push/pull technology. Medical robotic prototypes have been designed as proof of concepts and testbeds of the proposed theoretical works.System design considers the limitations and constraints that occur in the surgical procedures for which the systems were proposed for. Specifically, two surgical applications are considered. Our first prototype was designed to deliver multiple tools to the eye cavity for deep orbital interventions focusing on a currently invasive intervention named Optic Nerve Sheath Fenestration (ONSF). This thesis presents the end-to-end design, engineering and modelling of the prototype. The developed prototype is the first suggested system to tackle the challenges (limited workspace, need for enhanced flexibility and dexterity, danger for harming tissue with rigid instruments, extensive manipulation of the eye) arising in ONSF. It was designed taking into account the clinical requirements and constraints while theoretical works employing the Cosserat rod theory predict the shape of the continuum end-effector. Experimental runs including ex vivo experimental evaluations, mock-up surgical scenarios and tests with and without loading conditions prove the concept of accessing the eye cavity. Moreover, a continuum robot for thoracic interventions employing push/pull technology was designed and manufactured. The developed system can reach deep seated pathologies in the lungs and access regions in the bronchial tree that are inaccessible with rigid and straight instruments either robotically or manually actuated. A geometrically exact model of the robot that considers both the geometry of the robot and mechanical properties of the backbones is presented. It can predict the shape of the bronchoscope without the constant curvature assumption. The proposed model can also predict the robot shape and micro-scale movements accurately in contrast to the classic geometric model which provides an accurate description of the robot’s differential kinematics for large scale movements

    Mobility Experiments With Microrobots for Minimally Invasive Intraocular Surgery

    Get PDF
    Purpose.: To investigate microrobots as an assistive tool for minimally invasive intraocular surgery and to demonstrate mobility and controllability inside the living rabbit eye. / Methods.: A system for wireless magnetic control of untethered microrobots was developed. Mobility and controllability of a microrobot are examined in different media, specifically vitreous, balanced salt solution (BSS), and silicone oil. This is demonstrated through ex vivo and in vivo animal experiments. / Results.: The developed electromagnetic system enables precise control of magnetic microrobots over a workspace that covers the posterior eye segment. The system allows for rotation and translation of the microrobot in different media (vitreous, BSS, silicone oil) inside the eye. / Conclusions.: Intravitreal introduction of untethered mobile microrobots can enable sutureless and precise ophthalmic procedures. Ex vivo and in vivo experiments demonstrate that microrobots can be manipulated inside the eye. Potential applications are targeted drug delivery for maculopathies such as AMD, intravenous deployment of anticoagulation agents for retinal vein occlusion (RVO), and mechanical applications, such as manipulation of epiretinal membrane peeling (ERM). The technology has the potential to reduce the invasiveness of ophthalmic surgery and assist in the treatment of a variety of ophthalmic diseases

    Robotically assisted eye surgery : a haptic master console

    Get PDF
    Vitreo-retinal surgery encompasses the surgical procedures performed on the vitreous humor and the retina. A procedure typically consists of the removal of the vitreous humor, the peeling of a membrane and/or the repair of a retinal detachment. Operations are performed with needle shaped instruments which enter the eye through surgeon made scleral openings. An instrument is moved by hand in four degrees of freedom (three rotations and one translation) through this opening. Two rotations (? and ? ) are for a lateral instrument tip movement. The other two DoFs (z and ?) are the translation and rotation along the instrument axis. Actuation of for example a forceps can be considered as a fifth DoF. Characteristically, the manipulation of delicate, micrometer range thick intraocular tissue is required. Today, eye surgery is performed with a maximum of two instruments simultaneously. The surgeon relies on visual feedback only, since instrument forces are below the human detection limit. A microscope provides the visual feedback. It forces the surgeon to work in a static and non ergonomic body posture. Although the surgeon’s proficiency improves throughout his career, hand tremor may become a problem around his mid-fifties. Robotically assisted surgery with a master-slave system enhances dexterity. The slave with instrument manipulators is placed over the eye. The surgeon controls the instrument manipulators via haptic interfaces at the master. The master and slave are connected by electronic hardware and control software. Implementation of tremor filtering in the control software and downscaling of the hand motion allow prolongation of the surgeon’s career. Furthermore, it becomes possible to do tasks like intraocular cannulation which can not be done by manually performed surgery. This thesis focusses on the master console. Eye surgery procedures are observed in the operating room of different hospitals to gain insight in the requirements for the master. The master console as designed has an adjustable frame, a 3D display and two haptic interfaces with a coarse adjustment arm each. The console is mounted at the head of the operating table and is combined with the slave. It is compact, easy to place and allows the surgeon to have a direct view on and a physical contact with the patient. Furthermore, it fits in today’s manual surgery arrangement. Each haptic interface has the same five degrees of freedom as the instrument inside the eye. Through these interfaces, the surgeon can feel the augmented instrument forces. Downscaling of the hand motion results in a more accurate instrument movement compared to manually performed surgery. Together with the visual feedback, it is like the surgeon grasps the instrument near the tip inside the eye. The similarity between hand motion and motion of the instrument tip as seen on the display results in an intuitive manipulation. Pre-adjustment of the interface is done via the coarse adjustment arm. Mode switching enables to control three or more instruments manipulators with only two interfaces. Two one degree of freedom master-slave systems with force feedback are built to derive the requirements for the haptic interface. Hardware in the loop testing provides valuable insights and shows the possibility of force feedback without the use of force sensors. Two five DoF haptic interfaces are realized for bimanual operation. Each DoF has a position encoder and a force feedback motor. A correct representation of the upscaled instrument forces is only possible if the disturbance forces are low. Actuators are therefore mounted to the fixed world or in the neighborhood of the pivoting point for a low contribution to the inertia. The use of direct drive for ' and and low geared, backdriveable transmissions for the other three DoFs gives a minimum of friction. Disturbance forces are further minimized by a proper cable layout and actuator-amplifier combinations without torque ripple. The similarity in DoFs between vitreo-retinal eye surgery and minimally invasive surgery (MIS) enables the system to be used for MIS as well. Experiments in combination with a slave robot for laparoscopic and thoracoscopic surgery show that an instrument can be manipulated in a comfortable and intuitive way. User experience of surgeons and others is utilized to improve the haptic interface further. A parallel instead of a serial actuation concept for the ' and DoFs reduces the inertia, eliminates the flexible cable connection between frame and motor and allows that the heat of the motor is transferred directly to the frame. A newly designed z-?? module combines the actuation and suspension of the hand held part of the interface and has a three times larger z range than in the first design of the haptic interface

    Cable-driven parallel mechanisms for minimally invasive robotic surgery

    Get PDF
    Minimally invasive surgery (MIS) has revolutionised surgery by providing faster recovery times, less post-operative complications, improved cosmesis and reduced pain for the patient. Surgical robotics are used to further decrease the invasiveness of procedures, by using yet smaller and fewer incisions or using natural orifices as entry point. However, many robotic systems still suffer from technical challenges such as sufficient instrument dexterity and payloads, leading to limited adoption in clinical practice. Cable-driven parallel mechanisms (CDPMs) have unique properties, which can be used to overcome existing challenges in surgical robotics. These beneficial properties include high end-effector payloads, efficient force transmission and a large configurable instrument workspace. However, the use of CDPMs in MIS is largely unexplored. This research presents the first structured exploration of CDPMs for MIS and demonstrates the potential of this type of mechanism through the development of multiple prototypes: the ESD CYCLOPS, CDAQS, SIMPLE, neuroCYCLOPS and microCYCLOPS. One key challenge for MIS is the access method used to introduce CDPMs into the body. Three different access methods are presented by the prototypes. By focusing on the minimally invasive access method in which CDPMs are introduced into the body, the thesis provides a framework, which can be used by researchers, engineers and clinicians to identify future opportunities of CDPMs in MIS. Additionally, through user studies and pre-clinical studies, these prototypes demonstrate that this type of mechanism has several key advantages for surgical applications in which haptic feedback, safe automation or a high payload are required. These advantages, combined with the different access methods, demonstrate that CDPMs can have a key role in the advancement of MIS technology.Open Acces

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 309)

    Get PDF
    This bibliography lists 136 reports, articles and other documents introduced into the NASA scientific and technical information system in February, 1988
    • …
    corecore