893 research outputs found

    Adaptive EDCF: Enhanced service differentiation for IEEE 802.11 wireless ad-hoc networks

    Get PDF
    This paper describes an adaptive service differentiation scheme for QoS enhancement in IEEE 802.11 wireless ad-hoc networks. Our approach, called adaptive enhanced distributed coordination function (AEDCF), is derived from the new EDCF introduced in the upcoming IEEE 802.11e standard. Our scheme aims to share the transmission channel efficiently. Relative priorities are provisioned by adjusting the size of the contention window (CW) of each traffic class taking into account both applications requirements and network conditions. We evaluate through simulations the performance of AEDCF and compare it with the EDCF scheme proposed in the 802.11e. Results show that AEDCF outperforms the basic EDCF, especially at high traffic load conditions. Indeed, our scheme increases the medium utilization ratio and reduces for more than 50% the collision rate. While achieving delay differentiation, the overall goodput obtained is up to 25% higher than EDCF. Moreover, the complexity of AEDCF remains similar to the EDCF scheme, enabling the design of cheap implementations

    Adaptive medium access control for VoIP services in IEEE 802.11 WLANs

    Get PDF
    Abstract- Voice over Internet Protocol (VoIP) is an important service with strict Quality-of-Service (QoS) requirements in Wireless Local Area Networks (WLANs). The popular Distributed Coordination Function (DCF) of IEEE 802.11 Medium Access Control (MAC) protocol adopts a Binary Exponential Back-off (BEB) procedure to reduce the packet collision probability in WLANs. In DCF, the size of contention window is doubled upon a collision regardless of the network loads. This paper presents an adaptive MAC scheme to improve the QoS of VoIP in WLANs. This scheme applies a threshold of the collision rate to switch between two different functions for increasing the size of contention window based on the status of network loads. The performance of this scheme is investigated and compared to the original DCF using the network simulator NS-2. The performance results reveal that the adaptive scheme is able to achieve the higher throughput and medium utilization as well as lower access delay and packet loss probability than the original DCF

    Enhancement of QoS support of HCCA schedulers using EDCA function in IEEE 802.11e networks

    Get PDF
    The IEEE 802.11e standard introduces Quality of Service support for wireless local area networks through two MAC functions: Enhanced Distributed Channel Access (EDCA) and HCF Controlled Channel Access (HCCA). While the former provides prioritized contention-based access to the medium, the latter uses a parameterized contention-free polling scheme. Several studies have proposed enhancements to EDCA or improved scheduling algorithms for HCCA to properly support VBR traffic. However, the cooperation between these functions has only marginally been considered and the solutions vary depending on specific traffic requirements. In this paper we propose a novel approach to address the problem of scheduling VBR traffic streams. Our scheduler, named Overboost, uses HCCA to negotiate a minimum bandwidth and deals with traffic streams that require more bandwidth than the negotiated one by redirecting the excess bandwidth to the EDCA function. An analytical evaluation has been conducted and the results has been corroborated by an extensive set of simulations. They show that the overall scheduler improves the performance with respect to other HCCA schedulers in terms of null rate, throughput, access delay, and queue length

    A control theoretic approach for throughput optimization in IEEE 802.11e EDCA WLANs

    Get PDF
    The MAC layer of the 802.11 standard, based on the CSMA/CA mechanism, specifies a set of parameters to control the aggressiveness of stations when trying to access the channel. However, these parameters are statically set independently of the conditions of the WLAN (e.g. the number of contending stations), leading to poor performance for most scenarios. To overcome this limitation previous work proposes to adapt the value of one of those parameters, namely the CW, based on an estimation of the conditions of the WLAN. However, these approaches suffer from two major drawbacks: i) they require extending the capabilities of standard devices or ii) are based on heuristics. In this paper we propose a control theoretic approach to adapt the CW to the conditions of the WLAN, based on an analytical model of its operation, that is fully compliant with the 802.11e standard. We use a Proportional Integrator controller in order to drive the WLAN to its optimal point of operation and perform a theoretic analysis to determine its configuration. We show by means of an exhaustive performance evaluation that our algorithm maximizes the total throughput of the WLAN and substantially outperforms previous standard-compliant proposals.European Community's Seventh Framework ProgramThe work described in this article has been partially supported by the European Community’s Seventh Framework Programme under the ICT FP7 Integrated Project CARMEN (INFSO-ICT-214994) and by the Spanish Government under the POSEIDON project (TSI2006-12507-C03).Publicad

    A Dynamic Multimedia User-Weight Classification Scheme for IEEE_802.11 WLANs

    Full text link
    In this paper we expose a dynamic traffic-classification scheme to support multimedia applications such as voice and broadband video transmissions over IEEE 802.11 Wireless Local Area Networks (WLANs). Obviously, over a Wi-Fi link and to better serve these applications - which normally have strict bounded transmission delay or minimum link rate requirement - a service differentiation technique can be applied to the media traffic transmitted by the same mobile node using the well-known 802.11e Enhanced Distributed Channel Access (EDCA) protocol. However, the given EDCA mode does not offer user differentiation, which can be viewed as a deficiency in multi-access wireless networks. Accordingly, we propose a new inter-node priority access scheme for IEEE 802.11e networks which is compatible with the EDCA scheme. The proposed scheme joins a dynamic user-weight to each mobile station depending on its outgoing data, and therefore deploys inter-node priority for the channel access to complement the existing EDCA inter-frame priority. This provides efficient quality of service control across multiple users within the same coverage area of an access point. We provide performance evaluations to compare the proposed access model with the basic EDCA 802.11 MAC protocol mode to elucidate the quality improvement achieved for multimedia communication over 802.11 WLANs.Comment: 15 pages, 8 figures, 3 tables, International Journal of Computer Networks & Communications (IJCNC

    A cross-layer jitter-based TCP for wireless networks

    Get PDF
    The Transmission Control Protocol (TCP) is one of the main communication protocols in the Internet, and it has been designed to provide an efficient reaction to packet loss events which are due to network congestion. Congestion is the main cause of losses in wired networks, but in today heterogeneous networks, loss events can also be introduced due to higher error rates on wireless channels, host mobility, and frequent handovers. Unfortunately, all packet losses are interpreted by TCP as a sign of congestion, triggering an inappropriate reaction which reduces its transmission rate and leads to performance degradation. In order to avoid this problem, it is important for TCP to correctly understand whether the reason of a packet loss is due to congestion or to a problem in the wireless link. This paper presents an innovative jitter-based cross-layer TCP algorithm, named XJTCP. It adopts the jitter ratio as loss predictor, joined with a layer two notification, in order to correctly infer the nature of a loss event. Performance evaluation and comparison with other common TCP implementations shows how XJTCP can be an interesting solution in the presence of wireless environments
    • …
    corecore