3,223 research outputs found

    Hybrid performance modelling of opportunistic networks

    Get PDF
    We demonstrate the modelling of opportunistic networks using the process algebra stochastic HYPE. Network traffic is modelled as continuous flows, contact between nodes in the network is modelled stochastically, and instantaneous decisions are modelled as discrete events. Our model describes a network of stationary video sensors with a mobile ferry which collects data from the sensors and delivers it to the base station. We consider different mobility models and different buffer sizes for the ferries. This case study illustrates the flexibility and expressive power of stochastic HYPE. We also discuss the software that enables us to describe stochastic HYPE models and simulate them.Comment: In Proceedings QAPL 2012, arXiv:1207.055

    An efficient algorithm for the parallel solution of high-dimensional differential equations

    Full text link
    The study of high-dimensional differential equations is challenging and difficult due to the analytical and computational intractability. Here, we improve the speed of waveform relaxation (WR), a method to simulate high-dimensional differential-algebraic equations. This new method termed adaptive waveform relaxation (AWR) is tested on a communication network example. Further we propose different heuristics for computing graph partitions tailored to adaptive waveform relaxation. We find that AWR coupled with appropriate graph partitioning methods provides a speedup by a factor between 3 and 16

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    A bibliography on formal methods for system specification, design and validation

    Get PDF
    Literature on the specification, design, verification, testing, and evaluation of avionics systems was surveyed, providing 655 citations. Journal papers, conference papers, and technical reports are included. Manual and computer-based methods were employed. Keywords used in the online search are listed

    Process algebra for performance evaluation

    Get PDF
    This paper surveys the theoretical developments in the field of stochastic process algebras, process algebras where action occurrences may be subject to a delay that is determined by a random variable. A huge class of resource-sharing systems – like large-scale computers, client–server architectures, networks – can accurately be described using such stochastic specification formalisms. The main emphasis of this paper is the treatment of operational semantics, notions of equivalence, and (sound and complete) axiomatisations of these equivalences for different types of Markovian process algebras, where delays are governed by exponential distributions. Starting from a simple actionless algebra for describing time-homogeneous continuous-time Markov chains, we consider the integration of actions and random delays both as a single entity (like in known Markovian process algebras like TIPP, PEPA and EMPA) and as separate entities (like in the timed process algebras timed CSP and TCCS). In total we consider four related calculi and investigate their relationship to existing Markovian process algebras. We also briefly indicate how one can profit from the separation of time and actions when incorporating more general, non-Markovian distributions

    Formal analysis techniques for gossiping protocols

    Get PDF
    We give a survey of formal verification techniques that can be used to corroborate existing experimental results for gossiping protocols in a rigorous manner. We present properties of interest for gossiping protocols and discuss how various formal evaluation techniques can be employed to predict them

    Analysing Coloured Petri Nets by the Occurrence Graph Method

    Get PDF
    This paper provides an overview og the work done for the author's PhD thesis. The research area of Coloured Petri Nets is introduced, and the available analysis methods are presented. The occurrence graph method, which is the main subject of this thesis, is described in more detail. Summaries of the six papers which, together with this overview, comprise the thesis are given, and the contributions are discussed.A large portion of this overview is dedicated to a description of related work. The aim is twofold: First, to survey pertinent results within the research areas of -- in increasing generality -- Coloured Petri Nets, High-level Petri Nets, and formalisms for modelling and analysis of parallel and distributed systems. Second, to put the results obtained in this thesis in a wider perspective by comparing them with important related work

    Workshop on Modelling of Objects, Components, and Agents, Aarhus, Denmark, August 27-28, 2001

    Get PDF
    This booklet contains the proceedings of the workshop Modelling of Objects, Components, and Agents (MOCA'01), August 27-28, 2001. The workshop is organised by the CPN group at the Department of Computer Science, University of Aarhus, Denmark and the "Theoretical Foundations of Computer Science" Group at the University of Hamburg, Germany. The papers are also available in electronic form via the web pages: http://www.daimi.au.dk/CPnets/workshop01
    corecore