11,976 research outputs found

    Simulations of a Scintillator Compton Gamma Imager for Safety and Security

    Full text link
    We are designing an all-scintillator Compton gamma imager for use in security investigations and remediation actions involving radioactive threat material. To satisfy requirements for a rugged and portable instrument, we have chosen solid scintillator for the active volumes of both the scatter and absorber detectors. Using the BEAMnrc/EGSnrc Monte Carlo simulation package, we have constructed models using four different materials for the scatter detector: LaBr_3, NaI, CaF_2 and PVT. We have compared the detector performances using angular resolution, efficiency, and image resolution. We find that while PVT provides worse performance than that of the detectors based entirely on inorganic scintillators, all of the materials investigated for the scatter detector have the potential to provide performance adequate for our purposes.Comment: Revised text and figures, Presented at SORMA West 2008, Published in IEEE Transactions on Nuclear Scienc

    A novel probabilistic data association based MIMO detector using joint detection of consecutive symbol vectors

    No full text
    A new probabilistic data association (PDA) approach is proposed for symbol detection in spatial multiplexing multiple-input multiple-output (MIMO) systems. By designing a joint detection (JD) structure for consecutive symbol vectors in the same transmit burst, more a priori information is exploited when updating the estimated posterior marginal probabilities for each symbol per iteration. Therefore the proposed PDA detector (denoted as PDA-JD detector) outperforms the conventional PDA detectors in the context of correlated input bit streams. Moreover, the conventional PDA detectors are shown to be a special case of the PDA-JD detector. Simulations and analyses are given to demonstrate the effectiveness of the new method

    Golden Coded Multiple Beamforming

    Full text link
    The Golden Code is a full-rate full-diversity space-time code, which achieves maximum coding gain for Multiple-Input Multiple-Output (MIMO) systems with two transmit and two receive antennas. Since four information symbols taken from an M-QAM constellation are selected to construct one Golden Code codeword, a maximum likelihood decoder using sphere decoding has the worst-case complexity of O(M^4), when the Channel State Information (CSI) is available at the receiver. Previously, this worst-case complexity was reduced to O(M^(2.5)) without performance degradation. When the CSI is known by the transmitter as well as the receiver, beamforming techniques that employ singular value decomposition are commonly used in MIMO systems. In the absence of channel coding, when a single symbol is transmitted, these systems achieve the full diversity order provided by the channel. Whereas this property is lost when multiple symbols are simultaneously transmitted. However, uncoded multiple beamforming can achieve the full diversity order by adding a properly designed constellation precoder. For 2 \times 2 Fully Precoded Multiple Beamforming (FPMB), the general worst-case decoding complexity is O(M). In this paper, Golden Coded Multiple Beamforming (GCMB) is proposed, which transmits the Golden Code through 2 \times 2 multiple beamforming. GCMB achieves the full diversity order and its performance is similar to general MIMO systems using the Golden Code and FPMB, whereas the worst-case decoding complexity of O(sqrt(M)) is much lower. The extension of GCMB to larger dimensions is also discussed.Comment: accepted to conferenc

    A probabilistic data association based MIMO detector using joint detection of consecutive symbol vectors

    No full text
    A new probabilistic data association (PDA) approach is proposed for symbol detection in spatial multiplexing multiple-input multiple-output (MIMO) systems. By designing a joint detection (JD) structure for consecutive symbol vectors in the same transmit burst, more a priori information is exploited when updating the estimated posterior marginal probabilities for each symbol per iteration. Therefore the proposed PDA detector (denoted as PDA-JD detector) outperforms the conventional PDA detectors in the context of correlated input bit streams. Moreover, the conventional PDA detectors are shown to be a special case of the PDA-JD detector. Simulations and analyses are given to demonstrate the effectiveness of the new method

    Limiting the effects of earthquakes on gravitational-wave interferometers

    Full text link
    Ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to high-magnitude teleseismic events, which can interrupt their operation in science mode and significantly reduce the duty cycle. It can take several hours for a detector to stabilize enough to return to its nominal state for scientific observations. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining stable operation even at the expense of increased instrumental noise. Here we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Hypocenter and magnitude information is generally available in 5 to 20 minutes of a significant earthquake depending on its magnitude and location. The alerts are used to estimate arrival times and ground velocities at the gravitational-wave detectors. In general, 90\% of the predictions for ground-motion amplitude are within a factor of 5 of measured values. The error in both arrival time and ground-motion prediction introduced by using preliminary, rather than final, hypocenter and magnitude information is minimal. By using a machine learning algorithm, we develop a prediction model that calculates the probability that a given earthquake will prevent a detector from taking data. Our initial results indicate that by using detector control configuration changes, we could prevent interruption of operation from 40-100 earthquake events in a 6-month time-period

    Interim Design Report

    Get PDF
    The International Design Study for the Neutrino Factory (the IDS-NF) was established by the community at the ninth "International Workshop on Neutrino Factories, super-beams, and beta- beams" which was held in Okayama in August 2007. The IDS-NF mandate is to deliver the Reference Design Report (RDR) for the facility on the timescale of 2012/13. In addition, the mandate for the study [3] requires an Interim Design Report to be delivered midway through the project as a step on the way to the RDR. This document, the IDR, has two functions: it marks the point in the IDS-NF at which the emphasis turns to the engineering studies required to deliver the RDR and it documents baseline concepts for the accelerator complex, the neutrino detectors, and the instrumentation systems. The IDS-NF is, in essence, a site-independent study. Example sites, CERN, FNAL, and RAL, have been identified to allow site-specific issues to be addressed in the cost analysis that will be presented in the RDR. The choice of example sites should not be interpreted as implying a preferred choice of site for the facility

    Receiver Multiuser Diversity Aided Multi-Stage MMSE Multiuser Detection for DS-CDMA and SDMA Systems Employing I-Q Modulation

    No full text
    The so-called receiver multiuser diversity aided multistage minimum mean-square error multiuser detector (RMD/MS-MMSE MUD), which was proposed previously by the author, is investigated in the context of the direct-sequence code-division multiple-access (DS- CDMA) and space-division multiple-access (SDMA) systems that employ in- and quadrature-phase (I-Q) modulation schemes. A detection scheme is studied, which is operated in real domain in the principles of successive interference cancellation (SIC). The concept of noise recognition factor (NRF) is proposed for explaining the efficiency of SIC-type detectors and also for motivating to design other high-efficiency detectors. The achievable bit error rate (BER) performance of the RMD/MS-MMSE MUD is investigated for DS-CDMA and SDMA systems of either full-load or overload, when communicating over Rayleigh fading channels for the SDMA and over either additive white Gaussian noise (AWGN) or Rayleigh fading channels for the DS-CDMA. The studies and performance results show that the RMD/MS-MMSE MUD is a highly promising MUD. It has low implementation complexity and good error performance. Furthermore, it is a high-flexibility detector suitable for various communication systems operated in different communication environments

    An automated wrapper-based approach to the design of dependable software

    Get PDF
    The design of dependable software systems invariably comprises two main activities: (i) the design of dependability mechanisms, and (ii) the location of dependability mechanisms. It has been shown that these activities are intrinsically difficult. In this paper we propose an automated wrapper-based methodology to circumvent the problems associated with the design and location of dependability mechanisms. To achieve this we replicate important variables so that they can be used as part of standard, efficient dependability mechanisms. These well-understood mechanisms are then deployed in all relevant locations. To validate the proposed methodology we apply it to three complex software systems, evaluating the dependability enhancement and execution overhead in each case. The results generated demonstrate that the system failure rate of a wrapped software system can be several orders of magnitude lower than that of an unwrapped equivalent
    corecore