
http://wrap.warwick.ac.uk   

 
 

 
 
 
 
 
 
Original citation: 
Leeke, Matthew and Jhumka, Arshad (2011) An automated wrapper-based approach to 
the design of dependable software. In: 4th International Conference on Dependability 
(DEPEND'11), Nice, France, August 21-27th 2011 
 

Permanent WRAP url: 
http://wrap.warwick.ac.uk/45677            
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for  
profit purposes without prior permission or charge.  Provided that the authors, title and 
full bibliographic details are credited, a hyperlink and/or URL is given for the original 
metadata page and the content is not changed in any way. 
 
A note on versions: 
The version presented here may differ from the published version or, version of record, if 
you wish to cite this item you are advised to consult the publisher’s version.  Please see 
the ‘permanent WRAP url’ above for details on accessing the published version and note 
that access may require a subscription. 
 
For more information, please contact the WRAP Team at: publications@warwick.ac.uk  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/9560539?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/45677
mailto:publications@warwick.ac.uk


An Automated Wrapper-based Approach to the Design of Dependable Software

Matthew Leeke
Department of Computer Science

University of Warwick
Coventry, UK, CV4 7AL
matt@dcs.warwick.ac.uk

Arshad Jhumka
Department of Computer Science

University of Warwick
Coventry, UK, CV4 7AL

arshad@dcs.warwick.ac.uk

Abstract—The design of dependable software systems invari-
ably comprises two main activities: (i) the design of depend-
ability mechanisms, and (ii) the location of dependability mech-
anisms. It has been shown that these activities are intrinsically
difficult. In this paper we propose an automated wrapper-based
methodology to circumvent the problems associated with the
design and location of dependability mechanisms. To achieve
this we replicate important variables so that they can be
used as part of standard, efficient dependability mechanisms.
These well-understood mechanisms are then deployed in all
relevant locations. To validate the proposed methodology we
apply it to three complex software systems, evaluating the
dependability enhancement and execution overhead in each
case. The results generated demonstrate that the system failure
rate of a wrapped software system can be several orders of
magnitude lower than that of an unwrapped equivalent.
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I. INTRODUCTION

As computer systems become pervasive, our reliance on
computer software to provide correct and timely services
is ever-increasing. To meet these demands it is important
that software be dependable [1]. It has been shown that a
dependable software must contain two types of artefact; (i)
error detection mechanisms (EDMs) and (ii) error recov-
ery mechanisms (ERMs) [2], where EDMs are commonly
known as detectors and ERMs as correctors. A detector is
a component that asserts the validity of a predicate during
execution, whilst a corrector is a component that enforces
a predicate. Examples of detectors include runtime checks
and error detection codes. Examples of correctors include
exception handlers and retry [3]. During the execution of a
dependable software, an EDM at a given location evaluates
whether the corresponding predicate holds at that location,
i.e., it attempts to detect an erroneous state. When an
erroneous state is detected, an ERM will attempt to restore
a suitable state by enforcing a predicate, i.e., it attempts to
recover from an erroneous state. Using EDMs and ERMs
it is possible to address the error propagation problem. A
failure to contain the propagation of erroneous state across
a software is known to make recovery more difficult [4].

The design of efficient EDMs [5] [6] [7] and ERMs [8] is
notoriously difficult. Three key factors associated with this
difficulty are (i) the design of the required predicate [6] [9],

(ii) the location of that predicate [10], and (iii) bugs intro-
duced by EDMs and ERMs. The problem of EDM and ERM
design is exacerbated when software engineers are lacking
in experience in software development or dependability
mechanisms [7]. One approach to overcoming this difficulty
is to reuse standard, efficient mechanisms, such as majority
voting [11], in the design dependable software. However,
techniques such as replication or N-version programming
(NVP) [11] [12] are expensive, as they work at the software
level, i.e., the whole software is replicated in some way. It
would be ideal to adapt standard, efficient mechanisms to
operate at a finer granularity in order to lessen overheads.

In this paper, we propose an automated methodology for
the design of dependable software. Our approach is based
on variable replication. This contrasts with current state-of-
the-art approaches, which operate at a software level. The
replication of software can be viewed as the replication of
every variable and code component in a software. However,
our approach focuses on replicating important variables. The
proposed methodology works as follows: A lookup table in
which variables are ranked according to their importance is
generated. Once this is obtained, we duplicate or triplicate a
subset of variables based on their importance using software
wrappers, i.e., creating shadow variables. When an important
variable is written to, the value held by the all relevant
shadow variables is updated. When an important variable is
read, its value is compared to those of its shadow variables,
with any discrepancy indicating an erroneous state. Our
approach induces a execution overhead ranging from 20%–
35%, and a memory overhead ranging from 0.5%–20%.

The advantages of our approach over current state-of-the-
art techniques are: (i) we circumvent the need to obtain
non-trivial predicates by using standard efficient predicates,
viz. majority voting (ii) we circumvent the need to know
the optimal location of a given predicate by comparing
values on all important variable reads, (iii) the efficiency
of the standard mechanisms is known a priori, obviating the
need for validation of the dependability mechanisms using
fault injection [13], (iv) the overhead is significantly less
than would be incurred by a complete software replication,
and (v) we reduce the risk of inserting new bugs through
detectors and correctors [8] [14].

A. Contributions
In this paper we make the following specific contributions:



• We describe an automated wrapper-based methodology
for the design of dependable software, outlining the
steps required for its application and providing insight
into the use of the metrics on which it is based.

• We experimentally evaluate the effectiveness of the
described methodology in the context of three complex
software systems, obtaining results which serve to
validate the usefulness of the metrics proposed in [15].

• We evaluate the execution overheads of the described
methodology, offering insights into the relevant trade-
offs between dependability and execution overheads.

II. RELATED WORK

Software wrapper technology has been investigated in many
fields, including computer security, software engineering,
database systems and software dependability. In the context
of computer security, software wrappers have been used
to enforce a specific security policies [16] and protect
vulnerable assets [17]. It has also been shown that security
wrappers deployed within an operating system kernel can be
used to meet application specific security requirements [18].

Software wrappers have been widely applied in the inte-
gration of legacy systems [19], where they act as connectors
which allow independent systems to interact and the recon-
ciliation of functionality [20] [21]. Examples of this can
be found in the field of database systems, where software
wrappers are used to encapsulate legacy databases [22] [23].

Software wrappers have been extensively investigated in
the context of operating system dependability [24] [25],
where emphasis is placed on wrapping device drivers and
shared libraries [26] [27]. Software wrappers have also been
used to address the more general problem of improving
dependability in commercial-off-the-shelf software [28], as
well as several more specific software dependability issues,
such as the problem of non-atomic exception handling [14].

The proposed methodology is related to [29], where wrap-
pers were used to detect contract violations in component-
based systems. In contrast, the proposed methodology com-
bines software wrappers that implement standard predi-
cates and variable replication to enhance dependability. The
variable-centric approach, facilitated by the metrics devel-
oped in [15], also differentiates the proposed methodology.

III. MODELS

In this section we present the models assumed in this paper.

A. Software model

A software system S is considered to be a set of inter-
connected modules M1 . . .Mn. A module Mk contains a
set of non-composite variables Vk, which have a domain of
values, and a sequence of actions Ak1 . . . Aki. Each action
in Ak1 . . . Aki may read or write to a subset of Vk. Software
is assumed to be grey-box, permitting source code access,
but assuming no knowledge of functionality or structure.

B. Fault model

A fault model has been shown to contain two parts: (i) a
local part, and (ii) a global part [30]. The local fault model,
called the impact model, states the type of faults likely to
occur in the system, while the global model, called the rely
specification, states the extent to which the local fault model
can occur. The rely specification constrains the occurrence
of the local model so that dependability can be imparted. For
example, a rely specification will state that “at most f of n
nodes can crash”, or “faults can occur only finitely often”.
Infinite fault occurrences can only be tolerated by infinite
redundancy, which is impossible.

In this paper we assume a transient data value fault model
[31]. Here, the local fault model is the transient data value
failure, i.e., a variable whose value is corrupted, and that this
corruption may ever occur again. The global fault model is
that we assume that any variable can be affected by transient
faults. The transient fault model is used to model hardware
faults in which bit flips occur in memory areas that causes
instantaneous changes to values held in memory. A transient
data value fault model is often assumed during dependability
analysis because it can be used to mimic more severe fault
models [31], thus making it a good base fault model.

IV. METHODOLOGY

The proposed methodology is based on the premise that
the replication of important variables can yield significant
reduction in failures without incurring significant execution
overheads. The importance of variables is based on their
implication in error propagation. The methodology is a three
step process. First, a table ranking variables according to
their importance for a given module is generated. Next, all
read and write operations to important variables, as defined
by a threshold value, are identified. Finally, such operations
are wrapped using specifically designed software wrappers.
An overview of the methodology is shown in Figure 1.
Sections IV-A-IV-C provide a description of these steps.

A. Step 1: Establishing Variable Importance

The first step is to evaluate the relative importance of each
variable within the software module to be wrapped. To
achieve this we use the metric suite in [15] to measure
importance. The importance metric is a function of two sub-
metrics, spatial and temporal impact, and system failure rate.
Spatial Impact: Given a software whose functionality is
logically distributed over a set of modules, the spatial impact
of variable v in module M for a run r, denoted as σr

v,M ,
is the number of modules corrupted in r. Thus, the spatial
impact of a variable v of module M , denoted σv,M , is:

σv,M = max{σr
v,M},∀r (1)

Thus, σv,M captures the diameter of the affected area when
variable v in module M is corrupted. The higher σv,M is,
the more difficult it is to recover from the corruption. As
the metric captures the diameter of the area affected by the
propagation of errors, low values are desirable.



Original Software Step 1: Establish Variable 
Importance (Section 4.A)

Step 2: Identify Important 
Actions (Section 4.B)

Step 3: Wrap Important 
Variables (Section 4.C)

Wrapped Software

Variable Importance Lookup Table Thresholded Importance Table and Important Read / Writes

Figure 1. Methodology overview

Temporal Impact: Given a software whose functionality
is logically distributed over a set of modules, the temporal
impact of variable v in module M for a run r, denoted as
τ rv,M , is the number of time units over which at least one
module remains corrupted in r. Thus, the temporal impact
of a variable v of module M , denoted τv,M is:

τv,M = max{τ rv,M},∀r (2)

Thus, τv,M captures the period that program state remains
affected when variable v in module M is corrupted. The
higher τv,M is, the likelier a failure is to occur. As the metric
captures the persistence of errors, low values are desirable.
Importance Metric: The importance metric, as instantiated
in [15], is defined for variable v in module M with variable
specific system failure rate f as:

Iv,M =
1

(1− f)2
(σv,M
σmax

+
τv,M
τmax

)1

(3)

The importance of all variables in a module can be evaluated
using Equations 1-3. In [15] fault injection was used to
estimate variable importance, though the metric can be
evaluated using alternative approaches. Note that the variable
ranking generated for each module is relative to that module,
which means that these values should not be compared on
an inter-module basis. Once this first step of the proposed
methodology has been completed, a lookup table relating
any given variable to its importance value can be generated.

B. Step 2: Identifying Important Actions
The next step is to identify all read and write actions on
important variables. As the replication of a whole software,
or indeed every variable, incurs a large overhead, we select
a subset of the most important variables for replication using
thresholds. We set two thresholds to govern the number of
duplicated and triplicated variables; λd and λt respectively.
Thresholds may be defined with respect to importance
values, though in many situations, it is reasonable to define
thresholds as a proportion of the variables in a module. For
example, to triplicate the top 10% and duplicate the top 15%
of variables, we would set λt = 0.10 and λd = 0.15. The
use of two thresholds is motivated by the desire to reduce
replication overhead and provide flexibility in the application
of the proposed methodology.

Once threshold values have been set, the variables to be
wrapped can be identified. However, before wrapping, each
possible read and write location on an important variable
must be identified. This can be achieved by several means,
including system call monitoring and memory management

Algorithm 1 Write-Wrapper: Writing a variable v
v := f(. . . )
if (rank(v) ≥ λt) then

create(v′);
create(v′′);
v, v′, v′′ := f(. . . );

else if (rank(v) ≥ λd) then
create(v′);
v, v′ := f(. . .);

end if

Algorithm 2 ReadWrapper: Reading a variable v
y := g(v, . . .);
if (rank(v) ≥ λt) then
y := g(majority(v, v′, v′′), . . . );

else if (rank(v) ≥ λd) then
y := g(random(v, v′), . . . );

end if

techniques. The only requirement is that all possible read and
write actions on important variables must be identified. In
this paper, source code analysis is used to identify important
read and write actions, as detailed in Section VI. Completing
this step will mean that variables to be wrapped have been
identified and a mechanism has been used, or is in place, to
identify read and write actions on those variables.

C. Step 3: Wrapping Important Variables

Two types of software wrapper are employed by the method-
ology; write-wrappers and read-wrappers. Pseudocode for
these wrappers is shown in Algorithms 1 and 2.
Write-Wrapper: This software wrapper is invoked when an
important variable is written. When a variable v is assigned
a value f(. . .), where f is some function, in the unwrapped
module, the ranking of the variable is checked. If the rank
of v is in the top λt, then two shadow variables, v′ and v′′,
are created. Alternatively, if the rank of v is between λt and
λd, then a shadow variable v′ is created. Then, v and all of
its shadow variables are updated with f(. . .).
Read-Wrapper: This software wrapper is invoked when an
important variable is read. When a variable y is updated
with a function g(v, . . .) in the unwrapped module, where g
is a function and variable v is to be read, the rank of v is
checked against λt. If the rank of v is greater than λt then
function g uses the majority of the v, v′, v′′. If the rank of
v is between λt and λd, then g uses v or v′.



V. EXPERIMENTAL SETUP

In this section we detail the experimental setup used in the
estimation of the importance metric for each target system.

A. Target Systems
7-Zip (7Z): The 7-Zip utility is a high-compression archiver
supporting a variety of encryption formats [32]. The system
is widely-used and has been developed by many different
software engineers. Most project source code is available
under the GNU Lesser General Public License.
Flightgear (FG): The FlightGear Flight Simulator project
is an open-source project that aims to develop an extensible
yet highly sophisticated flight simulator [33]. The system is
modular, contains over 220,000 lines of code and simulates
a situation where dependability is critical. All project source
code are available under the GNU General Public License.
Mp3Gain (MG): The Mp3Gain analyser is an open-source
volume normalisation software for mp3 files [34]. The
system is modular, widely-used and has been predominantly
developed by a single software engineer. All project source
code are available under the GNU General Public License.

B. Test Cases
7Z: An archiving procedure was executed in all test cases.
A set of 25 files were input to the procedure, each of which
was compressed to form an archive and then decompressed
in order to recover the original content. The temporal impact
of faults was measured with respect to the number of files
processed. For example, if a fault were injected during the
processing of file 15 and persisted until the end of a test case,
its temporal impact would be 10. To create a varied system
load, the experiments associated with each instrumented
variable were repeated for 25 distinct test cases, where each
test case involved a distinct set of 25 input files.
FG: A takeoff procedure was executed in all test cases.
The procedure executed for 2700 iterations of the main
simulation loop, where the first 500 iterations correspond
to an initialisation period and the remaining 2200 iterations
correspond to pre-injection and post-injection periods. A
control module was used to provide a consistent input vector
at each iteration of the simulation. To create a varied and
representative system load, the experiments associated with
each instrumented variable were repeated for 9 distinct
test cases; 3 aircraft masses and 3 wind speeds uniformly
distributed across 1300-2100lbs and 0-60kph respectively.
MG: A volume-level normalisation procedure was executed
in all test cases. The procedure took a set of 25 mp3 files of
varying sizes as input and normalised the volume across each
file. The temporal impact of injected faults was measured
with respect to the number of files processed. To create a
varied system load, the experiments associated with each
instrumented variable were repeated for 3 distinct test cases,
where each test case used a distinct set of 25 input files.

C. System Instrumentation, Fault Injection and Logging
Instrumented modules in each target system were chosen
randomly from modules used in the execution of the afore-
mentioned test cases. A summary of instrumented modules

Table I
SUMMARY OF INSTRUMENTED SOFTWARE MODULES

Module Target System Module Name
7Z1 7-Zip LZMADecode
7Z2 7-Zip 7zInput
7Z3 7-Zip 7zFileHandle
FG1 FightGear FGInter
FG2 FightGear FGPropulsion
FG3 FightGear FGLGear
MG1 Mp3Gain NLaunch
MG2 Mp3Gain GainAnalysis
MG3 Mp3Gain Decode

is given in Table I. The number of variables instrumented
for each module accounted for no less than 90% of the total
number of variables in that module. All code locations where
an instrumented variable could be read were instrumented
for fault injection. Those variables and locations not instru-
mented were associated with execution paths that would not
be executed under normal circumstances, e.g., test routines.

Fault injection was used to determine the spatial and
temporal impact associated with each software module [15].
The Propagation Analysis Environment was used for fault
injection and logging [35]. A golden run was created for
each test case, where a golden run is a reproducible fault-free
run of the system for a given test case, capturing information
about the state of the system during execution. Bit flip faults
were injected at each bit-position for all instrumented vari-
ables. Each injected run entailed a single bit-flip in a variable
at one of these positions, i.e. no multiple injections. For FG
each single bit-flip experiment was performed at 3 injection
times uniformly distributed across the 2200 simulation loop
iterations that followed system initialisation, i.e. 600, 1200
and 1800 control loop iterations after initialisation. For 7Z
and M3, each single bit-flip experiment was performed at
25 distinct injection times uniformly distributed across the
25 time units of each test case. The state of all modules
used in the execution of all test cases was monitored during
each fault injection experiment. The data logged during
fault injection experiments was then compared with the
corresponding golden run, with any deviations being deemed
erroneous and thus contributing to variable importance.

D. Failure Specification

7Z: A test case execution was considered a failure if the set
of archive files and recovered content files were different
from those generated by the corresponding golden run.
FG: A failure specification was established using of golden
run observation and relevant aviation information. A failed
execution was considered to fall into at least one of three
categories; speed failure, distance failure and angle failure.
A run was considered a speed failure if the aircraft failed to
reach a safe takeoff speed after first passing through critical
speed and velocity of rotation. A run was considered a
distance failure if the takeoff distance exceeds that specified
by the aircraft manufacturer, where the distance is increased
by 10 meters for every additional 200lbs over the aircraft



Table II
IMPORTANCE RANKING FOR 7Z1 VARIABLES

Rank Variable Importance Failure Rate
1 processedPos 0.012869318 0.009893411
2 remainLen 0.010028409 0.009865020
3 distance 0.010085227 0.004867079
4 posState 0.008380682 0.004858712
5 ttt 0.006903409 0.004851485

base-weight. A run was considered an angle failure if a pitch
rate of 4.5 degrees is exceeded before the aircraft is clear of
the runway or the aircraft stalls during climb out.
MG: A test case execution was considered a failure if the
set of normalised output files were different from those
generated by the corresponding golden run.

VI. RESULTS

The importance metric can be evaluated using many different
approaches, including static analysis and the evaluation of
data-flow. In this paper, as in [15], importance is measured
using fault injection. Fault injection is a dependability val-
idation approach, whereby the response of a system to the
insertion of faults is analysed with respect to a given oracle.
Fault injection is typically used to assess the coverage and
latency of error detection and correction mechanisms.

Using the approach outlined in Section V, the spatial
and temporal impact of each variable was estimated. This
information, and the failure rate for fault injections on each
variable, was used to evaluate the importance of all variables
according to Equation 3. Tables II-X show the importance
ranking of all, subsequently identified, important variables
for each target modules. For each variable, the Importance
column gives the value of the importance metric, whilst
Failure Rate is the proportion of fault injected execution that
caused a system failure. Note that failure rate is assessed on
a per variable basis. For example, if a variable is subject
to 100 fault injected executions and 25 of these result in a
system failure, then the it has a failure rate of 0.25.

The entries in Tables II-X give importance values for
variable identifies as important in each module. To perform
the thresholding required for this identification, we set
λd = 0.15 and λt = 0.10. This meant that, for each
software module, the top 15% of variables were to be
wrapped, with the top 10% being triplicated and the next
5% being duplicated. For example, Table II shows 15% of
the 36 variables in module 7Z, where the top three variables
were triplicated and the rest were duplicated. The chosen
threshold values were selected in order ensure that at least
one variable in each module was wrapped, though the choice
of λd and λt will typically be situation specific.

Once the importance table for each module had been
thresholded, source code analysis was used to identify read
and write actions on important variables. The implementa-
tion of our source code analyser was based on the premise
that writes and reads to important variable are the only
operation types that are deemed to be important actions.
When adopting a source code analysis approach it must be

Table III
IMPORTANCE RANKING FOR 7Z2 VARIABLES

Rank Variable Importance Failure Rate
1 numberStreams 0.757575163 0.013881579
2 highPart 0.699089580 0.015526316
3 unpack 0.453218118 0.010994318
4 sizeIndex 0.379870331 0.002755682
5 i unpack 0.248907060 0.002698864
6 attribute 0.141369792 0.018011364
7 numInStreams 0.099065565 0.002443182
8 numSubstream 0.099059922 0.002386364

Table IV
IMPORTANCE RANKING FOR 7Z3 VARIABLES

Rank Variable Importance Failure Rate
1 seekInStreamS 0.009250000 0.382360363

Table V
IMPORTANCE RANKING FOR FG1 VARIABLES

Rank Variable Importance Failure Rate
1 vTrueKts 0.056881 0.003472
2 runAltitude 0.039179 0.002778
3 vGroundSpeed 0.035471 0.208333
4 alpha 0.033359 0.004629

Table VI
IMPORTANCE RANKING FOR FG2 VARIABLES

Rank Variable Importance Failure Rate
1 currentThrust 1.047348000 0.010417000
2 hasInitEngines 1.016663000 0.003472000
3 numTanks 1.012560000 0.004630000
4 totalQuanFuel 1.011618000 0.004167000
5 firsttime 1.009914000 0.001736000
6 dt 0.506376000 0.005208000

Table VII
IMPORTANCE RANKING FOR FG3 VARIABLES

Rank Variable Importance Failure Rate
1 compressLen 0.730128000 0.013889000
2 groundSpeed 0.433243000 0.001984000
3 steerAngle 0.053254000 0.011111000

Table VIII
IMPORTANCE RANKING FOR MG1 VARIABLES

Rank Variable Importance Failure Rate
1 selfWrite 0.283413927 0.028650000
2 bitridx 0.278821206 0.012650000
3 whiChannel 0.277626178 0.008400000
4 gainA 0.160324478 0.016700000
5 curFrame 0.160096536 0.015300000
6 inf 0.160035590 0.014925000
7 cuFile 0.099405049 0.005850000

recognised that any analysis tool must work under the as-
sumption that any unidentifiable operation type could be an
action relating to any important variable. This conservative
stance ensures that the coverage of the process is maximised,
though unnecessary overheads may be incurred.

Following the identification of read and write actions on



Table IX
IMPORTANCE RANKING FOR MG2 VARIABLES

Rank Variable Importance Failure Rate
1 sampleWin 1.337694959 0.194400000
2 batchSample 0.988385859 0.031100000
3 curSamples 0.925373931 0.008350000
4 first 0.923418424 0.006250000

Table X
IMPORTANCE RANKING FOR MG3 VARIABLES

Rank Variable Importance Failure Rate
1 maxAmpOnly 1.131021387 0.011825000
2 dSmp 0.683939300 0.009200000
3 winCont 0.678189611 0.000800000

important variables, the software wrappers described in Sec-
tion IV-C were deployed. As the locations for read-wrapper
and write-wrapper deployment were necessarily consistent
with the code locations of important read and write actions
respectively, information generated during source code anal-
ysis was used to drive wrapper deployment.

Figures 2 and 3 show examples of read-wrapper and write-
wrapper deployments. The first line in each figure shows the
original program statement before wrapping. The second line
in each figure illustrates the use of wrappers. In Figure 2 the
dt variable is being read-wrapped, whilst Figure 3 shows
the currentThrust variable being write-wrapped. Observe
that, in both cases, it is necessary to provide the wrapping
functions with identifiers for the variable and location. This
information is generated, maintained and known only to the
wrapping software following the identification of important
read and write actions, which means that it has no discernible
impact on the execution of the target system.

To validate the effectiveness of the proposed methodology,
the fault injection experiments described in Section V were
repeated on wrapped target systems. Only one module in
any target system has its important variables wrapped at
any time. Table XI summarises the impact that the pro-
posed methodology had on the dependability of all target
modules. The Unwrapped Failure Rate column gives the
original system failure rate with respect to all fault injection
experiments, i.e., the proportion of failures of the unwrapped
system when fault injection across all variables in the given
module are considered. The Wrapped Failure Rate column
then gives the same statistic for wrapped modules.

Observe from Table XI that the system failure rate of
each module decreased in all cases, thus demonstrating the
effectiveness the methodology. Further, the decrease in sys-
tem failure rate of many modules is greater than combined
failure rates of the wrapped variables in those modules. For
example, module MG3 had an unwrapped failure rate of
0.002780830, which corresponded to 39361 failures. The
same module had a wrapped failure rate of 0.000006105,
corresponding to 86 failures. This improvement can not be
accounted for by the 1142 failures incurred by the three
wrapped variables, thus there is evidence that the error
propagation problem has been addressed. This observation is

/* tankUPD = calc + (dt * rate); */
tankUPD = calc + (readWrapper(VARID_12, LOCID_4, dt) * rate);

Figure 2. Read wrapper example deployment

/* currentThrust = Engines[i]->GetThrust();*/
currentThrust = writeWrapper(VARID_17, LOCID_8, Engines[i]->GetThrust());

Figure 3. Write wrapper example deployment

Table XI
SYSTEM FAILURE RATES ASSOCIATED WITH ALL FAULT INJECTED

EXECUTIONS OF INSTRUMENTED MODULES

Module Unwrapped Wrapped
Failure Rate Failure Rate

7Z1 0.002407940 0.000017397
7Z2 0.007082023 0.000141946
7Z3 0.000856604 0.000030189
FG1 0.004582688 0.000045475
FG2 0.002481621 0.000002047
FG3 0.001471873 0.000135395
MG1 0.004983750 0.000012083
MG2 0.007888044 0.000013426
MG3 0.002780792 0.000006076

Table XII
PEAK INCREASE IN EXECUTION TIME AND MEMORY USAGE INCURRED

BY WRAPPERS (SHOWN AS % INCREASES FOR EACH MODULE)

Module Execution Time Memory Usage
(Peak % Increase) (Peak % Increase)

7Z1 26.048% 07.55%
7Z2 31.470% 18.16%
7Z3 20.359% 00.94%
FG1 30.660% 20.63%
FG2 35.829% 03.32%
FG3 23.529% 02.03%
MG1 25.983% 05.22%
MG2 28.090% 04.93%
MG3 23.174% 00.58%

particularly relevant to limiting the propagation of erroneous
states that originate “upstream” of a target module.

Table XII summarises the overhead of the proposed
methodology on all target modules. The Execution Time
column gives the peak percentage increase in runtime when
comparing executions of the wrapped and unwrapped target
modules. The Memory Usage column gives the peak per-
centage increase in memory consumption when comparing
executions of the wrapped and unwrapped target modules.
All overheads were measured by monitoring target modules
in isolation using the Microsoft Visual Studio Profiler.

Observe from Table XII that the execution overhead of
wrapped modules varies between 20% and 35%. The worst
case absolute increase in the execution time of a module was
observed for module 7Z2, which increased by 31.470% to
approximately 28µs. There is a coarse correlation between
the increase in execution time and the number of variables in
each module, though the frequency with which each variable



is used is likely to impact this overhead more directly.
The increases in memory consumption are more varied
than increases in execution time, with the maximum and
minimum increases being 20.63% and 0.94% respectively.
Note that the memory usage increases shown are the peak
observed increases for each module. This means that the
increase is unlikely to be sustained beyond the execution
of a module and the relative scale of an increase may
be small. For example, the 20.63% increase in memory
consumption shown for FG1 module corresponds to an
additional overhead of less than 4KB.

VII. DISCUSSION

Inserting detection and correction mechanisms directly into
a software system is likely to result in a low overhead, due
to the fact that only a small number of variables and code
segments must be added or replicated. However, as argued
earlier, this approach necessitates the design of non-trivial
predicates, which is known to be difficult [7]. Also, it is
known that the design of correctors often introduces addi-
tional bugs into software [14]. The proposed methodology
circumvents these problems by (re)using standard efficient
detectors and correctors, though this comes at the cost of
greater overheads. We see this problem as a tradeoff; insert-
ing mechanisms directly is more difficult and error prone
but imposes less overhead, whilst our approach can reuse
simpler mechanisms at the expense of greater overheads.

The performance overheads of the proposed methodology
will vary according to the extent of variable wrapping per-
formed, i.e., according to λd and λt. Overhead comparison
with similar approaches are desirable, but generally invalid
due to difference in the extent, intention and focus of the
wrapping mechanisms. For example, the results presented in
this paper demonstrate that with λd = 0.15 and λt = 0.10,
for a single module measured in isolation, our approach
introduces a additional runtime overhead ranging from 20%-
35% and a memory overhead ranging from 0.5%-20%. In
contrast, the approach developed in [14] had a memory
overhead for the masking of a fixed-duration function (5µs)
of over 1200%. However, the component / object focus of
this approach, as opposed to the novel variable-centric focus
developed in this paper, invalidates this comparison.

Given that the software wrappers operate by updating
replicated variables during writes and choosing a majority
value during reads, our approach will work with variables of
different types whenever the notion of equality exists or can
be defined for that type. This is well-defined for integer, real
and boolean types, which were the ones mostly encountered
in the case studies presented, but there is no reason why the
notion of equality can not be defined for composite types.

To prevent bias, the target modules in this paper were se-
lected randomly. In reality, module selection could be based
on expert knowledge, an understanding of system structure
and dependability properties. For example, in systems where
a given module is known to act as a “hub”, it would be
come a candidate for wrapping. Dependability frameworks
can also be used to inform module selection [36].

The main limitation of the proposed methodology, as it
has been applied in this paper, is the need for source code
access. Although no attempt has been made to constrain
the means by which methodology steps can be met, it may
be difficult to devise an appropriate combination of means
when source code is not available. For example, the identifi-
cation of read and write actions on important variables was
performed using source code analysis. In situations where
source code is not available this is not possible, meaning
that an alternative approach must be employed. However, it
should be remembered that the intention of the methodology
is to aid in the design of dependable software during its
development, when source code is normally available.

VIII. CONCLUSION

In this paper we developed an automated wrapped-based
approach for the design of dependable software. The novelty
of the approach is in the reuse of standard efficient depend-
ability mechanisms at the level of variables, which has been
enabled by the use of software wrappers that have been built
on a dynamic error propagation metric. The use of wrappers
is justified by the fact that we do not require knowledge of
system implementation in order to apply the methodology.
The propose methodology was validated through in-depth
studies of several complex software systems, each drawn
from a different application domain. This application of
the methodology yielded promising results, with all treated
modules exhibiting significant dependability improvements.
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