2,114 research outputs found

    Bao: A Lightweight Static Partitioning Hypervisor for Modern Multi-Core Embedded Systems

    Get PDF

    FirstLight: Pluggable Optical Interconnect Technologies for Polymeric Electro-Optical Printed Circuit Boards in Data Centers

    Get PDF
    The protocol data rate governing data storage devices will increase to over 12 Gb/s by 2013 thereby imposing unmanageable cost and performance burdens on future digital data storage systems. The resulting performance bottleneck can be substantially reduced by conveying high-speed data optically instead of electronically. A novel active pluggable 82.5 Gb/s aggregate bit rate optical connector technology, the design and fabrication of a compact electro-optical printed circuit board to meet exacting specifications, and a method for low cost, high precision, passive optical assembly are presented. A demonstration platform was constructed to assess the viability of embedded electro-optical midplane technology in such systems including the first ever demonstration of a pluggable active optical waveguide printed circuit board connector. High-speed optical data transfer at 10.3125 Gb/s was demonstrated through a complex polymer waveguide interconnect layer embedded into a 262 mm × 240 mm × 4.3 mm electro-optical midplane. Bit error rates of less than 10-12 and optical losses as low as 6 dB were demonstrated through nine multimode polymer wave guides with an aggregate data bandwidth of 92.8125 Gb/s

    FirstLight: Pluggable Optical Interconnect Technologies for Polymeric Electro-Optical Printed Circuit Boards in Data Centers

    Get PDF
    The protocol data rate governing data storage devices will increase to over 12 Gb/s by 2013 thereby imposing unmanageable cost and performance burdens on future digital data storage systems. The resulting performance bottleneck can be substantially reduced by conveying high-speed data optically instead of electronically. A novel active pluggable 82.5 Gb/s aggregate bit rate optical connector technology, the design and fabrication of a compact electro-optical printed circuit board to meet exacting specifications, and a method for low cost, high precision, passive optical assembly are presented. A demonstration platform was constructed to assess the viability of embedded electro-optical midplane technology in such systems including the first ever demonstration of a pluggable active optical waveguide printed circuit board connector. High-speed optical data transfer at 10.3125 Gb/s was demonstrated through a complex polymer waveguide interconnect layer embedded into a 262 mm × 240 mm × 4.3 mm electro-optical midplane. Bit error rates of less than 10-12 and optical losses as low as 6 dB were demonstrated through nine multimode polymer wave guides with an aggregate data bandwidth of 92.8125 Gb/s

    Evaluating the computational performance of the Xilinx Ultrascale+ EG Heterogeneous MPSoC

    Get PDF
    The emergent technology of Multi-Processor System-on-Chip (MPSoC), which combines heterogeneous computing with the high performance of Field Programmable Gate Arrays (FPGAs) is a very interesting platform for a huge number of applications ranging from medical imaging and augmented reality to high-performance computing in space. In this paper, we focus on the Xilinx Zynq UltraScale EG Heterogeneous MPSoC, which is composed of four different processing elements (PE): a dual-core Cortex-R5, a quad-core ARM Cortex-A53, a graphics processing unit (GPU) and a high end FPGA. Proper use of the heterogeneity and the different levels of parallelism of this platform becomes a challenging task. This paper evaluates this platform and each of its PEs to carry out fundamental operations in terms of computational performance. To this end, we evaluate image-based applications and a matrix multiplication kernel. On former, the image-based applications leverage the heterogeneity of the MPSoc and strategically distributes its tasks among both kinds of CPU cores and the FPGA. On the latter, we analyze separately each PE using different matrix multiplication benchmarks in order to assess and compare their performance in terms of MFlops. This kind of operations are being carried out for example in a large number of space-related applications where the MPSoCs are currently gaining momentum. Results stand out the fact that different PEs can collaborate efficiently with the aim of accelerating the computational-demanding tasks of an application. Another important aspect to highlight is that leveraging the parallel OpenBLAS library we achieve up to 12 GFlops with the four Cortex-A53 cores of the platform, which is a considerable performance for this kind of devices.This work has been supported by the Spanish Government through TIN2017-82972-R, ESP2015-68245-C4-1-P, the Valencian Regional Government through PROMETEO/2029/109 and the Universitat Jaume I through UJI-B2019-36. We thank Prof. L. Kosmidis and M. M. Trompouki for providing us the OpenGL ES 2.0 code implementation of the matrix multiplication

    Evaluating the computational performance of the Xilinx Ultrascale plus EG Heterogeneous MPSoC

    Get PDF
    The emergent technology of Multi-Processor System-on-Chip (MPSoC), which combines heterogeneous computing with the high performance of Field Programmable Gate Arrays (FPGAs) is a very interesting platform for a huge number of applications ranging from medical imaging and augmented reality to high-performance computing in space. In this paper, we focus on the Xilinx Zynq UltraScale+ EG Heterogeneous MPSoC, which is composed of four different processing elements (PE): a dual-core Cortex-R5, a quad-core ARM Cortex-A53, a graphics processing unit (GPU) and a high end FPGA. Proper use of the heterogeneity and the different levels of parallelism of this platform becomes a challenging task. This paper evaluates this platform and each of its PEs to carry out fundamental operations in terms of computational performance. To this end, we evaluate image-based applications and a matrix multiplication kernel. On former, the image-based applications leverage the heterogeneity of the MPSoc and strategically distributes its tasks among both kinds of CPU cores and the FPGA. On the latter, we analyze separately each PE using different matrix multiplication benchmarks in order to assess and compare their performance in terms of MFlops. This kind of operations are being carried out for example in a large number of space-related applications where the MPSoCs are currently gaining momentum. Results stand out the fact that different PEs can collaborate efficiently with the aim of accelerating the computational-demanding tasks of an application. Another important aspect to highlight is that leveraging the parallel OpenBLAS library we achieve up to 12 GFlops with the four Cortex-A53 cores of the platform, which is a considerable performance for this kind of devices

    Evolution of system embedded optical interconnect in sub-top of rack data center systems

    Get PDF
    This research was funded by the EU FP7 project “PhoxTrot”, for which it has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement No. 318240, the Horizon2020 Nephele project (Grant No. 645212), the Horizon2020 COSMICC project (Grant No. 688516).In this paper we review key technological milestones in system embedded optical interconnects in data centers that have been achieved between 2014 and 2020 on major European Union research and development projects. This includes the development of proprietary optically enabled data storage and switch systems and optically enabled data storage and compute subsystems. We report on four optically enabled data center system demonstrators: LightningValley, ThunderValley2, Pegasus and Aurora, which include advanced optical circuits based on polymer waveguides and fibers and proprietary electro-optical connectors. We also report on optically enabled subsystems including Ethernet-connected hard disk drives and microservers. Both are designed in the same pluggable carrier form factor and with embedded optical transceiver and connector interfaces, thus allowing, for the first time, both compute and storage nodes to be optically interchangeable and directly interconnectable over long distances. Finally, we present the Nexus platform, which allows different optically enabled data center test systems and subsystems to be interconnected and comparatively characterized within a data center test environment.Publisher PDFPeer reviewe
    • 

    corecore