663 research outputs found

    A search for rotating radio transients and fast radio bursts in the Parkes high-latitude pulsar survey

    Get PDF
    Discoveries of rotating radio transients and fast radio bursts (FRBs) in pulsar surveys suggest that more of such transient sources await discovery in archival data sets. Here we report on a single-pulse search for dispersed radio bursts over a wide range of Galactic latitudes (|b| < 60∘60^{\circ}) in data previously searched for periodic sources by Burgay et al. We re-detected 20 of the 42 pulsars reported by Burgay et al. and one rotating radio transient reported by Burke-Spolaor. No FRBs were discovered in this survey. Taking into account this result, and other recent surveys at Parkes, we corrected for detection sensitivities based on the search software used in the analyses and the different backends used in these surveys and find that the all-sky FRB event rate for sources with a fluence above 4.0 Jy ms at 1.4 GHz to be R=4.4−3.1+5.2×103{\cal R} = 4.4^{+5.2}_{-3.1} \times 10^3 FRBs day−1^{-1} sky−1^{-1}, where the uncertainties represent a 99%99\% confidence interval. While this rate is lower than inferred from previous studies, as we demonstrate, this combined event rate is consistent with the results of all systematic FRB searches at Parkes to date and does not require the need to postulate a dearth of FRBs at intermediate latitudes.Comment: Accepted, 10 pages, 6 figure

    Review of X-ray pulsar spacecraft autonomous navigation

    Full text link
    This article provides a review on X-ray pulsar-based navigation (XNAV). The review starts with the basic concept of XNAV, and briefly introduces the past, present and future projects concerning XNAV. This paper focuses on the advances of the key techniques supporting XNAV, including the navigation pulsar database, the X-ray detection system, and the pulse time of arrival estimation. Moreover, the methods to improve the estimation performance of XNAV are reviewed. Finally, some remarks on the future development of XNAV are provided.Comment: has been accepted by Chinese Journal of Aeronautic

    A Norm-Minimization Algorithm for Solving the Cold-Start Problem with XNAV

    Full text link
    An algorithm is presented for solving the cold-start problem using observations of X-ray pulsars. Using a norm-minimization-based approach, the algorithm extends Lohan's banded-error intersection model to 3-dimensional space while reducing compute time by an order of magnitude. Higher-fidelity X-ray pulsar signal models, including the parallax effect, Shapiro delay, time dilation, and higher-order pulsar timing models, are considered. The feasibility of solving the cold-start problem using X-ray pulsar navigation is revisited with the improved models and prior knowledge requirements are discussed. Monte Carlo simulations are used to establish upper bounds on uncertainty and determine the accuracy of the algorithm. Results indicate that it is necessary to account for the parallax effect, time dilation, and higher-order pulsar timing models in order to successfully determine the position of the spacecraft in a cold-start scenario. The algorithm can uniquely identify a candidate spacecraft position within a 10 AU ×\times 10 AU ×\times 0.01 AU spheroid domain by observing eight to nine pulsars. The median position error of the algorithm is on the order of 15 km. Prior knowledge of spacecraft position is technically required, but only to an accuracy of 100 AU, making it practically unnecessary for navigation within the Solar System. Results further indicate that choosing lower-frequency pulsars increases the maximum domain size but also increases position error.Comment: 20 pages, 15 figures. Conference paper at the AAS/AIAA Astrodynamics Specialist Conference, Charlotte, NC, August 2022. AAS 22-56

    Dense matter with eXTP

    Full text link
    In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry (eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Science, the eXTP mission is expected to be launched in the mid 2020s.Comment: Accepted for publication on Sci. China Phys. Mech. Astron. (2019

    Fast On-orbit Pulse Phase Estimation of X-ray Crab Pulsar for XNAV Flight Experiments

    Full text link
    The recent flight experiments with Neutron Star Interior Composition Explorer (\textit{NICER}) and \textit{Insight}-Hard X-ray Modulation Telescope (\textit{Insight}-HXMT) have demonstrated the feasibility of X-ray pulsar-based navigation (XNAV) in the space. However, the current pulse phase estimation and navigation methods employed in the above flight experiments are computationally too expensive for handling the Crab pulsar data. To solve this problem, this paper proposes a fast algorithm of on-orbit estimating the pulse phase of Crab pulsar called X-ray pulsar navigaTion usIng on-orbiT pulsAr timiNg (XTITAN). The pulse phase propagation model for Crab pulsar data from \textit{Insight}-HXMT and \textit{NICER} are derived. When an exposure on the Crab pulsar is divided into several sub-exposures, we derive an on-orbit timing method to estimate the hyperparameters of the pulse phase propagation model. Moreover, XTITAN is improved by iteratively estimating the pulse phase and the position and velocity of satellite. When applied to the Crab pulsar data from \textit{NICER}, XTITAN is 58 times faster than the grid search method employed by \textit{NICER} experiment. When applied to the Crab pulsar data from \textit{Insight}-HXMT, XTITAN is 180 times faster than the Significance Enhancement of Pulse-profile with Orbit-dynamics (SEPO) which was employed in the flight experiments with \textit{Insight}-HXMT. Thus, XTITAN is computationally much efficient and has the potential to be employed for onboard computation

    Application of Pulsar-Based Navigation for Deep-Space CubeSats

    Get PDF
    This paper investigates the use of pulsar-based navigation for deep-space CubeSats. A novel approach for dealing with the onboard computation of navigational solutions and timekeeping capabilities of a spacecraft in a deep-space cruise is shown, and the related implementation and numerical simulations are discussed. The pulsar’s signal detection, processing, and exploitation are simulated for navigation onboard a spacecraft, thus showing the feasibility of autonomous state estimation in deep space even for miniaturized satellites

    Pathway to the Square Kilometre Array - The German White Paper -

    Full text link
    The Square Kilometre Array (SKA) is the most ambitious radio telescope ever planned. With a collecting area of about a square kilometre, the SKA will be far superior in sensitivity and observing speed to all current radio facilities. The scientific capability promised by the SKA and its technological challenges provide an ideal base for interdisciplinary research, technology transfer, and collaboration between universities, research centres and industry. The SKA in the radio regime and the European Extreme Large Telescope (E-ELT) in the optical band are on the roadmap of the European Strategy Forum for Research Infrastructures (ESFRI) and have been recognised as the essential facilities for European research in astronomy. This "White Paper" outlines the German science and R&D interests in the SKA project and will provide the basis for future funding applications to secure German involvement in the Square Kilometre Array.Comment: Editors: H. R. Kl\"ockner, M. Kramer, H. Falcke, D.J. Schwarz, A. Eckart, G. Kauffmann, A. Zensus; 150 pages (low resolution- and colour-scale images), published in July 2012, language English (including a foreword and an executive summary in German), the original file is available via the MPIfR homepag
    • 

    corecore