559 research outputs found

    Design of a Haptic Interface for Medical Applications using Magneto-Rheological Fluid based Actuators

    Get PDF
    This thesis reports on the design, construction, and evaluation of a prototype two degrees-of-freedom (DOF) haptic interface, which takes advantage of Magneto-Rheological Fluid (MRF) based clutches for actuation. Haptic information provides important cues in teleoperated systems and enables the user to feel the interaction with a remote or virtual environment during teleoperation. The two main objectives in designing a haptic interface are stability and transparency. Indeed, deficiencies in these factors in haptics-enabled telerobotic systems has the introduction of haptics in medical environments where safety and reliability are prime considerations. An actuator with poor dynamics, high inertia, large size, and heavy weight can significantly undermine the stability and transparency of a teleoperated system. In this work, the potential benefits of MRF-based actuators to the field of haptics in medical applications are studied. Devices developed with such fluids are known to possess superior mechanical characteristics over conventional servo systems. These characteristics significantly contribute to improved stability and transparency of haptic devices. This idea is evaluated and verified through both theoretical and experimental points of view. The design of a small-scale MRF-based clutch, suitable for a multi-DOF haptic interface, is discussed and its performance is compared with conventional servo systems. This design is developed into four prototype clutches. In addition, a closed-loop torque control strategy is presented. The feedback signal used in this control scheme comes from the magnetic field acquired from embedded Hall sensors in the clutch. The controller uses this feedback signal to compensate for the nonlinear behavior using an estimated model, based on Artificial Neural Networks. Such a control strategy eliminates the need for torque sensors for providing feedback signals. The performance of the developed design and the effectiveness of the proposed modeling and control techniques are experimentally validated. Next, a 2-DOF haptic interface based on a distributed antagonistic configuration of MRF-based clutches is constructed for a class of medical applications. This device is incorporated in a master-slave teleoperation setup that is used for applications involving needle insertion and soft-tissue palpation. Phantom and in vitro animal tissue were used to assess the performance of the haptic interface. The results show a great potential of MRF-based actuators for integration in haptic devices for medical interventions that require reliable, safe, accurate, highly transparent, and stable force reflection

    Integration of the hybrid-structure haptic interface: HIPHAD v1.0

    Get PDF
    Design, manufacturing, integration and initial test results of the 6-DoF haptic interface, HIPHAD v1.0, are presented in this paper. The hybrid haptic robot mechanism is composed of a 3-DoF parallel platform manipulator, R-Cube, for translational motions and a 3-DoF serial wrist mechanism for monitoring the rotational motions of the handle. The device is capable of displaying point-type of contact since only the R-Cube mechanism is actuated. The dimensions and the orientation of the R-Cube mechanism are reconfigured to comply with the requirements of the haptic system design criteria. The system has several advantages such as relatively trivial kinematical analysis, compactness and high stiffness. The integration of the system along with its mechanism, data acquisition card (DAQ), motor drivers, motors, position sensors, and computer control interface are outlined.Marie Curie International Reintegration Grant within the 7th European Community Framework Programm

    Design of a six degree-of-freedom haptic hybrid platform manipultor

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2010Includes bibliographical references (leaves: 97-103)Text in English; Abstract: Turkish and Englishxv, 115 leavesThe word Haptic, based on an ancient Greek word called haptios, means related with touch. As an area of robotics, haptics technology provides the sense of touch for robotic applications that involve interaction with human operator and the environment. The sense of touch accompanied with the visual feedback is enough to gather most of the information about a certain environment. It increases the precision of teleoperation and sensation levels of the virtual reality (VR) applications by exerting physical properties of the environment such as forces, motions, textures. Currently, haptic devices find use in many VR and teleoperation applications. The objective of this thesis is to design a novel Six Degree-of-Freedom (DOF) haptic desktop device with a new structure that has the potential to increase the precision in the haptics technology. First, previously developed haptic devices and manipulator structures are reviewed. Following this, the conceptual designs are formed and a hybrid structured haptic device is designed manufactured and tested. Developed haptic device.s control algorithm and VR application is developed in Matlab© Simulink. Integration of the mechanism with mechanical, electromechanical and electronic components and the initial tests of the system are executed and the results are presented. According to the results, performance of the developed device is discussed and future works are addressed

    Rehabilitation Engineering

    Get PDF
    Population ageing has major consequences and implications in all areas of our daily life as well as other important aspects, such as economic growth, savings, investment and consumption, labour markets, pensions, property and care from one generation to another. Additionally, health and related care, family composition and life-style, housing and migration are also affected. Given the rapid increase in the aging of the population and the further increase that is expected in the coming years, an important problem that has to be faced is the corresponding increase in chronic illness, disabilities, and loss of functional independence endemic to the elderly (WHO 2008). For this reason, novel methods of rehabilitation and care management are urgently needed. This book covers many rehabilitation support systems and robots developed for upper limbs, lower limbs as well as visually impaired condition. Other than upper limbs, the lower limb research works are also discussed like motorized foot rest for electric powered wheelchair and standing assistance device

    Vector Field Control Methods for Discretely Variable Passive Robotic Devices

    Get PDF
    Passive transmission-based robotic devices are capable of providing motion guidance while ensuring user safety and engagement. To circumvent some of the drawbacks associated with steering continuously variable transmissions based on rolling contacts, we are exploring a class of discretely variable devices, based on brakes and hydrostatic transmissions. Previously available control methods for discretely variable devices were built on velocity fields and only developed to stabilize a 1D target manifold. For n -DOF devices, methods to stabilize target manifolds of dimension 1 to n—1 are of interest. In this paper we contribute constraint field methods that stabilize n — 1 dimensional target manifolds while leaving the orthogonal subspace free to the control of the operator. We also contribute force-modulated SDOF velocity fields, which add between 1 and n— 2 virtual DOFs to the motion of devices whose physical constraints leave one DOF. Control performance is demonstrated in simulation for 3-DOF devices capable of imposing 1-D or 2-D constraints and in experiment for 2-DOF devices imposing 1-D constraints. Our experimental apparatus features digital hydraulic transmissions that are easily configured for n-dimensional space and capable of imposing constraints of any dimension, thus motivating the contributed methods

    “Braking bad”:The influence of haptic feedback and tram driver experience on emergency braking performance

    Get PDF
    Trams are experiencing a resurgence with worldwide network expansion driven by the need for sustainable and efficient cities. Trams often operate in shared or mixed-traffic environments, which raise safety concerns, particularly in hazardous situations. This paper adopts an international, mixed-methods approach, conducted through two interconnected studies in Melbourne (Australia) and Birmingham (UK). The first study involved qualitative interviews, while the second was an experimental study involving a virtual reality (VR) simulator and haptic master controller (i.e., speed lever). In tram operations, master controllers play a critical role in ensuring a smooth ride, which directly influences passenger safety and comfort. The objective was to understand how a master control system, enhanced with additional haptic feedback, could improve tram driver braking performance and perceptions in safety-critical scenarios. Interview results indicate that the use of the emergency brake is considered the final or ultimate choice by drivers, and their driving experience is a moderating factor in limiting its application. Combined with the experimental results, this paper highlights how implementing haptic feedback within a master controller can reduce the performance disparity between novice and experienced tram drivers.</p

    iHandU Simulator - Towards a medical education tool for wrist rigidity assessment

    Get PDF
    During Deep Brain Stimulation (DBS) surgery, electrodes are implanted in the patient's brain in order to alleviate motor symptoms of common disorders such as Essential Tremor (ET) and Parkinson's Disease (PD). Stimulation parameters and electrode position are adjusted during surgery, chosen in order to obtain the best improvement in the patient's symptoms. The most commonly assessed symptom is muscular rigidity, which is characterized by an increased resistance to movement marked by a permanently elevated muscle contraction in response to a passive stretch. The assessment typically results from a series of flexions and extensions of a chosen joint, and consists of a qualitative improvement given according to a subjective scale, which is susceptible to errors, and has a verified lack of consistency among different clinicians. Robotic simulation of this behavior is of interest not only as a way to develop an educational tool for a unified method of rigidity assessment, but also in the context of aiding the development of decision support systems such as the iHandU, a wearable device in development at INESC-TEC

    Robotic Exoskeletons for Upper Extremity Rehabilitation

    Get PDF
    • …
    corecore