135 research outputs found

    2009 Index IEEE Antennas and Wireless Propagation Letters Vol. 8

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    2008 Index IEEE Transactions on Control Systems Technology Vol. 16

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    RF MEMS technology for millimeter-wave radar sensors

    Full text link
    The dissertation discusses RF MEMS technology for millimeter-wave radar sensors. RF MEMS, which stands for radio frequency micro-electromechanical system, and radar sensor fundamentals are briefly introduced. Of particular interest are: Firstly, a self-aligned fabrication process for capacitive fixed-fixed beam RF MEMS components is disclosed. It enables scaling of the critical dimensions and reduces the number of processing steps by 40% as compared with a conventional RF MEMS fabrication process. Scaling of the critical dimensions of RF MEMS components offers the potential of submicrosecond T/R switching times. RF MEMS varactors with beam lengths of 30 μm are demonstrated using the self-aligned fabrication process, and the performance of a 4 by 4 RF MEMS varactor bank is discussed as well. At 20 GHz, the measured capacitance values range between 180.5 fF and 199.2 fF. The measured capacitance ratio is 1.15, when a driving voltage of 35 V is applied, and the measured loaded Q factor ranges between 14.5 and 10.8. The measured cold-switched power handling is 200 mW. The simulated switching time is 354.6 ns. Secondly, an analog RF MEMS slotline TTD phase shifter is disclosed, for use in conjunction with ultra wideband (UWB) tapered slot antennas, such as the Vivaldi aerial and the double exponentially tapered slot antenna. It is designed for transistor to transistor logic (TTL) bias voltage levels and exhibits a measured phase shift of 28.2°/dB (7.8 ps/dB) and 59.2°/cm at 10 GHz, maintaining a 75 Ω; differential impedance match (S11dd ≤ -15.8 dB). The input third-order intercept point (IIP3) is 5 dBm at 10 GHz for a Δf of 50 kHz, measured in a 100 Ω differential transmission line system.Ph.D.Electrical EngineeringUniversity of Michiganhttp://deepblue.lib.umich.edu/bitstream/2027.42/61348/1/vcaeken.pd

    Ultra-Wideband Circuits, Systems, and Applications

    Get PDF

    Enhancement of Millimeter-Band Transceivers with Gap Waveguide Technology

    Get PDF
    Mención Internacional en el título de doctorIt is known to all that year after year in modern society there is an urgent demand to consume wirelessly, and even stream ever larger multimedia content. High-frequency technologies have made it possible to go from transmitting analog voice and SMS text messages, to now transmitting live video in 4K quality from a mid-range smartphone. The way to measure these advances is by the bandwidth (Mb/s) reserved for each network user and the cost required to achieve it. To achieve even higher bandwidths, it is essential to improve signal coding techniques or increase the frequency of the signal, for example: to the mmWave bands (25GHz - 100 GHz), where these high-frequency techniques come into play. However, there is a frequency limit where current planar technology materials - such as the printed circuit boards used to build RF devices - are so lossy that they are not suitable at these mmWave frequencies. Current commercial solutions consist of guiding the electromagnetic energy with hollow metallic waveguides, but they suffer from the problem that as the frequency increases the diameter of these waveguides gets smaller and smaller, so manufacturing tolerances increase exorbitantly. Not to mention that they are usually manufactured in two parts, one upper and one lower, whose joints are not always perfect and produce energy losses. With these issues in mind, in 2009 the theory and basic science of a new electromagnetic energy guidance technology called Gap Waveguide was proposed, which is based on the use of metasurfaces constructed with periodic elements similar to a bed of nails. There are several implementations of this technology, but the three main ones are: Ridge, Groove and Inverted Microstrip Gap Waveguide. The latter is the most compatible with conventional planar manufacturing technologies and therefore the most cost-effective, although it also has drawbacks mainly in terms of losses when compared to the other versions. This thesis aims to deepen the study of the Inverted Microstrip guidance technology, its limitations and to develop with it some of the needed components in RF systems such as filters, diplexers, amplifiers, antennas, etc. Regarding the methodology for this thesis, a commercial simulation software for the analysis of antennas and components, CST Microwave Studio [1], has been used. AWR Microwave Office [2], a circuit simulator, has also been used to complement the simulations. On the other hand, there is a laboratory for the manufacture of prototypes in printed technology (with some limitations in terms of resolution) and the corresponding measurement laboratory, which includes network analyzers up to 40 GHz, spectrum analyzers and an anechoic chamber.This thesis arose under the Spanish Ministry of Science and Innovation (MINECO) and European Regional Development Fund (ERDF) project, called "Antenna for Mobile Satellite Communications (SATCOM) in Ka-Band by means of metasurfaces (2016-2019)", with reference TEC2016-79700-C2-2-R. Under this contract, the author signed an FPI research contract.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Íñigo Cuiñas Gómez.- Secretario: Ángela María Coves Soler.- Vocal: Astrid Algaba Brazále

    Ultra-wideband impulse radio with diversity reception

    Get PDF
    Master'sMASTER OF ENGINEERIN

    A review on improved design techniques for high performance planar waveguide slot arrays

    Get PDF
    Planar waveguide slot arrays (WSAs) have been used since 1940 and are currently used as performing antennas for high frequencies, especially in applications such as communication and RADAR systems. We present in this work a review of the most typical waveguide slot array configurations proposed in the literature, describing their main limitations and drawbacks along with possible effective countermeasures. Our attention has been focused mainly on the improved available design techniques to obtain high performance WSAs. In particular, the addressed topics have been reported in the following. Partially filled WSAs, or WSAs covered with single or multilayer dielectric slabs, are discussed. The most prominent second-order effects in the planar array feeding network are introduced and accurately modeled. The attention is focused on the T-junction feeding the array, on the effect of interaction between each slot coupler of the feeding network and the radiating slots nearest to this coupler, and on the waveguide bends. All these effects can critically increase the first sidelobes if compared to the ideal case, causing a sensible worsening in the performance of the arra

    Information Theoretic Limits on Non-cooperative Airborne Target Recognition by Means of Radar Sensors

    Get PDF
    The main objective of this research is to demonstrate that information theory, and specifically the concept of mutual information (MI) can be used to predict the maximum target recognition performance for a given radar concept in combination with a given set of targets of interest. This approach also allows for the direct comparison of disparate approaches to designing a radar concept which is capable of target recognition without resorting to choosing specific feature extraction and classification algorithms. The main application area of the study is the recognition of fighter type aircraft using surface based radar systems, although the results are also applicable to airborne radars. Information theoretic concepts are developed mathematically for the analysis of the radar target recognition problem. The various forms of MI required for this application are derived in detail and are tested rigorously against results from digital communication theory. The results are also compared to Shannon’s channel capacity bound, which is the fundamental limit on the amount of information which can be transmitted over a channel. Several sets of simulation based experiments were conducted to demonstrate the insights achievable by applying MI concepts to quantitatively predict the maximum achievable performance of disparate approaches to the radar target recognition problem. Asymptotic computational electromagnetic code was applied to calculate the target’s response to the radar signal for freely available geometrical models of fighter aircraft. The calculated target responses were then used to quantify the amount of information which is transmitted back to the radar about the target as a function of signal to noise ratio (SNR). The information content of the F-14, F-15 and F-16 were evaluated for a 480 MHz bandwidth waveform at 10 GHz as a baseline. Several ultra-wideband (UWB) waveforms, spanning 2-10 GHz, 10- 18 GHz and 2-18 GHz, but which were highly range ambiguous, were evaluated and showed SNR gains of 0.5-2 dB relative to the baseline. The effect of sensing the full polarimetric response of an F-18 and F-35 was evaluated and SNR gains of 5-7 dB over a single linear polarisation were measured. A Boeing 707 scale model (1:25) was measured in the University of Pretoria’s compact range spanning 2-18 GHz and gains of 2 dB were observed between single and dual linear polarisations. This required numerical integration in 8004 dimensions, demonstrating the stability of the MI estimation algorithm in high dimensional signal spaces. The information gained by including the difference channel signal of an X-band monopulse radar for the F-14 data set was approximately 3 dB at 50 km and increased to 4.5 dB at 2 km due to the increased target extent relative to the antenna pattern. This experiment necessitated the use of target profiles which were matched to the range of the target to achieve maximum information transfer. Experiments were conducted to evaluate the loss in information due to envelope processing. For the baseline data set, SNR losses in the region of 7 dB were measured. Linear pre-processing using the fast Fourier transform (FFT) and principal component analysis (PCA), before envelope processing, were compared and the PCA algorithm outperformed the FFT by approximately 1 dB at high MI values. Finally, the expression for multi-target MI was applied in conjunction with Fano’s inequality to predict the probability of incorrectly classifying a target. Probability of error is a critical parameter for a radar user. For the baseline data set, at P(error) = 0.001, maximum losses in the region of 0.6 to 0.9 dB were measured. This result shows that these targets are easily separable in the signal space. This study was only the proverbial “tip of the iceberg” and future research could extend the results and applications of the techniques developed. The types of targets and configurations of the individual targets could be increased and analysed. The analysis should also be extended to describe effects internal to the radar such as phase noise, spurious signals and analogue to digital converters and external effects such as clutter and multipath. The techniques could also be applied to quantify the gains in target recognition performance achievable for multistatic radar, multiple input multiple output (MIMO) radar and more exotic concepts, such as the fusion of data from multiple monostatic microwave radars with multi-receiver multi-band passive bistatic radar (PBR) data

    Compact RF Integration and Packaging Solutions Based on Metasurfaces for Millimeter-Wave Applications

    Get PDF
    The millimeter-wave frequency range has got a lot of attention over the past few years because it contains unused frequency spectrum resources that are suitable for delivering Gbit/s end-user access in areas with high user density. Due to the limited output power that the current RF active components can deliver in millimeter-wave frequencies, antennas with the features of low profile, high gain, high efficiency and low cost are needed to compensate free space path loss and increase the communication distance for the emerging high data rate wireless systems. Moreover, it is desired to have a compact system by integration of the antenna with passive and active components at high frequencies.In order to move towards millimeter-wave frequencies we need to face significant hardware challenges, such as active and passive components integration, packaging problems, and cost-effective manufacturing techniques. The gap waveguide technology shows interesting characteristics as a new waveguide structure. The main goal of this thesis is to demonstrate the advantages of gap waveguide technology as an alternative to the traditional guiding structures to overcome the problem of good electrical contact due to mechanical assembly with low loss. This thesis mainly focuses on high-gain planar array antenna design, integration with passive and active components, and packaging based on gap waveguide technology. \ua0We introduce several low-profile multilayer corporate-fed slot array antennas with high gain, high efficiency and wide impedance bandwidth operating at the millimeter-wave frequency band. A system demonstration consisting of two compact integrated antenna-diplexer and Tx/Rx MMICs for Frequency-division duplex (FDD) low latency wireless backhaul links at E-band is presented to show the advantages of gap waveguide technology in building a complete radio front-end. Moreover, the use of several new manufacturing methods, such as die-sink Electric Discharge Machining (EDM), direct metal 3-D printing, and micro-molding are evaluated to fabricate gap waveguide components in a more effective way.Furthermore, a novel air-filled transmission line, so-called multi-layer waveguide (MLW), that exhibits great advantages such as low-cost, simple fabrication, and low loss, even for frequencies beyond 100 GHz, is presented for the first time. To constitute an MLW structure, a rectangular waveguide transmission line is formed by stacking several thin metal layers without any electrical and galvanic contact requirement among the layers. The proposed concept could become a suitable approach to design millimeter-wave high-performance passive waveguide components, and to be used in active and passive components integration ensuring mass production at the same time

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design
    corecore