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Abstract 
 

The main objective of this research is to demonstrate that information theory, and 

specifically the concept of mutual information (MI) can be used to predict the maximum 

target recognition performance for a given radar concept in combination with a given set of 

targets of interest. This approach also allows for the direct comparison of disparate 

approaches to designing a radar concept which is capable of target recognition without 

resorting to choosing specific feature extraction and classification algorithms. The main 

application area of the study is the recognition of fighter type aircraft using surface based 

radar systems, although the results are also applicable to airborne radars. 

Information theoretic concepts are developed mathematically for the analysis of the radar 

target recognition problem. The various forms of MI required for this application are derived 

in detail and are tested rigorously against results from digital communication theory. The 

results are also compared to Shannon’s channel capacity bound, which is the fundamental 

limit on the amount of information which can be transmitted over a channel. 

Several sets of simulation based experiments were conducted to demonstrate the insights 

achievable by applying MI concepts to quantitatively predict the maximum achievable 

performance of disparate approaches to the radar target recognition problem. Asymptotic 

computational electromagnetic code was applied to calculate the target’s response to the 

radar signal for freely available geometrical models of fighter aircraft. The calculated target 

responses were then used to quantify the amount of information which is transmitted back 

to the radar about the target as a function of signal to noise ratio (SNR). The information 

content of the F-14, F-15 and F-16 were evaluated for a 480 MHz bandwidth waveform at 

10 GHz as a baseline. Several ultra-wideband (UWB) waveforms, spanning 2-10 GHz, 10-

18 GHz and 2-18 GHz, but which were highly range ambiguous, were evaluated and 

showed SNR gains of 0.5-2 dB relative to the baseline.  

The effect of sensing the full polarimetric response of an F-18 and F-35 was evaluated and 

SNR gains of 5-7 dB over a single linear polarisation were measured. A Boeing 707 scale 

model (1:25) was measured in the University of Pretoria’s compact range spanning 2-18 

GHz and gains of 2 dB were observed between single and dual linear polarisations. This 

required numerical integration in 8004 dimensions, demonstrating the stability of the MI 

estimation algorithm in high dimensional signal spaces.  

The information gained by including the difference channel signal of an X-band monopulse 

radar for the F-14 data set was approximately 3 dB at 50 km and increased to 4.5 dB at 2 

km due to the increased target extent relative to the antenna pattern. This experiment 

necessitated the use of target profiles which were matched to the range of the target to 

achieve maximum information transfer. 

Experiments were conducted to evaluate the loss in information due to envelope 

processing. For the baseline data set, SNR losses in the region of 7 dB were measured. 
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Linear pre-processing using the fast Fourier transform (FFT) and principal component 

analysis (PCA), before envelope processing, were compared and the PCA algorithm 

outperformed the FFT by approximately 1 dB at high MI values. 

Finally, the expression for multi-target MI was applied in conjunction with Fano’s inequality 

to predict the probability of incorrectly classifying a target. Probability of error is a critical 

parameter for a radar user. For the baseline data set, at P(error) = 0.001, maximum losses 

in the region of 0.6 to 0.9 dB were measured. This result shows that these targets are 

easily separable in the signal space. 

This study was only the proverbial “tip of the iceberg” and future research could extend the 

results and applications of the techniques developed. The types of targets and 

configurations of the individual targets could be increased and analysed. The analysis 

should also be extended to describe effects internal to the radar such as phase noise, 

spurious signals and analogue to digital converters and external effects such as clutter and 

multipath. The techniques could also be applied to quantify the gains in target recognition 

performance achievable for multistatic radar, multiple input multiple output (MIMO) radar 

and more exotic concepts, such as the fusion of data from multiple monostatic microwave 

radars with multi-receiver multi-band passive bistatic radar (PBR) data. 
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1 Introduction 

Radar systems are the only sensors which can detect targets at long ranges and in any 

weather conditions. This property makes radar systems invaluable in several military and 

commercial applications, such as the detection and tracking of aircraft as well as satellites. 

In most applications of radar the ability to classify or recognize the targets of interest will 

enhance the situational awareness and decision making capability of the users of the radar 

system. 

Due to the fact that clutter and multipath effects increase the complexity of the analysis for 

surface based targets, this study will focus on airborne targets, in scenarios where the 

clutter and multipath can be minimized by the radar’s antenna pattern. This scenario is 

often referred to as “blue sky” by radar designers. Once techniques have been developed 

for the “blue sky” scenario, the insight and techniques which have been developed can be 

applied to extend the analysis to the cases where clutter and multipath effects are present. 

The following sections define the non-cooperative target recognition (NCTR) problem and 

its context as well as describing the recognition process from a radar point of view and a 

theoretical point of view. 

1.1 Problem Definition 

Modern ground-based and airborne radars are all-weather sensors that are capable of 

detecting airborne targets at ranges in excess of 200 km. The military, and to a lesser 

extent civilian, utility of such radars will be greatly increased if the radar can automatically 

determine the class or identity of the detected target. Non-cooperative target recognition 

(NCTR), is an active field of research that attempts to address this problem. No reliable 

solution to the problem, which allows for the recognition of all airborne targets, in all 

scenarios, has as yet been reported in the open literature. Some techniques, such as 

inverse synthetic aperture radar (ISAR), jet engine modulation (JEM) and helicopter blade 

modulation (HBM) have however been demonstrated in realistic scenarios. These 

algorithms often do not identify the exact aircraft, but group the targets into classes which 

have similar characteristic signatures. Some of the algorithms (e.g. JEM) are also only 

valid for a restricted set of target aspect angles. Due to the expense of obtaining measured 

data sets containing large numbers of targets, the performance of the algorithms is often 

simulated, or reported for a relatively small number of targets. Most of the literature on 

radar target recognition is based on the application of a feature extraction function followed 

by a classifier, which usually has to be trained. Many of these studies are based on 

measured data which limits the ability to predict the performance of an algorithm to the 

noise and distortion levels of the recorded target data. 

The open literature does not contain any reports of radar systems which have been 

designed with NCTR as the radar’s primary function. There is also a distinct lack of theory 
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regarding the prediction of NCTR algorithms’ performance, which implies that a radar 

system cannot be designed or optimized for a specified level of target recognition 

performance. The current mindset to improving a radar’s recognition performance involves 

an increase in its native resolution, in one or more of the dimensions in which it is able to 

sense a target. During the design phase of a radar system a designer’s insight would be 

improved if theoretical and analytical techniques were developed which could address the 

following problems: 

1. Whether NCTR is fundamentally possible in a given radar system. 

2. What level of NCTR is possible (e.g. classification or identification). 

3. How to predict the limit of NCTR performance if the system parameters and targets 

of interest are known. 

The designer of the radar system requires techniques for predicting the recognition 

performance of a radar sensor during the design stage of the system. Insight into the 

interaction between the sensor and the recognition algorithm is a prerequisite for optimizing 

the overall system with regards to its recognition function. Before the detailed design of the 

radar is commenced upon, it is necessary for the design team to be able to compare 

various preliminary designs against one another. Analysis tools that enable designers to 

make tradeoffs between system concepts based on recognition performance could lead to 

radical departures from accepted norms in radar design principles. 

Several new radar architectures and related processing techniques are currently emerging 

from radar research laboratories around the world under the broad grouping of Multiple 

Input Multiple Output (MIMO) radar. This grouping is a generalisation of older architectures 

such as bistatic and multistatic radars. If the correct analysis tools can be applied to such 

concepts to show that they exhibit the potential for significant improvement in recognition 

performance over monostatic systems, the development cost of such systems could be 

justified. 

A set of theory that allows for the analysis and fair comparison of disparate radar systems 

in the abovementioned scenarios would thus allow designers to compare conceptual radar 

designs. If absolute performance bounds can be found which are impossible to exceed 

then the radar designer can use these to ascertain how far away the performance of 

proposed NCTR algorithms are from the maximum achievable level of performance. 

1.2 Generalized Radar NCTR System 

Most researchers interested in improving the recognition performance of a radar-based 

NCTR system focus on the recognition algorithm. The most important question is actually 

whether or not the returns from a target are classifiable in the first place. The next question 

would pertain to how the returns are altered by mechanisms internal to the radar, and its 

design parameters. The next step would be to consider the internal and external 

subsystems to the radar which support the recognition function. It is thus important to 
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realize that the recognition performance of a radar-based NCTR system could be mediocre 

on a system level as a side effect of having neglected the subsystems and functions which 

are necessary to support the recognition function, despite having developed a recognition 

algorithm with extremely high levels of performance during initial testing phases. Some of 

these functions might not reside in the physical radar system, but exist in its external 

environment. Support systems can be disparate and examples range from equipment and 

software for the characterisation of potential targets to the training of the radar operators 

and the development of military doctrine. Figure 1.1 is a diagrammatic representation of a 

generalized radar based recognition system which indicates the elements which would 

influence the recognition performance as well as elements which would be responsible for 

the definition of metrics for adequate recognition performance for higher level systems 

such as a Threat Evaluation and Weapons Assignment (TEWA) system or the command 

and control system. 

 

Figure 1.1: Simplified system context diagram showi ng the external environment in 

which the radar based recognition algorithm operate s for a military 

application. 

It should be noted that the purpose of this figure is to provide an overview of the system - it 

is not a rigorous representation of the system and the environment within which it exists 

and interacts with other entities. It should also be noted that many of these components are 

interdependent and that most of the links between the components are bidirectional. For 

example, if NCTR becomes available in a radar system, the command and control strategy 
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might be updated, which in turn could lead to a different set of requirements being placed 

on the NCTR function. 

In the figure the target database is shown as a separate entity to the recognition algorithm. 

In some cases these two components could be merged, for example when template 

matching is used to compare the radar’s received signal to the signals stored in the 

database. In other cases, such as trained classification algorithms, the data base is 

implicitly included in the classification algorithm in the training step of the classifier. It is 

also not required that the whole database be available in a radar at a specific time as the 

threat targets could vary depending on the scenario. 

This figure also highlights the fact that a successful NCTR system requires technical 

support from a support organisation that is competent in radar and radar-related fields such 

as the electromagnetic simulation of target signatures as well as the measurement of target 

signatures for the creation of the recognition database. 

The radar system, the electromagnetic environment and the physical properties or 

characteristics of the target all contribute to the generation of a set of signals, received by 

the radar, which can be exploited for recognition purposes. The main focus of this study will 

be the analysis of the amount of information which a set of received signals conveys to the 

radar system about the class of target or the identity of the target being illuminated by the 

radar. 

It should be noted that this study will not address techniques for the fusion of data from 

multiple radar systems or other sensor types such as optical imaging sensors. 

1.3 Recognition Process 

It is necessary to define the nomenclature relating to the various processing stages 

required in a radar target recognition system from a radar point of view as well as a 

theoretical point of view. 

1.3.1 Radar Recognition Process 

Two acronyms for the recognition of radar targets using automated techniques have 

developed over time. The first term is: “automatic target recognition” (ATR) which is used 

for air-to-ground scenarios such as synthetic aperture radar (SAR). The second term is 

“non-cooperative target recognition” which is used for ground-to-air and air-to-air scenarios. 

The remainder of this document will use the term NCTR as the research deals with the 

recognition of airborne targets. 

According to Cohen, in Chapter 12 of [Long1992], the NCTR process can be seen as 

consisting of five functional blocks within the radar. These functions, which will be 

discussed in this section, are shown in the flow chart in Figure 1.2 below. 
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Figure 1.2: Functions which comprise the recognitio n process, after [Long1992]. 

Detection is the most fundamental level of the recognition process. It deals with the 

problem of distinguishing a target from thermal noise. Classical optimum detection theory is 

well developed, and can be applied in most design problems, except in cases where it is 

necessary to reduce the false alarm rate to effectively reduce the processing load on the 

recognition system. Discrimination is defined as the process of distinguishing potential 

targets from the surrounding clutter. This process is responsible for reducing the number of 

potential targets which are presented to higher levels of the recognition system, to reduce 

throughput requirements and ensure good recognition performance. An example of a 

discriminatory process is the classical moving target indication (MTI) technique. In some 

cases it is necessary to perform discrimination before detection, and in some cases the two 

functions are merged. 

The function of pre-classification in a recognition system is to exclude from further 

consideration, those targets which pass the detection and discrimination stages, but which 

were not of sufficient interest to be passed on to the classification and identification 

algorithms. This process is also referred to as “alien separation”. For example, in a 

scenario in which the classification/identification algorithms have been trained to identify 

specific fixed wing military jet aircraft, slow targets such as moving ground vehicles and 

small propeller aircraft will be discarded by the pre-classifier. 

Classification describes a process whereby the remaining targets are characterized as 

belonging to a certain class of vehicles, such as helicopter, fixed wing etc. In this case the 

physical attributes of the target play an important role in that they are usually the means by 

which targets can be grouped. The radar has to be able to measure these attributes in 

terms of commonalities and differences accurately to ensure the correct grouping of a 

target. Classification is thus the process of determining the nature of a potential threat, and 

possibly whether it is friendly or not. 

Identification is the final and most difficult stage of the recognition process. The goal is to 

identify the specific platform as, for example, either an F-15 or a MIG-29. The algorithms 

used for this stage are similar to those used in the classification section, as both types of 

algorithms are trained on a representative subset of the targets of interest. In most cases 

some set of features is used to represent the targets and use is made of clustering, pattern 

recognition, or artificial intelligence techniques to determine the proper declaration. The 

ultimate goal of identification in the air defence scenario would be to identify the exact 

aircraft, down to its serial number. If this can be achieved, then the intention of the pilot can 

often be inferred. Once this decision has been made the target is referred to as “friend”, 
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“foe” or “neutral”. In some literature, the identification of a specific aircraft is referred to as 

recognition, thus adding an extra function after classification. 

More recently, extra terms have been added to discriminate between variants of a single 

target and variations of a single target’s configuration. The terms “characterisation” and 

“finger printing” are used to describe this type of discrimination [BlacknellGriffiths2003]. 

From the above description, it can be seen that the recognition process forms a 

hierarchical pyramid with an increasing level of certainty about the identity of target. 

1.3.2 Theoretical Fields of Study Required for the Radar Based 

NCTR Process 

This section introduces some of the theoretical fields of study which underpin NCTR. 

Figure 1.3 below shows a conceptual diagram of the recognition process in a radar system. 

 

Figure 1.3: Conceptual target recognition process. 

The radar system transmits a set of waveforms to interrogate the target in the 

electromagnetic domain. These waveforms interact with the target geometry, are then 

reradiated and consequently observed by the radar system. The radar system applies 

signal processing techniques to convert these measurements into observables which are 

then passed to the recognition system. 

Most published NCTR techniques encompass some or all of the above processes, but the 

focus is often on the identification sub-system, which is described mathematically by the 

field of pattern recognition. This is due to the fact that the purpose of an NCTR algorithm is 

to match some set of measurements of a target to some set of stored parameters for each 

possible target. If the measurements match the stored parameters to within a certain 

measure of closeness then the target can be identified. The main processes contained in 

pattern recognition, and their purposes are shown diagrammatically in Figure 1.4 below. 

The “Measurement of observables” process entails the measurement of some form of raw 

data. In a radar application it would entail measuring a set of parameters pertaining to a 

single target which can be sensed by the radar. “Feature extraction” is the process of 

projecting the multidimensional measured data set onto a subspace of a smaller dimension 

than the original data set. “Classification” is the process of creating a set of boundaries in 

the feature space. The “Recognition” process is responsible for assigning a class type to 

each of the sets defined in the classification step. 
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Figure 1.4: Generic pattern recognition block diagr am. 

A large body of knowledge exists in the open literature pertaining to feature extraction 

techniques, but often the designer will have to develop a new feature extraction technique 

for the problem at hand. Pattern recognition is an established field rooted in statistical 

decision theory [Duda2001]. The aim of the pattern recognition system is usually to 

minimize the probability of error, or to minimize the average cost of an error. 

1.4 Information Theory 

Information theory is the field of study which mathematically formalizes the relatively vague 

concepts of a “message” and the amount of “information” the message contains. The field 

came into being when Claude Shannon published his paper titled “A mathematical theory 

of communication” in 1948 [Shannon1948]. Shannon realized that the content of a 

message being communicated was uncoupled from the representation of that message. 

This realization ushered in the “digital age” underpinned by the idea that all information can 

be represented as zeros and ones. Shannon studied the amount of information contained 

in random variables and defined two limits: the data compression limit which predicts the 

minimum data representation limit for compression algorithms and the data transmission 

limit which predicts the maximum rate at which error-free transmission of data can be 

achieved. The data compression limit is defined by the entropy of a random variable which 

is a measure of the uncertainty of its outcomes. The transmission limit is called the 

“channel capacity” and is based on the definition of “mutual information”, which is the 

reduction in the uncertainty (entropy) of a random variable due to the observation of 

another random variable. Mutual information (MI) is a more general measure of the 

dependence between two random variables than most commonly used measures such as 

the correlation coefficient and other low order joint moments. The quantitative measure of 

the information, in bits (binary digits), provided about the event kx a=  by the occurrence of 

the event jy b=  is given by the logarithm of the ratio of the a posteriori probability to the a 

priori probability of ka  as follows [Gallager1968] 
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where { }1, , KX a a= …  and { }1, JY b b= …  are the sample spaces associated with ka  

and jb  respectively. ( )P a  is the standard function mapping an event, a , to its associated 

probability. Note that mutual information can be denoted using a semicolon, a colon or a 

comma, but use will be made of the semicolon notation in this thesis. The mean value of 

this expression is called the “average mutual information” and is given by: 
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It will be shown in Chapter 4 that ( ); 0I X Y ≥  and that it attains the value of zero only if 

X  and Y  are statistically independent. In this case the two variables do not depend on 

each other in any way, so there is no information to be gained about the one by observing 

the other. 

If X  is the input to a channel, and Y  is its output, then the capacity, C , of this channel is 

defined as the maximum mutual information over all possible choices of the input 

probability distribution: 

( ) ( )max ;
XP x

C I X Y= , (1.3) 

and is measured in bits per channel usage. This is the maximum rate at which error free 

communication is possible over the channel. Channel capacity gave communication 

engineers a limit to benchmark their data transmission systems against and has in turn led 

to the development of technologies for high speed digital data transmission over wired and 

wireless media as well as technologies for digital data storage. 

1.5 Aims and Objectives 

The main objective of this research is to demonstrate that information theory, and 

specifically the concept of mutual information, can be used to compare the recognition 

performance of disparate approaches to designing a radar concept which is capable of 

target recognition without resorting to choosing specific feature extraction and classification 

algorithms. To this end it is necessary to develop a good understanding of the 

mathematical principles underpinning information theory, as well as the theory describing 

the interaction of the transmitted radar pulse with the target and the ways in which the 

radar can sense and exploit this interaction to classify or recognize the target. Once the 

mutual information has been calculated, it can be compared to the MI for various other 
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recognition options, or use can be made of Fano’s inequality [Fano1961, Cover2006] to 

estimate the probability of error, which, in this case is the probability of incorrectly 

assigning a received signal to a specific target orientation and/or type of target. 

1.6 Contributions 

The main novel contribution of this thesis is the development of a technique for 

characterising the maximum achievable amount of information, specifically the mutual 

information, which can be extracted from high range resolution profiles of an airborne 

target for a specific radar waveform in the presence of additive white Gaussian noise. The 

most important quality of this information is that it directly determines the maximum 

achievable probability of correct classification (or lowest probability of error), through 

Fano’s inequality, for the given set of signals and for a given signal to noise ratio. It is 

impossible to design a classifier that achieves better performance than this upper bound. 

Determination of the information content of different sets of signals also allows for the 

comparison of the amount of information which can be extracted from a target for various 

waveforms, or the comparison of the amount of information which can be extracted from 

various types of targets. In the latter case this can be converted to a probability of making a 

misclassification error between different targets. This error represents the lowest possible 

error probability which can be achieved for the specific radar waveform and thus serves as 

a benchmark for future researchers working on the development of target recognition 

systems and/or algorithms. 

The calculation and comparison of the information content was demonstrated for three 

fighter targets in the paper titled “Evaluation of the information content of wideband and 

ultra-wideband radar returns from an F-14, F-15 and F-16 using asymptotic 

electromagnetic techniques”, in which it was shown that for the specific aircraft models, the 

F-15 required an increase in signal to noise ratio of approximately 3 dB to reach the same 

level of recognition performance. The amount of information which could be extracted from 

these three targets was also compared for disparate designs of high range resolution 

waveforms, and it was shown that surprisingly little information was lost if use is made of 

frequency stepped waveforms which are ambiguous in range. The paper titled “On the gain 

in recognition performance due to the addition of polarisation in an X-band High Range 

Resolution radar evaluated for F-18 and F-35 targets using asymptotic EM techniques” 

extended the technique to radars which can sense the full polarisation matrix and showed 

that signal to noise ratio gains in the region of 5 dB are achievable for full polarisation over 

a single linear polarisation. In this thesis the polarisation based performance improvement 

was also characterised for measurements of a 1:25 scale model of a Boeing 707 measured 

in a compact range, thus demonstrating the applicability of the information content 

estimation algorithm to measured data sets. 
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The above examples made use of the complex valued returns from the target and thus 

defined the absolute maximum classification performance which could be achieved. The 

second contribution was the modification of the abovementioned technique, for the 

estimation of the information content, which allowed for the effect of envelope processing 

on the information content to be characterised. It was shown that this very standard 

processing in a radar’s signal processor can lead to a loss in signal to noise ratio required 

for the same level of recognition performance of approximately 7 to 9 dB. 

All the examples above were focussed on the comparison of the amount of information 

which could be extracted from a single target. The third contribution was the extension and 

demonstration of the information estimation technique for the estimation of the probability 

of misclassification between various targets. It was shown that losses on the order of 0.5 to 

1 dB can be expected if the classification algorithm is required to classify between three 

targets. 

In all cases the rigorous derivations of expressions for mutual information have been 

included for the benefit of future researchers in this area. 

1.6.1 Publications 

The following publications were generated during this research: 

• J.E. Cilliers, J.C. Smit, A. McDonald, C. Baker & K. Woodbridge, Evaluation of the 

information content of wideband and ultra-wideband radar returns from an F14, 

F15 and F16 using asymptotic electromagnetic techniques, IET International Radar 

Conference, 2012 

• J.E. Cilliers, J.C. Smit, C. Baker & K. Woodbridge, On the gain in recognition 

performance due to the addition of polarisation in an X-band High Range 

Resolution radar evaluated for F-18 and F-35 targets using asymptotic EM 

techniques, 2015 IEEE Radar Conference (RadarCon), 2015, pp. 1296-1299 

• J.E. Cilliers, J.C. Smit, C. Baker & K. Woodbridge, On the information gain 

obtainable by exploitation of the monopulse difference channel for an X-band high 

range resolution radar evaluated using asymptotic EM techniques, IEEE Radar 

Conference (Johannesburg), 2015, pp. 533-538 

• J. Cilliers, J. Steyn, J. Smit, C. Pienaar & M. Pienaar, Considering CAD Model 

Accuracy for Radar Cross Section and Signature Calculations of Electrically Large 

Complex Targets, International Radar Conference, 2014 

• J.E. Cilliers & J.C. Smit, On the trade-off between mainlobe width and peak 

sidelobe level of mismatched pulse compression filters for linear chirp waveforms, 

EuRAD Radar Conference, 2009, pp. 9-12 
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• J.C. Smit, J.E. Cilliers & E. Burger, Comparison of MLFMM, PO and SBR for RCS 

investigations in radar applications, IET International Conference on Radar 

Systems (Radar 2012), pp. 1-5 

• F. Maasdorp, J. Cilliers, M. Inggs & C. Tong, Simulation and measurement of 

propeller modulation using FM broadcast band commensal radar, IET Electronics 

Letters, 2013, vol. 49, no. 23, pp. 1481-1482 

• F. Maasdorp, J. Cilliers, M. Inggs & C. Tong, FM band commensal radar 

technology used for the detection of small aircraft and the measurement of 

propeller modulation, 2015 IEEE Radar Conference (RadarCon), pp. 664-668 

1.7 Thesis Layout 

The rest of this document is structured as follows: Chapter 2 is a high level overview of the 

electromagnetic theory which describes the interaction between the signal transmitted by 

the radar and the target. The aim of this chapter is to start with the underlying 

electromagnetic theory and from this to develop a list of target attributes which can be 

sensed by the radar. Chapter 3 gives an overview of various techniques, based on the 

discussion in Chapter 2, which other researchers have applied to the problem of radar 

target recognition. This summarises the context for the research in this study as well as 

giving some examples from the literature related to the problem of radar target recognition 

and approaches to solving it. Chapter 4 is a theoretical development of the information 

theoretic concepts required for the analysis of the radar target recognition problem and 

concludes the background material required for this study. This chapter is intended as an 

introduction to the field of information theory and focuses on the development of the theory 

required to define mutual information. Two non-standard examples are developed to show 

the interplay between entropy and mutual information. These examples were also chosen 

to show that mutual information is a more general measurement the correlation between 

random variables than standard techniques such as correlation coefficients. Based on the 

theory in Chapter 4, Chapter 5 gives detailed derivations of various forms of mutual 

information which will be required for the analysis of radar recognition problems. The aim is 

to derive the expressions for mutual information in enough detail that future researchers 

will be able to verify the final expressions. Where possible, the mutual information results 

are verified against standard results in the literature. These results are usually from digital 

communications theory as this is the area in which information theory was originally 

developed and has driven the achievable performance since its inception. 

The next seven chapters present the results for various analyses which were conducted. 

Chapter 6 presents an overview of the various experiments which were conducted in the 

next six chapters and gives the types of targets used for each experiment. Chapter 7 

focuses on the analysis of point scatterer type targets and the results are compared to the 

Shannon bound and optimal waveforms as an extra verification. In Chapter 8 the results of 
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MI analyses for three fighter targets are presented. Use is made of freely available 

computer aided design (CAD) models for the F-14, F-15 and F-16 fighter aircraft as 

examples of more realistic targets. The RCS of these targets is calculated using a 

computational electromagnetic computation (CEM) package which makes use of 

asymptotic EM techniques. The targets are analysed over a 480 MHz bandwidth at X-band. 

Chapter 9 extends this analysis for the same targets by making use of ultra-wideband 

waveforms in an attempt to extract more information about the target. These waveforms 

span the 2-18 GHz band. Chapter 10 extends the analysis to multi-channel radar receivers. 

The gain achievable from polarisation for the F-18 and F-35 CAD models is analysed. 

Measurements made of a 1:25 scale Boeing 707 model, in the University of Pretoria’s 

compact range, are also analysed over a 2-18 GHz frequency span. This analyses also 

showed that the MI calculation techniques are valid for very high dimensional problems as 

the highest dimension required for the 707 data was 8004. Lastly the extra information 

which can be gleaned from the difference channel of a monopulse radar is analysed for the 

F-14 model. All the preceding results were calculated using the complex valued target 

profiles. Chapter 11 presents the effect of envelope processing on the amount of data 

which can be extracted from the target return. The effect of linear pre-processing before 

calculating the envelope is also analysed. Chapter 12 makes use of Fano’s inequality to 

calculate the probability of error from the mutual information results for the F-14, F-15 and 

F-16. This concludes the results section and shows how the mutual information can be 

converted into a radar performance parameter which is important to the radar user. The 

results chapters show the applicability and insights achievable by applying the mutual 

information concepts to disparate approaches to the radar recognition problem. Chapter 13 

presents the conclusions as well as discussing concepts for further research in this field. 
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2 Interaction of the Electromagnetic Field with a 

Target 

To recognize an unknown target, the only physics which a radar designer can exploit is the 

interaction between the electromagnetic (EM) field produced by the radar and the target 

that is being interrogated. In most cases of interest, this interaction is of sufficient 

complexity to render it mathematically intractable even for a single frequency and single 

aspect angle. The normalised echo returned from the target to the radar is scaled by a 

factor known as its radar cross section (RCS). The RCS of a target is a function of the 

radar’s frequency, bandwidth and polarization as well as the shape of the target, its 

orientation relative to the radar and the materials from which it is constructed. At 

microwave frequencies the RCS is highly dependent on the geometry of the target, and 

can thus also be influenced by changes in the target structure due to its interaction with the 

atmospheric turbulence, manoeuvre induced flexing, moving control surfaces and external 

stores. The illuminating and received signal can also be a function of the radar-target 

geometry, especially in cases where multipath can be encountered. 

This section summarises the various scattering mechanisms and applicable 

electromagnetic theorems and is concluded by a discussion of electromagnetic 

phenomena which a radar could sense to enable recognition of an aerial target. The 

discussion of the EM phenomena is at a conceptual level and the reader is referred to 

standard texts such as [Knott2004] and [Jenn2005] for an in-depth discussion of RCS and 

techniques for the calculation thereof. 

2.1 Electromagnetic Mechanism for Scattering 

The radar is designed to transmit EM energy, usually in the form of a time limited pulse via 

its antenna. This energy propagates through the earth’s atmosphere and is reflected from 

targets of interest as well as other objects in the environment which are not of interest to 

the radar, such as ground clutter. The reflected energy is converted by the radar’s antenna 

to a signal which can be analysed by the radar’s signal processor. The characteristics of 

the received signal, such as its amplitude and Doppler shift are then exploited to detect 

targets. 

The interaction between the EM field which illuminates the target in conjunction with the 

target’s geometry is responsible for creating the scattered field, which is then sensed by 

the radar’s antenna. For all target recognition research, this is the fundamental physical 

principle which is of interest as the scattered field is a function of the target’s geometry and 

the target’s motion. The target’s geometry and state of motion is thus encoded onto 

transmitted signal and reflected back to the radar. This signal is received by the radar and 

can be utilised for the detection of targets as well as the classification and recognition of 

targets, if enough information about the target has been transmitted back to the radar. The 
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physics which governs EM fields and their interaction with the environment is dictated by 

Maxwell’s equations, which are discussed in the following section. This will lead to the 

definition of the Radar Cross Section (RCS), which is a measure of the EM reflectivity of an 

object. 

2.1.1 Maxwell’s Equations for Electromagnetic Field s in Free 

Space 

The generation and propagation of EM fields as well as the interaction of EM fields with 

objects are predicted mathematically by Maxwell’s equations, which he published in 1862, 

and are referred to as “classical field theory”. These equations are not exact, but are an 

approximation of a subset of a more general theory known as “quantum electrodynamics”. 

Luckily, this is not required for the calculation of EM fields required for the prediction or 

measurement of RCS. Maxwell’s equations relate the EM fields to the sources which are 

responsible for their generation. These sources are either charge and current or the EM 

fields themselves if these fields are time variant. In free space, where there is no charge or 

current present, Maxwell’s equations are given by the following set of four coupled first 

order differential equations: 

0∇ ⋅ =E , (2.1) 

0∇ ⋅ =B , (2.2) 

t

∂∇ × = −
∂
B

E , (2.3) 

0 0
t

µ ε ∂∇ × =
∂
E

B , (2.4) 

where E  is the electric field vector, B is the magnetic field vector. The constant 0ε  is the 

permittivity of free space and is defined as 

-12
0 8.8541878176 ×10      F/mε = … . (2.5) 

The constant 0µ   is the permeability of free space and is defined as 

7
0

-6 2

4 10      H/m 

1.2566370614 ×10      N/A .

µ π −= ×
≈ …

 (2.6) 

The set of equations can be decoupled by taking the curl of both sides of (2.1) and (2.4) 

and applying the following vector derivative identity:  
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( ) ( ) 2∇ × ∇ × = ∇ ∇ ⋅ − ∇A A A . (2.7) 

For the E  field this process is simplified as follows: 

( )

( ) 2

t

t

∂ ∇ × ∇ × = ∇ × − ∂ 

∂∇ ∇ ⋅ − ∇ = − ∇ ×
∂

B
E

E E B

 (2.8) 

where time and space derivatives of B  have been interchanged, if B  is well behaved, 

which is usually the case. Now substituting (2.1) and (2.4) into (2.8) gives  

( ) 2

2
2

0 0 2

2
2

0 0 2

t

t

t

µ ε

µ ε

∂∇ ∇ ⋅ − ∇ = − ∇ ×
∂

∂−∇ = −
∂

∂∇ =
∂

E E B

E
E

E
E

 (2.9) 

This is a single equation for E , although it is a second order differential equation. Similarly, 

for the magnetic field, B , the same approach can be followed to arrive at the following 

second order differential equation: 

( )

( )

0 0

2
0 0

2
0 0

2
2

0 0 2

t

t

t t

t

µ ε

µ ε

µ ε

µ ε

∂ ∇ × ∇ × = ∇ ×  ∂ 

∂∇ ∇ ⋅ − ∇ = ∇ ×
∂
∂ ∂ −∇ = − ∂ ∂ 

∂∇ =
∂

E
B

B B E

B
B

B
B

 (2.10) 

Equation (2.9) and (2.10) are three-dimensional versions of the wave equation which 

describe the propagation of EM waves in a homogeneous, linear medium. These equations 

are a necessary consequence of Maxwell’s equations, but any solution to these equations 

also has to be confirmed to be a solution to Maxwell’s equations as well. The fact that the 

wave equation is a consequence of Maxwell’s equations does not imply that the converse 

is true. In a vacuum, each Cartesian component of E  and B  have to satisfy the three-

dimensional wave equation, which for the z  component is given by: 
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2
2

2 2

1 f
f

v t

∂∇ =
∂ , (2.11) 

where v  is the speed of the propagating wave. For the case of EM propagation in a 

vacuum, this is given by: 

0 0

1
299 792 458     m/sv c

µ ε
= = = , (2.12) 

which is the speed of light. 

One of the most important consequences of Maxwell’s equations is the wave equation, 

which governs the propagation of EM fields in media which are homogeneous and linear. 

One of the solutions to the set of equations is the complex exponential plane wave which is 

discussed in the next section. 

2.1.2 Plane Wave Solution to Maxwell’s Equations 

If the EM fields are uniform over a plane which is orthogonal to the direction of propagation 

of the field, the field is called a “plane wave”. This is a special case, but is usually 

applicable to radar scattering problems. 

The targets are illuminated by an EM field which is a plane wave, and the radar senses the 

portion of this EM field which is scattered from the target. The plane wave assumption is 

valid as long as the target is in the far field of the radar’s antenna, which is given by 

22
ff

D
R

λ
= , (2.13) 

where λ  is the wavelength of the incident field, and D  is the largest dimension of the 

antenna. The assumption is also made that propagation of the EM waves occurs in a 

vacuum, as the properties of the earth’s atmosphere are close enough to those of a 

vacuum for the purpose of this study. 

The single frequency or monochromatic solution to Maxwell’s equation in free space for a 

plane wave is harmonic in both time and space, and can be represented mathematically by 

the following general form: 

( ) ( ) ( )( )0, expR t R i t kRω= − −A A , (2.14) 

where 1i = − , 2 fω π=  is the radian frequency in rad/s of the EM field of frequency in f  

(in hertz), R  is the distance travelled by the field in metres and k  is the wave number, 

given by 2π λ . The wavelength, λ , of the EM field is given by c fλ = , where c  is the 
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speed of light in the medium of propagation. The function, ( )0 RA , contains a complex entry 

for each of the three orthogonal directions in a three-dimensional (3-D) vector space, 

although the physical, and hence measureable, fields are given by the real part of (2.14). 

The range dependency of ( )0 RA  allows for the decay in magnitude of fields as the range 

from the source of the field increases. The tω  term in the exponential is responsible for 

generating the time dependency of the EM field, and the kR  term is responsible for 

generating the space dependency of the EM field. 

Once the plane wave responsible for the propagation of the EM field has been defined the 

RCS of an object can be defined in terms of the incident and scattered far fields. 

2.1.3 Definition of Radar Cross Section (RCS) 

The RCS of a target is defined as the ratio of the power scattered from the target relative to 

the power incident on the target for the case where both are plane waves. More formally 

the IEEE defines it as: “RCS is defined as 4π  times the ratio of the power per unit solid 

angle scattered in a specified direction to the power per unit area in a plane wave incident 

on the scatterer from a specified direction. More precisely, it is the limit of that ratio as the 

distance from the scatterer to the point where the scattered power is measured approaches 

infinity.” Mathematically, this reduces to 

2

2lim 4
scat

incR
Rσ π

→∞
= E

E , (2.15) 

where R is the range to the scattering object, “scat” denotes the scattered field and “inc” 

denotes the incident field. The scattered EM field either has to be calculated or measured. 

The scattered field for an object of limited spatial dimension decays at a rate proportional to 

the inverse of the range, so as R  is increased the ratio of the scattered to incident power 

will converge to a constant value. Practically, RCS measurements are made where the 

value of R  is between tens of metres and thousands of meters. 

The scattered field is the quantity that is sensed by the radar, so once it has been 

determined, it can be used to characterise the EM reflectivity of the target. The only 

remaining detail is how the incident fields interacts with the object to produce the scattered 

field, which is discussed in the next section. 

2.1.4 Electromagnetic Scattering from Perfectly Con ducting 

Bodies 

In this study the assumption is made that the targets of interest are constructed from 

perfectly electrically conducting (PEC) materials. This assumption is valid for most fighter 

aircraft type targets, which are usually constructed from metallic alloys. It is however not 
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valid for fighters or external components constructed from modern aeronautical materials 

such as carbon fibre or fighters having coatings of exotic materials which absorb RF 

energy such as radar absorbent material (RAM). 

The target’s geometry represents a boundary between free space, in which the incident EM 

field is propagating, and the target itself which is constructed from a PEC material, which 

has the characteristic that its conductivity, g , is infinite. Due to the high conductivity the 

material cannot support a filed, and all field quantities inside the material are zero. In the 

non-conducting medium, the following boundary conditions can be derived from Maxwell’s 

equations: 

ˆ 0× =n E , (2.16) 

ˆ × = Sn H J , (2.17) 

where n̂ is a unit vector in the direction of the surface normal to the PEC surface and SJ  is 

the current density in amperes/metre. The electric field constraint equation forces the 

component of the electric field which is parallel (tangential) to the PEC surface to zero. The 

fields in these two equations are the total fields which consist of the vector sum of the 

incident and reflected fields: 

( )ˆ 0inc scat× + =n E E , (2.18) 

( )ˆ inc scat× + = Sn H H J . (2.19) 

Using Maxwell’s equations, Stratton and Chu derived an integral equation for the scattered 

electrical and magnetic fields. Applying the constraints for a PEC body, the Stratton-Chu 

equations are given by 

( )ˆscat
S

S

j dSωµ ψ ψ= − + ⋅ ∇∫E J n E , (2.20) 

scat

S

dSψ= × ∇∫ SH J . (2.21) 

where  

4

jkre

R
ψ

π

−
= . (2.22) 
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is Green’s function, and R is the distance from the point on the PEC body to the point at 

which the field is observed. These two equations are known as the electric field integral 

equation (EFIE) and the magnetic field integral equation (MFIE) respectively. The scattered 

electric field is thus a function of surface current and charges, whereas the scattered 

magnetic field is only a function of electric currents. Making use of the principle of 

conservation of charge, 

( ) ( )ˆ S

jρ
ε ωε

× = = − ∇ ⋅n E J , (2.23) 

and applying the boundary condition at the PEC’s surface, the Stratton-Chu equations can 

be simplified to: 

( )scat
S S

S

j j dSωµ ψ ωε ψ= + ∇ ⋅ ∇∫E J J , (2.24) 

1
2

ˆ inc

S

dSψ× = + × ∇∫S Sn H J J . (2.25) 

These equations are now in terms of a single unknown, namely he surface current, and are 

used as a starting point for numerically solving for the surface current. The result is thus a 

numerical approximation of an exact formulation. Either of these equations can be solved 

for far field scattered fields, as the electric and magnetic fields are related to each other by 

0

1 ˆ
Z

= ×H k E , (2.26) 

in the far field, where 0Z  is the characteristic impedance of the medium and k̂  is the unit 

vector in the direction of propagation. The standard numerical technique for the solution of 

one of the integral field equations is the method of moments (MoM), which requires the 

discretization of the PEC surface (usually into flat triangles). The problem is then 

formulated as a set of linear equations and then solved by means of matrix inversion. Once 

the surface currents have been determined the scattered fields can be calculated from 

either of the integral field equations. For most RCS analysis cases only the far field 

scattered fields are of interest, so the EFIE and MFIE can be written as: 

( )ˆ
4

scat jkR j
S S

S

j
e e dS

R

ωµ
π

− ⋅−= − ⋅∫ k rE J J R , (2.27) 
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( )
4

scat jkR j

S

j
e e dS

R
µ
ε

ωε
π

− ⋅= ×∫ k r
SH J R . (2.28) 

where R  is the distance from the origin to the observation point and r  is a coordinate on 

the surface of the PEC object. Once the surface currents have been solved, all the bistatic 

fields can be calculated for a single illumination direction. For the monostatic case, the 

currents have to be recalculated for each new direction. 

The last two expressions ((2.27) and (2.28)) are sometimes referred to as “radiation 

integrals” due to the fact that they predict the radiation of a PEC body once the surface 

currents are known. The integration operation in these expressions is not uniquely 

invertible, so these equations are responsible for destroying information about the target. 

This will become more apparent once the data processing inequality has been introduced 

in Section 4.4. 

2.1.5 Frequency Dependent Scattering Regimes 

The electromagnetic interaction between an incident field and an object is classified into 

three regions which depend on the size of the target ( L ) relative to the wavelength of the 

incident field ( λ). These are defined as follows: 

• Rayleigh region ( Lλ≫ ). 

• Resonant region ( Lλ ≈ .) 

• Optical region ( Lλ≪ ). 

The classical comparison of these regions is depicted in Figure 2.1 below which is based 

on Figure 3.14 in [Knott2004, p. 96], for a sphere. A sphere is one of the few objects for 

which a closed form expression for its RCS can be derived. Maxwell’s equations are solved 

for a sphere by using the Mie scattering formalism, which results in an infinite sum of a 

function comprising of spherical Bessel and spherical Hankel functions. This graph was 

calculated by limiting the number of terms in the summation. The graph shows the RCS of 

a sphere, of radius r , relative to the projected area of the sphere which is given by 2rπ . 

Most manmade targets have external components and shapes of various sizes, which 

implies that the scattering from a target is often a collection of scattering from the three 

scattering regions. 
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Figure 2.1: RCS of a perfectly conduction sphere sh owing the three scattering 

regimes, after [Knott2004]. 

2.1.6 Electromagnetic Theorems 

In this section a select group of theorems pertaining to Maxwell’s equations, which have 

bearing on RCS calculations as well as NCTR principles are discussed briefly. 

2.1.6.1 Uniqueness Theorem 

This theorem states that a solution to Maxwell’s equations which satisfies the boundary 

conditions of the problem is a unique solution. This theorem guarantees that there is only 

one solution to a problem, and that the method of solution is actually inconsequential. 

2.1.6.2 Superposition Theorem 

If the medium of propagation is linear, the field intensity due two sources radiating 

simultaneously is equal to the sum of the field intensities of each source radiating in 

isolation. This theorem is a direct consequence of the linearity of Maxwell’s equations. 

2.1.6.3 Theorem of Similitude 

This theorem provides scaling relationships between the various variables and constants in 

Maxwell’s equations. This is very important to the field of NCTR and RCS prediction as 

scaled models of targets often have to be characterised due to the full scale targets not 

being available or due to the size constraints of measurements chambers. 

In the equations that follow, unprimed variables represent full scale variables, and primed 

variables represent scaled variables. The scaling factors for time and length are defined as 



Page 41 of 234 

 

q  and p respectively. The scaling factors for the electric field and the magnetic field are 

given by α  and β  respectively. The effects of these scaling factors are tabulated below. 

The third column is for the special case, which occurs when α β=  and p q= , which is 

referred to as the “geometrical model”. 

Table 1: Scaling factors for electromagnetic quanti ties, after [Jenn2005, p. 45] 

Quantity General case Geometrical model 

Time 't t q=  't t p=  

Length 'L L p=  'L L p=  

Wavelength ' qλ λ=  ' pλ λ=  

Frequency 'f qf=  'f pf=  

Permittivity ' p qε αε β=  'ε ε=  

Permeability ' p qµ βµ α=  'µ µ=  

Conductivity ' pσ ασ β=  ' pσ σ=  

Current density J pJ β=  - 

Power density 'W W αβ=  - 

Phase velocity p pq pµ µ′ =
 p pµ µ′ =

 

Antenna gain 'G G=  - 

Propagation constant ' pγ γ=  - 

Impedance z βη α=  - 

Radar Cross Section 2' pσ σ=  
2' pσ σ=  

 

For the geometrical model, ε  and µ  are the same in both systems. Most of the other 

quantities are scaled by p and the RCS is scaled by 2p . This means that the same 

materials can be used for the model as were used in the full size object. The extremely 

important exception to this is the conductivity, which must be increased by the factor with 

which the length is decreased. This implies that the scaled model must be constructed from 

a material which is a better conductor than the full scale object. The conductivity of a model 

is often increased by polishing the surfaces. 
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2.1.6.4 Linearity 

Maxwell’s equations are linear as long as the medium is linear. This is the case for the 

majority of cases which are of interest from an NCTR point of view. The property of linearity 

implies that the effect of multiple sources can be calculated by means of the superposition 

of the effect of each source. The linearity also means that an object’s interaction with an 

EM field can be described in terms of an impulse response in the time domain, or a 

frequency response in the frequency domain. The signal received by the radar is thus a 

convolution of the radar’s transmit signal with the impulse response of the target. An 

example of the impulse response of a perfectly conducting sphere, of radius a  is shown in 

the figure below. Due to the linearity of Maxwell’s equations the frequency response of the 

sphere in Figure 2.1 and the impulse response of the sphere in Figure 2.2 below are 

equivalent descriptions of the interaction of the EM field with the sphere. 

0.0 1.0

3.0

4.0
0.0

0.5

1.0

0.5−

1.0−

( )h t

ct

a

1.5−

2.0

 

Figure 2.2: The “lesser spotted” impulse response o f a conducting sphere of radius 

a, after [Astanin1997, p. 100]. 

2.2 Polarization 

An EM field is fully described by its component electric (E) and magnetic (H) fields. The 

polarization of the field describes the locus of the E field vector at a point in space, as a 

function of time. If the vector oscillates along a straight line, the polarization is referred to 

as “linear”, if the locus is an ellipse, the polarization is referred to as “elliptical” and if the 

locus is a circle the polarization is referred to as circular. For ground based radars it is 

usually convenient to refer to linear polarization as Vertical (V) or Horizontal (H), which 
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indicates the polarization ellipse relative to the earth’s surface. If the radar is circularly 

polarized, the polarization is classified as left-hand or right-hand, depending on the 

direction of spin of the E-field, seen in the direction of propagation. Any polarization can be 

described using two basis functions, so using V and H as basis functions any other form of 

polarization can be written as a linear combination of these two polarizations. This leads to 

the concept of a polarization matrix which is required to describe the arbitrary polarization 

which may be received from a target. The scattering matrix can be used to completely 

specify the relationship between the incident and scattered fields. Note that the scattering 

matrix is valid for any two orthogonal polarization types. 

The incident-scattered field relationship is given by the following equation, 

1 11 12 1

2 21 22 2

scat inc

scat inc

S S

S S

     
=     

     

E E

E E
, 

(2.29) 

where 1E  and 2E  are any two orthogonal polarizations, and “inc” refers to the incident 

field, and “scat” to the scattered field. The components of the scattering matrix, S , are 

denoted by ijS  and are related to the RCS by the following expression: 

24
ij

ijS
r

σ
π

=
, 

(2.30) 

where ijσ  is a complex number and ijσ  is the RCS. The scattering matrix can thus be 

written as: 

11 121 1

2
2 221 22

1

4

scat inc

scat incr

σ σ
π σ σ

    
=     

     

E E

E E
, (2.31) 

Which for the vertical and horizontal case gives: 

2

1

4

scat inc
HH HVH H

scat inc
V VVH VV

r

σ σ
π σ σ

    
=     

      

E E

E E
, (2.32) 

Once the scattering matrix has been measured for a given set of polarization basis 

functions, it can be converted to any other polarization set without any loss of information. 

It is also interesting to note that for a single pulse and a fixed bandwidth, measurement of 

the polarization scattering matrix for each range bin on the target represents the maximum 

information which can be extracted by the radar [Cohen1991a]. 
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2.3 Electromagnetic Theory and Approximations 

Maxwell’s theory of electromagnetic waves addresses the prediction of a scattered field 

from a target. This theory provides very accurate predictions, but the mathematical 

equations that are associated with it can only be solved analytically for simple objects such 

as spheres and cylinders. 

The Stratton-Chu equations were derived from Maxwell’s equations. The Stratton-Chu 

equations are integral equations, as the field variable to be solved occurs inside the 

argument of the integral. The Method of Moments (MoM) numerical technique can be 

applied to solve a discretized form of the problem at hand. The applicability of this 

technique is constrained by the available memory of the computer that is being used, as 

well as the electrical size of the object that is being analysed. The MoM technique 

becomes unstable as the size of the object increases beyond several hundreds of 

wavelengths of the incident field. 

Due to the limitations of the MoM technique, approximations to the Stratton-Chu equations 

that are suited to the analysis of electrically large objects have been developed. These 

techniques are often termed high frequency approximations. The two most popular 

approximations are the Geometric Optics (GO) and Physical Optics (PO) approximations. 

Several extensions to each of these approximations have been developed in order to 

improve the accuracy with which the scattered fields may be predicted, but these 

extensions only apply to certain cases. 

In some cases, useful results can be obtained from so-called “point scatterer” models. 

These models stem from the concept of a perfect radar target, which is a target that 

reradiates the energy incident on it isotropically. Insight into radar scattering problems can 

thus be obtained by approximating targets as a set of point scatterers on the skin of the 

target, or in positions which are not on the physical target but are positioned so as to 

simulate a specific effect (see [Rihaczek1996] for an in depth discussion of such models). 

Use should be made of two or more scatterers per wavelength. These models generally do 

not include shadowing or multiple reflections and are thus only used to obtain first order 

results. The target surface can also be approximated by a set of polarizable points. Each of 

the points can have a dipole moment in response to the local electric field, and the points 

can thus interact with each other by means of this field. The resulting set of equations 

usually has to be solved by numerical methods. These techniques are referred to as 

“coupled dipole” or “discrete dipole” approximations, and are more generally applicable 

than the point scatterer models. 

2.4 Scattering Mechanisms 

During the development of the theory for electromagnetic scattering and its various 

approximations a set of nomenclature has arisen. Some of this nomenclature is grounded 

in the actual theory of scattering and some in the approximations thereof. This situation has 
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led to terms that describe mechanisms which were added to the approximations to correct 

for effects that were omitted from the initial formulation of the approximation. Figure 2.3 

and Figure 2.4 below are diagrammatic representations of the scattering effects that 

contribute to the RCS of an object. These figures illustrate the diverse nature of the 

nomenclature related to scattering. The scattering mechanisms are briefly described in the 

following paragraphs, with reference to [Jenn2005] and [Knott2004]. 

 

Figure 2.3: Scattering mechanisms from [Jenn2005], Fig. 1.25, p. 27. (© AIAA 2005) 

Single and multiple reflections are usually the largest contributors to the RCS. Single or 

specular reflections occur when the local surface of the object is orthogonal to the direction 

of propagation of the impinging EM wave. Multiple reflections occur when the EM wave 

reflects off more than one surface in such a way that a large proportion of the incident 

energy is reflected back towards the radar (e.g. dihedrals and trihedrals). 

 

Figure 2.4: Scattering mechanisms from [Knott2004],  Fig. 6.1, p. 227. (Reproduced 

with permission of the Institute of Engineering Tec hnology.) 

Diffraction refers to fields which are induced due to discontinuities in the target geometry, 

such as edges. The magnitude of this effect is usually smaller than that of specular 

reflections, but it has the property that the fields are produced over large angular regions. 
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The term travelling waves refers to currents which are induced on the surface of the target, 

but which travel along its surface. Currents that are induced in this manner can propagate 

around curved sections of the target and can therefore lead to fields that are produced from 

regions of the object which are not directly illuminated. Surface-induced currents lose 

energy as they radiate energy. As surface-induced currents reach a discontinuity in the 

surface, they are reflected and radiate energy.  

Ducting occurs when incident EM fields are trapped in partially closed structures such as 

air inlets and tail pipes. The field is reflected multiple times within the cavity, and can 

therefore emerge over a wide angular region. Structures of this type are termed re-entrant 

structures. 

For most targets of interest, these scattering effects may interact with one another in ways 

that are counter intuitive. Most of the scattering mechanisms also cause a change in the 

polarization of the EM field. Scattering effects and their interactions can thus be extremely 

complex, as is evident from this introductory discussion. As the designer of a target 

recognition algorithm would like to exploit these scattering effects, the techniques for 

analysing and measuring these effects need to be mature before the development of a 

target recognition algorithm can commence. 

2.5 Radio Frequency (RF) Observables 

From the preceding summary of some of the theoretical aspects of electromagnetic theory, 

this section contains a summary of which characteristics of a target can be observed using 

a radar. The target being interrogated by the radar has a physical state, and this state 

interacts with the impinging EM wave. This interaction is causes a reflected EM wave 

which is in turn sensed by the radar and thus influences which aspects of the target the 

radar can sense. The physical state of the target can be described by the following 

attributes: 

1. Position.  

2. Velocity. 

3. Acceleration. 

4. Orientation. 

5. Visibility of rotating components. 

6. Shape. 

7. Material composition. 

On a single pulse basis and for a single target orientation, the radar can inherently only 

measure the range to the target, and the polarisation response of the target as a function of 

range. If the radar forms a track on the target on a pulse-to-pulse basis, the dynamics of 

the target, namely velocity and acceleration, can be estimated. From these an educated 

guess at the orientation of the target can be made. For a target such as an airliner, this can 
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be quite a good guess given the limited dynamics of the platform, but for a fighter, it could 

be climbing at a 45° angle, but might be at any rol l angle relative to the radar. The single 

pulse measurement can be augmented by the addition of a measurement of the 

polarization matrix as a function of range. To gain further insight into the target type, the 

radar has to resort to processing multiple pulses received from the target. If use is made of 

a coherent radar system, the Doppler signature of the target can be sensed. This usually 

allows for the recognition of targets with rotating components such as helicopter rotors, 

propellers and jet engines. If the target trajectory exhibits a benign form of aspect change 

over a set of pulses, a two dimensional image of the target can be formed, in range and a 

dimension perpendicular to range, due to the different relative Doppler velocities of various 

components of the target. This technique is known as Inverse Synthetic Aperture Radar 

(ISAR) and can sometimes be effective in recognizing the outline of a target. The RF 

observables from the radar’s point of view are thus summarized according to the following 

domains: 

1. Target dynamics domain (Position, velocity and acceleration). 

2. Magnitude domain. 

3. Frequency domain. 

4. Range / range resolution domain. 

5. Polarization domain. 

6. Doppler domain. 

7. Image domain. 

From this list it can be seen that some of the observables are more suited to deciding on 

the class of the target (e.g. target dynamics), whereas others, often in combination, are 

necessary for recognition (e.g. Polarization based imaging). 

2.6 Conclusion 

This section introduced some of the theoretical and practical aspects which are required to 

understand the interaction between the radar’s transmitted pulse, in the form of an 

electromagnetic wave, and the target. A complete list of how aspects of this interaction can 

be exploited to classify or recognize targets using a radar system is given. To further 

understand the interaction between the radar’s transmitted pulse and the target a brief 

discussion of the electromagnetic interaction of a plane wave with a target has shown this 

to be a very complex problem for which analytical solutions exist for only a few isolated 

cases. 
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3 Research Context 

This section gives an overview of some of the more promising literature pertaining to radar 

based target recognition techniques. The focus of the literature search was the recognition 

of airborne targets, recognition performance prediction and fundamental limits on target 

recognition using a radar system. The structure of this section is based on the domains 

which the radar can sense as discussed in Section 2.5. Some images have been included 

from measurements, simulation and the literature to highlight the non-intuitive nature of the 

target return. 

3.1 Literature Summaries and Books 

There are four books which cover the theory and some practical aspects of target 

recognition using radar. P. Tait, [Tait2005], gives a high level introduction which covers 

most of the techniques which have been developed over the years. The two books by V.G. 

Nebabin [Nebabin1995] and Y.D. Sirman [Shirman2002], respectively, give interesting 

insights into the Russian approach to target recognition. Although both books are slightly 

dated they do contain a good summary of the approaches to NCTR. Shirman’s book is 

more theoretical, especially as it is focussed on the EM simulation of targets. The book by 

Blacknell and Griffiths [BlacknellGriffiths2003] is more up to date and covers both the 

surface and air target cases.  

Good overview papers have been published by Baum [Baum1994] and Cohen 

[Cohen1991a]. The paper by Baum addresses the system level in a radar system and is an 

excellent introductory paper to the whole topic of NCTR. 

3.2 Target Dynamics Domain 

The algorithms presented in this section focus on the concept of sharing information 

between the radar’s tracking sub-system and the target identification sub-system. The 

tracking information can be used by the identification sub-system to reduce the database 

lookup required in aspect when matching target profiles. The target track can also be used 

to identify the target based on its flight envelope. If the target has been identified, or at 

least classified, the tracking sub-system can be optimized using the dynamics for this type 

of target. 

The flight envelopes of a set of targets can also be used to gather information about the 

class of target. In some cases, e.g. if the target enters a portion of its flight envelope where 

it is the only target that can achieve this performance, recognition might also be possible. 

An example of a velocity-altitude plot for the envelopes of various aerial targets is given in 

the figure below. Dimensions such as turning ability could be added to this diagram. 
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Figure 3.1: Example of a velocity-altitude envelope  for various targets from 

[Shirman2002], Fig. 4.2, p. 133. (© Artech House) 

The paper by S.P. Jacobs and J.A. O’Sullivan (who is a widely published researcher in the 

target identification field) addresses joint tracking and recognition for an S-band radar 

[Jacobs1997, Jacobs2000]. The paper also contains good measurements and simulations 

of the HRRP’s of targets. The paper by Challa and Pullford [Challa2001] is interesting in 

that information gleaned from Electronic Surveillance Measures (ESM) sensors is 

combined with radar based measurements to increase the target recognition performance. 

This paper also compares two tracking schemes, the first being fusion of the tracking and 

recognition outputs, while the second scheme, called Joint Tracking and Classification 

(JTC), allows the tracking filter to aid the recognition process from a target dynamics point 

of view, and the recognition process can set the target dynamics model in the tracking 

filter. Use is made of a Bayesian approach to optimally combine the information sources. 

The numerical complexity of the system is high, and the authors suggest the use of particle 

filtering. 

3.3 Long Term Statistics 

The focus of this section is techniques which make use of longer term statistics of a radar 

target. Examples of these are RCS fluctuation and glint. 

This concept is also prevalent in the field of passive radar where the aspect dependant 

variation of target magnitude is reduced due to the use of frequencies in the VHF band. 

This allows for recognition based on the magnitude history of the tracked target 

[Herman2002]. 



Page 50 of 234 

 

Borden [Borden1986] presents a method which makes use of the statistics of the target 

return over a narrow bandwidth and a restricted set of aspect angles for target 

identification. He also emphasises the use of the phase of the return signal by making use 

of the phase gradient. Some of the measured parameters relate to target size. 

Another portion of the target dynamics includes the interaction of the target with the 

turbulence in the atmosphere. Shirman [Shirman2002, p. 40] presents a model for the 

simulation of these effects as well as some notes on the smoothing effects of pilots and 

auto-pilots. If the radar’s tracking filters are accurate enough, it might be possible to derive 

information about the class of aircraft and possibly its loading, from its interaction with 

turbulence. 

It would probably only be viable to estimate this kind of information from the longer time 

scale (on the order of 10’s of seconds) of tracking data. This in turn would imply an extra 

time delay before a target’s class is reported. A delay in the order of 10’s of seconds will 

probably not be allowable in many military applications of radar. 

3.4 Frequency Domain 

A multi frequency technique is presented in [Ksienski1975]. In this technique, the radar 

transmits in the high Rayleigh and resonance regions of the target at a number of 

frequencies which are effectively phase locked. The authors show relatively good 

recognition performance for a set of four frequencies, when use is made of phase as well 

as two linear polarizations. The test target set consisted of a F104, F4, Mig19 and Mig21, 

which were tested for full azimuth rotation, and 7 discrete roll angles. It is shown that 

recognition based on magnitude only, is improved by the addition of phase information, and 

that this is further improved by the addition of polarization information. This experiment was 

repeated in [Lin1981] for two frequencies and eight targets. The performance achieved was 

95% correct recognition for a noise level which was 20% of the signal level. 

Chen [Chen1990] made use of a recognition technique based on the ratio of target 

magnitudes sensed at different frequencies and a Nearest Neighbour classifier. Only 

simulation results are presented, but the concept looks promising if extended to other RF 

observables such as polarization, especially if phase is included. A technique of this nature 

was investigated in [Stausberger1992] for HF Over the Horizon Radar (OTHR), which also 

included the effect of multipath propagation. 

3.5 Range Domain 

In 1965, Kennaugh and Moffat [Kennaugh1965] showed that the transient electric field 

reflected from an object carries information relating to the overall dimension, and 

approximate shape of the object. They proposed characterising an object’s RCS as an 

impulse response, which probably led to the use of the range domain for the recognition of 

targets. 
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3.5.1 High Range Resolution Profiles (HRRP) 

High Range Resolution (HRR) techniques make use of high bandwidth pulses to increase 

the range resolution to the point where a target is spanned by multiple range bins. This is 

possible by using just a single pulse and thus has the benefit of being insensitive to target 

motion. Another advantage is that the relative positions of the scattering centres are stable, 

and are thus less sensitive to carrier frequency and the specific waveform utilized. The 

heading of the target can be used to estimate the aspect at which the target is being 

observed. This reduces the search space during the recognition phase. A good overview of 

HRRP based recognition is given by Li and Yang, [Li1993], in which they show that 

increased resolution leads to better recognition performance. Zyweck and Brogner 

[Zyweck1996] present recognition results for two commercial airliners. The results are 

based on HRR data recorded by a radar in close proximity to an airport in Australia. A 

correct classification percentage of 93% is achieved using a relatively simple classifier. The 

authors also give several interesting images and HRR profiles and discuss several 

practical problems. 

3.5.2 Transient Response 

The transient response techniques are based on the assumption that the target is 

interrogated by the radar in a frequency band which corresponds to the resonant region of 

the target. The transient response of a target can then be divided into an early and late 

section. The early section describes the initial interaction of the pulse with the target up 

until steady state. The late section describes the target resonances once the driving 

(transmitted) pulse has passed the target. The so-called “Extinction pulse” or “E-pulse” 

techniques are based on the idea of generating a filter that cancels either the early or the 

late response of the target. Cancellation then indicates that the target has been 

recognized. The advantage of this technique is that it is claimed to be aspect independent, 

although no rigorous proof of this statement seems to exist (The introduction of 

[Ksienski1975] gives some insight though). Some promising laboratory results have 

however been published. The disadvantage of these techniques is that very wide 

bandwidths are required for the measurements in conjunction with the use of low frequency 

(HF to VHF) bands. Li et.al, [Li1998], discuss an interesting approach which uses the 

aspect independent late-time signal for initial classification and then the early-time 

response to search within the space generated by the initial estimate. Recently, some initial 

results have been presented by Aldhubaib and Shuley [Aldhubaib2009, Aldhubaib2010], on 

the use of natural resonance in conjunction with polarization for the recognition of simple 

objects. K-M Chen and D.P. Nyquist are prolific publishers in this area along with several 

collaborators and students. A good review paper is presented by Morgan [Morgan1988]. 
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3.6 Polarization Domain 

Polarization is an extra signal dimension which can be sensed by a radar and it has the 

potential to increase the detection and recognition performance of the radar. More 

theoretical and practical research with dual polarization radars is necessary before the 

benefits will be fully realised. Analysis of the polarization of a radar return can aid the 

identification of the various scattering mechanisms occurring on a target. Many of the full 

polarization radars are still in their developmental stages, except in the case of SAR 

systems. 

For target recognition applications high resolution is necessary implying that polarization 

cannot be used as an upgrade path on low resolution radars to enable target recognition. 

The paper by Giuli, [Giuli1986], is an extremely useful overview of the applications of 

polarization in the radar field. Several papers describe the theoretical development of 

polarization dependant target RCS and some research on the use of polarization for target 

recognition. The paper by Steedly and Moses, [Steedly1991], contains some novel 

representations of data, although their measurements scale to the HF/low-VHF band. 

Che and Yung describe a variable polarization system with very fast switching times. The 

system makes use of a ferrite phase shifter that can be operated at power levels of 30 kW 

[Che2000]. A high level description of the development and testing of a phased array MMW 

seeker radar is given in [Killen1989]. This radar is capable of producing HRR profiles with a 

resolution of 0.29 m as well as measuring the full polarization matrix. The design and 

calibration of the radar as well as several test procedures are discussed. 

These papers show the continued interest in the addition of polarization into radar systems, 

specifically to improve the target recognition performance of a radar system. 

3.7 Doppler Domain 

A fixed target structure moving at a fixed speed relative to a radar will cause a frequency 

shift in the pulses received by the radar. Any structures on the target which are in motion 

relative to the main bulk of the target will show a Doppler shift relative to the main return. 

For airborne targets structures such as rotors, propellers and jet engines will thus add extra 

Doppler components to the received signal, which can be used to classify or identify the 

targets. This effect is also referred to as “micro-Doppler” (mD or µD) by some authors. 

Standard texts such as [Shirman2002] and [Tait2005] contain good summaries of 

techniques applicable to this domain. Some specific examples are the recognition of 

helicopters by means of the main rotor return discussed in [Cilliers2008, Cilliers2010] and 

measurements of micro-Doppler from propeller aircraft using a passive bistatic radar based 

on commercial FM transmissions [Maasdorp2013]. 
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3.8 Imaging Domain 

The techniques described in this section are aimed at generating images of the targets. In 

some publications these images are claimed to be of optical quality, but in general this is 

very difficult to achieve, given the complexities of the EM-target interaction. Most of these 

techniques require some form of mild rotation of the target to form an image, but have the 

advantage that if the target rotation is within the required bounds, the image resolution is 

independent of range. The first section, however, describes the imaging of targets using 

“real aperture” techniques which do not require target motion to form an image, but instead 

require large (hundreds of metres) antenna apertures. 

3.8.1 Real Aperture Imaging 

As opposed to synthetic aperture imaging, where target rotation is required to collect data 

from various target aspects, real aperture imaging makes use of large, usually sparse, 

arrays to form extremely narrow antenna beams and thus image a target. This has the 

advantage of being instantaneous in most cases, and not requiring target motion to form an 

image. The practical difficulties with these techniques include the physical setup of such a 

large array, clock and oscillator distribution, and calibration of the array. 

Steinberg demonstrated this technique using an array consisting of 32 elements, with an 

antenna spacing of 1 m at X-band [Steinberg1988]. This setup gave a beam width of 

approximately 0.5 milliradian, which translates to a cross-range resolution of 1.5 m at a 

range of 3 km. The range resolution was approximately 1 m. Examples of two images 

created by the addition of five underlying images are shown in the figure below. 

  

Figure 3.2: Example of real aperture images from [S teinberg1998]. Left Boeing 727, 

Right Lockheed L-1011. (© IEEE 1998) 
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The concept of real beam imaging has been extended by means of simulation studies to 

MIMO type radar configurations by Wang et.al. [Wang2010, Wang2010a]. This has the 

advantage of greatly reducing the amount of antennas and associated hardware required. 

It does however increase the processing power requirement. More recently, Zhu et. al have 

shown mathematically and in simulation, that 3D imaging is possible using MIMO-ISAR, 

and that this technique can greatly reduce the coherent processing interval required to form 

the ISAR image, which in turn reduces the effect of target motion on the image [Zhu2011]. 

They also claim that if the number of antennas is large enough, 3D imaging of an airborne 

target will be possible with a single pulse. 

3.8.2 Inverse Synthetic Aperture Radar (ISAR) 

The generation of an ISAR image relies on the relative rotational motion between the radar 

and the target. Due to the fact that this motion cannot be guaranteed by the radar, the 

quality of the ISAR image cannot be guaranteed. ISAR processing has the advantage that 

if the target motion is within the specification, the resulting image resolution is independent 

of the range of the target. ISAR images are generated by processing multiple HRR profiles 

of a target, which implies that the quality of the underlying HRR profiles must be high. The 

generation of an ISAR image also requires far more attention to the correction for target 

motion. ISAR images do however seem to offer the best data for NCTR as the geometry of 

the target is often apparent. A good discussion of target recognition based on ISAR images 

is given in [Kim2005]. 

ISAR techniques are also applied to turntable experiments and due to the controlled nature 

of these experiments, the results are usually very good. One of the disadvantages is that 

the geometry of the aircraft will not be exactly the same as its in-flight geometry due to the 

lack of aerodynamic loading. 

The paper by Zyweck and Bogner contains some excellent imagery of a Mirage 3 

generated using a turntable [Zyweck1994]. The dynamic range of the images is limited to 

30 dB. In the figure below the left hand image shows the ISAR image for an aspect 

approximately 30° from head on. The right hand imag e is for the same aspect, but the 

engine intakes have been blocked with Radar Absorbing Material (RAM). The artefacts in 

the image labelled “#1” are caused by the engine inlet, and reflections of the engine 

compressor blades. 
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Figure 3.3: ISAR images of a Mirage III from [Zywec k1994]. In the right hand image 

the engine intakes have been plugged with RAM. (© I EEE 1994) 

The authors also show an image of the plane with its engine being rotated electrically 

which gives a good idea of the type of artefacts which will exist for airborne targets.  

 

Figure 3.4: ISAR Image of a Mirage III with the eng ine being electrically rotated at 

normal operating speed from [Zyweck1994]. (© IEEE 1 994) 

Due to the relatively low PRF with which this data was measured, the engine modulation 

has been aliased in the Doppler frequency domain. The artefacts in the image labelled “#5” 

are caused by the rotation of the engine. Due to the fact that ISAR processing makes use 

of Doppler shifts to measure cross-range, these reflections appear as pixels which have 
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been shifted in the cross range dimension, and do not fall within the physical bounds of the 

target. 

Polarimetric ISAR incorporates the use of polarization in the ISAR process. Recently, 

Martorella et. Al. [Martorella2011] have published a model based Pol-ISAR recognition 

algorithm which achieves 100% recognition at a SNR of 5 dB, albeit for relatively simple 

targets in an anechoic chamber. 

3.8.3 Pseudo 3D Techniques 

3.8.3.1 Monopulse Imaging 

The title of the solitary paper on this topic is “Enhanced range profiles for radar-based 

target classification using monopulse tracking statistics” by B.H. Borden [Borden 1995a]. 

The proposed technique makes use of the distribution of the monopulse angular 

measurements within a range “slice” of the target to form a 3D pseudo-image of the target. 

Only simulation results based on point scatterer target models are presented, and an 

example “image” is given below. 

  

Figure 3.5: Physical target model, point scatterer model and reconstructed “image” 

for the Monopulse statistics technique from [Borden 1995a]. (© IEEE 1995) 

As this technique exploits the scintillation of the target, the target has to rotate 

approximately 5° to form the image and the data has  to be collected over several hundred 

pulses (so this technique also falls into the “long term statistics” grouping). Unfortunately, 

the target has symmetry along its centre line which might increase the correlation between 

the physical target and the derived image. 

3.8.3.2 Interferometric ISAR (IF-ISAR or InISAR) 

This is a techniques which makes use of two receive antennas which are separated in 

elevation. This allows a single height and RCS to be estimated per cell in an ISAR image. 

A good overview of this technique is given by Xu and Narayanan [Xu2001], and an 

example of the image of a T-72 tank is given in the figure below. 
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Figure 3.6: Interferometric ISAR image of a T-72 ta nk [from Xu2001]. The axis are in 

cm. The barrel of the tank (top right) is at 200 cm , which agrees with the 

physical height of the barrel. (© IEEE 2001) 

Two problems can be experienced with this technique. The first is that phase unwrapping 

has to be implemented between two conventional ISAR images and the antenna spacing 

should thus be designed so that this is possible. The second is that if two scatterers exist in 

the same cell, a form of glint is present, which can invalidate the height calculation. 

3.8.4 3D Inverse Synthetic Aperture Radar (3D-ISAR)  

The techniques presented in this section are aimed at producing three-dimensional ISAR 

images. For this to be possible the target movement/geometry relative to the radar should 

exhibit elevation as well as azimuth movement. 

The processing technique developed for ISAR was extended to 3-D ISAR by Seybold and 

Bishop [Seybold1996]. This entailed making measurements using a turntable with the radar 

antenna at various heights. Use had to be made of a calibration target included in the 

scene to align the phase of constituent 2-D ISAR images. The technique was 

demonstrated on a set of four corner reflectors set at different heights. An efficient 

implementation of a near field 3-D ISAR processor was published 2 years later by Fortuny, 

[Fortuny1998], who gave a very thorough discussion on the topic. A slightly different 

approach using UWB radar is given in [Kidera2010] where the surface of the object is 

reconstructed using the intersection of spheres. 

A technique by Stuff [Stuff2002,Stuff2003] has also been published which is capable of 

extracting three dimensional scattering centres of a target. This technique is very 

promising, but hinges on being able to identify four stable scatterers in the received radar 

data and assuming that these are caused by a rigid body. If four stable scatterers can be 

identified, the algorithm only requires six high resolution radar pulses to solve for the 
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relative positions of the scatterers in 3-D space. This result can then be used to estimate 

the trajectory of the rigid body relative to the radar and thus form a 3-D ISAR image. The 

technique does not uniquely determine the object orientation, and has the limitation that the 

radar’s relative motion should not form an elliptical cone with its vertex on target. This 

means that it will fail for standard SAR or turntable ISAR type trajectories. 

It should be noted that several conference papers appeared in 2009 and 2010 on various 

topics regarding 3-D radar imaging, thus confirming that this is currently a very active area 

of research. 

3.9 Inversion of EM Problems 

The preceding sections dealt with the analysis of EM scattering from an object under the 

assumption that its geometry and electrical properties are completely known. The problem 

of inferring the geometry of an object, and preferably its electrical properties, from 

scattered EM waves is referred to as the inverse problem. This type of problem is not 

unique to electromagnetism - several journals exist whose sole purpose is to report 

research in the field of so-called “inverse problems.”  In general, inverse problems result in 

a set of non-linear equations which are ill-posed. The reliable estimation of complex 

shapes in three dimensions still lies in the realm of impossibility. 

A good review of inverse problems as applied to radar imaging is contained in the article by 

Borden [Borden2002]. The link between inverse problems and radar image formation by 

means of Inverse Synthetic Aperture Radar is discussed in detail and some restrictions to 

this technique, from a mathematical point of view are given. As examples of the difficulty 

involved with this type of problem, the following two figures are given. The first figure 

shows a single range profile return of a Boeing 727 airliner at an instantaneous bandwidth 

of 500 MHz at a carrier frequency of 9.5 GHz. The second figure shows an ISAR image of 

the same target (Note that the illumination in this case is from the bottom of the figure). It 

can be seen that this image shows scattering at points which are physically removed from 

the airframe structure. This is due to the re-entrant nature of the engine intakes. This 

highlights the need for better understanding of the EM effects as well as the 

implementation of such insight in the imaging algorithms. This also raises the question of 

whether it is necessary that a radar image reflects the physical shape of the object 

accurately, especially if use is made of automatic classification algorithms. 

Some progress has also been made in the tomography based EM reconstruction of two 

dimensional objects [Angel2003, Fan2002, Huang2007]. This technique requires the object 

to be illuminated from one direction, and scattered fields to be recorded in fine angular 

steps around the target. The results given are also for relatively simple objects, which have 

a smooth exterior surface. As these techniques are still in their infancy, they are not yet 

applicable to radar type problems, but show promise if research is continued in this 

direction. It is however interesting to note that in 1969, R.M. Lewis published a paper with 



Page 59 of 234 

 

the title “Physical optics inverse diffraction” [Lewis1969] in which he showed that it was 

possible to reconstruct the illuminated portion of a target under the physical optics 

scattering approximation for a relatively limited set of observation angles and frequencies. 

Unfortunately, no evidence could be found that this technique has been tested on 

measured radar data. 

Imaging of radar targets is by no means a new field, but the preceding discussion has 

shown that the models upon which such algorithms are based are often inadequate for 

target recognition purposes unless the recognition algorithm can take some of the imaging 

artefacts into account. 

 

Figure 3.7: A single range profile of a Boeing 727 and an initial matching to 

structures on the airframe from [Borden2002]. The c arrier frequency was 9.25 

GHz and the instantaneous bandwidth was 500 MHz. 

 

 

Figure 3.8 : ISAR image of a Boeing 727 from [Borde n2002]. 
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3.10 System Level Studies 

This section contains descriptions of studies of the NCTR sub-system at a higher system 

level. These types of papers often hint at the reasons for specific design decisions. 

Zwart et.al. published a paper on techniques for compensating for translational and 

rotational range migration of scatterers in HRR profiles [Zwart2003]. The authors make use 

of the RCS-prediction code called RAPPORT (developed by the TNO) to simulate HRR 

profiles for five large commercial aircraft. The paper addresses several practical problems 

and the authors show a final recognition error of 1.08% for the five targets. 

An overview paper which focuses on FLIR based target recognition [Bhanu1986] contains 

several concepts which would be applicable to a radar based recognition system. A more 

philosophical overview paper, addressing ATR in the wider sense was published by 

Augustyn [Augustyn1992]. 

3.10.1 ATR for Ground Targets 

Williams et.al. and Gross [Williams2000,Gross1999] describe a HRR based system for 

identifying ground targets in near real time. The [Williams2000] paper gives some very 

insightful results on the increase in classification performance as more target “looks” are 

obtained and target orientation is estimated. The algorithms are tested using the public 

domain Moving and Stationary Target Acquisition and Recognition (MSTAR) data set. 

3.10.2 HRR vs. ISAR 

The paper by Leslie Novak [Novak1991] shows that the recognition performance based on 

ISAR is better than that of HRR. Unfortunately the targets are ground vehicles, but the 

result is still a useful indication of what one could expect. It is interesting to note that use 

was made of polarimetric data to distinguish between odd-bounce and even-bounce 

returns. 

3.10.3 Database Generation 

For an NCTR algorithm to operate in a radar it is necessary to store information for all 

targets to be recognized from all aspect angles and then to match these to the 

observations made by the radar. It might also be necessary to have a central database 

which can generate recognition templates for different radars and algorithms from data 

acquired using measurement radar systems as well as data generated by means of 

simulation. 

This section contains a discussion of literature which presents techniques which would be 

useful for creating signature databases for an NCTR system. These include simulation as 

well as measurement approaches. 
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Li et.al [Li1996a] show that as the range resolution increases, the angular matching region 

increases thus allowing for smaller databases. This study only made use of point scatterer 

models with some measurements of scaled models. The result however is counter-intuitive 

and warrants further investigation. 

Two very good papers have been published by Bhalla, which deal with the generation of 

signature databases using SBR to directly generate a 3-D ISAR on which scattering centre 

extraction is performed using the CLEAN algorithm [Bhalla1996, Bhalla1997]. This allows 

for a 3-D representation of the target from which 1-D range profiles, or 2-D images can be 

constructed for recognition purposes. Unfortunately they do not compare actual recognition 

rates, only the accuracy of orientation estimation. 

A paper by Zembower [Zembower1998] describes the establishment of a database in the 

USA to support target recognition and sensor fusion. 

3.11 Conclusion 

In this section some promising NCTR techniques from the open literature have been 

discussed. Some examples, of both simulated and measured data, are given to highlight 

the complexity of the interaction between the radar pulse and the target being observed. A 

discussion on the invertibility of Electromagnetic problems has shown that this leads to a 

set of non-linear, ill-conditioned equations which can only be solved under very limiting 

assumptions. It is thus not possible to directly invert the EM problem to achieve reliable 

target recognition. One remaining approach is to analyse the information content of radar 

signals which have been reflected from targets by applying concepts from Shannon’s 

information theory. 
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4 Information Theory 

Information Theory was first published by Shannon in 1948 in his paper “A Mathematical 

Theory of Communication” [Shannon1948], which was later re-titled to “The Mathematical 

Theory of Communication”. The theory addresses two fundamental problems in 

communication theory, these being the maximum compression that can be applied to a 

source, and the maximum rate of data transmission over a given channel. The theory is 

general enough that it has been applied in fields as broad ranging as psychology, 

economics and micro-biology. It is thus conceivable that this theory can be applied to the 

radar target recognition problem to calculate the feasibility of target recognition and to 

compare the recognition performance of several vastly different radar designs. 

4.1 The Meaning of “Information” 

In natural language the meaning of the word “information” is related to the transfer of 

knowledge. This generally implies that it has meaning and value to the person receiving the 

information. Quantifying the amount or value of such information is very subjective as well 

as dependant on the receiver’s background information and current requirement for the 

information. 

In information theory the definition of information is focussed on the underlying data used 

to represent the message rather than the meaning of the message. It thus ignores the 

actual message (possibly a subset of the knowledge being transferred) that is being 

transferred and rather characterises the representation of this data which has to be 

transmitted probabilistically. For example, in a coin flipping experiment, if a coin has a 

probability of heads appearing on a flip of 0.95, the observation of heads does not transfer 

nearly as much information to the observer as observing a tail. If a finite sequence of these 

flips had to be stored, one could store the flips directly as binary data, or one could store 

the positions at which tails occurred. It can be shown that the second option requires less 

data, thus showing that there is less information in the experiment than initially thought due 

to the trivial representation of the data. The maximum information for this experiment 

occurs when the probability of heads and tails are equal to ½. If this is the case then 1 bit 

of information is generated per flip, but if the probabilities are not equal, then, on average, 

less than one bit of information is generated per flip. This line of thought thus naturally 

leads to the concept of average information, and the fact that this quantity can take on a 

value of less than 1 bit. 

Information theory makes use of the concept of entropy to describe the randomness of the 

output of such an experiment. For equally probable outcomes, the entropy is given by 

( )2log p− , where p is the probability of the outcomes. The entropy is thus a measure of the 

uncertainty of observing a specific event. In the above example, observing a tail is more 

unexpected, and thus has a higher self information (4.32 bits) than observing a head (0.07 
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bits). The entropy of the process is then the average value of the self information values, 

weighted by their respective probabilities, which gives an entropy of 0.29 bits, which is 

much lower than the highest possible entropy, which is 1 bit, for the equal probability case.  

If the output of this experiment was to be observed in a noisy environment (i.e. there is 

noise added to the result in some undefined way, which has the effect of making a heads 

look like a tails and vice-versa in a probabilistic manner) the amount of information 

transferred can be expressed as the initial uncertainty about the outcome of the event 

minus the uncertainty after observing the event. This information gain is referred to as the 

mutual information between the input and output random variables which describe the 

random process, and the noise process. The rest of this chapter presents a formal 

development of these concepts, and some examples of the application thereof to radar 

problems. 

4.2 Overview of the Application of Information Theo ry to 

Radar NCTR 

The first application of information theory to radar seems to have been by Woodward 

[Woodward1953] in 1953. His analyses showed that the information increases over time as 

the radar observes a stationary target in stochastically stationary Gaussian noise. This 

information gain was shown to have a similar form to Shannon’s expression for channel 

capacity. Two researchers have more recently investigated the use of information theory 

for the analysis of radar NCTR performance. These are S.D. Briles [Briles1993] and M. Bell 

[Bell1988]. Both the authors show that it is possible to use the concepts of entropy and 

mutual information defined by Shannon to analyse radar recognition problems. The 

theoretical development by Bell was identified as being more understandable, and was 

used as the base for the theoretical introduction in the following sections. Bell also includes 

an initial discussion on techniques for the analysis of the information content of Synthetic 

Aperture Radar (SAR) images. Briles, on the other hand analyses the effect of increased 

bandwidth on the theoretical limit of recognition performance. This is however only 

conducted on very sparse measurements and for a target with a relatively simple 

geometry, but the trend is definitely that increasing bandwidth leads to increased 

recognition performance. Malas, Cortese and Ryan [Malas2015] combined Fano’s 

inequality with the data processing inequality to develop a technique for trading off the 

required fidelity amongst the various processing steps in a HRRP based radar target 

recognition system. Their analysis of a two target problem, using point scatterers, and 

generating six range bins shows that a four bit analogue to digital converter will suffice to 

maximize the information flow. Information theory has also been applied to optical imaging 

sensors by J.A. O’Sullivan [O'Sullivan1998] and some of this theory is applicable to the 

radar case. The following sections will give a theoretical description of information theory 

and how it is applied to radar systems. 
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4.3 Theoretical Introduction to Information Theory 

Applied to Radar 

Information theory was originally conceptualized by Shannon for a generalized 

communication system consisting of a transmitter, a channel and a receiver where the 

main purpose of the system is to send data over the channel with as few bit errors as 

possible. To apply this concept to a radar system the retransmission of the radar’s 

transmitted signal by the target is the equivalent of the transmitter in the communications 

system (i.e. the transmitted EM wave is modified by the target’s physical characteristics 

and geometry and the scattered EM wave is then sensed by the radar). The propagation 

path back to the radar and the radar’s front end form the channel, and the radar receiver 

forms the receiver. Importantly, the designer of the communications system can design the 

transmit waveforms, whereas the designer of the radar system has to try and exploit the 

target’s reflected waveforms maximally. Once this mapping from the communication 

system to the radar system has been made, information theory can be applied to analyse 

the performance of the radar system, and in some cases to design parts of the radar 

system. An example of insight obtained by using this approach is given in [Bell1988] where 

it is shown that a radar system designed for optimal target detection differs significantly 

from one designed to recognize targets. 

4.3.1 Expected Value of a Random Variable 

The expected value of a random variable is used regularly in the theoretical sections of this 

document and is thus defined here. The expected value of the continuous random variable 

X is given by the following expression 

{ } ( )E X x p x dx
∞

−∞

= ∫ , (4.1) 

where ( )p x  is the probability density function of the random variable. This is also the mean 

of the random variable. The expectation of the function ( )g X of a random variable is given 

by: 

( ){ } ( ) ( )E g X g x p x dx
∞

−∞

= ∫ . (4.2) 

For the case of a discrete random variable the integrals are replaced by summations.  
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4.3.2 Information Theory and Discrete RV’s 

This section describes the theoretical development of mutual information, which will be 

seen to be the critical concept in the information theoretical analysis of a radar system. 

Let X be a discrete random variable (finite/countable) which takes on values from the set 

{ }1 2, ,XR x x= …  and let ( ) { }p x P X x= =  be the probability density function (pdf) of 

X . To characterize the amount of information conveyed by an outcome of this random 

variable (RV) one would like to choose a measure which is inversely proportional to the 

probability of the occurrence of a specific event. This can also intuitively be seen as a 

measure of an observer’s “surprise” at observing a specific event. If the event is very 

unlikely, the amount of “surprise” will be higher and the amount of information conveyed 

will thus be higher. Shannon defined the self information of an event as follows: 

( ) ( )( ) ( ) ( ) [ ]1
log log ,          0,1I x p x p x

p x

 
= − = ∈  

   

(4.3) 

where the base of the logarithm is 2, the units are bits and if the base is e , the units are 

nats [Proakis1989]. Bits will be used from this point onwards as the values are more 

intuitive. A comparison of the two measures is given in Figure 4.1, below. 

 

Figure 4.1: Self information as a function of proba bility of an event. (Note: asymptote 

for p(x) = 0) 

It should be noted that this is not the only possible definition (e.g. Renyi information 

measures [Renyi1961]), but it is the one with the most useful analytical properties. The self 
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information, ( )I X , is a new random variable, as each original outcome, x , now has an 

associated ( )I x . The entropy of X  is defined as the expectation of ( )I x : 

( ) ( ){ }
( ) ( )( )log

Xx R

H X E I x

p x p x
∈

=

= −∑
, 

(4.4) 

where ( )log 0p p =  if 0p = , which is derived from the following limit 

( )
0

lim log 0
p

p p
+→

=
. 

(4.5) 

The entropy is thus a measure of the average uncertainty of a random variable. The 

entropy of a RV is also the average code length, in bits, required to specify the outcome of 

a random variable. 

This concept can be extended to the case for two (or more) random variables to 

characterize the entropy contained in two variables. If X  and Y  are jointly distributed 

discrete RV’s from { }1 2, ,XR x x= …  and { }1 2, ,YR y y= …  having a joint pdf 

( ) ( ), ,p x y P X x Y y= = = , then the self information of joint occurrence of X x=  and 

Y y=  is given by  

( ) ( )( ), log ,I x y p x y= −
 

(4.6) 

The joint entropy of X  and Y  is then defined as the expected value the self information: 

( ) ( ){ }
( ) ( )( )

, ,

, log ,
X Yx R y R

H X Y E I X Y

p x y p x y
∈ ∈

=

= −∑ ∑
. 

(4.7) 

Some of the important properties of the entropy function are listed below: 

1. Let ( ) ( )1 2, ,p x p x =  p …  be the pdf of X , then ( )H X  is continuous in p. 

2. ( ) 0H X ≥ . (Equality if all but one ( )jp x  equal zero.) 

3. For a finite RV X  with { }1 2, , ,X rR x x x= … , ( ) ( )logH X r≤ . Equality if all 

( ) 1jp x r= . (Upper bound on ( )H X ) 
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4. If X  and Y are jointly distributed RV’s: ( ) ( ) ( ),H X Y H X H Y≤ + , with equality 

only if X  and Y are statistically independent. 

5. ( )H X  is a concave function of p. 

Property two implies that the entropy can only be zero if the RV consists only of one event, 

which thus has a probability of unity. Property three gives the maximum value which the 

entropy can obtain, and this is for the case when all outcomes of the experiment are 

equally likely. Property four implies that the joint entropy of two jointly distributed RV’s is 

always less than the sum of the entropies of the constituent RV’s, except in the case when 

the RV’s are statistically independent, then the joint entropy is equal to the sum of the 

individual entropies. From this discussion it can be seen that the entropy leads to some 

very intuitive insights about the understanding of the “uncertainty measure” that was 

defined in (4.4). 

The definition of entropy can also be extended to conditional probabilities. The pdf of a RV 

given that the outcome of another RV has been observed is defined as: 

( ) ( )
( )
,

|
p x y

p y x
p x

=
, 

(4.8) 

where the RV, Y, has been condition on a specific value of the RV X  being observed, 

that is Y is conditioned on X x= . The entropy of Y conditioned on X x=  can now be 

defined as 

( ) ( ) ( )( )| | log |
yy R

H Y X x p y x p y x
∈

= = −∑
. 

(4.9) 

The conditional entropy: ( )|H Y X  is defined by averaging ( )|H Y X x=  over Xx R∈  

as follows: 

( ) ( ){ }
( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( )( )

| |

|

| log |

| log |

, log |

X

X y

X y

X y

x R

x R y R

x R y R

x R y R

H Y X E H Y X x

p x H Y X x

p x p y x p y x

p x p y x p y x

p x y p y x

∈

∈ ∈

∈ ∈

∈ ∈

= =

= =

 
= − 

  

= −

= −

∑

∑ ∑

∑ ∑

∑ ∑
 

(4.10) 
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Similarly, the conditional entropy of X  given that Y y=  is defined as: 

( ) ( ) ( )( )| , log |
X yx R y R

H X Y p x y p x y
∈ ∈

= −∑ ∑
 

(4.11) 

Now that entropy, joint entropy and conditional entropy have been defined, the concept of 

Mutual Information (MI) can be defined as: 

( ) ( ) ( ); |I X Y H X H X Y= −
. 

(4.12) 

Mutual information is thus a measure of the difference between the a priori uncertainty in 

X  and the uncertainty in X  after observing Y. Note that this can also be written as 

[Cover2006] 

( ) ( ) ( ) ( ); ,I X Y H X H Y H X Y= + −
, 

(4.13) 

and is thus a measure of the amount of information that Y provides about X . Mutual 

information is also symmetrical, which can be shown by the following manipulation: 

( ) ( ) ( )
( )

( )

; |

( | )

; .

I X Y H X H X Y

H Y H Y X

I Y X

= −

= −

=

 (4.14) 

This symmetry property lead to the name “mutual” information. MI can be defined in terms 

of the joint and marginal distributions of two RV’s as follows: 

( ) ( )

( ) ( )
( ) ( )

; ;

,
, log

X yx R y R

I X Y I Y X

p x y
p x y

p x p y∈ ∈

=

 
=   

 
∑ ∑

 

(4.15) 

 

From this definition, it can be seen that MI quantifies the distance between the joint 

distribution random variables, ( ),p x y , and their joint distribution if they were independent, 

( ) ( ) ( ),p x y p x p y= . MI thus measures the amount of information that X  and Y have 

in common, that is, how much knowledge of the one reduces uncertainty about the other. 

Mutual information has the following properties: 

1. ( ); 0I X Y ≥ .  ( ); 0I X Y =  if and only if X  and Y are statistically independent. 
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2. ( ) ( ); ;I X Y I Y X= . 

3. ( );I X Y  is a concave function of the input probabilities ( )p x . 

4. ( );I X Y  is a convex function of the conditional probabilities ( )|p y x . 

The first property can be interpreted as follows: If X  and Y are statistically independent 

then neither variable carries any information regarding the other, and the MI is thus zero. If 

Ycarries any information concerning X , then the MI is larger than zero. It is impossible to 

achieve a negative MI for two discrete RV’s. The maximum value of MI is thus achieved 

when the one RV carries all the information about the other. This means that X Y= , i.e. 

observing the one outcome completely specifies the other. In this case ( ),p x y  only 

exists on the diagonal y x= . For each point on this diagonal, ( ) ( )p x p y=  and 

( ) ( ),p x y p x= . This means that: 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( )

,
; , log

log

1
log

X y

x

x

x R y R

x R

x R

p x y
I X Y p x y

p x p y

p x
p x

p x p x

p x
p x

H X

∈ ∈

∈

∈

 
=   

 

 
=   

 

 
=   

 

=

∑ ∑

∑

∑

 (4.16) 

and the maximum value of MI is the entropy of either of the RVs, when they are equal to 

each other. 

The expression given in (4.15) for the MI is the average value of the MI. Each term in the 

summation is a RV in its own right and also has the following properties: variance, 

moments of all orders and a moment generating function [Gallager1968, p. 18]. 

Having defined mutual information, the concept of channel capacity, C, can now be 

defined as the maximum value of ( );I X Y  over all probability distributions ( )p x . 

( )
( ){ }max ;

p x
C I X Y=

 
(4.17) 

This gives a numerical value for the largest rate at which information can be transferred 

over the channel. With proper encoding, information can be sent across the channel at any 

rate less than C with an arbitrarily small probability of error. This embodies the 
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fundamental limit which Shannon calculated in 1948, which has led to vastly improved 

digital communication rates. The expression in (4.17) is an expression for the channel 

capacity of a discrete channel, implying that there are a fixed number of input and output 

states, and a set of transition probabilities between these states. This simplification is 

useful in digital communication settings such as forward error correction, but for the radar 

case where the receiver is limited by additive white Gaussian noise the concept of channel 

capacity first has to be extended to continuous probability density functions. In the next 

section the analogous concepts to entropy and mutual information for continuous RVs will 

be developed, leading to the definition of channel capacity for this case. 

The underlying concepts supporting the derivation of channel capacity are shown 

diagrammatically in Figure 4.2. 

( ) ( )( )logI x p x= −

( ) ( ) ( )( )log
Xx R

H X p x p x
∈

= −∑

{ }E i

( ) ( ) ( )( ), , log ,
X Yx R y R

H X Y p x y p x y
∈ ∈

= −∑ ∑ ( ) ( ) ( )( )| , log |
X yx R y R

H X Y p x y p x y
∈ ∈

= −∑ ∑

( ) ( ) ( ); ( ; ) |I X Y I Y X H X H X Y= = −

( )
( ){ }max ;

p x
C I X Y=

 

Figure 4.2: Diagrammatic representation of the conc epts required to define channel 

capacity. 

In the next section two examples of the application of information theory will be presented 

which highlight the interaction between the various information theoretic quantities which 

have been discussed up to this point. 
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4.3.3 Examples Demonstrating Correlation vs Informa tion 

Theory 

The following examples were developed to illustrate the application and interpretation of 

information theoretic principles discussed in this chapter. The examples were also chosen 

to highlight the superiority of using mutual information as an estimate of correlation over 

the traditional correlation coefficient. The correlation coefficient of two random variables is 

defined as: 

( )cov ,

X Y

X Y
ρ

σ σ
= , (4.18) 

Where Xσ  and Yσ  are the standard deviations of the random variables X  and Y  

respectively and the covariance of the two random variables is defined as: 

( ) ( )( ){ }cov , X YX Y E X Yµ µ= − − , (4.19) 

where Xµ  and Yµ  are the means of the random variables. For both these examples the 

correlation coefficient is exactly zero, but the MI shows that there is correlation between the 

variables. The problem chosen is quite general, but in radar terms it can be seen as an 

analysis of the correlation between the in-phase (I) and quadrature phase (Q) channels.  

4.3.3.1 Example 1 

For the first example, the joint pdf of two random variables was constrained to lie on the 

unit circle and consist of 64 equiprobable impulse functions. The impulse functions were 

spaced equally in angle. The joint pdf as well as the two marginal pdfs are shown in Figure 

4.3 below. Note that the marginal pdfs have been translated to make the figure more 

readable. The I channel has been mapped to the x-axis, and the Q channel to the y-axis. 

The joint pdf can be written as 

( ) ( ) ( )

( ) ( )( )
1

64

1

, , ,

1
sin , cos

64

N

k k k k
k

k k
k

p x y P X x Y y x x y y

x y

δ

δ θ θ

=

=

= = = − −

= − −

∑

∑
, (4.20) 

where ( )1
22 / ,   {1,2,...,64}k k k kθ π= − ∈ and the marginal pdfs can be written as 
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( ) ( ) ( )

( )( )
1

32

1

1
sin

32

N

k k
k

k
k

p x P X x x x

x

δ

δ θ

=

=

= = −

= −

∑

∑
, (4.21) 

and 

( ) ( ) ( )

( )( )
1

32

1

1
cos

32

N

k k
k

k
k

p y P Y y y y

y

δ

δ θ

=

=

= = −

= −

∑

∑
, (4.22) 

where the 1/32 is due to there always being two impulse functions which align during the 

calculation of the marginal pdf. 

 

Figure 4.3: Joint and marginal densities for exampl e 1. Blue indicates the joint pdf 

and red and green indicate the two marginal pdfs. 

The covariance for this case can be derived as follows 
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( ) ( ) ( ){ }
{ }

( )( ) ( )( )

( ) ( ){ }

( )

32

2
1

2

2

cov ,

1
sin cos

32

1
sin cos

32
1 1

sin 2
32 2

0

X Y

k k
k

k k

k

X Y E X Y

E X Y

E x y

E

E

µ µ

δ θ δ θ

θ θ

θ

=

= − −

=

 = − − 
 

=

 =  
 

=

∑
, (4.23) 

For the information theory calculations, the MI between the two random variables will be 

calculated as well as several of the entropies, which will then be used to confirm the value 

calculated for the MI. First the MI is calculated as follows 

( ) ( ) ( )
( ) ( )

( )
( )

( )( )

( )

32 32
2

1 1

1
264

,
; , log

1 1 64 , 0log     
64 1 32 1 32

, 0
0

64 log 16

4    bits

=I ;

X yx R y R

j k

j k j k

p x y
I X Y p x y

p x p y

p x y

p x y

Y X

∈ ∈

= =

 
=   

 

   ≠  = ×   =


=

=

∑ ∑

∑∑

 

(4.24) 

where use is made of the fact that ( ),p x y  is non-zero at 64 of the points contained in the 

32 32 1024× =  possible locations in the x-y plane. Next the entropies of I and Q are 

calculated: 

( ) ( ) ( )( )

( )

2

32

2
1

log

1 1
log

32 32

5    bits

=H

Xx R

j

H X p x p x

Y

∈

=

= −

 = −  
 

=

∑

∑  (4.25) 

This result shows that the entropy of observing only the I or only the Q channel is 5 bits, or 

alternatively 5 bits are required to unambiguously identify the outcome of a single channel. 

This stems from the fact that there are 32 equiprobable coordinates to describe either the I 

or the Q channel. The MI between the I and Q channel is 4 bits, which means that 
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observing the output of the I channel will also give 4 bits of information about the Q channel 

(and vice-versa). For this example the remaining uncertainty of 1 bit in the Q channel 

represents the uncertainty as to whether the Q channel signal lies on the upper or lower 

semi-circle. Once the I coordinate is fixed, there are only two options for the Q coordinate, 

and hence only a single bit is required to unambiguously identify a single Q coordinate. 

This is the definition of the conditional entropy of Q given that I has occurred, and is 

calculated from (4.12) as follows: 

( ) ( ) ( )
( ) ( ) ( )

; |

| ;

5 4

1     bit

I X Y H Y H Y X

H Y X H Y I X Y

= −

= −
= −
=

. (4.26) 

Note the conditional entropy of I given that Q has occurred has the same numerical value 

of 1 bit. To confirm the MI calculation, use is made of (4.13), which is repeated below. 

( ) ( ) ( ) ( ); ,I X Y H X H Y H X Y= + −
, 

(4.27) 

The first two entropy terms have been calculated already and all that remains is to 

calculate the joint entropy: 

( ) ( ) ( )( )

( )
( )

( )( )

32 32
2

1 1

1 1
264 64

, , log ,

1 1 , 0log     
64 64

, 00

64 log

6    bits

X Yx R y R

j k

j k j k

H X Y p x y p x y

p x y

p x y

∈ ∈

= =

= −

   ≠  = −  
=



= −

=

∑ ∑

∑∑ . (4.28) 

which means that 6 bits of information are required to unambiguously identify a single (I.Q) 

coordinate. This is due to the fact that there are 64 unique coordinates which are all 

equiprobable. Now, substituting the entropy results into the expression for the MI: 

( ) ( ) ( ) ( ); ,

5 5 6

4    bits

I X Y H X H Y H X Y= + −
= + −
=

, (4.29) 

which agrees with the original calculation which was based on the definition of MI. 

In summary, this example has shown that even though the correlation coefficient is exactly 

zero, there is still I large amount of information contained in the one random variable about 
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the other random variable. Once the value of one of the random variable is known, the 

coordinate of the other random variable is known except for its sign. The unknown sign 

results in 1 bit of uncertainty. 

4.3.3.2 Example 2 

The second example is an extension of the first to a slightly more complex case. The joint 

pdf was chosen to lie on a Lissajous curve defined by: 

( )
( )
( )1

2

sin 2

cos

2 / ,   {1,2,...,64}

k

k

k

x

y

k k k

θ
θ

θ π

=

=

= − ∈
, (4.30) 

This was chosen so that there are always exactly 2 positions on the joint pdf with the same 

y-coordinate and 4 positions with the same x-coordinate. This choice changes the marginal 

pdf for the x-coordinate to become: 

( ) ( )( )
16

1

1
sin 2

16
k

k

p x xδ θ
=

= −∑ . (4.31) 

The y-coordinate remains unchanged from the first example and is given by: 

( ) ( )( )
32

1

1
cos

32
k

k

p y yδ θ
=

= −∑ . (4.32) 

The marginal pdfs and the joint pdf are shown in Figure 4.4 below. 
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Figure 4.4: Joint and marginal distributions for Ex ample 2. Blue indicates the joint 

pdf and red and green indicate the x and y marginal  pdf respectively. 

Once again, due to the symmetry of the pdfs, the covariance is exactly zero. 

( ) ( ) ( ){ }
{ }

( )( ) ( )( )

( ) ( ){ }

( ) ( ){ }

32

1

2

cov ,

1
sin 2 cos

16 32

1
sin 2 cos

512
1

2sin cos
512
0

X Y

k k
k

k k

k k

X Y E X Y

E X Y

E x y

E

E

µ µ

δ θ δ θ

θ θ

θ θ

=

= − −

=

 = − − × 

=

=

=

∑
, (4.33) 

The MI on the other hand can be calculated as follows: 
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( ) ( ) ( )
( ) ( )

( )
( )

( )( )

( )

16 32
2

1 1

1
264

,
; , log

1 1 64 , 0log     
64 1 16 1 32

, 0
0

64 log 8

3    bits

=I ;

X yx R y R

j k

j k j k

p x y
I X Y p x y

p x p y

p x y

p x y

Y X

∈ ∈

= =

 
=   

 

   ≠  = ×   =


=

=

∑ ∑

∑∑

 

(4.34) 

The fact  that the MI has fallen from 4 bits to 3 bits means that there is still correlation 

between the two random variables, but it has been reduced due to the extra uncertainty in 

the one dimension. The entropy of the I channel is derived as follows: 

( ) ( ) ( )( )2

16

2
1

log

1 1
log

16 16

4    bits

Xx R

j

H X p x p x
∈

=

= −

 = −  
 

=

∑

∑  (4.35) 

which means that less bits are required to represent all 16 possibilities than in the first 

example. The entropy of the Q channel is once again given by 

( ) ( ) ( )( )2

32

2
1

log

1 1
log

32 32

5    bits

Xx R

j

H Y p y p y
∈

=

= −

 = −  
 

=

∑

∑ , (4.36) 

which is the same as the first example. Next the conditional entropies are calculated, but 

whereas these were equal in the first example they differ in this example. The conditional 

entropy of I given that Q has occurred is given by: 

( ) ( ) ( )| ;

5 3

2     bits

H Y X H Y I X Y= −
= −
=

. (4.37) 

This is due to there being 4 possible Q values for each possible I value, thus resulting in 2 

bits of uncertainty remaining after I has been observed. The conditional entropy of Q given 

that I is known is calculated as follows: 
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( ) ( ) ( )| ;

4 3

1     bit

H X Y H X I X Y= −
= −
=

 (4.38) 

This is due to the fact that once the Q channel has been observed, there are only two 

possible outcomes for the I channel, thus resulting in a single bit of uncertainty. 

Once again, the MI calculation is confirmed by making use of the entropies and the joint 

entropy, which is calculated as follows: 

( ) ( ){ }
( ) ( )( )

( )
( )

( )( )

16 32
2

1 1

1 1
264 64

, ,

, log ,

1 1 , 0log     
64 64

, 00

64 log

6    bits

X Yx R y R

j k

j k j k

H X Y E I X Y

p x y p x y

p x y

p x y

∈ ∈

= =

=

= −

   ≠  = −  
=



= −

=

∑ ∑

∑∑ . 
(4.39) 

which means that 6 bits are still required to unambiguously represent 64 equiprobable 

coordinates in the I-Q plane. The MI is now calculated in terms of the entropies and joints 

entropies as follows: 

( ) ( ) ( ) ( ); ,

4 5 6

3    bits

I X Y H X H Y H X Y= + −
= + −
=

, (4.40) 

which agrees with the initial calculation of the MI for this example. 

4.3.4 Information Theory and Continuous Random Vari ables 

For a continuous RV X , on ℝ , with pdf ( )f x , the differential entropy is defined as 

( ) ( ) ( )( )

( ) ( )( )
0

log

lim logk k
x

k

h X f x f x dx

f x f x

∞

−∞

∆ →

= −

 = − 
 

∫

∑
 

(4.41) 

Note that this is not the limit of the Rieman sum as that would give two terms, the second 

of which would be ∞ . This term is ignored and only the first term is retained, hence the use 
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of the term “differential”. For discrete RV’s, only the probability of each outcome determines 

the entropy. This is however not the case the entropy of a continuous RV. If a continuous 

RV is multiplied by a constant, a , then the differential entropy is given by: 

( ) ( ) ( )logh aX h X a= +
 

(4.42) 

Differential entropy is thus a measure of the entropy of a continuous RV relative to the 

entropy of a uniformly distributed RV. From (4.42) it can be seen that if the distribution is 

more concentrated than a uniform distribution, a negative entropy can result. 

In the same way that entropy was developed for discrete RV’s in the previous section, it 

can be extended using the definition above to continuous RV’s. The expressions for each 

case are summarized below. 

Joint differential entropy is defined as 

( ) ( ) ( )( ), , log ,h X Y f x y f x y
∞ ∞

−∞ −∞

= − ∫ ∫
, 

(4.43) 

conditional differential entropy is defined as, 

( ) ( ) ( )( )| , log |h X Y f x y f x y
∞ ∞

−∞ −∞

= − ∫ ∫
 

(4.44) 

and mutual information is defined as 

( ) ( ) ( ); |I X Y h X h X Y= −
 

(4.45) 

It is important to note that the two ∞  terms which were discussed during the definition of 

differential entropy have cancelled each other out in the definition of MI for continuous 

variables. The mutual information is thus not called “differential mutual information”, but just 

“mutual information”. 

It should be noted that all the concepts defined in this and the preceding section can be 

generalized to vectors of random variables. The vector version of mutual information can 

then be used to derive the channel capacity [Shannon1948]:  Firstly, the maximum mutual 

information between the input and output of a Gaussian noise channel, of bandwidth W

and an average power constraint of avP  is given by 

( ) ( ) 2
0

max ; log 1 av
N Np x

P
I WT

WN

 
= + 

 
X Y

, 
(4.46) 
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where 0N is the power spectral density of the noise. The channel capacity per unit time is 

obtained by dividing by T: 

2
0

log 1 avP
C W

WN

 
= + 

 
, 

(4.47) 

where the units ofC are bits/s. The channel capacity is the fundamental limit on the rate of 

error free transmission for a channel system is power and bandwidth constrained and 

operates in the presence of AWGN. It should be observed that as the SNR tends to infinity, 

so does the channel capacity, but if the bandwidth tends to infinity, then the capacity tends 

to an asymptotic value of [Proakis1989] 

( ) ( )2
0 0

log
ln 2

av avP P
C e

N N
∞ = = . (4.48) 

The expression for the channel capacity has a linear dependence on bandwidth, but a 

logarithmic dependence on signal to noise ratio. It is therefore easier to increase the 

channel’s capacity by increasing the bandwidth than by increasing the transmitter’s power. 

Shannon’s coding theorem then states that as long as the transmission rate is lower than 

the channel capacity, communication is possible at an arbitrarily small probability of error. 

Expression (4.46) gives the channel capacity for a continuous waveform channel, and is 

thus applicable to the radar case. In terms of signal propagation the radar channel and 

communication  channel are similar in that both are limited by additive noise (mostly from 

the receiver components), and increasing the signal to noise ratio increases the channel 

capacity. The distinguishing difference is that the communications engineer has control 

over the design of the probability distribution, ( )p x  as well as the waveforms, whereas in 

the radar case this is a function of the relative angles between the radar and the target, and 

is thus not a parameter which can be controlled by the radar engineer. The extra difference 

is that the propagation environment for a communication system can be free space, a 

wired connection or even a data storage device, whereas for the radar the propagation 

environment is nearly always free space. The possible exception to this is ground 

penetrating radar. The effect of these different propagation environments is the loss in 

signal strength, which is accounted for by the term avP  being a measure of the received 

power. 

4.3.4.1 Example: Continuous Communication Channel 

In this section a basic example is discussed to show the use of some of the concepts 

defined in this section. It is known that a Gaussian RV has the highest possible entropy for 

a RV, under constrained power. If such a RV is to be communicated over a noisy channel, 
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what would the performance of such a system be?  The problem is depicted in the figure 

below. 

X

( )0, ZN σ

Z

Y( )0, XN σ

 

Figure 4.5: Example of transmission of a Gaussian R V over a channel corrupted by 

Gaussian noise. 

For a Gaussian, zero mean RV, S, with variance 2σ , the entropy is given by: 

( ) ( )2
1

log 2
2

h S eπ σ=
. 

(4.49) 

The entropy of the output of the channel is given by: 

( ) ( )( )2 2
1

log 2
2

X Zh Y eπ σ σ= +
, 

(4.50) 

and it can be shown analytically that ( ) ( )|h Y X h Z= . This is interpreted as the entropy 

of the output, given full knowledge of the input, is the entropy of the noise, which is given 

by: 

( ) ( )2
1

| log 2
2

Zh Y X eπ σ=
. 

(4.51) 

The mutual information between input and output is given by: 

( ) ( ) ( )
2

2

; |

1
log 1

2
X

Z

I X Y h Y h Y X

σ
σ

= −

 = + 
 

, (4.52) 

which is also the channel capacity for this case, and the variance ratio is equivalent to the 

signal to noise ratio. The channel capacity is attained by any Gaussian RV, regardless of 

its mean, with variance 2
Xσ . This example has been simulated for input distributions of 

both Gaussian as well as uniform RV’s, and the results are shown in the figure below. 
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Figure 4.6 : Entropy and mutual information compari son for uniform and Gaussian 

source. 

 

Figure 4.7: Entropy and mutual information comparis on for uniform and Gaussian 

source: zoom of transition regions. 

In these examples the Gaussian input RV case always has a higher entropy as well as 

mutual information than the uniform RV case. This is due to the fact that the Gaussian 

distribution has the highest entropy for a given RV when the variance of the RV is fixed. 
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4.3.5 Mutual Information for the Discrete Input Con tinuous 

Output Channel 

In many communication examples, the input to the channel over which data is to be 

transmitted is chosen from a set of discrete symbols. The channel adds noise to this input 

where the pdf of the noise is a continuous RV. Let X  be the discrete input random 

variable, which has N  possible outcomes denoted by ix , and Y is described by its 

marginal pdf ( )p y    If X  and Y are statistically dependent, then ( )p y  can be expressed 

as 

( ) ( ) ( )
1

N

i i
i

p y p y x p x
=

=∑
 

(4.53) 

The information provided about the input event iX x=  by observing the output event 

Y y=  is given by 

( ) ( ) ( )
( ) ( )

( )
( )

2

2

, log

log

i i

i
i

i

p y x p x
I x y

p y p x

p y x

p y

 
=  

 
 

 
=  

 
   

(4.54) 

which is sometimes referred to as “point information”. The average mutual information 

between X  and Yis given by [Proakis1989, p.75] and [Gallager1968, p.33] 

( ) ( ) ( ) ( )
( )2

1

, log
N

i

i i
i

p y x
I X Y P x p y x dy

p y

∞

= −∞

 
=  

 
 

∑ ∫
 

(4.55) 

 

4.3.6 Mutual Information and Radar Measurement Perf ormance 

This section describes the link between mutual information, and the measurement 

performance of a radar system. In this case “measurement” refers to the measurement of a 

specific parameter, such as the range of the target or the polarization matrix of the target. 

The conceptual system is shown in the figure below. 
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X Y( );I X Y
 

Figure 4.8: Conceptual radar measurement process. 

In this figure, X and Y are random vectors, and have a joint distribution. The measurement 

process maps X into Y stochastically. The greater the mutual information between these 

two variables, the more information is obtained about the object. 

Maximum number of partitions, N , of XR  is given by in [Bell1988, p. 47, Eq. 2.36]  

( );2IN  =  
X Y

, 
(4.56) 

for an arbitrarily small probability of error. This is based on Shannon’s theorem for the 

noisy channel. 

Rate distortion theory can now be used to relate measurement error to mutual information. 

The distortion (or error) is denoted as ( ),d x y  where x  is the parameter vector and y is 

the measurement vector. This is a non-negative function defined for all pairs of XR∈x  and 

YR∈y . The average distortion, or equivalently the fidelity criterion is given by 

( ){ },D E d= x y
 

(4.57) 

The rate distortion function is defined as 

( ) ( ){ }min , :R I Dδ δ= ≤X Y
. 

(4.58) 

This represents a minimization over all mechanisms which satisfy D δ≤ . The rate 

distortion function gives the minimum possible rate at which information must be 

transferred by a measurement mechanism to have an average distortion D  less than or 

equal to δ . A smaller δ  thus requires a larger value of ( )R δ . ( )R δ  is a non-increasing 

function of δ . 

4.3.6.1 Example: Rate distortion function for a Gau ssian noise 

channel 

Using the same setup as the previous example (see Figure 4.5), a designer would like to 

measure the scalar parameter X . Again, assume that X  and Z are statistically 
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independent. Use can be made of the mean square error as the distortion measure, which 

is given as: 

( ) ( )2
,d x y x y= −

, 
(4.59) 

then 

( ){ }
( ){ }
( ){ }

{ }

2

2

2

2

2

( )

Z

D E x y

E x x z

E z

E Z

σ

= −

= − +

= −

=
=  

(4.60) 

The mutual information between X  and Y  is given by: 

( )
2

2

1
; log 1

2
X

Z

I X Y
σ
σ

 
= + 

   

(4.61) 

The resulting rate distortion function is given by 

( )
21

log
2

XR
σδ
δ

 =  
   

(4.62) 

Therefore, if more precision is required in the measurement, a larger minimum rate of 

information transfer by the measurement mechanism is required. An increase in the mutual 

information thus gives an increase in the number of separable classes, as well as an 

increase in the precision of the measurements. 

4.4 Data Processing Inequality 

The data processing inequality is a fundamental limit on what can be achieved by 

processing raw data. In summary, it states that no algorithm can improve the inferences 

that can be made from a set of data, and this in turn implies that once information has been 

destroyed it cannot be recovered. 

Use is made of a Markov chain to prove the theorem. A Markov chain is a mathematical 

model for a process in which knowledge of the current state of a system is all that is 

needed to be able to predict the behaviour of the system into the future. This means that 

the future of the system is independent of the past. 
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The random variables X , Y and Z  form a Markov chain, denoted by X Y Z→ → , if Z  

depends only on Y and Z  is independent of X . The joint pdf of the variables can then be 

written as: 

( ) ( ) ( ) ( ), ,p x y z p x p y x p z y=
. 

(4.63) 

The data processing inequality theorem then states that: 

If X Y Z→ → , then ( ) ( ); ;I X Y I X Z≥  (4.64) 

This can be interpreted as seeing X  as being the input to a channel, Y  as the output of 

the channel and Z  as the result of some processing that has been done on the data Y  

(i.e. ( )Z f Y= ) in an attempt to estimate X . The theorem then implies that there is no 

function, ( )f i , or algorithm that can increase the amount of information that Y  conveys 

about X . In fact, the chances are good that information will be destroyed due to the 

processing and in the best case the information will remain constant. 

4.5 Relationship Between Probability of Error and M utual 

Information  

Mutual information can be used to gain insight into classification problems by analysing the 

probability of error and the number of partitions into which the input random variable’s 

space can be divided. 

The maximum number of partitions N , of XR  which can be identified by observation of the 

output of the channel is given by 

( ),2I X YN  =   . 
(4.65) 

This expression has been applied to the example of the transmission of a Gaussian RV 

over a channel corrupted by additive white Gaussian noise (AWGN) (See section 4.3.4.1). 

The number of partitions into which the output space can be classified has been calculated 

using (4.65) as a function of the SNR, and the result is plotted in the figure below. 
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Figure 4.9: Number of partitions for arbitrarily sm all probability of error. 

If the number of partitions calculated using (4.65) is less than the number of possible 

outcomes of the input discrete RV, then errors in the decoding of the received signal will be 

made. For this example the input space is continuous, so an infinite number of partitions 

are required to represent it, thus requiring the mutual information to be infinite if the source 

is to be perfectly reconstructed. 

Fano’s inequality relates the probability of incorrectly estimating the value of the input 

random variable, X , given an observation of the output random variable, Y , to the 

conditional entropy ( )|H X Y . The probability of error is defined as 

( )( )ˆ
eP P X y X= ≠ , (4.66) 

where X̂  is the estimate of the input RV made at the output of the channel. The strictest 

version of Fano’s inequality is given by [Cover2006, p. 39] 

( ) ( ) ( )2log 1 |e eH P P N H X Y+ − ≥ , (4.67) 

where ( )eH P  is the entropy of the RV associated with the error event. The inequality is a 

lower bound on the probability of error for an N-class multiple hypothesis testing problem. 

The inequality is defined for an input space, XR , which is a discrete random variable. This 

inequality was originally derived as a lower bound, but has been extended to a lower and 

upper bound by making use of Renyi’s entropy [Erdogmus2004]. Fano’s inequality can be 

related to mutual information by expanding the conditional entropy: 
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( ) ( ) ( )
( ) ( ) ( ) ( )

2

2

log 1 |

log 1 ; .

e e

e e

H P P N H X Y

H P P N H X I X Y

+ − ≥

+ − ≥ −
 (4.68) 

This equation cannot be solved algebraically for eP , so use has to be made of numerical 

techniques at this point. The expression in (4.68) can in turn be solved for the mutual 

information 

( ) ( ) ( ) ( )
( )

2; log 1

,

e e

e

I X Y H X H P P N

f P

≤ − − −

=
 (4.69) 

And the function ( ),ef P N  can be inverted to give a curve of the form 

( )( )1 ;eP f I X Y−≤ , (4.70) 

which can then be used to relate mutual information to the probability of error. The inverse 

function is plotted in Figure 4.10 for several values of N . The function is well behaved 

except at the point where the MI approaches 0 where the graph has an inflection point. For 

this study values of eP  which are close to zero are of interest, and this maps to the high MI 

region of graph, thus avoiding the inflection problem. This graph confirms the very direct 

relationship between mutual information and the probability of error, and shows that high 

values of MI can be used to imply low probabilities of error. 

A weaker form of Fano’s inequality is given by 

( ) ( )
( )

( ) ( )
( )

2

2

2

; 1

log

log ; 1

log

e

H X I X Y
P

N

N I X Y

N

− −
≥

− −
=

 (4.71) 

where eP  has been solved for explicitly by making the assumption that ( ) 1eH P =  and that 

N  is large enough that ( ) ( )2 2log 1 logN N+ ≅ . The line for this equation was added to 

Figure 4.10 for the 1024N =  case. It can be seen that the approximation is accurate in the 

0.5eP =  region, but looses accuracy at high and low values of MI. The stricter bound will 

thus be used in the remainder of this study. Mutual information can thus be used by a 

classification system designer to estimate the recognition performance for a specific set of 

targets in the presence of noise. 
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Figure 4.10: Examples of inverse mapping functions for the calculation of probability 

of error from mutual information. 

4.6 Two Applications of Information Theory to the T arget 

Recognition Problem 

This section gives two examples from the literature on the use of information theory to 

analyse the recognition performance of a radar system. 

4.6.1 Information Measure of Recognition Quality (I MRQ) 

This example is based on a discussion in [Shirman2002], pp 58. Assume an “alphabet” of 

K  targets each with probability of occurrence kP , the entropy before recognition is given by 

( )2
1

log
K

BR k k
k

H P P
=

= −∑
 

(4.72) 

Let ik ki kP P P=  be the probability of having made a decision in favour of target i  when 

target k  is actually present. The entropy after a decision has been made is given by: 

( )2
1 1

log
K K

AR ik i k
i k

H P P
= =

= −∑∑
 

(4.73) 
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The change in entropy from before to after recognition is named the “information measure 

of recognition quality” (IMRQ) and is given by: 

( ) ( )2 2
1 1

1
log log

BR AR

K K

i k i k
i k

I H H

K P P
K = =

= −

= + ∑∑
 

(4.74) 

If the probabilities of correct and incorrect recognition are constant for all combinations: 

correcti iP P=
 

(4.75) 

and  

( )1
1

1incorrect correcti kP P P
K

= = −
−  

(4.76) 

then the coarse IMRQ can be defined as: 

( ) ( ) ( )2 2 2

1
log log 1 log

1
correct

coarse correct correct correct

P
I K P P P

K

−
= + + −

−  
(4.77) 

This equation is graphed as a function of correctP  in the figure below. The dashed lines in the 

figure show the entropy of the problem, BRH , before recognition. 

 

Figure 4.11: Information measure of recognition qua lity (IMRQ) as a function of the 

probability of correct classification. 

This graph gives a rough estimate of the value required of the mutual information to 

recognize a given number of targets, at a given probability of correct recognition. The 
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IMRQ is plotted below as a function of K for various values of correctP . Note that K can be 

interpreted as the number of target profiles which have to be distinguished from each other. 

 

Figure 4.12: Information measure of recognition qua lity (IMRQ) as a function of the 

number of target profiles, K. 

This gives a good idea of the loss in correct recognition, for a loss in mutual information. 

The dashed black trace indicates the entropy of the target ensemble and thus gives the 

upper bound on the IMRQ. 

4.6.2 Amount of Information Required for Recognitio n 

This example closely follows the discussion in [Nebabin1995, p. 24]. The original paper 

where the mathematics is derived is unfortunately written in Russian, and does not seem to 

be readily available. 

The initial equation is of the same form as Shannon’s channel capacity formula, but the 

technique for the derivation of the second expression is unknown. The amount of data 

required for the recognition is given by: 

( )
( )

* 2
2

2

log 1

2 ln ln
log 1

1

v

s error

correct

I FT q

m P
FT

P

= ∆ +

 −
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(4.78) 
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where, F∆  is the radar bandwidth, T  is the data reception and processing time, errorP  is 

the probability of erroneous recognition, correctP  is the probability of correct recognition, sm  

is the number of signals to be recognized (given by the product of the number of targets 

and the number of aspect angles for recognition), mE  is the average energy of the 

recognized signals, 0N  is the noise power spectral density, and 

02v mq E N=
 

(4.79) 

is the voltage signal to noise ratio. For a single pulse with a bandwidth of 40 MHz, a PRI of 

0.1 ms (15 km ambiguous range), a single target described by 4096 azimuth waveforms in 

180°, 0.01errorP =  and 0.99correctP = , the required amount of data for recognition is 

330.95 10×  bits. This relatively large answer seems to stem from the long data processing 

time. If this time is reduced to the equivalent of 6 range bins (which spans a 20 m target at 

this bandwidth, the required information is 68.02 bits, which seems more realistic. The 

most plausible explanation of this equation is that the author calculated the signal 

dimensionality given by the product of the bandwidth and the data reception time. This was 

then used along with the probabilities of error and correct recognition to establish a multi-

level signalling scheme on a multidimensional signal set with the spacing between the 

signal points calculated to meet the given probabilities. This spacing can then be used to 

define the signal to noise ratio, which could then be used to calculate the channel capacity. 

The exact definition of T  will thus have to be found before this approach can be used 

successfully. 

4.7 Conclusion 

This section contains a survey of the theory required to use information theory to analyse a 

radar based NCTR system. Some bounds were given on the amount of information 

required for correct recognition, but an analysis similar to that in [Briles1993] will have to be 

conducted to characterise the amount of information that might be available in the 

backscattered return from a target. The data processing inequality was also introduced, 

which states that no amount of clever processing can increase the amount of information 

known about a random variable. This highlights the fact that information theory is probably 

the best way to analyse a NCTR system before any of the radar’s signal processing and 

recognition algorithms have been designed. The most promising approach seems to be the 

characterisation of the mutual information between the target’s electromagnetic return and 

the signal which is received by the radar, followed by the conversion of this numerical value 

to a probability of error by making use of Fano’s inequality. 
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5 Development of the Mutual Information Based 

Approach for the Analysis of Radar 

Recognition Problems 

This section contains the development of techniques for the evaluation of the information 

content of radar signals. This can then be used to characterize the maximum attainable 

recognition performance for various radar signal processing algorithms. 

5.1 Abstraction of the Radar Recognition Problem 

In this section the radar recognition problem is reduced to its simplest form to allow the 

problem to be addressed analytically. To this end, the radar target and radar system is 

mapped to a communication topology and thus analysed. 

In a communication system the designer can design the waveforms which are to be sent 

over a communication channel. The channel then possibly deforms these signals which are 

then received by the receiver which is usually noise limited. The radar target can be likened 

to the transmitter as it is capable of generating an ensemble of waveforms when 

interrogated by a pulse from the radar’s transmitter. If the target’s orientation is unknown, 

its orientation can be seen as a random variable. The backscattered waveform is 

generated via a one to one mapping between the target orientation and the waveform. The 

target can thus be seen as a random process capable of generating a waveform based on 

its orientation relative to the radar. These waveforms are however not under the control of 

the radar designer, and the waveforms are thus not optimal for information transfer. The 

propagation environment between the target and the radar can be seen as the channel and 

the radar receiver then receives the waveform, but is also noise limited as is the case for 

the communication system. 

The radar problem can thus be analysed as a non-optimal communication system. The 

factor which limits the performance of a communication system is the amount of mutual 

information between the transmitted signal set and the received signal set. To analyse the 

radar problem the amount of mutual information between the target waveforms and the 

waveforms received at the radar by its receiver will have to be estimated using the 

following expression: 

( ) ( ) ( ) ( )
( )2

1

, log
N

i
i i

i

p y x
I X Y P x p y x dy

p y

∞

= −∞

 
=  

 
 

∑ ∫
 

(5.1) 

This expression was used by Ungerboeck [Ungerboeck1982] to characterise the 

achievable capacities of various standard communication schemes. He then used 
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information gains between the schemes to show how modulation and coding could be 

combined to give a performance gain in bit error probability. 

5.2 Derivation of Mutual Information for Real and 

Complex Variables 

Ungerboeck’s original paper [Ungerboeck1982] is relatively sketchy on the details of the 

derivation of mutual information. Due to this the derivation is expanded in more detail in 

this section. 

Assuming perfect synchronization, and symbol period T , the output of the channel is given 

by 

n n ny a z= +  (5.2) 

where na  is the real- or complex-valued discrete input signal at time nT  and nz  is a 

Gaussian noise sample with zero mean and variance 2σ  along each dimension. The SNR 

is defined as 

{ }
{ }
{ }

2

2

2 2

n

n

n

E a
SNR

E z

E a Dσ

=

=
 

(5.3) 

where D  is the number of dimensions. Normalised signal power is assumed 

{ }2 1nE a =
. 

(5.4) 

The mutual information for a discrete memoryless channel with continuous outputs is given 

by: 

( ) ( ) ( ) ( )
( ) ( )

1

2 1
0

0

, log
N

k

k k N
k

i
i

p y a
I a y P k p y a dy

P i p y a

− ∞

−−∞
=

=

 
  = ⋅  
 
  

∑ ∫
∑

 

(5.5) 

where N  is the number of symbols and ( )P i  denotes the a-priori probability of the 

symbols. Note that the integration in (5.5) is written as a single integral, but the number of 

integrations is equal to the number of dimensions in the input waveforms. Single integrals 

are used throughout the document to reduce the amount of clutter in the equations. 

As the interference is additive, the output pdf given an input symbol can be written as: 
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( )
( )

2

2 22

1
| exp

22

k
k D

y a
p y a

σπσ

 − −
 =
 
   

(5.6) 

where D  is the number of dimensions. Note that the vector norm operator used in the 

exponential can be written as: 

( )2 2

2 2
1

1

2 2

D
j kj k

j

y a y a

σ σ=

− − −
− =∑  (5.7) 

Note also that because ky a z= + , 

( )
( )

( )

( )
( )

2

2 22
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2 22
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2 22

1
| exp

22

1
exp
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22
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p y a

a z a
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 =
 
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 − + −
 =
 
 

 −
 =
 
 

=
 

(5.8) 

Thus ( )p z  has a Gaussian distribution with zero mean and variance 2σ  along each 

dimension. Assume that all input events are equally likely, i.e. 

( ) 1
kP a

N
=

 
(5.9) 

Substituting and simplifying, this gives: 

( ) ( ) ( ) ( )
( ) ( )

( )

( ) ( )

1

2 1
0

0

2 2
1 1

2 2
0 0

2 21

2 2 2
0

, log
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 
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(5.10) 
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Now, substituting ( ) ( )kp y a p z= , and then making a change of variable using ky a z= +  

which gives dy dz= : 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 21 1 1

2 2 2
0 0 0

2 21 1 1

2 2 2
0 0 0
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∑ ∑
 

(5.11) 

This expression agrees with the expression arrived at by Ungerboeck. The expected value 

is over the Gaussian pdf, ( )p z . Notice that this equation has a maximum value of ( )2log N  

and decreases as the amount of noise increases. Ungerboeck then made use of Monte 

Carlo integration to evaluate this expression. 

Originally this expression was only applied to one and two dimensional signal sets. It is 

thus necessary to ensure that it can be applied to multi-dimensional problems. 

5.3 Multi-Dimensional Mutual Information 

In this section the result of a detailed derivation of the Mutual information for a discrete 

input continuous output channel is given. The full derivation has been given in Appendix A. 

The final result is: 

( ) ( )
2 2

1 1

2 2 2
0 0

1
, log log exp

2

N N

k i

I N E
N σ

− −

= =

   + − − 
  = − −       

∑ ∑ k i
k

a z a z
a y

, 
(5.12) 

where the variables have been replaced with vectors. This expression simplifies to that 

given by Ungerboeck for 2-D variables, but the derivation has been conducted rigorously to 

ensure that this expression can be applied to multi-dimensional problems. 
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5.4 Envelope Only Based Expressions for Mutual 

Information 

In this section the expressions are derived for the mutual information in the cases where 

the radar signal processing generates the envelope or envelope squared of the received 

signal as its output signal. 

5.4.1 Derivation of Mutual Information for Envelope  Processing 

In this section an expression is derived for the MI for a complex valued radar signal which 

has been processed by the radar’s signal processing to obtain the envelope of the signal. 

This processing, which is applied to each range bin, is given by: 

( ) ( )22

n n n

n In n Qn

r a z

I z Q z

= +

= + + +
 (5.13) 

where n is the sample index and nI  and nQ  are the real and imaginary parts respectively 

for the nth data sample, and In Qnz iz+  is the corresponding additive Gaussian noise 

sample. 

This derivation starts from the general form for the MI of a discrete input continuous output 

channel: 
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∑ ∫
∑

∑∫
∑

 
(5.14) 

where the input is a vector of complex valued samples and the output is given by (5.13) 

above. 

The pdf of the envelope of a received sample is given by a Ricean distribution. The Ricean 

pdf is obtained by a change of variable induced by the function R Y=  performed on a 

non-central Chi-squared, 2 degrees of freedom RV, and is given by: 

( )
2 2

02 2 2
exp

2

r r s rs
p r I

σ σ σ
+   = −   

   
 (5.15) 

where ( )0I i  is the modified Bessel function of the first kind of order zero, and 
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2 2 2
1 2s m m= +  (5.16) 

If each data sample is assumed to be independent, then: 
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(5.17) 

Note that there is no change of variable for this case, and that samples from ( )kp r a  will 

be generated directly. The inner probability ratio can then be expanded as follows: 
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(5.18) 

Substituting this into the expression for MI: 
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The following simplification of the fraction in (5.19) was derived to reduce the 

computational complexity: 
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 (5.21) 

Taking the logarithm of this expression, to the base 2, gives the following expression: 
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(5.22) 

which can then be substituted into the expression for MI to give: 
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(5.23) 

The numerical stability of this expression was found to restrict the SNR range over which 

the MI could be calculated due to overflow problems when using the standard modified 

Bessel function implementation in Matlab. It was found that improved numerical stability 

could be achieved if a scaled version of the modified Bessel function is used 

[Abromowitz1972, pp. 375], which is defined as follows: 

( ) ( ) ( )0 0 expI z I z z′ = −  (5.24) 

The modified Bessel functions can thus be replaced using the following expression: 

( ) ( ) ( )0 0expI z z I z′=  (5.25) 
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The derivation is restarted from Eq. (5.21): 
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(5.26) 

The denominator can result in large arguments in the ( )exp i  function, so the upper ( )exp i  

expression was moved into the denominator to further stabilize the expression: 
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 (5.27) 

This expression was found to be stable, except in some specific cases where the SNR 

exceeds 45 dB. 

5.4.2 Mutual Information for Envelope Squared Proce ssing 

Due to the fact that this derivation follows the same approach as that used in the previous 

section, the detailed derivation is given in Appendix B and only the final expressions for the 

MI is given here.  

The expression for the envelope squared case is given by: 
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(5.29) 

If the following substitution is made: 

kj kjr y= . (5.30) 

which is the definition given in (5.20), then the expression for the MI based on envelope 

squared values is given by: 
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(5.31) 

This approach was analysed as a cross-check on the envelope only HRR derivation. One 

would expect the two to give the same MI as the processing only differs by the square root 

function, which is an invertible function. 

The expressions derived above, in particular (5.27), can be used to compare the 

performance of envelope only processing to that of phase and envelope processing. This in 

turn allows for the evaluation of the amount of information lost due to processing which 

discards phase information by computing the envelope of the of the signal. 

5.5 1-D Multi-Target Channel 

All the preceding sections have focussed on the case of only a single target’s information 

transfer. This section derives the mutual information for the case where two targets can 

potentially be present and transmit their signature waveforms over the channel. This 
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corresponds to the scenario where multiple targets of different types could be present in 

the radar’s surveillance volume and the radar’s recognition sub-system has to test a 

received signal against multiple targets in its database. Two different targets at different 

relative aspect angles to the radar could have very similar HRRP’s, thus leading to 

scenarios where misclassification is possible. This section investigates an approach to the 

analysis of this type of problem. The analysis starts with a simplified version of the problem 

and then extends this approach to the generalised problem. 

If the following symbols are possible: {-1; 1; b}, with probabilities 0.25, 0.25 and 0.5. One 

could derive the MI for all three symbols, which should limit at a maximum value of 1.5 bits 

for high SNR. The MI value could then be broken into sub-expressions - one for target #1 

(+1,-1) and one for target #2 (b). The approach for all three symbols is taken, by starting 

with the expression for mutual information below and the parts of the expression pertaining 

to the target of interest are isolated. 
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Expanding p(y): 
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(5.33) 

Expanding p(y|c): 
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(5.35) 

For the first term, using the transformation ky a z= + : 
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∑ ∑∫ ∫

∑
 

(5.36) 

Expanding the fraction: 

( )
( )

( )
( )( ) ( )( )

( )

( ) ( )

( ) ( ) ( )

1

0

2

2

2 21

2 2
0

2 2 2
1

2 2 2
0

1 1
4 2

1
exp

22

1 1 1 1
exp exp

4 2 2 22 2

1 1
exp exp exp

2 4 2 2 2

N

k i k
i

N
k i k

i

N
k i k

i

p z p z

p y
p a z a p a z b

z

a z a a z b

z a z a a z b

σπσ

σ σπσ πσ

σ σ σ

−

=

−

=

−

=

=
+ + +

 −
 
 
 =

   − + − − + −
   +
   
   

      − + − − + −
      = +

     
      

∑

∑

∑

( ) ( ) ( ) ( )

1

1
2 2 2 2

1

2 2
0

1 1
exp exp

4 2 2 2

N
k i k

i

a z a z a z b z

σ σ

−

−
−

=

  
  

  
  

    − + − + − + − +
    = +

        
∑

 

(5.37) 

Substituting back gives: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
2 2 2 2

1 1

2 2 2
0 0

2 2 2 2
1

2 2 2
0 0

1 1 1
log exp exp

4 4 2 2 2

1 1 1
log exp exp

4 4 2 2 2

N N
k i k

k i

N
k i k

k i

a z a z a z b z
E

a z a z a z b z
E

σ σ

σ σ

−
− −

= =

−

= =

      − + − + − + − +      +              

     − + − + − + − + 
    = − +           

∑ ∑

∑
1N −

∑
 

(5.38) 

This expression gives the amount of information transferred in the presence of the extra 

symbol b, when only the {+1;-1} inputs are allowed. If b was included, the MI would limit at 

1.5 bits for high SNR. This implies that b adds information to the whole process. If b is seen 

as an extra target of a different class, then observing the channel output when b is 

transmitted is giving information about the second target, although the receiver is only set 

up to receive {+1,-1}. The total MI for this channel requires the addition of the 2nd term: 

( ) ( )
( )2

1
log

2

p y b
p y b dy

p y

∞

−∞

  ⋅  
  

∫
 

(5.39) 

using the transformation y b z= + : 

( ) ( )
( ) ( ) ( )

( )
( )

( )

2 2

2

1 1
log log

2 2

1
log

2

p y b p z
p y b dy p z dz

p y p z b

p z
E

p z b

∞ ∞

−∞ −∞

      ⋅ = ⋅   +     

    =   +    

∫ ∫

 

(5.40) 
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Expanding the fraction: 

( )
( )

( )
( )( ) ( )( )

( )

( ) ( )

( ) ( ) ( )

1

0

2

2

2 21

2 2
0

2 2 2
1

2 2 2
0

1 1
4 2

1
exp

22

1 1 1 1
exp exp

4 2 2 22 2

1 1
exp exp exp

2 4 2 2 2

N

i
i

N
i

i

N
i

i

p z p z

p y p b z a p b z b

z

b z a b z b

z b z a z

σπσ

σ σπσ πσ

σ σ σ

−

=

−

=

−

=

=
+ + +

 −
 
 
 =

   − + − − + −
   +
   
   

       − + − −
       = +

       
       

∑

∑

∑

( ) ( ) ( ) ( )

( ) ( )

1

1
2 2 2 21

2 2
0

1
2 2

1

2
0

1 1
exp exp

4 2 2 2

1 1
exp

2 4 2

N
i

i

N
i

i

b z a z z z

b z a z

σ σ

σ

−

−
−

=

−
−

=


 
 
 

    − + − + − +
    = +

        

  − + − +
  = +

    

∑

∑
 

(5.41) 

Substituting back gives: 

( )
( )

( ) ( )

( ) ( )

1
2 2

1

2 2 2
0

2 2
1

2 2
0

1 1 1 1
log log exp

2 2 2 4 2

1 1 1
log exp

2 2 4 2

N
i

i

N
i

i

p z b z a z
E E

p z b

b z a z
E

σ

σ

−
−

=

−

=

      − + − +    
  = +     +            

   − + − +   = − +       

∑

∑
 

(5.42) 

Now adding this to the first term gives: 

( ) ( ) ( )
( ) ( ) ( )

( )

( ) ( ) ( ) ( )

1

2 2
0

2 2 2 2
1 1

2 2 2
0 0

2

1 1
{ ; }, log log

4 2

1 1 1
log exp exp

4 4 2 2 2

1 1 1
     log exp

2 2 4

N
k

k k
k

N N
k i k

k i

p y a p y b
I a b y p y a dy p y b dy

p y p y

a z a z a z b z
E

E

σ σ

− ∞ ∞

−∞ −∞
=

− −

= =

      = ⋅ + ⋅   
      

     − + − + − + − +     = − +           

− +

∑∫ ∫

∑ ∑

( ) ( )2 2
1

2
0 2

N
i

i

b z a z

σ

−

=

   − + − +          
∑

 

(5.43) 

which is the expression for the total amount of information which can be transferred across 

this channel. 

5.6 Multidimensional Multi-Target Case 

This model assumes that other targets are interferers (i.e. not of interest), which might be 

“close” to the signal constellation coordinates of the target which has been designated 

mathematically as the primary target (or target of interest). This means that the presence of 

the other target signals destroys information about the primary target. This allows the 

similarity between the returns from two targets to be measured and compared. It is also 

assumed that all targets are equally likely and that there are M competing non-primary 
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targets. A diagrammatic representation of the channel is shown in the figure below, the ka  

represent signal vectors of the target of interest, and the jb  signal vectors for the interfering 

targets. The approach taken is first to derive the total mutual information for all the targets. 

The information terms relating to the primary target are then identified to give the mutual 

information for the primary target. 

( )0, ZN σ
Z

Y
{ }ka

{ }1, jb

1
1Mp +=

{ },M jb

{ }2, jb

1
1Mp +=

 

Figure 5.1: Generalized multi-target channel. 

The initial expression for the MI is: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( )

1 1
,

, 2 , , 2
0 1 0

1 1
,

2 , 2
0 1 0

{ ; }, log log

log log

N M N
m jk

k m j k k m j m j
k m j

N M N
m jk

k m j
k m j

p y bp y a
I a b y P a p y a dy P b p y b dy

p y p y

p y bp y a
P a p y a dy P b p y b dy

p y p y

− −∞ ∞

−∞ −∞
= = =

− −∞ ∞

−∞ −∞
= = =

     = ⋅ + ⋅   
      

     = ⋅ + ⋅   
      

∑ ∑∑∫ ∫

∑ ∑∑∫ ∫
 

(5.44) 

Expanding ( )p y : 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

, ,
0 1 0

1 1

,
0 1 0

N M N

i i m j m j
i m j

N M N

i m j
i m j

p y P a p y a P b p y b

P a p y a P b p y b

− −

= = =

− −

= = =

= +

= +

∑ ∑∑

∑ ∑∑
 

(5.45) 

Expanding ( )p y c : 

( ) ( )2

2

1
exp

22

y c
p y c

σπσ

 − −
 =
 
   

(5.46) 

Substituting  into ( )p y : 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

,
0 1 0

22
1 1

,

2 2
0 1 0

1 1
exp exp

2 22 2

N M N

i m j
i m j

N M N
m ji

i m j

p y P a p y a P b p y b

y by a
P a P b

σ σπσ πσ

− −

= = =

− −

= = =

= +

   − −− −
  = +

   
   

∑ ∑∑

∑ ∑∑
 

(5.47) 

For the first term of (5.44), using the transformation ky a z= + : 

( ) ( ) ( )
( ) ( ) ( ) ( )

( )

( ) ( )
( )

1 1

2 2
0 0

1

2
0

log log

log

N N
k

k
k k k

N

k k

p y a p z
P a p y a dy P a p z dz

p y p a z

p z
P a E

p a z

− −∞ ∞

−∞ −∞
= =

−

=

      ⋅ = ⋅   +     

   =   +    

∑ ∑∫ ∫

∑
 

(5.48) 

Expanding the fraction: 

( )
( )

( )
( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1

,
0 1 0

2

2

221 1
,

2 2
0 1 0

2 2

2 2

1
exp

22

1 1
exp exp

2 22 2

exp exp
2 2

N M N
k

k i k m j
i m j

N M N
k m jk i

i m j

k i

p z p z

p a z
P a p a z a P b p a z b

z

a z ba z a
P a P b

z a z a
P a

σπσ

σ σπσ πσ

σ σ

− −

= = =

− −

= = =

=
+ + + +

 −
 
 
 =

   − + −− + −
   +

   
   

    − + −
   =

   
    

∑ ∑∑

∑ ∑∑

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1
2

1 1
,

2
0 1 0

1
2 22 2

1 1
,

2 2
0 1 0

exp
2

exp exp
2 2

N M N
k m j

i m j

N M N
k m jk i

i m j

a z b
P b

a z b za z a z
P a P b

σ

σ σ

−
− −

= = =

−
− −

= = =

   − + −
    +

   
   

    − + − +− + − +
   = +

        

∑ ∑∑

∑ ∑∑
 

(5.49) 

Substituting back gives: 

( ) ( )
( ) ( ) ( ) ( ) ( )

( )

2 2
1 1 1

2 2 2
0 0 0

log log exp
2

                                                                                      exp

N N N
k i

k k ik

k

p z a z a z
P a E P a E P a

p a z

a z
P b

σ

− − −

= = =

      − + − +     =     +        

− + −
+

∑ ∑ ∑

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1
2 2

1
,

2
1 0

2 22 21 1 1
,

2 2 2
0 0 1 0

2

     log exp exp
2 2

M N
m j

m j

N N M N
k m jk i

k i m j

b z

a z b za z a z
P a E P a P b

σ

σ σ

−
−

= =

− − −

= = = =

 +        

     − + − +− + − +    = − +           

∑∑

∑ ∑ ∑∑
 

(5.50) 

This is the desired expression for the first term, which is also the required MI associated 

with the target of interest. Some further simplifications might be possible, depending on the 

details of the problem being analysed. Now, for the second term of (5.44) , using the 

transformation ,m jy b z= + : 
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( ) ( ) ( )
( ) ( ) ( ) ( )

( )

( ) ( )
( )

1 1
,

, 2 2
1 0 1 0 ,

1

2
1 0 ,

log log

log

M N M N
m j

m j
m j m j m j

M N

m j m j

p y b p z
P b p y b dy P b p z dz

p y p b z

p z
P b E

p b z

− −∞ ∞

−∞ −∞
= = = =

−

= =

      ⋅ = ⋅   +     

   =   +    

∑∑ ∑∑∫ ∫

∑∑
 

(5.51) 

Expanding the fraction gives: 

( )
( )

( )
( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( ) ( )

1 1
,

, , ,
0 1 0

2

2

2 2
1 1

, , ,

2 2
0 1 0

2
,

2

1
exp

22

1 1
exp exp

2 22 2

exp exp
2

N M N
m j

m j i m j m j
i m j

N M N
m j i m j m j

i m j

m j

p z p z

p b z
P a p b z a P b p b z b

z

b z a b z b
P a P b

b zz
P a

σπσ

σ σπσ πσ

σ

− −

= = =

− −

= = =

=
+ + + +

 −
 
 
 =

   − + − − + −
   +
   
   

   − + −
  =

  
  

∑ ∑∑

∑ ∑∑

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
2 2

1 1

2 2
0 1 0

1
2 2 2 2

1 1
,

2 2
0 1 0

2 2
1

,

2
0

exp
2 2

exp exp
2 2

exp exp 0
2

N M N
i

i m j

N M N
m j i

i m j

N
m j i

i j

a z
P b

b z a z z z
P a P b

b z a z
P a P b

σ σ

σ σ

σ

−
− −

= = =

−
− −

= = =

−

=

     −     +
    
    

    − + − + − +
    = +

      

 − + − +
 = +
 
 

∑ ∑∑

∑ ∑∑

∑

( ) ( ) ( ) ( )

1
1

1 0

1
2 2

1
,

2
0

exp . .
2

M N

m

N
m j i

i

b z a z
P a M N P b

σ

−
−

= =

−
−

=

 
 
 
 

  − + − +
  = +

  
  

∑∑

∑
 

(5.52) 

Substituting back gives: 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
2 2

1 1 1
,

2 2 2
1 0 1 0 0,

2 2
1

,
2 2

0

log log exp . .
2

log exp . .
2

M N M N N
m j i

m j m j im j

N
m j i

i

b z a zp z
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(5.53) 

which is the desired result for the second term. Substituting the two terms back into the 

original expression gives: 
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This is the expression for the total mutual information over the channel if all targets have to 

be catered for by the radar’s recognition sub-system. 

5.7 Radar Related Derivations 

This section contains some of the derivations which will be required to set up the MI 

experiments correctly from a radar point of view. 

5.7.1 Calculation of Receiver Noise as a Function o f Resolution 

with Pulse Compression 

The analysis in this section is required to relate the actual noise power in a radar system to 

the noise power in the mutual information calculations. 

The noise power in the radar receiver is given by 

nP kTB=
 

(5.55) 

The signal to noise ratio gain due to pulse compression is given by 

PC pG Bτ=
 

(5.56) 

This means that the signal power can be kept constant, and the noise power can be 

reduced by this amount, giving the noise power after pulse compression as: 

_ _
n

n PC out
PC p p

P kTB kT
P

G Bτ τ
= = =  (5.57) 

This gives the noise power for each sample in the HRRP. 

Note: One needs to be very careful with the SNR calculation as a function of resolution and 

the number of samples in the HRRP. For example for a 6 bin, very low resolution setup, 

each bin has nearly exactly the same signal (i.e. low resolution pulse, which has been 

highly oversampled). This would give the 6 bin experiment an unfair advantage over the 

one bin experiment as the correlation receiver would give the 6 bin case a factor of 6 

improvement in SNR due to coherent integration. On the other hand, the single sample 

case could have had a much lower analogue bandwidth, possibly even more than 6 times 

less, but at least 6 times less. 

5.7.2 SNR Calculation for Disparate Waveforms 

In some cases the MI will be calculated for two disparate waveforms so it is important to 

ensure that the two graphs of SNR versus MI can be compared. This calculation addresses 
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the case where double the amount of samples (time or frequency) have been measured by 

a radar to create the HRRP. 

Signal energy and power are respectively defined as follows: 
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and the total noise power is given by: 

1
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= =∑ . (5.59) 

The variance of the sum of independent random variables is the sum of their individual 

variances. 

Now for two cases, the first having M and the second 2M samples: 
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If it is assumed that the power of the two received signals are equal and the same noise is 

added per dimension, then the second SNR is 3 dB lower than the first. 

If the SNR’s are equal, as they would be when plotting the MI on the same system of axis, 

then: 

2 21
2 12σ σ= , (5.61) 

which means that the noise variance per dimension for the second case is half of that for 

the first case. The respective noise powers for each case can now be calculated as: 
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 (5.62) 

showing that at equal SNRs for the two cases the total noise power has remained constant. 



Page 112 of 234 

 

5.7.3 Stability of a Radar Return as a Function of Target 

Azimuth 

If a target is resolved in high range resolution slight azimuth movement of the target will 

cause the HRRP to fluctuate rapidly. If there are two scatterers of equal magnitude in a 

HRRP bin, separated by a cross-range distance of CRd , and the target rotates in azimuth 

by azθ , then the two way path length difference is given by 

( )( )
( )

2 2

2 sin

2 sin .

way

CR az

CR az

R R

d

d

θ

θ

− = ∆

=

=

 (5.63) 

This value has to be limited to a fraction of a wavelength to ensure that the magnitude 

value remains relatively constant. As a worst case, by allowing the distance to vary by a 

quarter of a wavelength gives the following restriction on azθ  

( )4 2 sin

4 2            for 1

.
8

CR az

CR az az

az
CR

d

d

d

λ θ
λ θ θ

λθ

=
=

<

≪  
(5.64) 

For example, this implies that a 20 m cross-range target illuminated at 10 GHz should be 

sampled in angle at a minimum of every 0.0107° in a zimuth. 

 

Figure 5.2: Required sampling interval as a functio n of frequency for a target having 

a cross range dimension of 20 m. 
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5.8 Validation 

This section presents some validation results for the preceding sections. The aim is to 

compare the simulation results obtained with results from literature where possible. 

5.8.1 Validation of Ungerboeck Derivation 

The following figures show the results from Ungerboeck’s original paper [Ungerboeck1982] 

(Figure 5.3) as well as simulation results for a subset of the same signalling schemes 

(Figure 5.4). It should be noted that Quadrature-Quadrature Phase Shift Keying (Q2PSK) 

[Saha1989, Cilliers2002] has also been added although there are no published graphs for 

comparison. The Q2PSK modulation format makes use of two orthogonal carriers as well 

as two orthogonal waveforms thus creating a 4-dimensional signalling space. The 

modulation format maps 4 bits onto a single symbol and makes use of the vertices of a 

hypercube as signalling points in the signal space. The technique has a theoretical spectral 

efficiency of 4 bits/s/Hz, which is double that of standard Quadrature Phase Shift Keying 

(QPSK). 

(a) (b) 

Figure 5.3: Channel Capacity for bandlimited AWGN c hannels for 1-D (a) and 2-D (b) 

modulation techniques, taken from [Ungerboeck1982].  (© IEEE 1982) 
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Figure 5.4: Numerical results using 10 000 samples for the E{} operation. 

Another test was conducted to exercise the multidimensional MI derivation. For this test, 

256 waveforms were generated by drawing samples from a Gaussian distribution. Each of 

the waveforms consisted of 12 samples. This was chosen because it conceptually agrees 

with the approach taken by Shannon to derive the expression for channel capacity. The 

curve should thus follow the 12-D capacity curve closely, but should flatten off to a constant 

value of ( )2log 256 8=  bits for high values of SNR. 

 

Figure 5.5: Mutual information for 256 waveforms, e ach 12D, with random samples 

drawn from a Gaussian distribution for each wavefor m. 
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The results in this section demonstrate the validity of the multi-dimensional mutual 

information calculation.  

5.8.2 Validation of the Envelope Only Mutual Inform ation 

Derivation 

The envelope only version of MI is required to analyse non-coherent communication 

systems. This approach is used in some communication schemes such as frequency shift 

keying (FSK) when use is made of noncoherent detectors. The capacity of multiple 

frequency shift keyed (MFSK) was analysed by Butman et al. for noncoherent 

communication with NASAs planetary probes for planets with turbulent and dispersive 

atmospheres such as Venus, Jupiter and Saturn [Butman1973a, Butman1973a]. They 

present a graph of the capacity of various MFSK schemes relative to the coherent channel 

capacity [Butman1973a], which is repeated in Figure 5.6: . To compare the envelope only 

MI derivation with their results, manipulation of the SNR is required. Butman defines SNR 

as follows: 

2

0 2

ST
SNR

N

α= =  (5.65) 

where S is the power in the received signal, T is the duration of a symbol and N0 is the 

noise spectral density in W/Hz.  

 
Figure 5.6: Capacity of various MFSK schemes overla id with results for log2(M) = 

{1,2,3,4,5,6,10}. Background graph taken from [Butm an1973a], p. 93, Fig. 3. 
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During the duration of a symbol and in a bandwidth of B  Hz, a maximum number of 

2M BT=  (5.66) 

orthogonal signals can be distinguished, thus allowing for the transmission of ( )2log M

bits per symbol, thus ( )2logbitT T M= . Substituting into (5.65) gives 

( )2

0

logS M
SNR

N
=  (5.67) 

If bitT  is set to unity. This equation can be solved for 0S N S/N0 which is required for the 

calculation of the coherent limit in 

( )0 2log

S SNR

N M
=  (5.68) 

The wideband capacity of the coherent Gaussian channel is given by: 

( )2
0

log         bits/s
S

C e
N

∞ =  (5.69) 

where e is the base of the natural logarithm. The normalised wideband capacity for MFSK 

is given by Butman as: 

( ) ( ) ( )( )
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exp ln 1
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C x
x I x I x dx

C

α α α α
α

∞

∞

+ = − − 
 

∫  (5.70) 

which has to be evaluated numerically. For the comparison in Figure 5.6:  use was made of 

the following approximation given by Butman: 

( )
2

C SNR

C SNR

α
∞

=
+

 (5.71) 

From Figure 5.6:  it can be seen that the Monte-Carlo based curves match the graph from 

Butman very well. Some of the discrepancies are due to the Monte Carlo nature of the 

result, but the graph from the original article is also slightly warped. The deltas are however 

small enough to confirm that the derived expression and Monte-Carlo integration are 

producing the correct results. 
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5.9 Conclusion 

This chapter started with the presentation of the expression for the mutual information for a 

channel with a discrete set of input signals but a continuous output space. Starting from 

this expression the expression for the MI for a channel with discrete vector inputs and 

continuous outputs was derived. This expression was validated against MI curves 

published by Ungerboeck [Ungerboeck1982] for various 2-dimensional signal sets. 

Starting from the general MI expression again, the expressions for the MI when the 

receiver makes use of envelope detection and envelope squared detection were derived. 

These were validated against curves published by Butman [Butman1973]. 

Expressions were also derived for the case where the receiver is searching for a specific 

set of signals, but other interfering sets of signals can also be present. The principle was 

first illustrated using a 1-dimensional input space, and then extended to multidimensional 

input spaces. This allows the MI approach to be used in scenarios where multiple radar 

targets have to be recognised, and each can have a multidimensional response. It is thus 

referred to as the “Multidimensional multi-target case.” 

The three main expressions are summarised as follows: 

MI for single target, multi-dimensional input space: 
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MI for single target, multi-dimensional input space after envelope processing: 
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MI for Multi-target target, multi-dimensional input space: 
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In the next set of chapters these expressions will be used to analyse various radar target 

recognition problems. 
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6 Overview of Information Theoretic Analysis of 

Selected Radar Recognition Problems 

This chapter gives an introduction to the results section of this thesis. The results will be 

presented in the groupings summarised in Table 2 below. 

Table 2: Summary of experiments. 

Exp # Section Short description Targets 

1 7.1.1 Effect of number of azimuth waveforms Point targets 

2 7.1.2 Effect of mainlobe shape Point targets 

3 7.1.3 Effect of range resolution Point targets 

4 7.1.4 Effect of target position relative to origin Point targets 

5 7.2 Effect of multiple targets Point targets 

6 7.3 HRR vs ISAR Processing Point targets 

7 8.1 Single target results F-14, F-15, F-16 

8 8.1.1 Effect of multiple targets F-14, F-15, F-16 

9 8.2 Effect of restricted azimuth sectors F-14, F-15, F-16 

10 8.3 High azimuth resolution analysis F-15 

11 9.1 Comparison of wideband and ultra wideband 
(8 GHz) waveforms 

F-14, F-15, F-16 

12 9.2 Comparison using 2-18 GHz waveforms F-14, F-15, F-16 

13 10.1 Gain in information content by using 
polarisation 

F-18, F-35 

14 10.2 Information content of measured Boeing 707 
(1:25 scale) 

Scaled B 707 

15 10.3 Information content of monopulse sum and 
difference channels 

F-14 

16 11.1 Information content after envelope processing F-14, F-15, F-16 

17 11.2 Effect of pre-processing on information 
content after envelope processing 

F-14, F-15, F-16 

18 12.1 Multi-target information using single target 
and modified versions of the same target 

F-14 

19 12.2 Multi-target information and probability of 
error estimation. 

F-14, F-15, F-16 

These sections contain a selection of radar target recognition problems which have been 

analysed using the techniques developed in the previous section. All the problems in this 

section are aimed at the analysis of recognition performance based on High Range 

Resolution Profiles (HRRP) of the target. The problem has also been simplified by reducing 

the number of required aircraft orientations to the zero elevation plane in the target’s 

coordinate system. This is equivalent to assuming that the aircraft is flying straight and 

level at relatively long ranges and low elevation angles. In all the experiments the 
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assumption has been made that the target is in the far field of the radar’s antenna, and is 

thus illuminated by a plane wave. 

The initial set of experiments were conducted using point scatterer type models, with no 

occlusion of scatterers. The second set of experiments were conducted for data sets 

generated by an radar signature and RCS modelling tool, called SigmaHat [Smit2012a, 

Smit2012, Cilliers2014], that has been developed in the Radar group in the Defence, 

Peace, Safety and Security (DPSS) division of the CSIR. This software tool makes use of 

the high frequency approximations discussed in Section 2.5. and implements Physical 

Optics (PO) in combination with the shooting and bouncing ray (SBR) technique for 

multiple reflections. The latest version also includes edge scattering, but this functionality 

was not available when the simulations for this study were being executed. Use is also 

made of measured data of a 1:25 scale model of a Boeing 707, which was measured in the 

compact range at the University of Pretoria. 

Most of the results which are presented are plots of mutual information (MI) versus SNR. 

The MI graphs are generated using Monte-Carlo integration and an internal accuracy 

monitoring algorithm has been implemented which guarantees the accuracy of the MI 

result per SNR value. Most were run at an accuracy of 0.01 bits or better, specifically as 

this value was small enough that error bars would not be necessary on the plots. Error bars 

would unnecessarily clutter already crowded plots. If the MI was run at a different accuracy 

to 0.01 bits, this is clearly stated in the experiment description. 
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7 Experiments using Point Scatterer Models 

This chapter describes several experiments which made use of a point scatterer model of 

the target. This is a simplified model which assumes that a target can be represented as a 

collection of non-interacting scatterers which scatter an incident EM field omnidirectionally. 

This chapter also serves as a further validation of the MI estimation algorithms as the 

results are compared to the Shannon bound as this is a fundamental performance limit 

which is impossible to exceed. 

7.1 Recognition of a Single Target - Effect of Rang e 

Resolution, Number of Azimuth Waveforms and 

Target Position 

In this experiment a target was constructed of 6 point scatterers in the x-y plane. This setup 

does not make for a very realistic target, but it will allow some principles of the mutual 

information approach to be tested. The first 3 points were randomly distributed over a 15 m 

by 15 m square, but were reflected around the x-axis to create the second set of 3 points. 

This induces the left-right symmetry that most fixed wing aircraft exhibit. The amplitude of 

all the scattering points was unity and the phase zero. To generate the HRRPs, the 

scatterers were first projected onto the radar’s line of sight and then the output waveform of 

the pulse compressor was created at the coordinate of each scatterer on the range line. 

Use was made of a triangular pulse compression waveform (i.e. the mainlobe was 

triangular) with zero sidelobes. The resulting HRRP’s were calculated at a carrier 

frequency of 500 MHz (chosen to be low so that the highest bandwidth case is close to the 

limit of the narrowband approximation), and are plotted in a ring around the point scatterer 

target (scatterers denoted by red dots) in Figure 7.1 below. The dotted blue lines represent 

the boundaries between range bins. The range bins can be visualised by drawing tangents 

to the range bin circles perpendicular to the down range direction of the radar. The values 

on the colour bar to the right of Figure 7.1 represent voltage. In Figure 7.2 the resulting 

HRRP’s are again plotted in a ring around the point scatterer target but with the amplitude 

scale in dB. Note the fast variation of the HRRP as a function of azimuth for angles in the 

region of 0 degrees and 180 degrees, where the cross range length of the target is at its 

maximum. The variation in the upper and lower region of the HRRP ring is much slower 

due the reduced cross range projection of the target. Figure 7.3 was included to 

demonstrate the effect of decreasing the range resolution by a factor of two, while 

maintaining the original sampling rate. 
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Figure 7.1: Scatterers and ring plot of HRRPs for t arget #1 for a range resolution of 

3.536 m. 

 

Figure 7.2: Scatterers and ring plot of HRRPs (in d B) for target #1 for a range 

resolution of 3.536 m. 

To demonstrate the use of mutual information several experiments were conducted to 

evaluate the effect of the number of azimuth waveforms, the type of pulse compression 

mainlobe and range resolution on the amount of information transferred about the target to 

the radar. For the experiments in this section the MI estimation algorithm was setup to 

estimate the MI to within a standard deviation of below 0.01 bits. 
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Figure 7.3: Scatterers and ring plot of HRRPs (in d B) for target #1 for a range 

resolution of 7.072 m. 

It should be noted that the MI calculation assumes that the radar can accurately estimate 

the phase and magnitude of the target, and that the radar has a bank of filters matched to 

each of the target HRRP’s. This observation leads to the insight that the absolute RCS of 

the target conveys information to the radar, so the HRRP profiles should not be normalized 

to unit energy as is often the case in the pre-processing steps to a NCTR algorithm. The MI 

graphs thus indicate the best achievable performance for such a radar. 

7.1.1 Experiment #1: Effect of the Number of Wavefo rms in 

Azimuth 

Using Target #1, sets of HRRP’s were generated with increasing numbers of waveforms in 

the azimuth dimension. The numbers of waveforms were chosen to be powers of two so 

that the final value of the MI at high SNR corresponds to an integer number of bits. This 

also allows comparison of the MI results with multi-dimensions digital communication 

signalling strategies. The results are summarized in the figure below for a range resolution 

of 4 m, and 8 complex range bins spanning the target. The starting point was chosen as 

512 waveforms, equally spaced over 360°, which was compared to 256 equally spaced 

waveforms over 180°. These two setups should give t he same amount of mutual 

information, 8 bits, due to the exact symmetry of the target. This was true for the 256 

waveform case, which gives a final MI value of 8 bits, to within the floating point precision 

of the computer. The 512 waveform case, however, gave a final MI value of 8.0039 bits. 

The discrepancy was shown to be a slight mismatch between the waveforms on either side 
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generation of the HRRP’s. From this simulation onwards, only one half of the HRRP’s were 

used, corresponding to the set of waveforms contained in 180°. The figure also includes 

the Shannon channel capacity bounds for 8 and 16 dimensional signal sets, as well as two 

optimal digital communication signalling strategies. The most optimal waveform to transmit 

data in a power constrained scenario is by making use of Gaussian noise type waveforms. 

This is however not practical due to limitations of power amplifiers, so communication 

engineers make use of multi-dimensional signal constellations, the most effective of which 

is antipodal signalling (transmitting a -1 or +1 per signal dimension). The performance of 

both the abovementioned strategies is included in the graph for comparison. 

 

Figure 7.4: Mutual information versus SNR for vario us experiments for a 6 point 

scatterer model having symmetry about the y-axis. T he Shannon bound as 

well as two optimal signalling strategies are inclu ded for comparison. The 

transmit frequency was 500 MHz, and the range resol ution for the 8 bin case 

was 4.0 m. 

All of the cases where the number of azimuth waveforms is more than 1024 waveforms, 

the MI graphs have a “knee” in the region between SNRs of 4 and 9 dB. This reduction in 
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the amount of information gain is due to increasing correlation between adjacent 

waveforms as the angular sampling rate is increased. The Euclidean distance between the 

waveforms reduces, which leads to an increase in the SNR at which two adjacent 

waveforms become distinguishable from one another. For a specific number of azimuth 

waveforms, there is a gain of approximately 5 dB at the point where MI for the current set 

of waveforms flattens out, but the waveform sets with more azimuth samples continue to 

increase. 

It is also interesting to note that all the graphs for 512 azimuth samples and above, pass 

through the 8 bit level at the same point. This point is at a SNR which is approximately 10 

dB lower than the SNR at which the 256 azimuth sample waveforms reach the 8 bit level. 

This implies that there is a 10 dB performance gain which can be realised by having 512 or 

more matched filters in the radar to identify this target. 

7.1.2 Experiment #2: Effect of Mainlobe Shape 

To evaluate the effect of the mainlobe shape (in the range dimension) of the waveform on 

the information transferred from the target to the radar, simulations were conducted for 256 

and 512 waveforms spanning 180°. Three types of mai nlobe were compared for the two 

waveform sets: an impulse function, a triangular function and a sinc() function. From the 

results presented in the Figure 7.5 below, the performance of the three approaches is 

relatively similar.  

 

Figure 7.5: Mutual information versus SNR for vario us mainlobe functions in the 

range domain. The transmit frequency was 500 MHz, a nd the range resolution 

for the 8 bin case was 4.0 m. 
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The Impulse function outperforms the other two types by 0.2 dB in the region surrounding 

an SNR of 0 dB. When the MI starts reaching its final value, the situation reverses, and the 

other two types of mainlobe outperform the impulse type by approximately 2 dB. The 

impulse function is not realisable in a radar system, and was only used here as it should 

have the least detrimental effect on the information transfer process. 

7.1.3 Experiment #3: Effect of Range Resolution 

To investigate the effect of range resolution, experiments were setup with varying mainlobe 

widths in the time domain. An example of the result is shown in Figure 7.6 below for 1024 

azimuth waveforms in 180°. The highest resolution w as limited to 0.2 m as this requires a 

bandwidth of 750 MHz, which is probably technologically stretching for a centre frequency 

of 500 MHz. For this setup, the sampling rate was set to take a sample every 0.2 m, which 

resulted in oversampling of all the waveforms for range resolutions coarser than 0.2 m. The 

oversampling gain has translated the set of curves towards lower SNR values. The Curve 

for the Shannon bound was calculated for a 300 dimensional space due to the fact that 

there are 150 complex range bins for this setup, regardless of the range resolution. 

From the result in Figure 7.6 it can be seen that finer range resolution increases the MI, 

and consequently the recognition performance of the radar. The MI curves for the 0.2 m 

and 0.25 m resolution cases are nearly indistinguishable. This means that 20% 

improvement in the range resolution has not added any extra information about the target. 

 

Figure 7.6: Comparison of MI for various values of mainlobe width in the time 

domain for 1024 waveforms spanning 180°. 

It is also interesting to note that as the range resolution is halved, the amount of gain 

reduces as is shown in Figure 7.7. This figure shows that there are gains of up to 1.4 dB for 
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increasing the resolution from 4 m to 2 m, but when a resolution of 0.5 m is reached, there 

is only a gain of 0.4 dB to be gained by increasing the resolution to 0.25 m. This shows that 

there is an upper limit to the amount of information which can be extracted by making use 

of finer range resolutions. 

 

Figure 7.7: Comparison of gain in SNR versus mutual  information for halving of 

range resolution. 

To further investigate the effect of range resolution and higher numbers of waveforms in 

azimuth some more traces were added to the result above. The numbers of waveforms 

were extended to 8192 and 32768 in 360°, and lower resolutions of 50 m, 100 m, and 150 

m were simulated. The result is plotted in Figure 7.8 below, where the simulation were only 

run over 180° in azimuth due to the target’s symmet ry around the y-axis. The 100 m result 

was found to be only slightly better than the 150 m result, so the 100 m result was 

excluded from the plot for clarity. Some of the lower resolutions were also excluded to 

make the plot less cluttered. The y-axis was also limited at an MI value of 6 bits for clarity. 

The traces enter the lower part of the plot in 5 discrete groups, each corresponding to one 

of the 5 resolutions. The traces limit at 3 distinct values, which correspond to the number of 

azimuth waveforms. The 150 m resolution is low enough that it starts to approximate the 

case where the HRRP bins are all the same value. 
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Figure 7.8: Comparison of the mutual information ve rsus SNR for various 

combinations of range resolution and the number of waveforms in azimuth for 

the 6 point scatterer model. 

An example of one of the higher resolution HRRP’s is shown as a ring plot, in the figure 

below. 
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Figure 7.9: Scatters and and ring plot of HRRPs (in  dB) for target #1 at a range 

resolution of 0.451 m (332.3 MHz). 

7.1.4 Experiment #4: Effect of Target Position Rela tive to Origin 

Given the assumptions inherent in the MI calculation, it was deemed necessary to run an 

analysis to ascertain the sensitivity of the MI calculation to the position of the target’s 

centre of rotation. As an example, the target from the preceding analysis was used, but the 

scatterers were moved by subtraction of the mean of the positions of the scatterers. The 

resulting HRRP plot is given in the figure below. Use was made of the 1024 waveform data 

set. 
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Figure 7.10: Scatters and ring plot of HRRPs (in dB ) for target #1, which has been 

centred, at a range resolution of 3.536 m. 

It is evident that the structure of the HRRP’s is more symmetrical than the original version. 

The comparative plot of the MI before and after the translation is given below. 

 

Figure 7.11: Comparative MI plot versus SNR for the  translated target. 

The difference between the two traces on this plot is within the tolerance of the MI 

algorithm, which was set to approximately 0.2 bits for this test. 
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7.2 Experiment #5: Multiple Targets 

In this experiment 16 random targets were generated each consisting of 6 scatterers of unit 

magnitude and zero phase. The scatterers were uniformly distributed over a 15 m by 15 m 

area and each target was generated with 512 waveforms over 360 degrees in azimuth. The 

comparative graph of the mutual information is given below. 

 

Figure 7.12: MI graph versus SNR for 16 targets, ea ch represented by 512 

waveforms. 

Due to the symmetry of the targets, each target only has 256 unique waveforms, which 

equates to a maximum of 8 bits of information. When the waveforms from 16 of these 

targets are analysed together there should be a 4 bit growth in the amount of information. 

This is evident from the trace for the 16 target case which reaches a limiting value of 12 

bits. It is interesting to note that all the targets can be separated when the SNR reaches 

approximately 15 dB. From the two curves for a single target and two targets, it seems that 

two targets contain slightly more information than a single target with double the number of 

waveforms. This effect is probably due to the higher level of correlation that would be 

expected in a single target as a function of angle as compared to two targets which have 

independent generation processes. This section eventually led to the multi-target mutual 

information approach which was derived in the theoretical section. 
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7.3 Experiment #6: HRR Versus ISAR Processing for 

Recognition 

In this section a comparison between the information content of HRRP and ISAR is made. 

The data processing inequality predicts that the two techniques should have the same 

performance as long as the transformation used to create the ISAR image is invertible. To 

this end use was only made of an FFT to create the ISAR image and no windowing was 

applied. A set of 512 HRRP’s covering 180° was used , with 16 HRRP’s per ISAR image 

and 32 ISAR images over the 180° sector. The setup was chosen in such a way that the 

cross-range resolution of the ISAR image was equal to or better than the Range resolution 

of the HRRP’s. For this experiment, the cross range resolution was calculated as: 

_

0.6
3.06 m,

162
2

512

res cR
λ

θ π
= = =

∆  × 
 

 
(7.1) 

which is approximately 13% better than the 3.5 m range resolution of the HRRP’s. The 

resultant graph for the MI is shown in the figure below. 

 

Figure 7.13: Comparison of MI versus SNR for HRR an d ISAR processing. 

The red trace labelled “HRR (6 Rng bins, cmplx)” is the MI result for a single HRRP. This is 

used as a benchmark to show the improvement obtained by processing more pulses. In 
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this result a single HRRP is repeated 16 times to make its integration gain comparable with 

that of the 16 pulse ISAR processing. The ISAR image contains slightly more information 

than the repeated HRRP due to the fact that it makes use of 16 adjacent HRRP’s in the 

data set to simulate the effect of platform rotation. If these same 16 pulses are used for 

HRR processing, effectively by creating a 16 times longer matched filter for the target, the 

same performance as that of the ISAR will be achieved. The difference is that the HRRP 

recognition can be made independent of platform rotation, whereas the ISAR requires 

constant angular velocity to form an image. Two independent simulations were run for the 

ISAR case, the second is labelled “ISAR Re-run”. 

The MI curve for the ISAR and 16 consecutive HRRP case has moved much closer to the 

channel capacity curve. The increase of approximately 12 dB corresponds to the coherent 

integration gain over 16 pulses. 

7.4 Conclusion 

This section has demonstrated the insight which is achievable by applying MI to relatively 

simple point scatterer models. The section also served as a further verification of the MI 

calculation algorithm as most results are compared to their respective Shannon bounds. 

Firstly, all the point target models used in this section exhibited symmetry around y-axis so 

only half the HRRP's were unique. The maximum value of the MI was thus one bit lower 

than the number of azimuth waveforms. The effect of the position of target relative to the 

origin was also shown to have a very small effect, if any. 

Figure 7.4 showed that if each HRRP was chosen to consist of range bins with values 

chosen from a Gaussian distribution this resulted in the highest information transfer from 

the target to the radar. The Gaussian waveforms were within 5-6 dB of Shannon bound 

and N-dimensional waveforms, which make use of the vertices of a hypercube to transmit a 

-1 or +1 per dimension, were about 1 dB worse than the Gaussian waveforms for the 

highest dimensional problem (16 Dimensions). The HRRP waveforms showed much lower 

performance as well as a distinctive “knee” where the rate at which the MI was increasing 

slowed due oversampling in the azimuth domain. This results in a reduction in the 

Euclidean distance between waveforms as oversampling increases. A loss of 5 dB relative 

to Gaussian for 256 waveforms, and 45 dB for 65536 azimuth waveforms was observed. 

Three mainlobe shapes (impulse, triangular and sinc) were tested and showed very similar 

results. It was expected that the impulse would have the best performance, but this is only 

the case at low to intermediate MI values. At high MI the more realistic mainlobe functions 

have slightly better performance.  

A detailed analysis of the effect of range resolution showed that there is definitely a trend of 

diminishing returns by going to higher resolutions than 0.5 m. On the low side there is not a 

significant fall off in performance when reducing the resolution below 15 m. For increasing 

range resolution, the increase in the intermediate MI range is quite pronounced, and 
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approximately an 8 dB SNR gain between 0.2 m and 16 m was observed, but this gain 

narrows down to approximately 5 dB at high MI values. For the examples analysed, finer 

range resolution always lead to improved performance, but increasing the number azimuth 

waveforms for the low resolution case decreases the resolution induced performance loss 

at high MI values. Interestingly, it was shown that the full MI can be extracted, even for 

resolutions as low as 150m, although the extra SNR required for this is as high as 25 dB. 

This is due to the fact that the input signal vectors for the MI calculation are complex 

valued, and the range to the centre point of the target is constant, which implies that the 

signal space is a highly oversampled set of samples which are each just an in-phase (I) 

and quadrature-phase (Q) sample. The MI graph thus represents the case where the range 

to the target is known by the radar to within a very small fraction of a wavelength. The 

radar can thus exploit the amplitude and phase information of a single sample to recognize 

the target. 

There is definitely a loss in SNR (i.e. more SNR required) as the number of waveforms in 

azimuth is increased. This is due to the extra SNR required to discriminate between 

adjacent waveforms which become more and more similar as the number of azimuth 

samples is increased. 

The performance of ISAR processing was shown to result in exactly the same amount of 

MI as just processing the same HRRPs that were used to form the ISAR image. This is 

expected as the data processing inequality states that information can only remain the 

same or be reduced due to processing. Because the ISAR process is FFT based, it is a 

reversible process, so the MI for both cases should be equal. 
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8 Information Content of an F-14, F-15 and F-16 

using High Range Resolution Profiles 

In this section the information content of more realistic targets are compared. The HRRP’s 

of the three aircraft, the F-14, F-15 and F-16 are shown in Figure 8.1, Figure 8.2 and 

Figure 8.3 respectively. 

Models of these aircraft, which were developed for flight simulators, were downloaded from 

the internet. These models were then analysed using a high frequency radar cross section 

code called SigmaHat to obtain their frequency responses at a set of discrete frequencies. 

This data could then be converted to HRRP’s if required. 

The outer shell of the aircraft was modelled as a perfectly electrically conducting (PEC) 

material. This means that effects caused by the canopy, radomes and radar absorbing 

material (RAM) are modelled incorrectly due to a lack of information pertaining to their 

electrical properties in these models. The version of SigmaHat used implemented Physical 

Optics (PO) and shooting and bouncing rays (SBR), but not edge diffraction. 

 

Figure 8.1: F-14 HRRP ring plot. 
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Figure 8.2: F-15 HRRP ring plot. 

 

Figure 8.3: F-16 HRRP ring plot. 
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The targets’ signatures were calculated for vertical polarization on transmit and receive and 

each target was illuminated at a set of 81 frequencies centred at 10 GHz in steps of 6 MHz 

(i.e. 9.76 GHz to 10.24). This gives a total bandwidth of 480 MHz, which in turn gives a 

range resolution of 0.3125 m. Each target was simulated at 1024 azimuth angles at an 

elevation angle of 0°. The EM software made use of physical optics (PO) and shooting and 

bouncing rays (SBR) with up to five reflections. 

8.1 Experiment #7: Single Target Results 

The initial mutual information graph for the three targets is shown in Figure 8.4 below. In 

this graph a trace has been added for the MI of a set of waveforms of the same dimension 

as the simulated target data, but with each waveform drawn from a Gaussian distribution. 

 

Figure 8.4: Comparison of the MI versus SNR for the  F-14, F-15 and F-16 models. 

The next figure (Figure 8.5) is a zoomed view of the same graph as the MI reaches its 

maximum value. The SNR’s at which each of the traces reaches 99.95% of its maximum 

value are indicated by means of labels. This value of MI can be calculated, using Fano’s 

inequality, to correspond to a probability of error of 42.1157 10eP −= ×  or approximately one 

in 4700. The values for all five traces are tabulated below, where the SNR has been 

rounded to one decimal place, and the traces have been ordered by increasing SNR. Each 

of these simulations was run relative to the average power in a single set of waveforms for 

each specific target.  
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Figure 8.5: Zoomed view showing detail of the MI gr aph as it reaches its maximum 

value. 

From the table below it can be seen that the Gaussian set of waveforms only perform 

approximately 5 dB worse than what the Shannon bound predicts. The three fighter aircraft 

however are between 25 dB and 30 dB worse than the Shannon bound. This gives a good 

indication of how suboptimal the waveforms which are reflected from the targets are as 

compared to communication signals. 

Table 3:  Comparison of SNR as MI reaches 99.95% of its maxim um value. 

 Capacity 

Bound 

Gauss 1024 

waveforms 

F-16 F-14 F-15 

MI [bits] 9.995 9.995 9.995 9.995 9.995 

SNR [dB] -10.5 -5.2 19.3 21.0 24.0 

The F-16 reaches the maximum MI value at the lowest SNR of the three. This is probably 

due to the fact that the model has numerous under-wing stores loaded, which introduce 

extra scattering compared to the F-15 which only has drop-tanks, and the F-14 which has 

no external stores. The CAD model for the F-15 is not as detailed as the other two models, 

which might explain why it is the most difficult to classify. 

8.1.1 Experiment #8: Effect of Multiple Targets 

To further investigate the information transfer for these targets, all three sets of HRRP’s 

were concatenated and the MI recalculated. To concatenate the target responses the three 

original matrices containing 1024 signatures of 81 samples each (81x1024 matrix) were 
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concatenated to form a single matrix containing 3072 signatures of 81 samples each 

(81x3072 matrix). The MI result is shown in Figure 8.6 below. This would imply a situation 

where all three targets are equally likely, and the radar system is setup up to try to 

recognize all three targets. When all three targets are evaluated simultaneously, the 

average power used in the MI calculation is the mean power calculated over all three 

targets. To make the single target curves comparable with this result, the single target 

curves were compensated to be relative to the average power of all three targets. This has 

the effect of penalising targets with lower reflectivity. The maximum MI for all three targets 

is given by ( )2log 3 1024 11.584 963× ≈ bits, which should be reached for high values of 

SNR. 

 

Figure 8.6: Comparison of the MI versus SNR for the  F-14, F-15 and F-16 models, 

with MI for all 3 and MI plots relative to average power over all three targets. 

The relative powers for the three targets are given in Table 4. The adjustment of SNR for 

each of the individual targets can however have the effect of allowing the MI to be higher 

than the channel capacity at very low SNR’s. For these targets, the F-15 suffers from this 

problem. 

It is interesting to note that the performance of the three targets is very similar at high MI 

values. The point at which the combined set for all three targets reaches its maximum MI 

value is also very similar to the point where the MI curves, which have been corrected for 

power, reach their maximum value. 
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Table 4: Relative power for F-15, F-16 and F-16 tar gets. 

 F-14 F-15 F-16 F-14, F-15, F-16 

avgP  [W in 1 Ω] 0.1038 0.1959 0.1033 0.1344 

Gain relative to avgP  [dB] -1.12 1.64 -1.14 0 

This implies that the HRRPs for the three targets do not have a detrimental effect on each 

other. The Euclidean distances between any HRRP’s between different targets are at least 

as large, or larger, than the Euclidean distances between the HRRP’s of a single target. 

8.2 Experiment #9: Effect of Restricted Azimuth Sec tors 

In this experiment, the azimuth sector over which the MI was calculated was restricted. The 

purpose of this is to evaluate the recognition performance in a radar which can estimate 

the velocity vector of the target. The recognition subsystem is thus not required to search 

through the whole database of waveforms, but can restrict its search to a specific azimuth 

region for the target. 

If the aircraft is flying in a cross-wind of 5% of its forward velocity, a heading adjustment of 

approximately 2.8° is required by the pilot to main tain a given course over the ground. It 

was thus decided to restrict the azimuth region to 5.6°, which translates to 16 HRRP’s out 

of the 1024 covering the full 360° around the targe t. 

Figure 8.7 below shows the result for the F-14 model. For all three frames the x-axis is the 

azimuth angle in degrees. The upper frame shows the HRRP’s generated using a 

Chebyshev window with a sidelobe level of -60 dB, the middle frame is the raw frequency 

domain data, and the bottom frame shows the MI as a function of SNR. Figure 8.8 and 

Figure 8.9 show the results in the same format for the F-15 and F-16 respectively. The 

maximum MI for the 5.6° sector for a single target is 4 bits. Figure 8.10 graphs the MI for all 

three targets, but for the same limited azimuth sector. Note that the maximum MI in this 

case is ( )2log 3 16 5.584963× = bits. 
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Figure 8.7: F-14 mutual information for azimuth sec tors limited to 5.6°. 
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Figure 8.8: F-15 mutual information for azimuth sec tors limited to 5.6°. 
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Figure 8.9: F-16 mutual information for azimuth sec tors limited to 5.6°. 

 

Figure 8.10: Combined F-14, F-15 and F-16 mutual in formation for azimuth sectors 

limited to 5.6°. 
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From the first three figures, for a single target at a time, it can be seen that one of two 

effects detrimentally effect the transfer of information about the target to the radar. The 

effects causing a loss of recognition ability are either the high relative power of the received 

signal, or the fact that the frequency response in the affected regions corresponds to 

frequency responses which do not exhibit much magnitude fluctuation. In many cases 

these correspond to HRRPs with few, well resolved, scatterers. In areas where all the 

scattering effects are approximately of the same magnitude and the HRRP is more noise 

like, the performance is the best. All three targets have relatively poor performance in the 

nose-on (0°) and tail-on (180°) aspects as well as the areas around side on (90° and 270°). 

The F-15 shows an area between approximately 45° an d 50°, to either side of the nose, 

which also exhibits performance which is approximately 17 dB worse than the average 

performance. This area corresponds to the two vertical lines in the frequency response 

data, and these lines correspond to the main wing leading edge and the horizontal 

stabiliser leading edge. These leading edges form long, straight horizontal lines, which 

cause large single reflections at a well defined range when the radar illuminates the leading 

edges perpendicularly to their geometry. The F-16 exhibits a similar, but less dramatic 

effect at approximately 40° to either side of the n ose. 

The final figure for the performance with all three targets shows that these detrimental 

effects affect the whole set of waveforms for the specific azimuth sector. 

8.3 Experiment #10: High Azimuth Resolution Analysi s of 

F-15 

In this section the MI results are presented for the F-15 when HRRP’s are generated every 

0.01°. This is the required sampling interval at a carrier frequency of 10 GHz, for a target 

with a cross range dimension of 20 m. The result for the 36 000 waveforms, which span 0° 

to 359.99°, is given in Figure 8.11 below, along wi th some of the previous results for 

comparison. Additionally the MI was also calculated for the first 1024 waveforms (from 0° 

to 10.23°) of the 36 000 as well as a case with 36 000 waveforms drawn from a Gaussian 

distribution. 

From the graph it can be seen that the 36 000 set of waveforms has a higher information 

content than the 1024 waveform (over 360°) graph fo r the F-14, F-15, F-16 and the case 

for all three targets. The 36 000 waveform graph also exhibits the same shape as the 

highly oversampled azimuth graph in Figure 8.11 where there is a steep initial increase, 

followed by a more gradual approach to its final limiting value. The 0 to 10.23° graph also 

shows this behaviour. This can be explained by considering the Euclidean distances 

between the waveforms. As the noise reduces the signal points which are far from each 

other are quicker to become distinct points, leading to the initial increase in MI. The signal 

points which are closer to each other require a much higher SNR before they become 

distinct from each other and thus making the MI’s approach to its limiting value more 
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gradual. The lower slope of the MI also implies that the waveforms are more correlated 

with each other in the azimuth direction. 

The MI for the 36 000 set of waveforms passes through the 10 bit level at a SNR of 10.91 

dB, whereas the 1024 waveform set reaches 9.995 bits at a SNR of 24 dB. This does not 

necessarily translate into a 13 dB gain as there is uncertainty as to which of the 1024 

waveforms of the 36 000 waveforms are correctly identifying the target. There is no 

guarantee that these are the same 1024 waveforms as the 1024 waveform case. 

 

Figure 8.11: Comparison of the MI versus SNR for th e F-14, F-15 and F-16 models, 

with two extra traces for the F-15 where the azimut h spacing was set to 0.01°. 

8.4 Conclusion 

In this section the MI content of the F-14, F-15 and F-16 have been analysed. The RCS of 

each target was simulated at 81 frequencies covering 480 MHz around a centre frequency 

of 10 GHz, for 1024 equally spaced azimuth incident angles, for an elevation angle of 0°. 

Use was also made of 1024 waveforms drawn from a Gaussian distribution as a 

benchmark. Use was made of flight simulator CAD models of the three fighters which were 

downloaded from the internet. 
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For MI values of 99.95% of the maximum, the error probability is approximately 1 in 4700. 

At this MI level, the 1024 Gaussian waveforms were approximately 5 dB worse than 

Shannon bound, but F-14, F-15 and F-16 were between 25 and 30 dB worse than 

Shannon bound. The F-16 was the most easily recognized, probably due to all the external 

stores on the model. The F-14 requires 1.7 dB more SNR and the F-15 requires 4.7 dB 

more SNR than the F-16, for the same recognition performance. The F-15’s reduced 

performance is probably due to the lower quality CAD model. 

If the three targets are normalised to have equal average power then the performance was 

very similar, with the F-16 outperforming the other two by approximately 1 dB. If all three 

sets of HRRPs are used together then the point at which the combined set of waveforms 

reach their maximum MI is approximately the same as the performance of the F-14 or F-15 

in isolation. 

Restricting the azimuth sector over which to perform recognition (for example if the radar’s 

target track information is used) to 5.6° (16 HRRPs ) results in an improvement of 

recognition performance which translates to a SNR gain of approximately 30 dB for 

relatively broad areas in azimuth. There are some azimuth angles which show performance 

degradations of between 10 dB and 25 dB. These are caused by areas with extremely high 

returns that are concentrated in range. The head-on, tail-on and side-on aspects show this 

type of performance degradation, as well as azimuth angles at which leading edges cause 

strong reflections at well defined ranges. This was especially the case for the F-15. 

When all three targets are to be recognized together, the areas of degraded performance 

swamp any areas of good performance to degrade the performance for the three target 

case. The average minimum performance is reduced by approximately 10 dB for the three 

target case relative to the single target case. The tail-on performance is reduced by 15 dB 

relative to this and the nose-on performance is 20 dB worse than this. 

The HRRPs for the F-15 were also simulated at an azimuth interval of 0.01°, resulting in 36 

000 waveforms. The MI performance was compared to the Gaussian waveform case as 

well as the case where only the first 1024 waveforms (0° to 10.23°) were used. The 1024 

waveform case over 360 deg always showed worse performance than the 36 000 

waveform case. The MI graph for the 36 000 waveform case also exhibited the same 

“knee” shape as examples in section 7.1.1 which are oversampled in azimuth. 

The azimuth restricted example (0° to 10.23°) exhib ited an exceptionally good performance 

increase (10 dB gain in SNR) up to approximately the 8 bit level, which is the point at which 

its knee occurs. When it levels out at 10 bits it still has a SNR gain of approximately 8 dB 

over the F-15 with 1024 waveforms over 360 deg. This again demonstrates the 

performance gain possible if the angular sector over which recognition has to be performed 

can be reduced. 
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9 Interrogation of Radar Targets using Ultra 

Wideband Waveforms 

In this section the mutual information content of the three targets (F-14, F-15 and F-16) is 

investigated using Ultra Wideband waveforms. The aim was to attempt to improve the 

recognition performance by forcing the frequency domain data for the targets to become 

more uncorrelated and Gaussian like. This was achieved by keeping the number of 

frequencies constant, but making use of large step sizes in frequency. This type of 

waveform is not generally used in air surveillance radars, but the point of this experiment is 

to evaluate the recognition performance of such a wideband radar concept. Results were 

also generated for various frequency bands. The results of the 480 MHz bandwidth 

waveforms from the previous section will be referred to as wide band (WB) for the purpose 

of this discussion. 

The frequency response for all three targets was simulated for 81 frequencies spaced 100 

MHz apart, covering the 10 to 18 GHz band. For the F-14 extra simulations were run 

covering the 2 to 10 GHz and 2 to 18 GHz bands (200 MHz step size), in both cases 

making use of 81 Frequency steps. The MI was calculated using the frequency domain 

data directly. If the data had been converted into the range domain, the spacing of the 

range ambiguities for the 100 MHz step size would be 1.5 m. The HRRP of a 19 m long 

aircraft would fold back on itself 12 times. For the 200 MHz step size, the range ambiguities 

would be every 0.75 m, thus causing the HRRP to fold back on itself 25 times. Most radar 

design engineers would aim to have a waveform with an ambiguous range that is 

somewhat longer than the target extent. 

9.1 Experiment #11: Comparison of Wideband and Ultr a 

Wideband Waveforms 

The following three figures show various versions of the results for the setups described 

above. Figure 9.1 shows the standard plot of the MI versus SNR. Due to the fact that the 

traces are relatively close to each other (surprisingly so), the next two plots are processed 

versions of this data to demonstrate changes in MI and SNR of the UWB waveforms 

relative to the WB (480 MHz) waveform used in the previous experiments. 

In Figure 9.2 the UWB waveform MI results are plotted relative to the WB waveform 

results. The figure shows the gain (or loss) in MI when using the UWB waveform, relative 

to using the WB waveform. From Figure 9.2 it can be seen that for SNR’s above -10 dB, 

the UWB waveforms perform better than the WB waveform. The maximum information 

increase is 0.78 bits, which implies that nearly double the amount of waveforms can be 

distinguished in the UWB case. The exception is the F-15, which actually shows a loss in 

MI of up to 0.1 bits for SNR’s between 10 dB and 20 dB. 
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Figure 9.1: Comparative traces of the MI versus SNR  for various UWB waveforms for 

the F-14, F-15 and F-16 targets. 

 

Figure 9.2: Comparison of the change in MI versus S NR for the various UWB 

waveforms and for the F-14, F-15 and F-16 relative to the WB waveform. 
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The MI gain is limited to zero at high SNR’s due to the use of 1024 waveforms. This means 

that a maximum of 10 bits of information can be achieved and once the MI curves have 

reached this value, there is no relative MI gain between the various curves. 

It is interesting to note that for the F-14, the 2-10 GHz waveform out performs the 2-18 

GHz waveform by approximately 0.25 bits, and that the 10-18 GHz waveform performs the 

worst of all three. The initial aim of the experiment was to create a more randomized 

response, so it was theorized that the 10-18 GHz waveform would achieve this better due 

to the shorter wavelengths inducing more random phase shifts in the data. 

Figure 9.3, below, was generated by resampling the MI data sets at fixed MI values and 

plotting the SNR gain relative to the WB waveform, thus obtaining the SNR gain for each 

setup. 

 

Figure 9.3: Comparison of the gain (loss) in SNR ve rsus MI for the various UWB 

waveforms for the F-14, F-15 and F-16 with the WB M I as reference. The right 

panel is a zoom of the high MI region of the left p anel. 

Once again, all the targets except the F-15 showed a gain in performance for the UWB 

waveforms over the WB waveform for values of MI above 2 bits (approximately 

corresponding to a SNR of -10 dB). The F-14 in combination with the 2-10 GHZ waveform 

showed the highest gain of 2.33 dB, while the F-15 and 10-18 GHz waveform showed a 

loss of nearly 0.45 dB at a MI value of 9.25 bits. For this experiment the MI value of 9.99 

bits was converted to eP  using Fano’s inequality, which results in 44.43 10eP −= × , or 
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equivalently, one error in 2257. The SNR gains for each of the experimental setups is 

tabulated in Table 5 for this value of eP , where the gains are listed in decreasing order. 

Table 5: SNR Gain for UWB waveforms over WB wavefor ms for F-14, F-15 and F-16 at 

a probability of error of 1 in 2257 (MI = 9.99 bits ). 

Target Waveform SNR Gain 

F-14 2 - 18 GHz 1.99 dB 

F-14 10 - 18 GHz 1.85 dB 

F-14 2 - 10 GHz 1.69 dB 

F-16 10 - 18 GHz 1.02 dB 

F-15 10 - 18 GHz 0.55 dB 

The reason for the slightly degraded high-SNR performance of the F-14 with the 2-10 GHz 

waveform is the fact that the frequency responses at each azimuth are more correlated 

with one another in the low frequency part of the band. This correlation is probably 

increased by the fact that the F-14 model does not have any ordnance mounted on it. From 

the head-on and especially tail-on aspect (when the trailing edges of the wings face the 

radar) this probably reduces the effective cross range dimension of the F-14 as seen by the 

radar to a value which is less than its physical (i.e. wingtip to wingtip) cross range 

dimension. A related effect would be that at the lower frequencies each scattering area on 

the target will have a larger angular region over which it will scatter. From an antenna point 

of view, the aperture size remains constant so if the frequency is reduced the beamwidth 

should increase. This effect might distribute extra energy into angular regions where 

relatively little scattering was present at the higher frequencies. This in turn should increase 

the separability of the waveforms in azimuth, especially taking into account the fact that the 

azimuth dimensioned is sampled every 0.352° instead  of 0.01° at 10 GHz and 0.055° at 2 

GHz (The F-14 has a wingspan of 19.55 m). 

Another explanation might be related to the percentage bandwidth of the two waveforms. 

Percentage bandwidth is defined as the ratio of the bandwidth of a signal to its centre 

frequency. For the 2-10 GHz waveform the percentage bandwidth is 133%, whereas the 

10-18 GHz has a percentage bandwidth of only 57%, even though the two waveforms have 

the same resultant range resolution. The difference in percentage bandwidth might cause 

returns from reflection points on the target to have phase angles which are more likely to 

be random, thus increasing the separability between the waveforms in the signal space. 

It is still surprising that the performance of the UWB waveforms is only 0.5 dB to 2 dB 

better than the WB performance. The increase in radar complexity to support these 

waveforms would far outweigh the gains. 
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9.2 Experiment #12: Comparison using Ultra Wideband  

Waveforms which Span 2-18 GHz 

The above set of results were so surprising that the simulations were rerun, using a 

different approach to ensure that these results are correct. For the second run, the F-14 

was simulated over the 2-18 GHz band at 100 MHz steps. This single result was then used 

as input into the MI calculation, and then sub-sampled to create the various data sets. Due 

to the fact that data for 161 frequencies was available, the MI for this case was calculated 

as well. The results are shown in Figure 9.4, Figure 9.5 and Figure 9.6 below. 

 

Figure 9.4: Rerun of the comparison of the MI versu s SNR for various UWB 

waveforms for the F-14, F-15 and F-16 targets. 

The results in these three figures track the initial set of results very well, thus verifying that 

no programming errors were made during the data processing steps. 

The result for the F-14 using the 100 MHz step size waveform shows that there is nearly an 

exactly 3 dB increase in performance over the 200 MHz step size case. The last trace in 

Figure 9.6 shows the difference between the 100 MHz and 200 MHz waveforms.  
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Figure 9.5: Rerun of the comparison of the change i n MI versus SNR for the various 

UWB waveforms for the F-14, F-15 and F-16.  

 

Figure 9.6: Rerun of the comparison of the gain (lo ss) in SNR versus MI for the UWB 

waveforms and for the F-14, F-15 and F-16. (Right p anel: zoom of the high MI 

region.) 

-25 -20 -15 -10 -5 0 5 10 15 20 25
-0.5

0

0.5

1

1.5

2

SNR [dB]

D
el

ta
 M

I 
[b

its
]

 

 

F14, 10-18 GHz, ∆ f = 100 MHz

F14, 2-10 GHz, ∆ f = 100 MHz

F14, 2-18 GHz, ∆ f = 200 MHz

F14, 2-18 GHz ∆ f = 100 MHz

F15, 10-18 GHz, ∆ f = 100 MHz

F16, 10-18 GHz, ∆ f = 100 MHz

0 1 2 3 4 5 6 7 8 9 10
-3

-2

-1

0

1

2

3

4

5

6

MI [bits]

S
N

R
 g

ai
n 

[d
B

]

 

 

9.6 9.8 9.99

F14, 10-18 GHz, ∆ f = 100 MHz

F14, 2-10 GHz, ∆ f = 100 MHz

F14, 2-18 GHz, ∆ f = 200 MHz

F14, 2-18 GHz ∆ f = 100 MHz

F15, 10-18 GHz, ∆ f = 100 MHz

F16, 10-18 GHz, ∆ f = 100 MHz
F14, 2-18 GHz, Delta between 100 and 200 MHz



Page 152 of 234 

 

For the radar to maintain the SNR at each frequency, the radar would have had to transmit 

double the amount of frequencies for the 100 MHz step case as compared to the 200 MHz 

step case. This effectively means that the radar increased its power by 3 dB, and a 3 dB 

recognition performance gain was measured. This means that the radar has not gained 

any extra information by transmitting the extra frequencies. It has however effectively 

gained in SNR. This implies that the maximum possible information content was already 

captured by the waveform spanning 2-18 GHz in 200 MHz steps. 

Figure 9.7 shows the histograms of the Euclidean distances between the signal points for 

the F-14 with various UWB waveforms. This was added out of curiosity and has not led to 

any extra insight as yet. 

 

Figure 9.7: Comparison of the histograms of the Euc lidean distances between points 

in the signal space for various UWB waveforms, for the F-14 target. 

The following two figures show the data sets used for this section. Figure 9.8 shows the 

frequency domain data, and Figure 9.9 shows the range domain data. Note that a 

Chebyschev window with a -40 dB dB sidelobe level was used during the conversion from 

the frequency to the range domain for Figure 9.9. The MI graphs were calculated using the 

frequency domain data directly. According to the data processing inequality this will yield 

the same MI result as the FFT is an invertible function. 

From the range domain plot, it can be seen that the data is relatively sparse in this domain, 

so it is unlikely that the range ambiguity has destroyed large amounts of information. 
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Figure 9.8: UWB frequency domain data sets for the F-14. 
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Figure 9.9:UWB data sets for the F-14 after transfo rmation into the range domain. 

9.3 Conclusion 

The aim of this section was to attempt to improve the recognition performance by forcing 

the frequency domain data for the target responses to become more uncorrelated and 

Gaussian like. This was achieved by keeping the number of frequencies constant, but 

making use of large step sizes in frequency. It was theorized that a 10-18 GHz waveform 

with large frequency step sizes of 100 MHz would achieve this due to the shorter 

wavelengths inducing more random phase shifts in the data and the highly range 

ambiguous nature of the waveforms. 
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Use was made of the MI results for the wideband waveforms from the previous section (81 

frequencies spanning 480 MHz at 10 GHZ) for the F-14, F-15 and F-16 as a baseline. 

These results were compared to the MI content for waveforms which have 81 frequencies, 

but span 10-18 GHz. Extra waveforms which span 2-10 GHz at 100 MHz step size and 2-

18 GHz at 200 MHz step size were also analysed for the F-14. All the waveforms are highly 

range ambiguous have range ambiguities of 1.5 m and 0.75 m. 

The SNR gain for the 10-18 GHz waveform was between 0.55 dB for the F-15 and 1.85 dB 

for the F-14 at a probability of error of 4.43x10-4 (MI = 9.99 bits). The maximum gain of 2 

dB was exhibited by the F-14 for the 2-18 GHz waveform. These are relatively mediocre 

gains for the implied increase in the complexity of the radar system to support these 

waveforms. 

There might be several effects which are responsible for the observed performance: 

1. The highly range ambiguous waveform might be destroying any information gained 

by the UWB nature of the waveform. 

2. The limit of the amount of information contained in the geometry of the target might 

have been reached. 

3. The limit of the amount of information about the target geometry which can be 

encoded onto the radar waveform might have been reached. 

These results were so surprising that the experiment was repeated by using SigmaHat to 

simulate the whole 2-18 GHz band in 100 MHz steps in a single batch. The various UWB 

waveforms of the previous section were then extracted and the MI calculated. The results 

confirmed the results of the previous section to within the tolerance of the MI estimates. 

The extra 2-18 GHz at 100 MHz step size waveform showed nearly exactly 3 dB 

improvement over the 200 MHz step size case. This was to be expected as the radar had 

transmitted double the number of pulses, thus increasing the amount of energy transmitted 

by a factor of two. This result invalidated the assumption that the range ambiguous nature 

of the waveforms was destroying the information content. If this was true then the gain for 

this comparison should have been more than 3 dB because there would have been 3 dB 

gain due to the extra transmitted energy, and then some extra gain due to the waveform 

being less range ambiguous. There was however a slight SNR gain above the 3 dB level of 

approximately 3.3 dB just at the point where the MI reached 9.99 bits. This would indicate 

that there might have been some low amplitude effects which were only discernible at high 

SNR which have been recovered by making the data less range ambiguous. 

  



10 Gain in Information Content by Exploitation of 

Extra Receiver Channels

This chapter presents simulated and

gain in recognition performance which can be achieved by the addition of 

channels to the radar

polarisation information

channel in a monopulse antenna

10.1 Experiment

Polarisation

This experiment addresses the prediction of the gain in recognition performance of a High 

Range Resolution (HRR) X

radar, and is compared to the 

polarisations. The study was co

using the SigmaHat RCS prediction

executed by Johan Smit at CSIR DPSS and the re

study. 

CAD models of a F/A-18F and F

Figure 10.1 and Figure 

perfectly electrically conducting (PEC) material due to the lack of any information on the 

materials of these two aircraft

material (RAM) could thus not be modelled.

Figure 10.1 : CAD model for the FA
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Gain in Information Content by Exploitation of 

Extra Receiver Channels  

is chapter presents simulated and measured results which characterise the potential 

gain in recognition performance which can be achieved by the addition of 

channels to the radar. Two cases are analysed, the first being the exp

polarisation information in the HRRP domain, the second is the use of the difference 

channel in a monopulse antenna. 

Experiment  #13: Gain in information Content by 

Polarisation  for the F-18 and F-35 

addresses the prediction of the gain in recognition performance of a High 

Range Resolution (HRR) X-band radar when the full polarisation matrix

compared to the performance when only making use of single

polarisations. The study was conducted for the F-35 and F/A-18F which were 

using the SigmaHat RCS prediction code [Smit2012a]. The simulations were setup and 

executed by Johan Smit at CSIR DPSS and the resulting data was made available for this 

18F and F-35, were downloaded from the internet and are shown in 

Figure 10.2 respectively. The outer shell of the aircraft was modelled as a 

perfectly electrically conducting (PEC) material due to the lack of any information on the 

se two aircraft. Effects caused by the canopy, radomes and radar absorbing 

material (RAM) could thus not be modelled. 

: CAD model for the FA -18F. 

Gain in Information Content by Exploitation of 

measured results which characterise the potential 

gain in recognition performance which can be achieved by the addition of extra receiver 

sed, the first being the exploitation of 

in the HRRP domain, the second is the use of the difference 

Gain in information Content by Using 

addresses the prediction of the gain in recognition performance of a High 

band radar when the full polarisation matrix is sensed by the 

nce when only making use of single linear 

18F which were simulated 

The simulations were setup and 

sulting data was made available for this 

35, were downloaded from the internet and are shown in 

The outer shell of the aircraft was modelled as a 

perfectly electrically conducting (PEC) material due to the lack of any information on the 

Effects caused by the canopy, radomes and radar absorbing 

 



Figure 10.2 : CAD model for the F

Also note that the engine models were relatively inaccurate. These models were analysed 

using an in-house high frequency radar cross section code 

frequency responses at a set of discrete frequencies. SigmaHat 

Optics (PO) combined with

the RCS. Polar plots of the high range resolution profiles (HRRP’s) of the targets are given 

in Figure 10.3 and Figure 

Figure 10.3 : HRRP ring plot for the F
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: CAD model for the F -35 Lightning II. 

Also note that the engine models were relatively inaccurate. These models were analysed 

house high frequency radar cross section code SigmaHat 

nses at a set of discrete frequencies. SigmaHat makes use of

(PO) combined with the shooting and bouncing ray (SBR) techniques to calculate 

Polar plots of the high range resolution profiles (HRRP’s) of the targets are given 

Figure 10.4. 

: HRRP ring plot for the F -35, VV Polarisation. 

 

Also note that the engine models were relatively inaccurate. These models were analysed 

SigmaHat to obtain their 

makes use of Physical 

techniques to calculate 

Polar plots of the high range resolution profiles (HRRP’s) of the targets are given 
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The simulations were run for all four linear polarisations and each target was illuminated at 

a set of 116 frequencies centred at 10 GHz in steps of 7 MHz (i.e. 9.6 GHz to 10.405 GHz). 

This gives a total bandwidth of 805 MHz, resulting in a range resolution of 0.186 m. Each 

target was simulated at 360 azimuth angles in 1° st eps for an elevation of 0°. 

 

Figure 10.4: Ring plot for the F-18, VV polarisatio n. Note the external stores 

protruding from below the wings and the body. 

The multidimensional expression for MI was used to evaluate the MI for each of the targets 

well as the three polarisation options (VV, HH and full polarization) by means of Monte-

Carlo integration which was performed over a 232-dimensional Gaussian density for the 

linear polarisations and over a 696-dimensional space for the full polarisation matrix. For 

the full polarisation matrix, a vector was formed by concatenating the vectors for the two 

linear polarisations, followed by the sum of the two cross polarisations for each azimuth 

angle. The two cross polarisations are added because most radar systems capable of 

sensing the full polarisation matrix will measure V and H receive channels for V transmit, 

followed (usually in time) by measurements of V and H for H transmit. In this process, both 

the VH and HV polarisations have been measured. These measurements are assumed to 

be equal due to reciprocity and are thus added to obtain a gain in SNR for the co-

polarisation channel. 

The data sets were not converted to HRRP’s, but were processed directly in the frequency 

domain. According to the data processing inequality this will yield the same MI results as 

the FFT is an invertible function. The maximum value of the MI is always limited to the 
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entropy of the underlying set of waveforms, which in this case is the number of azimuth 

angles at which target responses have been simulated. This means that the MI graphs 

reach a maximum value of 8.492 bits. The MI results for the two targets and various 

polarisation combinations are shown in Figure 10.5 below. 

 

Figure 10.5: Comparative MI results versus SNR for the F-35 and F-18 for three 

polarisation options, linear VV, linear HH and the full polarisation matrix. 

From Figure 10.5 it can be seen that the information contained in the two linear 

polarisations is approximately equal for F-18. For the F-35 the VV polarisation has a 1-2 dB 

advantage over the HH polarisation. The F-35 is less easily recognizable than the F-18 and 

requires approximately 5 dB more SNR to achieve the same recognition performance as 

the F-18. To further quantify the achievable performance gains, Figure 10.6 shows the 

differences in SNR between selected curves in Figure 10.5 for equal values of MI. 

When both linear polarisations as well as the cross polarisation are used for recognition, 

the recognition performance of both targets is increased by approximately 5-6 dB. 

Interestingly, the F-35 is still less recognizable than the F-18 for average to high values of 

MI by approximately 4-5 dB, but this difference increases to 9 dB at an MI value of 8.48 

bits. This illustrates that it will be more difficult to obtain recognition performance close to 

100% for the F-35. This is probably due to the fact that for this F-35 CAD model there are 

no external stores, whereas for the F-18 there are several external stores mounted below 

the wing and fuselage. The effect of these stores is also evident in the HRRP ring plots 

where the F-18 has far more discrete scattering centres than the F-35 does. Even using 
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the full polarisation matrix for the F-35 leaves it with approximately a 2.5 dB SNR deficit 

compared to the two single linear polarizations for the F-18 at an MI value of 8.0 bits (see 

Figure 10.5).  

 

Figure 10.6: Achievable SNR gains versus MI between  various polarisations for the 

F-18 and F-35 targets. 

For this problem, a probability of error of 10-3 translates to a MI value of 8.472 bits, which is 

approximately 99.77% of the maximum MI value. At this point, for the F-18, the SNR gain 

in both VV and HH to full polarization is approximately 6 dB. This means that the average 

gain going from linear to full polarization is 6 dB for the F-18. For the F-35, the gains going 

from VV and HH to full polarisation are approximately 7 dB and 9.5 dB respectively, giving 

an average SNR gain of 8.25 dB. 

This experiment has evaluated the increase in recognition performance which can be 

achieved by making use of a fully polarised radar. For the HRR radar operating in X-band 

and the two targets analysed, it has been shown that a minimum performance increase of 

at least 4 dB is possible by using the full polarisation matrix over any linear polarisation. 

Performance increases of more than 5 dB are possible when operating at high signal to 

noise ratios. At a probability of error of 10-3 (MI value of 8.472 bits, or 99.77% of maximum 

MI), performance increases of 6 dB for the F-18 and 8.25 dB for the F-35 are possible. 

Interestingly, in the case when the full polarisation matrix is used for the recognition of the 

F-35, its results still show approximately a 2.5 dB loss in SNR relative to either of the linear 

polarisation results for the F-18. 
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10.2 Experiment #14: Information Content of 

Measurements of a 1:25 Scale Boeing 707 Model 

A 1:25 scale model of a Boeing 707 was acquired by Prof. Odendaal of the University of 

Pretoria to serve as one of the scale models for several RCS studies [Pienaar2018, 

Pianaar2017, Pianaar2017a]. This model had been used for antenna placement studies in 

the past. Due to this it had several holes in the fuselage which had to be closed with 

conductive tape. The gaps where the wing roots joined into the fuselage were also closed, 

as were the inlets and outlets of the engines. The engines were hollow pipes, so it was felt 

it would be better to close them totally until some form of engine model could be 

manufactured. The model was mounted on a specially manufactured (by Casper van Zyl) 

wooden pole in the compact range at the University of Pretoria. The model was aligned to 

be as level as the mechanics of the mounting would allow. The measurements were 

conducted for both polarizations by repeating the measurement with the range’s feed horns 

changed from vertical to horizontal polarization. The frequency extent of the measurements 

was 2-18 GHz and this range was covered by 2001 frequency points, resulting in a step 

size of 8 MHz. The azimuth rotation of the target was set up to be from -179.8° to +179.8° 

in steps of 0.2°. This setup resulted in 1799 discr ete measurement points in azimuth. Due 

to the scale of this model, the following table was constructed to give the equivalent 

dimensions: 

Table 6:  Scale calculation for 1:25 scale Boeing 707 model. 

Length 

Wingspan 

2.0 25 50L L p m′= = × =  

1.8 25 45L L p m′= = × =  

Frequency f f p′=  

2 18 GHz,  80 720 MHzf f′ = − = −  

RCS 2pσ σ ′=  

In this table, p  is the scale factor of 25, unprimed variables represent full scale 

dimensions and primed variables represent the scaled down dimensions. Due to the 

frequency scaling effect these measurements represent full scale frequencies of 80 MHz to 

720 MHZ, and the results are thus applicable to VHF and UHF radar designs. Figure 10.7 

and Figure 10.8 show the Front view and side view of the Boeing 707 mounted in the 

compact range. Note that it has been traversed to 180° for the photographs, and is thus 

effectively facing backwards. 
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Figure 10.7: Front view of 1:25 scale Boeing 707 mo del in the University of Pretoria’s 

compact range. 

 

Figure 10.8: Side view of scale Boeing 707 model in  the compact range. 

The recorded RCS data is shown in Figure 10.9 for both polarizations. This data was used 

as the input data to the MI calculation. The measured data was converted to HRRP’s and 

the two ring plots of the result are shown in Figure 10.10 for VV polarisation and Figure 

10.11 for HH polarisation. The MI results for VV polarization, HH polarization and combined 

VV and HH polarization are sown in Figure 10.12. 
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Figure 10.9: Measured RCS of 1:25 scale Boeing 707 vs frequency and azimuth angle 

for VV (upper plot) and HH (lower plot) polarisatio n. 

 

 

Figure 10.10: Ring plot of the HRRPs for the 1:25 s cale Boeing 707 for VV 

polarisation. 
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Figure 10.11: Ring plot of the HRRPs for the 1:25 s cale Boeing 707 for HH 

polarisation. 

 

Figure 10.12: MI results versus SNR for the scale m odel Boeing 707 for various 

polarizations. 
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The multidimensional expression for MI was used to evaluate the MI for each of the three 

polarisation options (VV, HH and dual linear polarisation) by means of Monte-Carlo 

integration which was performed over a 4002-dimensional Gaussian density for each of the 

linear polarisations and over a 8004-dimensional space for the dual linear polarisation 

case. For the dual linear case, a vector was formed by concatenating the vectors for the 

two linear polarisations for each azimuth angle. 

From the results in Figure 10.12 it can be seen that the HH polarization performs 

approximately 1.5 dB better than the VV Polarization. The dual linear, or HH in combination 

with VV, exhibits a 4 dB improvement over the VV polarisation and a 2.5 dB improvement 

over the HH polarisation case. The average performance gain when going from linear to 

dual linear is thus approximately 3.25 dB, which is approximately equal to the non-coherent 

sum of the two channels. From this it can be concluded that at these low frequencies 

polarisation does not lead to the large performance increases seen in the previous section 

for an X-band radar. The fact that this data set was measured at 2001 frequency points 

compared to 81 for the simulated data sets for the F-14 allows the MI calculation to exploit 

extra coherent integration gain. This leads to the substantially improved performance in 

terms of SNR in Figure 10.12 where the MI .curve reaches its maximum value at a SNR of 

0 dB. To further evaluate the difference between this model and the F-14, the 2001 

frequency set was sub sampled by a factor of 25, giving exactly 81 frequencies. This 

reduces the range ambiguity from 18.75 m to 0.75 m, which is less than the length and 

wingspan of the Boeing 707 model, which are on the order of 1.8 m. The SNR difference 

between each pair of curves was calculated over the range of the MI values and gave a 

result between -13.87 dB and -14.1 dB for all three pairs of curves. This corresponds to the 

SNR loss which is obtained by having decreased the number of samples by a factor of 25, 

and is given by ( )1010 log 1 25 13.98 dB× ≈ − . This shows that no information has been 

destroyed in the subsampling process over and above the loss caused by the removal of 

24 out of 25 samples. 

This experiment demonstrates that the MI calculation technique is stable for very high 

dimensional signal spaces. In this case the analysis for the dual linear polarisation data set 

was conducted in 8004-dimensional signal space. The experiment also shows that the MI 

calculation is stable and valid for measured data, although the results have to be 

interpreted more carefully. For example, if the target interacts electromagnetically with any 

objects in the measurement chamber the extra signals induced in the data set will corrupt 

the final MI values. Interactions which create constant values which add to the data set, 

such as background reflections from the chamber, will not influence the MI results, but 

effects such as the target interacting with the support structure, which changes as the 

target is rotated, will add varying signals to the recorded data which will in turn influence 

the final MI values which are calculated. The setup of the target in the measurement 

chamber is thus critical and should be carefully controlled and characterised. 
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10.3 Experiment #15: Gain in Information Content by  Using 

the Sum and Azimuth Difference Channels in a 

Monopulse Radar 

This section studies the recognition performance gain which is possible through the 

exploitation of the target signal in the azimuth difference channel and in addition compares 

the effect of polarization for an X-band HRR monopulse radar. A previous study by 

Armstrong and Griffiths [Armstrong1991] has shown that the information contained in the 

monopulse difference channels can be exploited to improve the detection performance of a 

radar. Borden, [Borden1995a], illustrated by means of simulation that the long term 

tracking statistics and angle estimations can be combined to form a 3-D pseudo-image of 

the target being tracked. Tait [Tait2005] also describes in principle how HRRP’s on all three 

monopulse channels can be combined with high accuracy angular measurements to create 

a pseudo 3-D image of a target [Tait2005, pp. 233]. These techniques could be applied to 

generate the input to a machine based target classification system. 

Standard monopulse processing makes use of two collocated receive antenna patterns to 

enable the radar to calculate the angular location of a target within the beam of the radar. 

This technique makes use of a sum and difference beam pattern and associated receive 

RF paths to generate a ratio of the difference voltage to the sum voltage. The resulting 

ratio is linearly related to the off-boresight angle of the target being tracked. This 

processing is usually implemented for narrow instantaneous bandwidths which correspond 

the radar’s native range resolution. When use is made of HRR techniques to increase the 

range resolution, monopulse processing becomes conceptually cumbersome from a 

calibration point of view. However, due to the fact that the difference channel senses a 

different spatial energy distribution over the target’s angular extent to the sum beam, the 

difference channel can be exploited as an additional source of information about the target. 

This section aims to quantify the amount of information which can be gained from the 

difference channel without specifying the type of processing or recognition algorithms 

which will be implemented in the radar. This represents a bound on the maximum 

performance gain which can be achieved by exploiting the electromagnetic scattering 

characteristics of the target in the difference channel. 

Use was made of the same F-14 CAD model as the previous sections. The outer shell of 

the aircraft was once again modelled as a perfectly electrically conducting (PEC) material. 

Effects caused by the canopy, radomes and radar absorbing material (RAM) are thus not 

modelled accurately. Also note that the engine models were relatively inaccurate. The 

model was analysed using SigmaHat [Smit2012a], to obtain the F-14’s frequency response 

over a set of discrete frequencies. SigmaHat was set to apply Physical Optics (PO) and 

shooting and bouncing rays (SBR), but not edge diffraction. The simulations were run to 

generate the full scattering matrix and the target was illuminated at a set of 116 
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frequencies centred at 10 GHz in steps of 7 MHz (i.e. 9.6 GHz to 10.405 GHz). This gives 

a total bandwidth of 805 MHz, resulting in a range resolution of 0.186 m. The target RCS 

was calculated in 2° steps in azimuth for angles fr om -180° to +178°, at an elevation angle 

of 0°. At each azimuth angle the spatial distributi on of the RCS was also recorded for each 

frequency. Use was made of 440 pixels in azimuth and 100 pixels in elevation, and the 

image spanned 22 m in azimuth and 5 m in elevation. This resulted in square pixels which 

were 5 cm x 5 cm, over which the scattering values are averaged. Examples of these 

images are shown in Figure 10.13 and Figure 10.14 for aspect angles of 0° and -10° 

respectively. 

These images were then weighted by the sum and azimuth difference patterns for the 

monopulse antenna for each frequency. The complex valued pixels in the resultant images 

were then summed to give a single value for each frequency, thus forming the frequency 

response of the target for each antenna channel. Note that for this study the antenna 

patters were taken to be constant in elevation. The monopulse patterns were calculated as 

a function of frequency using first order approximations for the beamwidth as a function of 

frequency. The simulated antenna patterns at 10 GHz are shown in Figure 10.15 below. 

 

 

Figure 10.13: Reflectivity image for F-14, VV polar isation, head on, for the minimum 

and maximum illumination frequencies. 
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Figure 10.14: Reflectivity image for F-14, on VV po larisation, for an azimuth angle of -

10°, for the minimum and maximum illumination frequ encies. 

 

Figure 10.15: Example of the sum and azimuth differ ence monopulse antenna 

patterns at 10 GHz. 

The parameters for the antenna were chosen as follows: 

• antenna diameter: 3.5 m, 

• antenna illumination: uniform, 

• sum channel beamwidth: 0.49°. 

 The beamwidth of the constituent beams was 0.42° w ith an offset of 0.19°. 
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The MI was evaluated by means of Monte-Carlo integration for the F-14 at 6 different 

ranges from the radar. These ranges were chosen as 1, 2, 5, 10, 20, 50 km, and the 

unweighted (i.e. no antenna pattern applied) images were used to generate a reference 

curve, as these correspond to the case where computational electromagnetic (CEM) 

results are used directly to evaluate a classification algorithm. The reference plots thus 

required the integration to be performed over a 232-dimensional Gaussian density for the 

reference images, and over a 464-dimensional Gaussian density for the two channel 

cases. The data sets were not converted to HRRP’s, but were processed directly in the 

frequency domain. According to the data processing inequality this will produce the 

maximum MI value. The maximum value of the MI is always limited to the entropy of the 

underlying set of waveforms, which in this case is the number of azimuth angles at which 

target responses have been simulated. This means that the MI graphs reach a maximum 

value of log2(180) which is approximately 7.4919 bits. The MI results for each target range 

are shown in Figure 10.16 for VV polarization and a zoomed in version of this plot is given 

in Figure 10.17. This aids in assessing the MI close to its maximum value which 

corresponds to a probability of correct classification of unity. 

 

Figure 10.16: Mutual information (MI) for the sum c hannel as a function of SNR at 

various target ranges, with the unweighted image as  a reference for VV 

polarisation. 

From Figure 10.16 it can be seen that the antenna pattern causes a loss in MI, which is 

most pronounced at close range. This is due to the extremities of the target being heavily 

attenuated by the far out regions of the main lobe and thus reducing the SNR of scatterers 

in these regions. At an MI level of 7.417 bits, which corresponds to 99% of the final MI 

value (probability of error is 0.0045), there is a loss of approximately 0.7 dB for the 2 km 

case, and a loss of approximately 1.5 dB for the 1 km case. Note that the angular extent of 
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the F-14 at 1 km is approximately 1.15°, so the tar get spans the null to null beamwidth of 

the sum channel. 

 

Figure 10.17: Zoomed in version of MI versus SNR at  various target ranges, with the 

unweighted image as a reference for VV polarisation . 

It is interesting to note that as the target range decreases there is a loss in SNR for a fixed 

value of MI. This is due to the effect of the antenna pattern reducing the magnitude of 

some of the scatterers, especially at close ranges, which effectively reduces the SNR of 

the target. At longer ranges there is very little loss induced by the beam shape, so the “no 

antenna” curve and the 5, 10, 20 and 50 km target range curves form a single line in the 

plot. The target’s angular extent at 5 km is 0.23°,  which is approximately 47% of the 3 dB 

beamwidth 

Figure 10.18 and Figure 10.19 give the MI as a function of SNR when the azimuth channel 

is included in the calculation for VV polarisation. The “No Antenna” curve shows the MI for 

the sum channel only and acts as a reference curve. Figure 10.19 is again a zoomed in 

version of Figure 10.18. These graphs show that there is a gain of approximately 3 dB over 

the “No Antenna” (sum channel only with no antenna weighting) case. 

In Figure 10.19, for the high MI cases, the gain over the “No Antenna” case is as much as 

4.5 dB for the 1 km and 2 km target ranges. This is due to the fact that the target is close 

enough to the radar that its angular extent spans the peaks in the difference beam. As the 

range of the target from the radar increases, the angular extent decreases, and the target 

return in the azimuth channel is highly attenuated by the null in the azimuth pattern, thus 

decreasing the magnitude of the scattering in this region, and in turn decreasing the 

effective SNR in this channel. At long enough ranges the null in the difference channel will 

suppress the whole target return and it is expected that the MI will reduce to the point 

where it coincides with the “No Antenna” curve. 
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Figure 10.18: Mutual information (MI) for the sum a nd azimuth channels as a function 

of SNR at various target ranges, with the unweighte d image as a reference for 

VV polarisation. 

 

Figure 10.19: Zoomed in version of MI versus SNR fo r the sum and azimuth channel 

at various target ranges, with the unweighted image  as a reference for VV 

polarisation. 

Figure 10.20 and Figure 10.21 compare the MI when using both the sum and azimuth 

channel for the VV and HH linear polarizations for target ranges of 2 km and 50 km. Figure 

10.21 is once again a zoomed in version of Figure 10.20.  
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Figure 10.20: Comparison of the effect of VV and HH  polarisation on the MI for the 

sum and azimuth channels as a function of SNR at va rious target ranges, with 

the unweighted image as a reference for each polari sation respectively. 

 

 

Figure 10.21: Zoomed in version of the comparison o f the effect of VV and HH 

polarisation on the MI for the sum and azimuth chan nels as a function of SNR 

at various target ranges. 

The 3 dB gain relative to the “No Antenna” curve is evident for both polarisations, and there 

is a slight gain of approximately 0.5 dB when using HH polarisation over VV polarisation. It 

is interesting to note that the results presented in section 10.1 showed that VV had a 1.5 
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dB gain over HH for the F-35 and that the two polarisations were approximately equal for 

the F-18. The best linear polarisation to use is thus very dependent on the target geometry. 

This section has evaluated the increase in recognition performance which can be achieved 

by making use of the azimuth difference channel signal in a monopulse antenna. It was 

shown that performance gains of as much as 4.5 dB are achievable at short ranges of 1 km 

and 2 km, and that gains of 3 dB are achievable at longer ranges up to 50 km for this target 

and antenna setup. Note that these gains include the SNR advantage due to the longer 

vector which is available for matched filtering in case where the sum and difference 

channel signals are used. 

The results presented in this section have shown that a 3 dB gain could be achieved with 

relatively minor changes to an existing monopulse radar. This study also shows that the 

recognition algorithm should make use of different reference target scattering libraries 

depending on the range of the target. 

10.4 Conclusion 

This section has presented results for the achievable information gain from multi-channel 

radar receivers. Examples were analysed for two polarization cases and a monopulse 

radar case. 

The first experiment analysed the recognition advantage of sensing the full polarization 

matrix over sensing only one of the linear polarisations for the F-18 and F-35 fighters when 

illuminated at X-band. The target responses were simulated using SigmaHat for all four 

linear polarisations and each target was illuminated at a set of 116 frequencies centred at 

10 GHz in steps of 7 MHz (i.e. 9.6 GHz to 10.405 GHz). This gives a total bandwidth of 805 

MHz, resulting in a range resolution of 0.186 m. Each target was simulated at 360 azimuth 

angles in 1° steps for an elevation of 0°. 

It was shown that the performance for the linear polarizations is very similar for F-18, but 

for the F-35 the VV polarisation had a 1-2 dB SNR advantage over HH. The achievable 

gain when using the full polarisation matrix was 5-6 dB for both targets. For a probability of 

error of 10-3, the average gain going from linear to full polarisation is approximately 6 dB for 

the F-18 and 8.25 dB for the F-35. 

The F-35 requires 9 dB more SNR at the maximum MI as compared to the F-18. Even 

using full polarisation for the F-35, still requires approximately 2.5 dB more SNR for 

recognition than the F-18 at high MI values. This is probably due to the stealth design of 

the F-35 and the fact that the F-18 had stores mounted under the wings whereas the F-35 

carries these internally. The F-35 CAD model was also less complex than the F-18 and the 

F-18 also has more discrete scattering centres in its HRRPs. 
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The second experiment analysed measurements of a 1:25 scale model of a Boeing 707. 

These measurements were made in the University of Pretoria’s compact range where the 

HH and VV response of the target was measured over 2001 frequency points from 2-18 

GHz. The MI results showed that average SNR gains when going from linear to dual linear 

polarisation were approximately 3.25 dB, which is relatively low. The performance gains 

going from VV and HH to dual linear polarisation were 4 dB and 2.5 dB respectively. 

This analysis also demonstrated that the MI calculation is stable for very high dimensional 

problems, as up to 8004 dimensional data was used as input data for the dual linear case. 

This section also shows that the MI calculation can be applied to measured data if the 

experiment is carefully controlled. 

The aim of the third experiment was to characterise the gain in information about a target 

when by exploiting the difference channel of a monopulse radar. The F-14 was used as a 

target and the spatial distribution of reflected energy over 22 m x 5 m area (horizontal x 

vertical = 440 x 100 pixels) was simulated using SigmaHat for 116 frequencies centres at 

10 GHz in 2° azimuth steps. The pixels were coheren tly summed in the vertical dimension, 

and then weighted by the sum and azimuth antenna patterns in the horizontal direction and 

again coherently summed to form the sum and azimuth channel outputs. A constant 

antenna pattern in elevation was assumed. 

The analysis made use of the case when there is no antenna pattern weighting applied to 

the image data as the baseline result. A loss at very close ranges 1-2 km of 1.5 to 0.7 dB 

respectively was observed when using the sum channel only. This was due to the beam 

shaping loss over target's angular extent. Very little loss was observed at ranges from 5 km 

to 50 km. When adding the difference channel in to the data set, performance gains of as 

much as 4.5 dB were achieved at short ranges of 1 km and 2 km. Gains of 3 dB were 

achieved at longer ranges of up to 50 km. The 3 dB gain could be achieved with relatively 

minor changes to an existing monopulse radar. This section of the study also highlighted 

the fact that the target reference libraries used by the recognition algorithm should be a 

function of the range of the target, especially at ranges at which the antenna pattern cannot 

be assumed to be constant over the target’s angular extent. 
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11 Characterisation of the Effect of Envelope 

Processing on the Information Content of High 

Range Resolution Profiles (HRRP) 

This chapter makes use of the expression which was derived for the mutual information 

contained in a signal after envelope processing. The expression is repeated below for 

reference. 
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(11.1) 

Envelope processing is a very standard technique in radar signal processing chains and 

due to the fact that it is a non-invertible operation on the HRRP data, some of the 

information content of the complex valued HRRP will be lost due to this processing. 

11.1 Experiment #16: Information Content of the Env elope 

of the HRRP 

In this section the MI is calculated for the F-14, F-15 and F-16 for the case where the radar 

calculates the envelope of the received signal which is then used for target recognition. 

Due to the fact that this is a non-invertible operation, the signal processing step has 

effectively discarded any information contained in the phase of the signal. The input data 

from Section 7 was used for these experiments, thus allowing for the direct comparison of 

results between the two sections. 

Figure 11.1 shows the MI for the coherent as well as non-coherent (labelled “NC” in the 

legend) case for each of the three targets as well as two bounds for reference. It is 

interesting to note how well the MI curves for the coherent and non-coherent case track 

each other for each target. To more accurately quantify the loss of information, the MI was 

measured at the point where it reaches 99.95% of its final value. These values are 

compared in Table 7, which shows that there is a loss of between 7.2 dB and 8.7 dB. This 

loss would require the SNR to be increased by this amount for the NC case to have the 

same performance as the coherent case. 
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Figure 11.1: Comparison of the F-14, F-15 and F-16 Mutual information versus SNR 

for the coherent and non-coherent (NC) cases. The i nput data is the raw 

measurements per frequency. 

To compare the SNR loss over the whole range of MI values, the MI curves were 

resampled at fixed MI points and the resulting SNR values subtracted for each target. The 

results of the calculation give the loss when going from coherent processing to non-

coherent processing, and are graphed in Figure 11.2. The loss for the F-14 and F-16 track 

each other remarkably well for most of the range, but separate at MI values above 9 bits. 

For MI values between 9 bits and 10 bits, which is the range that target recognition 

algorithms would be interested in, the loss is between 7.5 dB and 9.5 dB. 

Table 7:  Comparison of SNR as MI reaches 99.95% of its maxim um value of 10 bits 

for the coherent and non-coherent cases. 

 Capacity 

Bound 

Gauss 1024 

waveforms 

F-16 F-14 F-15 

MI [bits] 9.995 9.995 9.995 9.995 9.995 

SNR [dB], Coherent -10.5 -5.2 19.3 21.0 24.0 

SNR [dB], non-coherent N/A N/A 27.8 28.2 32.7 

Loss [dB] N/A N/A 8.5 7.2 8.7 
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Figure 11.2: SNR loss versus MI, showing the loss c aused by non-coherent 

processing for the F-14, F-15 and F-16. 

The fact that the MI curves for the non-coherent (NC) cases in Figure 11.1 still reach the 

maximum value of 10 bits means that there is still enough information left in the amplitude 

of the signal to unambiguously identify all 1024 waveforms. This just requires a much 

higher SNR than for the case where the waveforms are complex valued. 

11.2 Experiment #17: Effect of Pre-processing on th e 

Information Content after Envelope Processing 

To further investigate and quantify these losses, HRRP processing was executed on the 

raw data, and then the MI was re-calculated. This was achieved by taking an unwindowed 

FFT of the raw data. The FFT was not windowed as this would have caused correlation in 

the noise, which was not included in the derivation of the NC case. 

The results for HRRP processing followed by envelope processing are compared to the 

original performance of the envelope processing on the raw frequency domain data in 

Figure 11.3 below. Once again the graphs have been resampled to generate the graph in 

Figure 11.4 which shows the SNR gain achieved using this processing.  

This result shows that there is a 2-5 dB SNR gain at MI values below 9 bits due to having 

executed HRRP processing before discarding the phase of the signal. Unfortunately, this 

gain drops to zero as the MI approaches its maximum value of 10 bits. In the case of the F-

14 the gain becomes a 0.3 dB loss at a MI value of 10 bits. 
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Figure 11.3: Comparison of MI for the three target aircraft when HRRP processing is 

executed before envelope processing. 

 

Figure 11.4: SNR gain versus MI for the three targe t aircraft when HRRP processing 

is executed before envelope processing. 
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The implication of this result is that if the recognition algorithm is expected to operate at 

intermediate values of MI between 4 bits (probability of error of 0.5) and 9.5 bits (probability 

of error of 0.03) it is worthwhile for the radar signal processor to generate the HRRP as this 

will give at least a 1.5 dB SNR gain. From a MI value of 9.978 bits (probability of error of 

0.001) and upwards it is better not to generate the HRRP of the target and rather use the 

raw frequency domain data in the recognition process. 

To explore whether further gains were possible, the FFT was interpreted as a matrix 

mapping of the data into a new vector space. This in turn meant that any matrix mapping 

could be used after which the MI was evaluated. For the next result, use was made of the 

mapping generated by means of applying principle component analysis (PCA) to the raw 

frequency data and then applying envelope processing. The result for the F-14 is shown in 

Figure 11.5 below. 

 

Figure 11.5: Comparison of MI versus SNR for the F- 14 for HRRP processing and 

PCA processing followed by envelope processing. 

From the graph it can be seen that the PCA processing causes a slight loss, relative to 

HRRP processing, over most of the MI range, but that for the high values of MI it exhibits a 

gain. This was further characterised by plotting the gain when going from the raw 

frequency domain data to the HRRP processed data and comparing it to the gain when 

going from the raw frequency domain data to the PCA processed data. This result is given 

in Figure 11.6. From this figure it can be seen that the PCA processing placed more 

emphasis on the high MI region of the graph. This led to a gain of more than 1 dB over the 



Page 180 of 234 

 

HRRP result, however there is a loss of approximately 0.5 dB for PCA processing below an 

MI value of 8 bits.  

 

Figure 11.6: Comparison of the SNR gain versus MI f or the F-14 between raw 

frequency domain data and HRRP processing and raw f requency domain data 

and PCA processing before non-coherent processing. 

The results presented in this section have demonstrated the types of analysis and trade-off 

studies which can be conducted by comparing the performance of coherent waveforms for 

target recognition with waveforms which have been preceded by various forms of linear 

processing and then non-coherently detected for recognition purposes. 

The most interesting result in this section is that the information contained in the phase of 

the signal scattered from the target contains enough information to give a 7 dB to 8 dB 

SNR advantage over recognition algorithms which discard the phase information. 

11.3 Conclusion 

This section analysis the information lost due to envelope processing of the received 

signal. To further explore this topic the effects of executing linear processing on the signal 

before envelope processing are analysed. Two types of linear processing, namely HRRP 

(FFT) and PCA are analysed by quantifying the loss or gain in mutual information at the 

output of the envelope processing step. 

The first section discusses the loss in MI caused by envelope processing by calculating the 

MI for the F-14, F-15 and F-16 data sets generated in Section 7. The loss in SNR required 

to reach an MI level of 99.95% (probability of error = 2.12x10-4) of the maximum of 10 bits 
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was quantified for the three targets. The loss is 7.2 dB for the F-14, 8.5 dB for the F-16 and 

8.7 dB for the F-15. 

The fact that the MI curves for the non-coherent (NC) cases still reach the maximum value 

of 10 bits means that there is still enough information left in the amplitude of the signal to 

unambiguously identify all 1024 waveforms. This just requires a much higher SNR than for 

the complex valued case. The fact that the phase of the target return contains enough 

information to give a 7 dB to 8 dB SNR advantage over the envelope only signal, makes 

research into recognition algorithms which exploit the complex valued target return a 

worthwhile pursuit. 

The next two sections compare the performance of various linear pre-processing 

algorithms applied to the signal before envelope detection. It is shown that if high levels of 

performance (low error rates) are expected of the recognition system it is better not to 

generate the HRRP from the frequency domain data and to rather perform envelope 

processing directly on the frequency domain data. It was also shown that if use is made of 

the PCA algorithm rather than the HRRP processing, then the PCA outperforms the HRRP 

and the raw frequency domain data by approximately 1 dB at high values of MI. At 

intermediate MI values (below 8 bits) the HRRP processing outperforms the PCA 

processing by approximately 0.7 dB. 

This result also gives insight into the performance of algorithms as a function of SNR. For 

the processing options analysed, it would be better to make use of HRRP processing at 

SNRs below 20 dB, and then make use of PCA at SNRs over 20 dB. It is very seldom that 

designers of radar target recognition algorithms consider switching algorithms as a function 

of SNR. 
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12 Effect of Multi-target Scenarios on Information 

Transfer of a Target 

Up until this point the results and discussions have focussed mostly on cases where only a 

single target is present and the radar is only set up to recognize that target. This type of 

analysis has been used to quantify and compare the amount of information transferred to 

the radar about a specific target when various multi-channel measurements are made by 

the radar or when the radar discards phase information in the received signals. 

In this section the scenario will be analysed where the radar has been setup to recognize 

more than one target. This implies that if points in the signal space belonging to two 

different targets are close to each other in the signal space, then they will increase the 

probability of misclassifying both targets. Use is made of the multi-target MI expressions 

developed in Section 5.6 to execute this analysis. Fano’s inequality will be used to quantify 

the effect of multiple targets on the probability of error. 

12.1 Experiment #18: Multi-target information using  a 

Single Target and Modified Versions of the same 

Target 

For an initial set of tests, use is made of the F-14 dataset of signatures which were 

calculated for vertical polarization on transmit and receive and the illumination waveform 

was a set of 81 frequencies centred at 10 GHz in steps of 6 MHz (i.e. 9.76 GHz to 10.24). 

This gives a total bandwidth of 480 MHz, which in turn translates to a range resolution of 

0.3125 m. 

To test the multi-target MI formulation use was made of the F-14 dataset for the first target 

and a slightly modified version of the F-14 dataset for the second target, where Gaussian 

noise had been added to the second set of F-14 signatures. By adjusting the variance of 

the Gaussian noise the distance between the two signal sets representing the two targets 

could be varied. Note that the perturbation was only added once and then the new set of 

signatures were stored in files for later use in the MI calculation. 

The original set of F-14 data consisted of 1024 signatures, thus resulting in a maximum MI 

value of 10 bits. This is also equal to the entropy of 1024 equally likely events and this 

entropy defines the maximum value that the MI can reach. For the two target scenario it is 

assumed that all 2048 waveforms are equally likely, but that the radar receiver is only 

interested in the 1024 of these which correspond to the target being sensed by the radar. It 

is informative to note at this point, that due to the symmetry of MI, this situation could be 

interpreted firstly as a radar which has been configured to recognize a single target but it is 

possible to observe either of the targets, or secondly, the radar has been configured to 

recognize both targets but only one is present in the observation 
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Returning to the first case, the entropy is calculated by assuming all 2048 signatures are 

equally likely in the input space, but only signatures from one of the two sets of 1024 

signatures will occur. This results in an entropy of 

( ) ( ) ( )( )

( )

2

2

log

1024 1 1
log 11 5.5     bits

2048 2048 2

Xx R

H X p x p x
∈

= −

 = − = − − = 
 

∑
 (12.1) 

Four competing sets of F-14 waveforms were generated with Gaussian noise added at the 

following levels below the average power of the F-14 waveforms: 30, 50, 80 and 90 dB. 

The resulting MI curves for this setup are shown in Figure 12.1. The figure shows that the 

F-14 alone reaches a maximum MI of 10 bits. All the MI curves for the two target case limit 

at 5.5 bits as expected. 

 

Figure 12.1: Multi-target MI versus SNR test cases using the F-14 for target #1 and 

the F-14 with Gaussian noise added at 30 dB, 50 dB,  80 dB and 90 dB below 

the mean power in the F-14 profiles for target #2. 

The MI curve for the single F-14 was scaled by a factor of 5.5/10 and plotted as a dotted 

line for easier comparison with the other curves. For the 90 dB two target curve, the MI first 

reaches a plateau of 5 bits at a SNR of approximately 20 dB, and then increases to its 

maximum value of 5.5 bits between an SNR of 40 dB to 60 dB. This behaviour is due to the 
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fact that the signal points for the two sets of waveforms are so close to each other in the 

signal space that a SNR of 60 dB is required before the two targets can be recognized as 

separate targets. 

In the first plateau region, between 20 dB and 40 dB, each signal point for target #1 is 

indistinguishable from the same signal point (same azimuth angle) for target #2. This is 

equivalent to having joined these two events, thus resulting in a probability space 

containing only 1024 equiprobable events. This gives an entropy of 5 bits. If the second 

target was an exact copy of the first, then the MI curve would reach a maximum value of 5 

bits. For the 80 dB case, it can be seen that the transition section from 5 bits to 5.5 bits has 

moved to a lower SNR value by approximately 10 dB. This is due to the fact that the 

smallest distance between the same signal points has been increased and the two targets 

can thus be distinguished from each other at a lower SNR. For the 30 dB signal set, the 

transition point is at an SNR of approximately 20 dB. The MI curve thus transitions 

seamlessly to 5.5 bits, without forming a plateau region. For the 30 dB set of signal points 

the transition region is at an SNR of approximately 0 dB. It can be seen that the signal 

points for target #2 are far enough away of those of target #1 that the MI value is increased 

above that of the single F-14 target. The MI curves for these examples have been 

normalised to their associated maximum values, so that any MI curve can only reach a 

maximum value of unity, and have been plotted in Figure 12.2. 

 

Figure 12.2: Multi-target Normalised MI test cases using the F-14 for target #1 and 

the F-14 with Gaussian noise added at 30 dB, 50 dB,  80 dB and 90 dB below 

the mean power in the F-14 profiles for target #2. 
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The set of waveforms for each target of interest can thus be analysed against the sets of 

waveforms associated with competing targets. If any of the signal points for two competing 

targets are close to each other in the signal space, then the MI will be reduced which will 

lead to an increase in the probability of misclassification. 

The principles at play have been demonstrated in this section. These principles will be 

applied to a more realistic problem in the next section. 

12.2 Experiment #19: Multi-target Information and 

Probability of Error for the F-14, F-15 and F-16 

This experiment was conducted using the F-15 and F-16 data sets with the same radar 

waveform parameters as the F-14 data set. The MI for the individual targets as well as the 

multi-target MI is plotted in Figure 12.3. The entropy for the multi-target case can be 

calculated as: 
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which agrees with the limiting value for the MI on the three lower traces.  

 

Figure 12.3: MI and multi-target MI versus SNR for the F-14, F-15 and F-16. 
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These MI curves were then converted to normalised MI, and the results are plotted in 

Figure 12.4. From this set of graphs it can be seen that all three the multi-target MI curves 

have suffered a SNR loss relative to their single target counterparts. 

 

Figure 12.4: Normalised MI and normalised multi-tar get MI versus SNR for the F-14, 

F-15 and F-16. 

The SNR loss between each MI curve for the single target and the corresponding multi-

target case has been calculated and are plotted in the Figure 12.5 below. 

The losses at high normalised MI values (above 0.9 bits) range between 0.1 dB and 0.8 

dB. The average loss over the whole normalised MI range is approximately 0.6 dB, which 

is relatively benign. This result demonstrates the use of the multi-target MI for the 

calculation of SNR losses due to the radar being set up to recognise multiple targets. 

Although the loss calculated for this example is relatively low, this loss will be higher in a 

practical system for the following reasons: 

1. As extra targets with their associated sets of signatures are added, the signal 

space becomes more and more densely packed, thus reducing the Euclidean 

distance between adjacent signal points. 

2. The addition of extra signatures for each target as a function of the elevation angle 

(relative to the target) will also increase the density of the points in the signal 

space, again reducing the Euclidean distance between signal points. 
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3. Depending on the application of the radar system it might be necessary to add 

multiple versions of each aircraft type corresponding to each possible configuration 

of the aircraft that will have an impact on the signature. This should at least include 

external stores and the undercarriage in its stowed and extended positions. 

 

Figure 12.5: SNR loss versus MI between the single target case and the multi-target 

case for the F-14, F-15 and F-16. 

A practical radar system can counter the first two of these effects by exploiting the fact that 

the target’s track is usually estimated by the radar, and this knowledge can be used to 

reduce the signal set to a specified angular volume around the estimated orientation of the 

radar’s line of sight relative to the target. Variables such as the airspeed and altitude of the 

aircraft can be used to limit the number of aircraft that the recognition system has to match 

against. 

The MI graphs were converted to probability of error graphs by making use of Fano’s 

inequality. The results are plotted in Figure 12.6. A graph of the normalised MI has been 

included for reference. For the range of P(error) plotted, use was only made of normalised 

MI values above 0.7. The loss of accuracy in the P(error) graph at high SNR’s is due to 

very slight variations at values of the normalised MI which are very close to unity. 

A zoomed in version of the figure is given in Figure 12.7 to show the cause of this 

inaccuracy. For these graphs the standard deviation goal for the MI in the Monte Carlo 

integration process was set to 0.002, and the accuracy goal for the multi-target runs was 

set to 0.005. This means that if the radar designer is interested in low levels of error 
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probability, then accuracy specification for the Monte Carlo integration will have to be set to 

a much lower level, and the SNR axis will have to be sampled in smaller step sizes. 

 

Figure 12.6: Probability of error versus SNR graphs  for the multi-target setup, along 

with normalised MI for reference. 

 

Figure 12.7: Probability of error versus SNR graphs  for the multi-target setup, along 

with normalised MI for reference, zoomed to show de tail of normalised MI. 
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An interesting side effect of the Monte Carlo MI calculation is that it becomes more efficient 

at high SNR values. This means that the can be optimised by first running a calculation 

over a wide SNR range to determine the trend, and then running a high accuracy 

calculation over the region where the Normalised MI approaches unity. The extended 

P(error) graph is given in Figure 12.7, even though it is inaccurate, it still gives an idea of 

the SNR’s required to reach P(error) values below 10-6. 

 

Figure 12.8: Probability of error versus SNR graphs  for the multi-target setup. 

12.3 Conclusion 

In this section the effect of multiple targets on the achievable recognition performance was 

analysed. Use was made of the multi-target MI expressions developed in Section 5.6 to 

calculate the mutual information. Fano’s inequality was then applied for the calculation of 

the probability of error from the mutual information result. 

This was achieved by first making use of a single F-14 target and then modifying its 

signature set by adding Gaussian noise at different levels. This allowed the similarity 

between the waveform sets to be varied at will, which in turn allowed for the explanation of 

the possible effects on the MI curves. 

The next experiment made use of multi-target MI to study the loss in a single target’s 

recognition performance when the radar’s recognition sub-system has to cater for multiple 

targets. For the three target scenario, making use of the F-14, F-15 and F-16 X-band data 

sets, it was shown that an average loss of 0.6 dB was incurred over the whole range of MI 
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values. The highest loss for high MI values was for the F-16, which suffered a loss of 0.9 

dB. This loss can be clearly seen on the probability of error graphs for the F-16. 

The losses reported in this section were relatively benign, which implies that for this radar 

waveform, these three targets have large inter-target Euclidean distances, and are thus 

easily separable. 

These losses will however increase as more targets, more target configurations, and more 

aspect angles per target are added to the radar’s data base of targets for recognition. 
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13 Conclusions and Future Work 

This chapter summarises the achievements of this research along with highlighting some of 

the more insightful results and discusses the possibilities for future research in the area of 

information theory applied to radar target recognition. 

13.1 Conclusion 

The topic of non-cooperative target recognition (NCTR) for radar systems was introduced 

by means of a high level description of the problem and an overview of pattern recognition, 

which is the usual means by which such problems are solved. The next chapter introduced 

the effects which can be exploited by a radar designer to recognise targets. This focussed 

on results from the theory of electromagnetism which describe the interaction between the 

radar signal and the target. This highlighted the fact that the interaction between the target 

and the EM wave is extremely complex, but can still be analyzed as a linear system in 

most cases. 

A literature overview was presented, which highlighted the various approaches which have 

been exploited by radar researchers to recognize targets. This review showed that there is 

very little work published in the field of predicting the upper bound on the performance of 

target recognition in a radar system. 

The next section gave an overview of the theoretical development of information theory as 

well as some worked examples from open literature, where this theory has been applied to 

radar problems. Two examples were constructed to illustrate the superiority of mutual 

information over correlation coefficients as a measure of dependence between two random 

variables. This was followed by detailed derivations pertaining to the calculation of mutual 

information for a known set of waveforms, which are transmitted over an additive white 

Gaussian noise (AWGN) channel. This section also showed that expressions for mutual 

information can be derived for envelope and envelope squared sensing, as well as for the 

case where multiple targets are to be recognized by the radar system. Validation results 

showing that the theoretical derivations agree with known results from the literature were 

also presented. Most results were also compared to Shannon’s channel capacity bound to 

prove that this fundamental limit is not exceeded. 

The results of various MI calculations are presented over the next six chapters, where each 

chapter focuses on a different type of mutual information analysis. These chapters describe 

various detailed investigations into the use of mutual information for the analysis and 

comparison of various approaches to radar target recognition. 

Initially use was made of point scatterer models to demonstrate that increasing the radar’s 

range resolution resulted in an increase in recognition performance. These results also 

showed that the mutual information calculation inherently took correlation in the range 

dimension as well as the azimuth dimension into account. A set of 16 random targets were 



Page 192 of 234 

 

also generated, and it was demonstrated that these targets could be recognized as a set, 

and that the amount of mutual information contained in the set was higher than that of a 

single target for the same SNR. This result also showed that it is possible to differentiate 

between all 16 targets if the SNR is high enough. The next section compared recognition 

performance using ISAR imaging to HRRP processing. It was shown that the MI for the 

unwindowed ISAR image compared to the MI for the raw HRRP’s resulted in exactly the 

same value of MI for a given SNR, thus resulting in the same recognition performance. 

This result also demonstrates the practical application of the data processing theorem, 

which states that when data is processed, the information content either remains constant 

or is reduced. 

The next five chapters concentrated on more realistic targets. Use was made of an in-

house CEM software package to calculate the HRRP’s for a F-14, F-15 and F-16 using 

Physical Optics (PO) and Shooting and Bouncing Ray (SBR) techniques. Initially results 

were generated for a 480 MHz bandwidth (81 frequency steps) centred at 10 GHz. The 

results showed a 5 dB spread in the SNR required to achieve 99.95 % of the maximum 

mutual information for the three targets. It was also shown that an optimum set of 

waveforms (i.e. if the radar designer could choose the target signatures to be optimum 

from an information transfer point of view) would outperform the true target waveforms by 

approximately 25 dB. Next it was shown that recognition performance could be increased 

by exploiting the radar’s knowledge of the target’s bearing. If the search space was 

reduced from 360° to 5.6°, maximum information tran sfer could occur at SNR levels 

between than 0 and 10 dB, instead of 20 dB and above. A 36000 azimuth sample (0.01° 

steps over 360°) waveform set for the F-15 was comp ared to the 1024 waveform set, and it 

was shown that the MI curve suffered a reduced slope at high SNRs which was caused by 

correlation between the profiles in the azimuth dimension. 

The next set of experiments attempted to make use of much wider bandwidths, and 

HRRP’s that were ambiguous in range in an attempt to create waveform sets which were 

more like Gaussian noise. To this end waveform sets for 2-10 GHz, 10-18 GHz and 2-18 

GHz bands were generated, each still only using 81 frequencies. Comparison of the 2-10 

GHz, 10-18 GHz and 2-18 GHz bands showed that slightly higher recognition performance 

was available in the 2-10 GHz band. This counter-intuitive insight demonstrated the 

usefulness of the MI approach during the conceptualisation and design of radar based 

target recognition systems. Another unexpected result was that although the waveforms 

are ambiguous in range, the information content is not significantly altered. To complete 

this section, the F-14 was simulated over the 2-18 GHz band and results for 100 MHz and 

200 MHz frequency step sizes were extracted. It was shown that the performance for the 

100 MHz step size was nearly exactly 3 dB better than that for the 200 MHz step size. This 

is however due to the fact that the radar transmitted 3 dB worth of extra power, so in this 

case no extra information was acquired about the target, even though the amount of 

measurement frequencies were doubled. Reducing the frequency step size also increased 
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the range ambiguity. If any information was gained in this process then the SNR gain would 

have been more than 3 dB. The fact that only a 3 dB gain in SNR was measured implies 

that no information was being destroyed by the more ambiguous waveform. There was 

however a 0.5 dB increase in performance at an MI level of 99.9% of the maximum 

information content, which implies that there will be slightly increased performance when 

very low probabilities of error are required. 

The next section focused on the extra information which could be extracted when making 

use of multiple receiver channels in the radar. The information gain when using a fully 

polarimetric radar as well as a monopulse radar were analysed. The first experiment made 

use of an F-18 and an F-35 CAD model to calculate the fully polarimetric target signature. It 

was shown that the F-35 requires between 5 and 9 dB more SNR to reach the same 

recognition performance as the F-18 when use is made of the full polarisation response of 

the targets. In general the full polarisation showed approximately a 5 dB improvement over 

any single linear polarisation. This was followed by the analysis of measured data from the 

University of Pretoria’s compact range. A 1:25 scale model of a Boeing 707 was measured 

over a 2-18 GHz frequency span. The scaling makes this data set applicable to the 80-720 

MHz band for a full-scale 707. It was shown that a gain of approximately 3.25 dB could be 

achieved when moving from a single linear polarisation to dual linear polarisation. 

Importantly this demonstrated the validity of the mutual information calculation on 

measured data sets if the measurements are carefully set up and made in a controlled 

environment. It also demonstrated that the calculation was stable for very high input signal 

dimensionalities. The highest dimension required during this analysis was 8004 

dimensions. The monopulse radar case was analysed next. The amount of gain which can 

be extracted by including the azimuth channel in a monopulse radar was shown to be 

approximately 3 dB for the F-14 at long ranges (50 km) and up to 4.5 dB at shorter ranges 

(2 km). This section also highlighted the important fact that the reference signatures stored 

in the radar’s database should be compensated for the range of the target and the effect of 

the antenna pattern over the target’s angular extent. 

The next chapter analysed the amount of information which was lost when envelope 

processing is applied to the receive signal. This effectively discards the phase information 

in the signal. The amount of information which is lost when a radar discards phase 

information when classifying targets was shown to be in the region of 7 dB over the three 

fighter targets (F-14, F-15 and F-16) at X-band. This was calculated by deriving the 

expression for MI after envelope processing and then running Monte-Carlo numerical 

integration on the expression. It was also shown that some information gain was possible if 

linear pre-processing was applied to the signal before the envelope processing. Examples 

for FFT processing and PCA processing showed that the pre-processing gave a SNR gain 

of approximately 3 dB over most of the MI range. At high MI values, the PCA outperformed 

the FFT by approximately 1 dB. 
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The final results chapter made use of the multi-target MI expression in conjunction with 

Fano’s inequality to convert the MI result to a probability of error for the case where the 

radar is programmed to identify three targets, but only one of the targets is interrogated by 

the radar. This allows for the case where the radar can incorrectly identify the target. The 

analysis of this scenario demonstrated that the recognition suffers a loss of approximately 

0.6 dB. This is due to the fact that the recognition algorithm has to allow for more target 

signatures, and that as the number of signatures increase, the likelihood of mis-

classification events increases. Use was once again made of the three jet targets at X-

band to generate this result. 

This research has thus demonstrated that information theory, and specifically the concept 

of mutual information can be used to compare disparate approaches to designing a radar 

concept which is capable of target recognition without resorting to choosing specific feature 

extraction and classification algorithms. The analysis of the various radar concepts and 

techniques was compared quantitatively, which allowed the differences between targets, 

waveforms, radar receiver architectures and signal processing techniques, as well as 

combinations of these, to be characterised in terms of SNR gains and/or losses. From the 

mutual information result, the probability of error versus SNR could also be calculated. It 

was also shown that these results could be calculated efficiently for high input 

dimensionality signals. This research has also shown that it is vital to consider the 

performance as a function of SNR as the performance gains and losses vary as a function 

of SNR, often in a non-intuitive manner. 

Importantly, the focus of this research has been to develop techniques to predict the 

maximum achievable radar target recognition performance within a set of radar system 

constraints. The mutual information represents the fundamental limit on the maximum 

amount of information which can be extracted by the radar for a given scenario 

(combination of target, radar waveforms, radar architecture and signal processing). The 

data processing inequality shows that it is impossible to achieve better performance by any 

clever processing or manipulation of the input data. In fact the data processing inequality 

proves that information can only be destroyed or, in the best case, remain constant when 

data is passed through a chain of signal processing algorithms. 

It is hoped that this study will aid designers of radar systems in making design choices in 

the early stages of radar designs to allow for, and optimize, target recognition functionality 

in future radar systems. The next section gives an overview of research areas that would 

compliment or extend the work presented in this thesis. 
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13.2 Future Work 

This research has also shown that some unexpected insights can be obtained through the 

use of mutual information and information theory in general as an analysis tool for 

predicting the maximum achievable target recognition performance of a radar concept. 

Many of these insights or ideas emanating from them could become topics for dedicated 

studies in their own right. This study has focussed on the calculation of the mutual 

information contained in radar returns from a target and there are many topics which could 

build directly on this research. These topics range from understanding the lifting of the 

assumptions that were made during this study, through extending the analysis to more 

targets, waveforms and radar architectures, to attempting to use mutual information as a 

cost function in a recursive optimization of a radar design for target recognition. 

The following limitations exist regarding the targets and the interaction of the EM wave with 

the targets. The target is constructed from perfectly electrically conducting material (PEC) 

and the fields impinging on the target and being sensed by the radar are far fields. Due to 

the large electrical size of the targets of interest, the interaction of the EM field and the 

target was predicted using high frequency approximations to Maxwell’s equations. Use had 

to be made of freely available CAD models of the targets, and it is uncertain how close 

these are to the physical aircraft. This also means that the engines were not modelled 

accurately and were stationary during the analysis. Radomes for the radar as well as other 

antennas were modelled as PEC material. The cockpit canopy was also modelled as a 

PEC material. Any research into improving the electromagnetic modelling of the target will 

thus improve the fidelity of the MI results. 

There are several ways in which the target space for this analysis could be extended. More 

targets and more varied types of targets would be the first step. The expansion of the 

spatial sampling of the targets from just a “water line” cut at zero elevation to full spherical 

coverage would give a much better idea of the true achievable recognition performance. 

Each target could also be extended to include various variations of the same target. This 

should include the effect of variations of external stores, the effect of flight control surfaces, 

the effect of landing gear and could even include the effect of variations in the target 

geometry caused by different loading of the aircraft and manoeuvre induced flexing of the 

airframe. A far more difficult problem would be the analysis of battle damage to an aircraft. 

What amount of damage could be sustained before the radar would not be able to 

recognize the target correctly? How sensitive would a recognition algorithm be to small 

variations in geometry such as dents and single bullet holes in the aircraft skin? 

The current formulation of the MI approach does not allow for the use of an “unknown” 

target, that is, that the received signal point is far enough away from the known targets in 

the signal space that it can be safely declared that the received signal does not belong to 

any of the targets. Extending the MI approach to allow for unknown targets would thus be 

an important contribution to this analysis technique. Equally important would be an analysis 
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of the effect of storing an approximation of the target response in the radar, instead of a 

perfect copy. For example, if a set of scattering centres for a target was extracted and 

stored in the radar’s target data base, how accurate would this representation have to be 

so that the probability of error is not unduly affected? 

This study made the assumptions that the radar has perfect timing and phase information. 

This effectively means that the radar has knowledge of the exact range to the target. The 

characterisation of the performance loss if these assumptions are lifted would give a better 

estimate of the recognition performance that could be obtained by a practical system. For 

this study the only interfering signal was additive white Gaussian noise (AWGN), so 

research into the effects induced by the propagation environment such as clutter and 

multipath as well as external signals, such as different types of jamming signals would be 

of interest. This would also open the door to the analysis of synthetic aperture radar (SAR) 

targets, as these are inherently imbedded in clutter and multipath. The analysis of SAR 

targets would require a much richer set of intra-target models. This is due to the fact that 

land vehicles occur in far more configurations than aircraft. For example a main battle tank 

would have to be characterised for all combinations of cannon elevations and turret 

positions, not even to mention all the variability in the equipment which can be attached to 

the outside of the tank. 

Given the above discussion, a set of standard test targets and corresponding data sets 

should be developed along with published mutual information results for these data sets. 

These would then serve as absolute performance bounds against which researchers could 

benchmark their target recognition algorithms. 

This research has studied mutual information over the whole range of SNR values. A high 

performance NCTR system would only require the mutual information to be calculated in 

the region from 90% to 100% of the maximum MI value. Efficient algorithms for the location 

of this region could be developed and there might be optimizations to the actual MI 

calculation which can be made. This study focussed on the use of high range resolution 

profiles (HRRP) and the equivalent frequency domain data as inputs to the MI calculation. 

The extension of the MI calculation to other radar observables such as propeller 

modulation, jet engine modulation and helicopter blade modulation would lead to some 

very interesting results. The combination of these techniques with HRRP would start to 

give an idea of the maximum achievable performance of NCTR algorithms if all information 

sources that the radar can sense about the target are fused. 

The effects of various limitations in the radar’s hardware, such as phase noise, spurious 

signals caused by mixing stages in the RF, amplitude discretisation by the analogue to 

digital converter and various signal processing algorithms could also be framed as a 

mutual information analysis. This type of analysis will help radar designers develop detailed 

specifications for radar hardware that is capable of supporting a given level of target 

recognition performance. The gain in recognition performance for multichannel systems 
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such as collocated MIMO and multistatic radar systems would also be a worthwhile pursuit, 

along with the specific limitations induced by this type of architecture. 

Finally, it might be possible to use MI as a cost function for the optimization of a NCTR 

radar. The waveform parameters (carrier frequency, bandwidth, etc.) could be seen as free 

parameters for the optimization algorithm. These would then have to be used to evaluate 

the EM response of the set of targets for this waveform and then the MI could be 

calculated. The MI value, possibly as a function of SNR, could then be used to adapt the 

waveform to improve the recognition performance. This whole process could be automated 

as a recursive loop to optimize the waveform design and hence the radar design for 

optimal target recognition performance. 
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Appendix A Derivation of Multidimensional Mutual 

Information 

In this section a detailed derivation of the Mutual information for a discrete input continuous 

output channel is given. The approach taken was to keep the pdf’s as ( )p i  for as long as 

possible in the derivation, and then only substitute the multi-dimensional pdf’s towards the 

end of the derivation. 

Starting with the input-output relationship of the channel: 

n n ny a z= +
 

(A.1) 

The expression for the mutual information can be simplified as: 
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(A.2) 

where use was made of the fact that ( ) ( )kp y a p z= , and then making a change of variable 

using ky a z= +  which gives dy dz= . The y , ia  and ka  are vectors. They each have M  

real elements, or 2L M=  complex elements. The noise on each real variable component 
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of the vector is independent, so the joint pdf can be written as the product of the pdfs in 

each dimension. 
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(A.3) 

Where ,i ja  is the jth element in the ia  vector. Remember that ,j k j jy a z= + , and that ka is 

fixed externally to the above expression. Now, substitute the pdfs into the MI equation: 
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(A.4) 

Once again, this expression agrees with that given by Ungerboeck [Ungerboeck1982], but 

the derivation has been conducted rigorously to ensure that this expression can be applied 

to multi-dimensional problems. 

 



Page 211 of 234 

 

Appendix B Derivation of Envelope Based 

Expressions for MI 

This Appendix gives the detailed derivations for the amplitude squared case and amplitude 

case to obtain expressions for the mutual information. 

B.1 Derivation for Amplitude Squared HRR MI 

The general form for MI with discrete inputs and continuous outputs is given by: 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( )

1

2 1
0

0

1

2 2 1
0

0

, log

1
log log

N
k

k k N
k

i
i

N
k

k N
k

i
i

p y a
I a y P k p y a dy

P i p y a

p y a
N p y a dy

N p y a

− ∞

−−∞
=

=

− ∞

−−∞
=

=

 
  = ⋅  
 
  

 
  = + ⋅  
 
  

∑ ∫
∑

∑∫
∑

 

(B.1) 

For the envelope only case, each range bin is processed by: 

2 2Y I Q= + . (B.2) 

This means that the pdf of the envelope squared of a range bin is given by a non-central 

chi-square pdf with two degrees of freedom. The generalized non-central chi-square pdf is 

given by: 
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Which simplifies to 
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For n=2 and has a non-centrality parameter of  
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The pdf can be reduced further if the non-centrality parameter is zero 
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If each range bin is assumed to be independent, then: 
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(B.7) 

Note that the dy  does not have to be converted to dz because samples from ( )p y x  will 

be generated directly. 
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(B.8) 

 

The inner probability ratio is then given by 
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(B.9) 

Substituting this into the expression for MI: 
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(B.11) 

B.2 Derivation for Envelope HRR MI 

This approach was analysed as a check on the envelope squared HRR derivation. One 

would expect the two to approaches to give the same MI. 

The general form for MI with discrete inputs and continuous outputs is given by: 
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(B.12) 

For the envelope only case, each range bin is processed by: 

2 2Y I Q= + . (B.13) 

This means that the pdf of the envelope squared of a range bin is given by a Ricean pdf. 

The Ricean distribution is obtained by a change of variable induced by the function 

R Y= , performed on a non-central Chi-squared, 2 degrees of freedom RV, and is given 

by: 
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(B.14) 

where 

2 2 2
1 2s m m= +  (B.15) 

If each range bin is assumed to be independent, then: 
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(B.16) 

Note that the dy  does not have to be converted to dz  because samples from ( )p y x  will 

be generated directly. The inner probability ratio is then given by 
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(B.17) 

Substituting this into the expression for MI: 
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(B.18) 

where 
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Testing for further simplification: 
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(B.20) 

Taking the logarithm to the base 2 gives: 
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(B.21) 

Substituting into the expression for MI gives: 
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Appendix C Derivation of MI with Correlated Noise 

The expression for MI is in terms of real variables, so first the relationship between the 

covariance matrix of a complex RV and the covariance of the equivalent real covariance 

matrix has to be derived - see Urkowitz, pp 296 [Urkowitz1983]. 

 

Definition of a Gaussian RV vector (actually Gaussian random vector variable)(Urkowitz 

pp. 313): 
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(C.1) 

Notes  

x  is a column vector. 

x  is the independent variable. 

If z  is a n-vector of independent Gaussians, then x = Az +u . 

A  is k x n, and covariance matrix is TAA , which is k x k, but has a rank of n. 

Principle axes of ellipsoids are given by the eigenvectors of the covariance matrix. 

Squared relative lengths of the principle axes are given by the corresponding 

eigenvalues. 

For noise, the mean is zero, giving: 
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 (C.2) 

Each element of the covariance matrix has the following structure: 

ij ik i k

ij ji

ik ki

K

K K

ρ σ σ

ρ ρ

=
=
=

 (C.3) 

For the case at hand, all the noise powers are at the same level, so 

2
ij ikK ρ σ=  (C.4) 



Page 220 of 234 

 

and the noise power can be factored out of the covariance matrix: 
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The mutual information for a discrete memoryless channel with continuous outputs is given 

by: 
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(C.6) 

Where N is the number of symbols and P() is the a-priori probability of the symbols and ka  

is a vector. 

The interference is correlated, but additive: i.e. ky a z= + , where z  is from a correlated 

Gaussian noise source, with a known K. 
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Now, for the ( )ip y a  term: 
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Now substitute into the argument of the ( )2log i , assuming P(i) are equal: 
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T

k i k i
i

N
TT

k i k i
i

z z
p y a

p y a z z

z z

z z

z z z z

π

π

−

− −
−

= =

−

−
−

=

−
− −

=

 − 
 

=
 − + − + − 
 

 − 
 =

 − + − + − 
 

    = − + − + −    
    

∑ ∑

∑

∑

K
K

a a K a a
K

K

a a K a a

K a a K a a

( ) ( )

( ) ( )

( ) ( )( )

1

11
1 1

0

11
1 1

0

11
1 1

0

1 1
exp exp

2 2

1 1
exp exp

2 2

1
exp

2

N
TT

k i k i
i

N
TT

k i k i
i

N
T T

k i k i
i

z z z z

z z z z

z z z z

−

−−
− −

=

−−
− −

=

−−
− −

=

    = − + − + −    
    

    = − + − + −    
    

  = − + − + − −  
  

∑

∑

∑

K a a K a a

K a a K a a

a a K a a K  

(C.9) 
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Now, multiplying out the second ( )exp i  argument to obtain a Tz Kz : 

( ) ( )
( )( )( ) ( )( )

( )( ) ( )( )
( )( )( ) ( )( )

( ) ( ) ( ) ( )

1

1

1 1

1 1 1 1

1 1 1 1

T

k i k i

T T
k i k i

T T
k i k i

T TT T
k i k i k i

T TT T
k i k i k i k i

z z

z z

z z

z z z

z z z z

−

−

− −

− − − −

− − − −

+ − + −

= − + − +

= − + − +

= − + − + − +

= − − + − + − +

a a K a a

a a K a a

a a K K a a

a a K K a a a a K K

a a K a a K a a a a K K

 (C.10) 

Cancelling the zKz term gives: 

( ) ( ) ( ) ( )

( ) ( ) ( )
( )

1 1 1

1 1 1

1 1

1 1

OR

T TT
k i k i k i k i

T T T
ki ki ki ki

T T
k i k i k i

T T
ki ki ki

z z

z z

z z

z z

− − −

− − −

− −

− −

− − + − + −
= + +

= − − + + −

= + +

a a K a a K a a a a K

d K d K d d K

a a K a a K a a

d K d K d

 (C.11) 

The -1K  might whiten the z , but lack of the handy E{} means we can’t substitute σ I . 

The first option requires two dot products and a scalar addition, whereas the second 

requires a vector addition and two dot products. 

Using the 2nd line of the first option, we can simplify further: 

( )( )
( )

1 1 1

1 1 1

1 1 1

T T T
ki ki ki ki

TTT T T
ki ki ki ki

TT T T
ki ki ki ki

z z

z z

z z

− − −

− − −

− − −

+ +

= + +

= + +

d K d K d d K

d K d K d d K

d K d K d K d

 (C.12) 

But the factor inside the brackets is a scalar, so: 

( )

( )

1 1 1

1 1

1

2

2

TT T T
ki ki ki ki

T T
ki ki ki

T T
ki ki

z z

z

z

− − −

− −

−

+ +
= +
= +

d K d K d K d

d K d K d

d K d

 (C.13) 

Substituting back using the second line (i.e. first option), we have: 
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( )
( )

( ) ( )( )

( )

11
1 1

1
0

0

11
1

0

1
exp

2

1
exp 2

2

N
Tk T

k i k iN
i

i
i

N
T T
ki ki

i

p y a
z z z z

p y a

z

−−
− −

−
=

=

−−
−

=

  = − + − + − −  
  

  = − +  
  

∑
∑

∑

a a K a a K

d K d

 (C.14) 

Now substituting this back we have: 

( ) ( ) ( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( )

1

2 2 1
0

0

11 1
1

2 2
0 0

1
1

2 2
0

1
, log log

1 1
log log exp 2

2

1 1
log log exp 2

2

N
k

k k N
k

i
i

N N
T T

k ki ki
k i

N
T T

k ki ki
i

p y a
I a y N p y a dy

N p y a

N p y a z dy
N

N p y a z
N

− ∞

−−∞
=

=

−− −∞
−

−∞
= =

−
−

=

 
  = + ⋅  
 
  

    = + ⋅ − +   
    

  = − ⋅ − +  
 

∑∫
∑

∑ ∑∫

∑

d K d

d K d

( ) ( )

( ) ( )

1

0

1 1
1

2 2
0 0

1 1
1

2 2
0 0

1 1
log log exp 2

2

1 1
log log exp 2

2

N

k

N N
T T
ki ki

k i

N N
T T
ki ki

k i

dy

N E z
N

N E z
N

− ∞

−∞
=

− −
−

= =

− −
−

= =




 

   = − − +   
   

   = − − +   
   

∑∫

∑ ∑

∑ ∑

d K d

d K d

 
(C.15) 

Then using: 

2

1 1
2

1

σ

σ
− −

′=

′=

K K

K K
 (C.16) 

Gives 

( ) ( ) ( )
1 1

1
2 2 2

0 0

1 1
, log log exp 2

2

N N
T

k ki ki
k i

I a y N E z
N σ

− −
−

= =

   ′= − − +   
   

∑ ∑ d K d  (C.17) 

Which allows the SNR to be manipulated more readily. 

Define SNR as the SNR before windowing, but make use of windowed waveforms on the 

reception side.  
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C.1 Verification of MI Expression for Correlated No ise 

when there is no Correlation 

Attempt to prove that the final expression from the previous section is equivalent to the 

“standard” MI expression when the noise is not correlated. 

 

Standard Expression: 

( ) ( )
2 21 1

2 2 2
0 0

1
, log log exp

2

N N
k i

k
k i

a z a z
I a y N E

N σ

− −

= =

   + − − 
  = − −       

∑ ∑
 

(C.18) 

Correlated noise expression: 

( ) ( ) ( )
1 1

1
2 2

0 0

1 1
, log log exp 2

2

N N
T T

k ki ki
k i

I a y N E z
N

− −
−

= =

   = − − +   
   

∑ ∑ d K d  (C.19) 

The two expressions above have the same form, except for the argument of the ( )exp i . 

Now, given that the noise power can be factored out of the covariance matrix, and the 

noise is uncorrelated, the following expression can be derived and substituted into the 

correlated noise MI expression: 

2

1 1
2

1
2

2

1

1

1

σ

σ

σ

σ

− −

−

′=

′=

=

=

K K

K K

I

I

 (C.20) 

Substituting this result in the correlated noise MI expression gives: 

( ) ( ) ( )

( ) ( )

( ) ( )

1 1
1

2 2
0 0

1 1

2 2 2
0 0

1

2 2 2
0

1 1
, log log exp 2

2

1 1 1
log log exp 2

2

1 1
log log exp 2

2

N N
T T

k ki ki
k i

N N
T T
ki ki

k i

N
T T
ki ki

i

I a y N E z
N

N E z
N

N E z
N

σ

σ

− −
−

= =

− −

= =

−

=

   = − − +   
   

     = − − +    
     

  = − − +  
  

∑ ∑

∑ ∑

∑

d K d

d I d

d d

( ) ( )

1

0

1 1

2 2 2
0 0

1 1
log log exp ( ) 2 ( )

2

N

k

N N
T T

k i k i
k i

N E z
N σ

−

=

− −

= =

 
 
 

   = − − − + −   
   

∑

∑ ∑ a a a a

 

(C.21) 

Expanding the inner expression gives: 
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( )
( )( )
( ) 2 ( )

2

2 2

T T
k i k i

T T T
k i k i

T T T T T T
k k i k k k i i i i

z

z

z z

− + −

= − + −
= − + − + −

a a a a

a a a a

a a a a a a a a a a

 (C.22) 

Now, using the fact that inner products are commutative, that is: 

T T
k k

T T
i i

z z

z z

=
=

a a

a a
 (C.23) 

for this case and expanding the inner expression for the uncorrelated MI expression gives: 

( ) ( )

2 2

2 2

k i

T T
k i k i

T T T T T T T T T T
k k i k k k i i i i k i

T T T T T T T T
k k i k k k i i i i k i

T T T T T T
k k i k k k i i i i

z z

z z z z

z z z z z z z z

z z z z

z z

− + −

= − + − + −
= − + − + − + − + −
= − + − + − + −
= − + − + −

a a

a a a a

a a a a a a a a a a a a

a a a a a a a a a a a a

a a a a a a a a a a

 (C.24) 

which shows that the expression for the correlated case simplifies to the expression for the 

uncorrelated case. 
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C.2 Derivation of Covariance Matrix Induced by a 

Windowed FFT 

This section describes the derivation of the complex covariance matrix of the output of a 

windowed FFT. 

Starting with a correlated multidimensional Gauss vector with covariance matrix K. 

y Ax=  (C.25) 

Where y and x are column vectors, and x is a zero mean unity variance vector of Gaussian 

random variables. (All variables could be complex if required.) 

HK AA=  (C.26) 

Is the Cholesky decomposition of K. (in Matlab use chol() function with ‘lower’ parameter.) 

Now let z be a correlated (due to windowing) sample of the M-D Gaussian vector having 

covariance matrix K. 

( )( )
( )

diagz Ax b

B Ax

=

=
 (C.27) 

Where b is a row vector containing the window function and B is a square matrix, with the 

window function placed on the diagonal and zero otherwise. The function diag( ) extracts 

the diagonal of its argument as a column vector. 

Now let u be the FFT of z: 

u Wz

WBAx

=
=

 (C.28) 

The covariance matrix of the output can be calculated as follows: 

{ }
( )( ){ }

{ }
{ }

H
FFT

H

H H H H

H H H H

H H

H

K E uu

E WBAx WBAx

E WBAxx A B W

WBE Axx A B W

WBKB W

WQW

=

=

=

=
=
=

 (C.29) 

where 
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( )HQ b b K= �  (C.30) 

and �  is the Hadamard product (i.e. elementwise product) 

Note that if the DFT matrix is unitary (scaled by 1 N ) then: 

1 H
u uW W− =  (C.31) 

This should have been derived starting from the expression below: 

1 *
u uW W− =  (C.32) 

but 

*

T
u u

H
u u

W W

W W

=
=

 (C.33) 

so 

1 H
u uW W− =  (C.34) 

And 

( ) ( )

1

1 11

H
u u

H
u u u

W W

W W W

−

− −−

=

= =
 (C.35) 

 

If there is no transform A , then: 

{ }
( )( ){ }

{ }
{ }

2

2 2

2

2

H

H

H H H

H H H

H H

H

K E uu

E WBx WBx

E WBxx B W

WBE xx B W

WBIB W

WB W

σ
σ

=

=

=

=
=
=

 (C.36) 

Then the inverse of covariance matrix can be calculated as: 
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( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( )

1
1 2 2

1 1 12 2

1 1 1 12 2

12 2

2

2

2

2

H

H

H

H

K WB W

W WB

W B W

WB W

σ

σ

σ

σ

−−

− − −

− − − −

− −

=

=

=

=

 (C.37) 

 

Best approach seems to be to take the mean of the upper triangular matrix and conjugate 

transpose of the lower triangular, and then copy this as the lower and upper triangular 

matrix. Then use the real part of the diagonal as the diagonal followed by the Choleskey 

inverse. 

The same seems to be the case for the real matrix, although the averaging idea still needs 

to be tested. 
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Appendix D Multi-variate Information Measures 

This appendix describes the difference between multi-information, co-information and 

conditional information. This section is a summary based on the following sources: 

[Jakulin2004, Jin2007 and Bell2003]. 

 

The notation and nomenclature is summarised as follows: 

Attribute – input RV to a “system”. (independent but mutually exclusive events) 

Label – output RV from a system. (Also an attribute) 

Interaction – dependence in a whole set of events, but not any subset. 

Extra attributes cannot change existing interactions. 

Interactions are unambiguous, symmetric and undirected. Interactions which connect a set 

of attributes together. 

D.1 Conditional Independence 

Events are independent if and only if 

( ) ( ) ( ),P A B P A P B=
 

(D.1) 

This implies that neither event has any influence over the other event: 

( ) ( )|P A B P A=
 

(D.2) 

and 

( ) ( )|P B A P B=
 

(D.3) 

 

But A and B might become dependent if C is observed – “flickering dependencies” 

Conditional independence proposed as a solution to this problem: 

( ) ( ) ( ), | | |P A B C P A C P B C=
 

(D.4) 

or equivalently: 

( ) ( )| , |P A B C P A C=
 

(D.5) 
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This concept should be verified for the case: NOT A and NOT B (both independent and 

conditionally. independent) 

If A and B are independent, they do not 2-interact. 

If C affects the dependence between A and B, then A, B and C 3-interact. 

Negative interaction implies redundance, and positive interaction implies synergy. 

D.2 Entropy 

( ) ( ) ( )( )2log
a A

H A P a P a
∈

=∑
 

(D.6) 

The higher the entropy, the less reliable predictions that can be made about the random 

variable. 

Entropy for two attributes: Conditional entropy – uncertainty about A having knowledge of 

B. 

( ) ( ) ( )( )
( ) ( )

2
,

| , log |

,

a A b B

H A B P a b P a b

H A B H B

∈ ∈

=

= −

∑

 

(D.7) 

D.3 Mutual Information 

( ) ( ) ( )
( ) ( )2

,

,
; , log

a A b B

P a b
I A B P a b

P a P b∈ ∈

 
=   

 
∑

 

(D.8) 

( ) ( ) ( ) ( )
( ) ( )
( ) ( )

( )

; ,

|

|

;

I A B H A H B H A B

H A H A B

H B H B A

I B A

= + −

= −

= −

=
 

(D.9) 

This is a measure of correlation between attributes or alternatively the reduction in 

uncertainty. 

MI always zero or positive, and is zero if and only if the attributes are independent. 

I(Attribute;Label) is the information provided by A about L, and is called the “information 

gain”. 
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( );I A B

( ),H A B

( )H B A

( )H B
( )H A

( )H A B

 

Figure D.1: Venn diagram for two attribute interact ions. 

Examples of joint probability distributions to aid understanding of MI: 

 

D.4 Entropy of Three Attributes 

How much uncertainty remains about A after having observed B and C ? 

( ) ( ) ( )| , , , ,H A B C H A B C H B C= −
 

(D.10) 

Conditional mutual information: Effect of C on interaction between A and B. 

( ) ( ) ( )
( ) ( )2

, ,

, |
; | , , log

| |A B C

P a b c
I A B C P a b c

P a c P b c

 
=   

 
∑

 

(D.11) 

To derive this in terms of entropies: 

( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( )

; | | | , |

| | ,

, , , ,

I A B C H A C H B C H A B C

H A C H A B C

H A C H B C H C H A B C

= + −

= −

= + − −
 

(D.12) 

Conditional MI: Always positive, and zero iff A and B are independent given knowledge of 

C. (i.e. C completely explains the association between A and B.) This implies that C can be 

predicted from A and B. 
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( )H ABC

( )H A ( )H B

( )H C

( ); ;I A B C
( ); |I C B A

( )| ,H A B C ( )| ,H B A C

( )| ,H C A B

( ); ,I C A B

( ); |I A B C

 

Figure D.2 : Three attribute interactions and entro pies. 

Note that care needs to be taken when using this figure as some of the areas represent 

negative values. 

 

D.5 Co-Information 

Nomenclature: 

Information shared by all K RV’s :  

Interaction information [McGill1954], - multivariate generalisation of Shannon’s 

mutual information. 

Multiple mutual information or Interaction information or co-information [Bell2003] is a 

measure of the intersection of all three attributes. 

( ) ( ) ( ); ; ; | ;I A B C I A B C I A B−≜
 

(D.13) 

Three forms 

( ) ( ) ( )
( ) ( )
( ) ( )

; ; ; | ;

; | ;

; | ;

I A B C I A B C I A B

I A C B I A C

I B C A I B C

= −

= −

= −
 

(D.14) 

Also, (from [Jakulin2004]): 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
; ; , ; , ,

, , , , ,

I A B C I A B C I A C I B C

H A B H B C H A C H A H B H C H A B C

= − −

= + + − − − −
 

(D.15) 

Interaction information is symmetric (same as mutual information) 
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( ) ( )
( ) ( )
( ) ( )

; ; ; ;

; ; ; ;

; ; ; ;

I A B C I A C B

I B A C I B C A

I C B A I C A B

=

= =

= =
 

(D.16) 

Interaction information can be negative. 

Interaction magnitude is the absolute value of the interaction information. 

 

Total Correlation was first described in [Watanabe1960]. It describes the total amount of 

redundancy or dependency among the attributes: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, , , ,

; ; ; ; ;

C A B C H A H B H C H A B C

I A B I B C I A C I A B C

+ + −

= + + +

≜

 

(D.17) 

It is always positive, and zero if and only if all attributes are independent. 

It will be greater than zero even if only a pair of attributes are dependent. 

( ) ( ) ( ) ( ), ,P a b c P a P b P c=
 

(D.18) 

It will not be zero even if only a pair of attributes are dependent, e.g. 

( ) ( ) ( ), , ,P a b c P a b P c=
 

(D.19) 
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Appendix E Achievable Pulse Compression Sidelobe 

Levels 

To obtain a realistic value for the lowest level for the sidelobes, use was made of a L-p 

Norm optimization routine based on [Cilliers2007], but where the transmit and receive filter 

remained matched. The pulse was constrained in that the real and imaginary samples were 

bounded not to exceed a value of 1.5. An example for a time-bandwidth product of 50 is 

shown in the following figure, for P=10 and P=408.  

 

Figure E.3: Example of the pulse compression wavefo rm for a time-bandwidth 

product of 50. 

This result shows that relatively flat sidelobes are achievable for a peak to sidelobe level of 

approximately 121 dB. Given this result, the sidelobe structure could be simulated from a 

level of 150 dB, and the sidelobe structure can be modelled as a flat line. 
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