3,904 research outputs found

    Antenna and radio channel characterisation for low‐power personal and body area networks

    Get PDF
    PhDThe continuous miniaturisation of sensors, as well as the progression in wearable electronics, embedded software, digital signal processing and biomedical technologies, have led to new usercentric networks, where devices can be carried in the user’s pockets, attached to the user’s body. Body-centric wireless communications (BCWCs) is a central point in the development of fourth generation mobile communications. Body-centric wireless networks take their place within the personal area networks, body area networks and sensor networks which are all emerging technologies that have a wide range of applications (such as, healthcare, entertainment, surveillance, emergency, sports and military). The major difference between BCWC and conventional wireless systems is the radio channels over which the communication takes place. The human body is a hostile environment from a radio propagation perspective and it is therefore important to understand and characterise the effects of the human body on the antenna elements, the radio channel parameters and, hence, system performance. This thesis focuses on the study of body-worn antennas and on-body radio propagation channels. The performance parameters of five different narrowband (2.45 GHz) and four UWB (3.1- 10.6 GHz) body-worn antennas in the presence of human body are investigated and compared. This was performed through a combination of numerical simulations and measurement campaigns. Parametric studies and statistical analysis, addressing the human body effects on the performance parameters of different types of narrowband and UWB antennas have been presented. The aim of this study is to understand the human body effects on the antenna parameters and specify the suitable antenna in BCWCs at both 2.45 GHz and UWB frequencies. Extensive experimental investigations are carried out to study the effects of various antenna types on the on-body radio propagation channels as well. Results and analysis emphasize the best body-worn antenna for reliable and power-efficient on-body communications. Based on the results and analysis, a novel dual-band and dual-mode antenna is proposed for power-efficient and reliable on-body and off-body communications. The on-body performance of the DBDM antenna at 2.45 GHz is compared with other five narrowband antennas. Based on the results and analysis of six narrowband and four UWB antennas, antenna specifications and design guidelines are provided that will help in selecting the best body-worn antenna for both narrowband and UWB systems to be applied in body-centric wireless networks (BCWNs). A comparison between IV the narrowband and UWB antenna parameters are also provided. At the end of the thesis, the subject-specificity of the on-body radio propagation channel at 2.45 GHz and 3-10 GHz was experimentally investigated by considering eight real human test subjects of different shapes, heights and sizes. The subject-specificity of the on-body radio propagation channels was compared between the narrowband and UWB systems as well

    Experimental study of on-body radio channel performance of a compact ultra wideband antenna

    Get PDF
    In this paper, on-body radio channel performance of a compact ultra wideband (UWB) antenna is investigated for body-centric wireless communications. Measurement campaigns were first done in the chamber and then repeated in an indoor environment for comparison. The path loss parameter for eight different on-body radio channels has been characterized and analyzed. In addition, the path loss was modeled as a function of distance for 34 different receiver locations for propagation along the front part of the body. Results and analysis show that, compared with anechoic chamber, a reduction of 16.34% path loss exponent is noticed in indoor environment. The antenna shows very good on-body radio channel performance and will be a suitable candidate for future efficient and reliable body-centric wireless communications

    Improvement of strength and water absorption of Interlocking Compressed Earth Bricks (ICEB) with addition of Ureolytic Bacteria (UB)

    Get PDF
    Interlocking Compressed Earth Brick (ICEB) are cement stabilized soil bricks that allow for dry stacked construction. This characteristic resulted to faster the process of building walls and requires less skilled labour as the bricks are laid dry and lock into place. However there is plenty room for improving the interlocking bricks by increase its durability. Many studies have been conducted in order to improve the durability of bricks by using environmentally method. One of the methods is by introducing bacteria into bricks. Bacteria in brick induced calcite precipitation (calcite crystals) to cover the voids continuously. Ureolytic Bacteria (UB) was used in this study as a partial replacement of limestone water with percentage of 1%, 3% and 5%. Enrichment process was done in soil condition to ensure the survivability of UB in ICEB environment. This paper evaluates the effect of UB in improving the strength and water absorption properties of ICEB and microstructure analysis. The results show that addition of 5% UB in ICEB indicated positive results in improving the ICEB properties by 15.25% in strength, 14.72% in initial water absorption and 14.68% reduction in water absorption. Precipitation of calcium carbonate (CaCo3) in form of calcite can be distinguish clearly in microstructure analysis

    Performance of MB-OFDM UWB and WiMAX IEEE 802.16e converged radio-over-fiber in PON

    Get PDF
    Experimental results about the performance of converged radio-over- fiber transmission including multiband- OFDM UWB and WiMAX 802.16e wireless over a passive optical network are reported in this paper. The experimental study indicates that UWB and WiMAX converged transmission is feasible over the proposed distribution set-up employing a single wavelength. However, the results indicate that there is an EVM penalty of 3.2 dB for a UWB 10 km SSMF transmission in presence of WiMAX wireless

    Mathematical modeling of ultra wideband in vivo radio channel

    Get PDF
    This paper proposes a novel mathematical model for an in vivo radio channel at ultra-wideband frequencies (3.1–10.6 GHz), which can be used as a reference model for in vivo channel response without performing intensive experiments or simulations. The statistics of error prediction between experimental and proposed model is RMSE = 5.29, which show the high accuracy of the proposed model. Also, the proposed model was applied to the blind data, and the statistics of error prediction is RMSE = 7.76, which also shows a reasonable accuracy of the model. This model will save the time and cost on simulations and experiments, and will help in designing an accurate link budget calculation for a future enhanced system for ultra-wideband body-centric wireless systems

    Regulatory and Policy Implications of Emerging Technologies to Spectrum Management

    Get PDF
    This paper provides an overview of the policy implications of technological developments, and how these technologies can accommodate an increased level of market competition. It is based on the work carried out in the SPORT VIEWS (Spectrum Policies and Radio Technologies Viable In Emerging Wireless Societies) research project for the European Commission (FP6)spectrum, new radio technologies, UWB, SDR, cognitive radio, Telecommunications, regulation, Networks, Interconnection

    Foldable all-textile cavity-backed slot antennas for personal UWB localization

    Get PDF
    An all-textile multimoded cavity-backed slot antenna has been designed and fabricated for body-worn impulse radio ultra-wideband (IR-UWB) operation in the 3,744-4,742.4 MHz frequency band, thereby covering Channels 2 and 3 of the IEEE 802.15.4a standard. Its light weight, mechanical flexibility, and small footprint of 35 mm x 56 mm facilitate integration into textile for radio communication equipment for first aid responders, personal locator beacons, and equipment for localization and medical monitoring of children or the elderly. The antenna features a stable radiation pattern and reflection coefficient in diverse operating conditions such as in free space, when subject to diverse bending radii and when deployed on the torso or upper right arm of a test person. The high isolation toward the wearer's body originates from the antenna's hemispherical radiation pattern with a -3 dB beamwidth of 120 degrees and a front-to-back ratio higher than 11 dB over the entire band. Moreover, the antenna exhibits a measured maximum gain higher than 6.3 dBi and a radiation efficiency over 75%. In addition, orientation-specific pulse distortion introduced by the antenna element is analyzed by means of the System Fidelity Factor (SFF). The SFF of the communication link between two instances of this antenna is higher than 94% for all directions within the antenna's -3 dB beamwidth. This easily wearable and deployable antenna is suitable to support IR-UWB localization with an accuracy in the order of 5 cm

    Highly efficient impulse-radio ultra-wideband cavity-backed slot antenna in stacked air-filled substrate integrated waveguide technology

    Get PDF
    An impulse-radio ultra-wideband (IR-UWB) cavity-backed slot antenna covering the [5.9803; 6.9989] GHz frequency band of the IEEE 802.15.4a-2011 standard is designed and implemented in an air-filled substrate integrated waveguide (AFSIW) technology for localization applications with an accuracy of at least 3 cm. By relying on both frequency and time-domain optimization, the antenna achieves excellent IR-UWB characteristics. In free-space conditions, an impedance bandwidth of 1.92 GHz (or 29.4%), a total efficiency higher than 89%, a front-to-back ratio of at least 12.1 dB, and a gain higher than 6.3 dBi are measured in the frequency domain. Furthermore, a system fidelity factor larger than 98% and a relative group delay smaller than 100 ps are measured in the time domain within the 3 dB beamwidth of the antenna. As a result, the measured time-of-arrival of a transmitted Gaussian pulse, for different angles of arrival, exhibits variations smaller than 100 ps, corresponding to a maximum distance estimation error of 3 cm. Additionally, the antenna is validated in a real-life worst-case deployment scenario, showing that its characteristics remain stable in a large variety of deployment scenarios. Finally, the difference in frequency-and time-domain performance is studied between the antenna implemented in AFSIW and in dielectric filled substrate integrated waveguide (DFSIW) technology. We conclude that DFSIW technology is less suitable for the envisaged precision IR-UWB localization application
    corecore