1,867 research outputs found

    A Simple Cooperative Diversity Method Based on Network Path Selection

    Full text link
    Cooperative diversity has been recently proposed as a way to form virtual antenna arrays that provide dramatic gains in slow fading wireless environments. However most of the proposed solutions require distributed space-time coding algorithms, the careful design of which is left for future investigation if there is more than one cooperative relay. We propose a novel scheme, that alleviates these problems and provides diversity gains on the order of the number of relays in the network. Our scheme first selects the best relay from a set of M available relays and then uses this best relay for cooperation between the source and the destination. We develop and analyze a distributed method to select the best relay that requires no topology information and is based on local measurements of the instantaneous channel conditions. This method also requires no explicit communication among the relays. The success (or failure) to select the best available path depends on the statistics of the wireless channel, and a methodology to evaluate performance for any kind of wireless channel statistics, is provided. Information theoretic analysis of outage probability shows that our scheme achieves the same diversity-multiplexing tradeoff as achieved by more complex protocols, where coordination and distributed space-time coding for M nodes is required, such as those proposed in [7]. The simplicity of the technique, allows for immediate implementation in existing radio hardware and its adoption could provide for improved flexibility, reliability and efficiency in future 4G wireless systems.Comment: To appear, IEEE JSAC, special issue on 4

    Cooperative Relaying in Wireless Networks under Spatially and Temporally Correlated Interference

    Full text link
    We analyze the performance of an interference-limited, decode-and-forward, cooperative relaying system that comprises a source, a destination, and NN relays, placed arbitrarily on the plane and suffering from interference by a set of interferers placed according to a spatial Poisson process. In each transmission attempt, first the transmitter sends a packet; subsequently, a single one of the relays that received the packet correctly, if such a relay exists, retransmits it. We consider both selection combining and maximal ratio combining at the destination, Rayleigh fading, and interferer mobility. We derive expressions for the probability that a single transmission attempt is successful, as well as for the distribution of the transmission attempts until a packet is transmitted successfully. Results provide design guidelines applicable to a wide range of systems. Overall, the temporal and spatial characteristics of the interference play a significant role in shaping the system performance. Maximal ratio combining is only helpful when relays are close to the destination; in harsh environments, having many relays is especially helpful, and relay placement is critical; the performance improves when interferer mobility increases; and a tradeoff exists between energy efficiency and throughput

    Power Optimisation and Relay Selection in Cooperative Wireless Communication Networks

    Get PDF
    Cooperative communications have emerged as a significant concept to improve reliability and throughput in wireless systems. In cooperative networks, the idea is to implement a scheme in wireless systems where the nodes can harmonize their resources thereby enhancing the network performance in different aspects such as latency, BER and throughput. As cooperation spans from the basic idea of transmit diversity achieved via MIMO techniques and the relay channel, it aims to reap somewhat multiple benefits of combating fading/burst errors, increasing throughput and reducing energy use. Another major benefit of cooperation in wireless networks is that since the concept only requires neighbouring nodes to act as virtual relay antennas, the concept evades the negative impacts of deployment costs of multiple physical antennas for network operators especially in areas where they are difficult to deploy. In cooperative communications energy efficiency and long network lifetimes are very important design issues, the focus in this work is on ad hoc and sensor network varieties where the nodes integrate sensing, processing and communication such that their cooperation capabilities are subject to power optimisation. As cooperation communications leads to trade-offs in Quality of Services and transmit power, the key design issue is power optimisation to dynamically combat channel fluctuations and achieve a net reduction of transmit power with the goal of saving battery life. Recent researches in cooperative communications focus on power optimisation achieved via power control at the PHY layer, and/or scheduling mechanism at the MAC layer. The approach for this work will be to review the power control strategy at the PHY layer, identify their associated trade-offs, and use this as a basis to propose a power control strategy that offers adaptability to channel conditions, the road to novelty in this work is a channel adaptable power control algorithm that jointly optimise power allocation, modulation strategy and relay selection. Thus, a novel relay selection method is developed and implemented to improve the performance of cooperative wireless networks in terms of energy consumption. The relay selection method revolves on selection the node with minimum distance to the source and destination. The design is valid to any wireless network setting especially Ad-hoc and sensor networks where space limitations preclude the implementation of bigger capacity battery. The thesis first investigates the design of relay selection schemes in cooperative networks and the associated protocols. Besides, modulation strategy and error correction code impact on energy consumption are investigated and the optimal solution is proposed and jointly implemented with the relay selection method. The proposed algorithm is extended to cooperative networks in which multiple nodes participate in cooperation in fixed and variable rate system. Thus, multi relay selection algorithm is proposed to improve virtual MIMO performance in terms of energy consumption. Furthermore, motivated by the trend of cell size optimisation in wireless networks, the proposed relay selection method is extended to clustered wireless networks, and jointly implemented with virtual clustering technique. The work will encompass three main stages: First, the cooperative system is designed and two major protocols Decode and Forward (DF) and amplify and forward (AF) are investigated. Second, the proposed algorithm is modelled and tested under different channel conditions with emphasis on its performance using different modulation strategies for different cooperative wireless networks. Finally, the performance of the proposed algorithm is illustrated and verified via computer simulations. Simulation results show that the distance based relay selection algorithm exhibits an improved performance in terms of energy consumption compared to the conventional cooperative schemes under different cooperative communication scenarios

    Network-Level Performance Evaluation of a Two-Relay Cooperative Random Access Wireless System

    Full text link
    In wireless networks relay nodes can be used to assist the users' transmissions to reach their destination. Work on relay cooperation, from a physical layer perspective, has up to now yielded well-known results. This paper takes a different stance focusing on network-level cooperation. Extending previous results for a single relay, we investigate here the benefits from the deployment of a second one. We assume that the two relays do not generate packets of their own and the system employs random access to the medium; we further consider slotted time and that the users have saturated queues. We obtain analytical expressions for the arrival and service rates of the queues of the two relays and the stability conditions. We investigate a model of the system, in which the users are divided into clusters, each being served by one relay, and show its advantages in terms of aggregate and throughput per user. We quantify the above, analytically for the case of the collision channel and through simulations for the case of Multi-Packet Reception (MPR), and we provide insight on when the deployment of a second relay in the system can yield significant advantages.Comment: Submitted for journal publicatio
    • …
    corecore