1,490 research outputs found

    Relay-Induced Error Propagation Reduction for Decode-and-Forward Cooperative Communications

    No full text
    An attractive hybrid method of mitigating the effects of error propagation that may be imposed by the relay node (RN) on the destination node (DN) is proposed. We selected the most appropriate relay location for achieving a specific target Bit Error Ratio (BER) at the relay and signalled the RN-BER to the DN. The knowledge of this BER was then exploited by the decoder at the destination. Our simulation results show that when the BER at the RN is low, we do not have to activate the RN-BER aided decoder at the DN. However, when the RN-BER is high, significant system performance improvements may be achieved by activating the proposed RN-BER based decoding technique at the DN. For example, a power-reduction of up to about 19dB was recorded at a DN BER of 10-4

    Selective Combining for Hybrid Cooperative Networks

    Full text link
    In this study, we consider the selective combining in hybrid cooperative networks (SCHCNs scheme) with one source node, one destination node and NN relay nodes. In the SCHCN scheme, each relay first adaptively chooses between amplify-and-forward protocol and decode-and-forward protocol on a per frame basis by examining the error-detecting code result, and NcN_c (1≤Nc≤N1\leq N_c \leq N) relays will be selected to forward their received signals to the destination. We first develop a signal-to-noise ratio (SNR) threshold-based frame error rate (FER) approximation model. Then, the theoretical FER expressions for the SCHCN scheme are derived by utilizing the proposed SNR threshold-based FER approximation model. The analytical FER expressions are validated through simulation results.Comment: 27 pages, 8 figures, IET Communications, 201

    Multiple-Access Relaying with Network Coding: Iterative Network/Channel Decoding with Imperfect CSI

    Get PDF
    International audienceIn this paper, we study the performance of the four-node multiple-access relay channel with binary Network Coding (NC) in various Rayleigh fading scenarios. In particular, two relay protocols, decode-and-forward (DF) and demodulate-and-forward (DMF) are considered. In the first case, channel decoding is performed at the relay before NC and forwarding. In the second case, only demodulation is performed at the relay. The contributions of the paper are as follows: (1) two joint network/channel decoding (JNCD) algorithms, which take into account possible decoding error at the relay, are developed in both DF and DMF relay protocols; (2) both perfect channel state information (CSI) and imperfect CSI at receivers are studied. In addition, we propose a practical method to forward the relays error characterization to the destination (quantization of the BER). This results in a fully practical scheme. (3) We show by simulation that the number of pilot symbols only affects the coding gain but not the diversity order, and that quantization accuracy affects both coding gain and diversity order. Moreover, when compared with the recent results using DMF protocol, our proposed DF protocol algorithm shows an improvement of 4 dB in fully interleaved Rayleigh fading channels and 0.7 dB in block Rayleigh fading channels

    Optimum Design of Spectral Efficient Green Wireless Communications

    Get PDF
    This dissertation focuses on the optimum design of spectral efficient green wireless communications. Energy efficiency (EE), which is defined as the inverse of average energy required to successfully deliver one information bit from a source to its destination, and spectral efficiency (SE), which is defined as the average data rate per unit bandwidth, are two fundamental performance metrics of wireless communication systems. We study the optimum designs of a wide range of practical wireless communication systems that can either maximize EE, or SE, or achieve a balanced tradeoff between the two metrics. There are three objectives in this dissertation. First, an accurate frame error rate (FER) expression is developed for practical coded wireless communication systems operating in quasi-static Rayleigh fading channels. The new FER expression enables the accurate modeling of EE and SE for various wireless communication systems. Second, the optimum designs of automatic repeat request (ARQ) and hybrid ARQ (HARQ) systems are performed to by using the EE and SE as design metrics. Specifically, a new metric of normalized EE, which is defined as the EE normalized by the SE, is proposed to achieve a balanced tradeoff between the EE and SE. Third, a robust frequency-domain on-off accumulative transmission (OOAT) scheme has been developed to achieve collision-tolerant media access control (CT-MAC) in a wireless network. The proposed frequency domain OOAT scheme can improve the SE and EE by allowing multiple users to transmit simultaneously over the same frequency bands, and the signal collisions at the receiver can be resolved by using signal processing techniques in the physical layer

    Distortion Minimization in Gaussian Layered Broadcast Coding with Successive Refinement

    Full text link
    A transmitter without channel state information (CSI) wishes to send a delay-limited Gaussian source over a slowly fading channel. The source is coded in superimposed layers, with each layer successively refining the description in the previous one. The receiver decodes the layers that are supported by the channel realization and reconstructs the source up to a distortion. The expected distortion is minimized by optimally allocating the transmit power among the source layers. For two source layers, the allocation is optimal when power is first assigned to the higher layer up to a power ceiling that depends only on the channel fading distribution; all remaining power, if any, is allocated to the lower layer. For convex distortion cost functions with convex constraints, the minimization is formulated as a convex optimization problem. In the limit of a continuum of infinite layers, the minimum expected distortion is given by the solution to a set of linear differential equations in terms of the density of the fading distribution. As the bandwidth ratio b (channel uses per source symbol) tends to zero, the power distribution that minimizes expected distortion converges to the one that maximizes expected capacity. While expected distortion can be improved by acquiring CSI at the transmitter (CSIT) or by increasing diversity from the realization of independent fading paths, at high SNR the performance benefit from diversity exceeds that from CSIT, especially when b is large.Comment: Accepted for publication in IEEE Transactions on Information Theor

    Low-Latency Short-Packet Transmissions: Fixed Length or HARQ?

    Get PDF
    We study short-packet communications, subject to latency and reliability constraints, under the premises of limited frequency diversity and no time diversity. The question addressed is whether, and when, hybrid automatic repeat request (HARQ) outperforms fixed-blocklength schemes with no feedback (FBL-NF) in such a setting. We derive an achievability bound for HARQ, under the assumption of a limited number of transmissions. The bound relies on pilot-assisted transmission to estimate the fading channel and scaled nearest-neighbor decoding at the receiver. We compare our achievability bound for HARQ to stateof-the-art achievability bounds for FBL-NF communications and show that for a given latency, reliability, number of information bits, and number of diversity branches, HARQ may significantly outperform FBL-NF. For example, for an average latency of 1 ms, a target error probability of 10^-3, 30 information bits, and 3 diversity branches, the gain in energy per bit is about 4 dB.Comment: 6 pages, 5 figures, accepted to GLOBECOM 201

    Cooperative diversity using MIMO systems

    Get PDF
    Multipath fading is one of the primary factors for degrading the performance in a wireless network. Information theoretic and past research suggest the use various diversity techniques to combat fading in wireless networks. Antenna diversity, a form of diversity technique, when incorporated in a wireless transceiver increases the system capacity and is one of the effective methods to combat fading in wireless systems. Also, recent research by Laneman et.al., Sendonaris et.al. suggests that cooperation among users in a wireless networks is an effective approach for a better signal reception in multipath fading environments. The diversity gains obtained by cooperation among the users of a wireless network is termed as cooperative diversity . Although, prior research in cooperative diversity considers users equipped with single antenna, in practical scenarios users may be able to accommodate multiple antennas due to the recent advanced research in semiconductor industry. Hence, the primary purpose of this thesis is to design, simulate and analyze an end-end performance of multi-antenna wireless systems employing cooperative multi antenna relay nodes so as to exploit the cooperative diversity and antenna diversity simultaneously in a wireless networks. Three main contributions to the area of cooperative multiple-input multiple-output (MIMO) wireless systems is presented in this thesis. First, we perform information theoretic analysis to study the impact of antenna arrays on cooperative wireless networks and propose the best possible distribution of antenna arrays among the three terminals of a simple three terminal cooperative relay network. Second, we design, simulate, and analyze a cooperative multiple-input multiple-output (MIMO) wireless systems employing orthogonal space-time block codes as proposed by Alamouti in 1998 with a decode-and-forward (DF) relay terminal. We implement a maximal ratio combining receiver that provides almost twice the diversity gain with respect to point-point multiple input multiple output link. Finally, we implement a practical receiver for cooperative reception using multiple antennas at all nodes based on Bell-Labs Layered Space Time architecture (BLAST). We incorporate a practical adaptive decode-and-forward (DF) relaying technique for reliable signal retransmission for both Alamouti space-time coding and the BLAST schemes. Results presented in terms of bit error rates and throughput show that remarkable performance gains are achievable by combining the concepts drawn from space-time coding, cooperative relaying and array processing
    • …
    corecore