23 research outputs found

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Evaluation of Overlay/underlay Waveform via SD-SMSE Framework for Enhancing Spectrum Efficiency

    Get PDF
    Recent studies have suggested that spectrum congestion is mainly due to the inefficient use of spectrum rather than its unavailability. Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) are two terminologies which are used in the context of improved spectrum efficiency and usage. The DSA concept has been around for quite some time while the advent of CR has created a paradigm shift in wireless communications and instigated a change in FCC policy towards spectrum regulations. DSA can be broadly categorized as using a 1) Dynamic Exclusive Use Model, 2) Spectrum Commons or Open sharing model or 3) Hierarchical Access model. The hierarchical access model envisions primary licensed bands, to be opened up for secondary users, while inducing a minimum acceptable interference to primary users. Spectrum overlay and spectrum underlay technologies fall within the hierarchical model, and allow primary and secondary users to coexist while improving spectrum efficiency. Spectrum overlay in conjunction with the present CR model considers only the unused (white) spectral regions while in spectrum underlay the underused (gray) spectral regions are utilized. The underlay approach is similar to ultra wide band (UWB) and spread spectrum (SS) techniques utilize much wider spectrum and operate below the noise floor of primary users. Software defined radio (SDR) is considered a key CR enabling technology. Spectrally modulated, Spectrally encoded (SMSE) multi-carrier signals such as Orthogonal Frequency Domain Multiplexing (OFDM) and Multi-carrier Code Division Multiple Access (MCCDMA) are hailed as candidate CR waveforms. The SMSE structure supports and is well-suited for SDR based CR applications. This work began by developing a general soft decision (SD) CR framework, based on a previously developed SMSE framework that combines benefits of both the overlay and underlay techniques to improve spectrum efficiency and maximizing the channel capacity. The resultant SD-SMSE framework provides a user with considerable flexibility to choose overlay, underlay or hybrid overlay/underlay waveform depending on the scenario, situation or need. Overlay/Underlay SD-SMSE framework flexibility is demonstrated by applying it to a family of SMSE modulated signals such as OFDM, MCCDMA, Carrier Interferometry (CI) MCCDMA and Transform Domain Communication System (TDCS). Based on simulation results, a performance analysis of Overlay, Underlay and hybrid Overlay/Underlay waveforms are presented. Finally, the benefits of combining overlay/underlay techniques to improve spectrum efficiency and maximize channel capacity are addressed

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    Orthogonal multicarrier modulation for high-rates mobile and wireless communications

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN037085 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies

    Optical Communication

    Get PDF
    Optical communication is very much useful in telecommunication systems, data processing and networking. It consists of a transmitter that encodes a message into an optical signal, a channel that carries the signal to its desired destination, and a receiver that reproduces the message from the received optical signal. It presents up to date results on communication systems, along with the explanations of their relevance, from leading researchers in this field. The chapters cover general concepts of optical communication, components, systems, networks, signal processing and MIMO systems. In recent years, optical components and other enhanced signal processing functions are also considered in depth for optical communications systems. The researcher has also concentrated on optical devices, networking, signal processing, and MIMO systems and other enhanced functions for optical communication. This book is targeted at research, development and design engineers from the teams in manufacturing industry, academia and telecommunication industries

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modiïŹed our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the ïŹeld of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Contribution Ă  la conception d'un systĂšme de radio impulsionnelle ultra large bande intelligent

    No full text
    Faced with an ever increasing demand of high data-rates and improved adaptability among existing systems, which inturn is resulting in spectrum scarcity, the development of new radio solutions becomes mandatory in order to answer the requirements of these emergent applications. Among the recent innovations in the field of wireless communications,ultra wideband (UWB) has generated significant interest. Impulse based UWB (IR-UWB) is one attractive way of realizing UWB systems, which is characterized by the transmission of sub nanoseconds UWB pulses, occupying a band width up to 7.5 GHz with extremely low power density. This large band width results in several captivating features such as low-complexity low-cost transceiver, ability to overlay existing narrowband systems, ample multipath diversity, and precise ranging at centimeter level due to extremely fine temporal resolution.In this PhD dissertation, we investigate some of the key elements in the realization of an intelligent time-hopping based IR-UWB system. Due to striking resemblance of IR-UWB inherent features with cognitive radio (CR) requirements, acognitive UWB based system is first studied. A CR in its simplest form can be described as a radio, which is aware ofits surroundings and adapts intelligently. As sensing the environment for the availability of resources and then consequently adapting radio’s internal parameters to exploit them opportunistically constitute the major blocks of any CR, we first focus on robust spectrum sensing algorithms and the design of adaptive UWB waveforms for realizing a cognitive UWB radio. The spectrum sensing module needs to function with minimum a-priori knowledge available about the operating characteristics and detect the primary users as quickly as possible. Keeping this in mind, we develop several spectrum sensing algorithms invoking recent results on the random matrix theory, which can provide efficient performance with a few number of samples. Next, we design the UWB waveform using a linear combination of Bsp lines with weight coefficients being optimized by genetic algorithms. This results in a UWB waveform that is spectrally efficient and at the same time adaptable to incorporate the cognitive radio requirements. In the 2nd part of this thesis, some research challenges related to signal processing in UWB systems, namely synchronization and dense multipath channel estimation are addressed. Several low-complexity non-data-aided (NDA) synchronization algorithms are proposed for BPSK and PSM modulations, exploiting either the orthogonality of UWB waveforms or theinherent cyclostationarity of IR-UWB signaling. Finally, we look into the channel estimation problem in UWB, whichis very demanding due to particular nature of UWB channels and at the same time very critical for the coherent Rake receivers. A method based on a joint maximum-likelihood (ML) and orthogonal subspace (OS) approaches is proposed which exhibits improved performance than both of these methods individually.Face Ă  une demande sans cesse croissante de haut dĂ©bit et d’adaptabilitĂ© des systĂšmes existants, qui Ă  son tour se traduit par l’encombrement du spectre, le dĂ©veloppement de nouvelles solutions dans le domaine des communications sans fil devient nĂ©cessaire afin de rĂ©pondre aux exigences des applications Ă©mergentes. Parmi les innovations rĂ©centes dans ce domaine, l’ultra large bande (UWB) a suscitĂ© un vif intĂ©rĂȘt. La radio impulsionnelle UWB (IR-UWB), qui est une solution intĂ©ressante pour rĂ©aliser des systĂšmes UWB, est caractĂ©risĂ©e par la transmission des impulsions de trĂšs courte durĂ©e, occupant une largeur de bande allant jusqu’à 7,5 GHz, avec une densitĂ© spectrale de puissance extrĂȘmement faible. Cette largeur de bande importante permet de rĂ©aliser plusieurs fonctionnalitĂ©s intĂ©ressantes, telles que l’implĂ©mentation Ă  faible complexitĂ© et Ă  coĂ»t rĂ©duit, la possibilitĂ© de se superposer aux systĂšmes Ă  bande Ă©troite, la diversitĂ© spatiale et la localisation trĂšs prĂ©cise de l’ordre centimĂ©trique, en raison de la rĂ©solution temporelle trĂšs fine.Dans cette thĂšse, nous examinons certains Ă©lĂ©ments clĂ©s dans la rĂ©alisation d'un systĂšme IR-UWB intelligent. Nous avons tout d’abord proposĂ© le concept de radio UWB cognitive Ă  partir des similaritĂ©s existantes entre l'IR-UWB et la radio cognitive. Dans sa dĂ©finition la plus simple, un tel systĂšme est conscient de son environnement et s'y adapte intelligemment. Ainsi, nous avons tout d’abord focalisĂ© notre recherchĂ© sur l’analyse de la disponibilitĂ© des ressources spectrales (spectrum sensing) et la conception d’une forme d’onde UWB adaptative, considĂ©rĂ©es comme deux Ă©tapes importantes dans la rĂ©alisation d'une radio cognitive UWB. Les algorithmes de spectrum sensing devraient fonctionner avec un minimum de connaissances a priori et dĂ©tecter rapidement les utilisateurs primaires. Nous avons donc dĂ©veloppĂ© de tels algorithmes utilisant des rĂ©sultats rĂ©cents sur la thĂ©orie des matrices alĂ©atoires, qui sont capables de fournir de bonnes performances, avec un petit nombre d'Ă©chantillons. Ensuite, nous avons proposĂ© une mĂ©thode de conception de la forme d'onde UWB, vue comme une superposition de fonctions B-splines, dont les coefficients de pondĂ©ration sont optimisĂ©s par des algorithmes gĂ©nĂ©tiques. Il en rĂ©sulte une forme d'onde UWB qui est spectralement efficace et peut s’adapter pour intĂ©grer les contraintes liĂ©es Ă  la radio cognitive. Dans la 2Ăšme partie de cette thĂšse, nous nous sommes attaquĂ©s Ă  deux autres problĂ©matiques importantes pour le fonctionnement des systĂšmes UWB, Ă  savoir la synchronisation et l’estimation du canal UWB, qui est trĂšs dense en trajets multiples. Ainsi, nous avons proposĂ© plusieurs algorithmes de synchronisation, de faible complexitĂ© et sans sĂ©quence d’apprentissage, pour les modulations BPSK et PSM, en exploitant l'orthogonalitĂ© des formes d'onde UWB ou la cyclostationnaritĂ© inhĂ©rente Ă  la signalisation IR-UWB. Enfin, nous avons travaillĂ© sur l'estimation du canal UWB, qui est un Ă©lĂ©ment critique pour les rĂ©cepteurs Rake cohĂ©rents. Ainsi, nous avons proposĂ© une mĂ©thode d’estimation du canal basĂ©e sur une combinaison de deux approches complĂ©mentaires, le maximum de vraisemblance et la dĂ©composition en sous-espaces orthogonaux,d’amĂ©liorer globalement les performances

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering
    corecore