164 research outputs found

    Generalized Area Spectral Efficiency: An Effective Performance Metric for Green Wireless Communications

    Full text link
    Area spectral efficiency (ASE) was introduced as a metric to quantify the spectral utilization efficiency of cellular systems. Unlike other performance metrics, ASE takes into account the spatial property of cellular systems. In this paper, we generalize the concept of ASE to study arbitrary wireless transmissions. Specifically, we introduce the notion of affected area to characterize the spatial property of arbitrary wireless transmissions. Based on the definition of affected area, we define the performance metric, generalized area spectral efficiency (GASE), to quantify the spatial spectral utilization efficiency as well as the greenness of wireless transmissions. After illustrating its evaluation for point-to-point transmission, we analyze the GASE performance of several different transmission scenarios, including dual-hop relay transmission, three-node cooperative relay transmission and underlay cognitive radio transmission. We derive closed-form expressions for the GASE metric of each transmission scenario under Rayleigh fading environment whenever possible. Through mathematical analysis and numerical examples, we show that the GASE metric provides a new perspective on the design and optimization of wireless transmissions, especially on the transmitting power selection. We also show that introducing relay nodes can greatly improve the spatial utilization efficiency of wireless systems. We illustrate that the GASE metric can help optimize the deployment of underlay cognitive radio systems.Comment: 11 pages, 8 figures, accepted by TCo

    Energy harvesting AF relaying in the presence of interference and Nakagami-m fading

    Get PDF
    Energy-harvesting relaying is a promising solution to the extra energy requirement at the relay. It can transfer energy from the source to the relay. This will encourage more idle nodes to be involved in relaying. In this paper, the outage probability and the throughput of an amplify-and-forward relaying system using energy harvesting are analyzed. Both time switching and power-splitting harvesting schemes are considered. The analysis takes into account both the Nakagami-mm fading caused by signal propagation and the interference caused by other transmitters. Numerical results show that time switching is more sensitive to system parameters than power splitting. Also, the system performance is more sensitive to the transmission rate requirement, the signal-to-interference-plus-noise ratio in the first hop and the relaying method

    Stochastic geometric analysis in cooperative vehicular networks under Weibull fading

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.We study the performance of a cooperative vehicular communication system in a highway traffic scenario, where the locations of co-channel interfering vehicles are modeled by a one-dimensional Poisson point process (PPP). Wireless channel modeling campaigns have shown that the statistical patterns of vehicle-to-vehicle (V2V) channels can often be modeled by the Weibull distribution. Due to the complex characteristics of random fading and interference, system performance analysis is involved. To address this issue, we establish a framework for performance analysis in vehicular networks under Weibull fading and one-dimensional Poisson field of interference, where the Weibull probability density function (PDF) is approximated by a finite exponential mixture. By this means, the approximation expressions of the successful/unsuccessful message transmission probabilities for both direct V2V communication and the three-node cooperative vehicular communication are derived through stochastic geometry. Monte-Carlo simulations verify the accuracy of our derivation, as well as the advantages of encouraging cooperation among vehicles. Our methods and results can potentially be used to facilitate stochastic geometric analysis in many other complex vehicular networks under Weibull fadingEuropean Commissio

    Performance analysis of relay-aided wireless communication systems

    Get PDF
    Relay-aided networks have been proved to be cost-efficient solutions for wireless communications in respect of high data rates, enhanced spectrum efficiency and improved signal coverage. In the past decade, relaying techniques have been written into standards of modern wireless communications and significantly improve the quality of service (QoS) in wireless communications. In order to satisfy exponentially increased demands for data rates and wireless connectivities, various novel techniques for wireless communications have been proposed in recent years, which have brought significant challenges for the performance analysis of relaying networks. For the purpose of more practical investigations into relaying systems, researchers should not only analyse the relays employing novel techniques but also attach more importance to complex environments of wireless communications. With these objectives in mind, in this thesis, in-depth investigations into system performance for relay-assisted wireless communications are detailed. Firstly, the theoretic reliability of dual-hop amplify-and-forward (AF) systems over generalised η-μ and κ-μ fading channels are investigated using Gallager’s error exponents. These two versatile channel models can encompass a number of popular fading channels such as Rayleigh, Rician, Nakagami-m, Hoyt and one-sided Gaussian fading channels. We derive new analytical expressions for the probability distribution function (pdf) of the end-to-end signal-to-noise-ratio (SNR) of the system. These analytical expressions are then applied to analyse the system performance through the study of Gallager’s exponents, which are classical tight bounds of error exponents and present the trade-off between the practical information rate and the reliability of communication. Two types of Gallager’s exponents, namely the random coding error exponent (RCEE) and the expurgated error exponent, are studied. Based on the newly derived analytical expressions, we provide an efficient method to compute the required codeword length to achieve a predefined upper bound of error probability. In addition, the analytical expressions are derived for the cut-off rate and ergodic capacity of the system. Moreover, simplified expressions are presented at the high SNR regime. Secondly, the performance of a dual-hop amplify-and-forward (AF) multi-antenna relaying system over complex Gaussian channels is investigated. Three classical receiving strategies, i.e. the maximal-ratio combining (MRC), zero-forcing (ZF) and minimum mean square error (MMSE) are employed in the relay to mitigate the impact of co-channel interference (CCI), which follows the Poisson point process (PPP). We derive the exact analytical expressions of the capacities for this system in the infinite-area interference environment and the asymptotic analytical expressions for the lower bounds of capacities in the limited-area interference scenario. By computing the numerical results and the Monte Carlo simulation, we can observe the effect of relay processing schemes under different interference regimes. In the end, the non-orthogonal multiple access (NOMA) technique is introduced to relaying systems, which exploits multiplexing in the power domain. Order statistics are applied in this part to analyse the performances of ordered users. The randomness of both channel fading and path loss are taken into consideration. In addition to the exact analytical expressions, asymptotic expressions at high-SNR regimes are provided, which clearly show the effects of NOMA techniques using at relaying systems

    Outage Analysis of Energy Harvested Relay-Aided Device-to-Device Communications in Nakagami Channel

    Get PDF
    In this paper, we obtain a low-complexity closed-form formula for the outage probability of the energy-harvested decode-and-forward (DF) relay-aided underlay Device-to-device (D2D) communications in Nakagami fading channel. By proposing a new idea which finds the power splitting factor in simultaneous wireless information and power transfer (SWIPT) energy-harvesting system such that the transmit power of the relay node in the second time slot is fixed in a pre-defined value, the obtained closed-form expression is valid for both energy-harvested and non-energy-harvested scenarios. This formula is based on n-point generalized Gauss-Laguerre and m-point Gauss-Legendre solutions. It is shown that n is more effective than m for reducing the formula complexity. In addition to a good agreement between the simulation results and numerical analysis based on normalized mean square error (NMSE), it is indicated that (n, m)=(1, 4) and (n, m)=(1, 2) are the appropriate choices, respectively for 0.5≤ µ <0.7 and µ ≥0.7, where µ is the fading factor. As shown in this investigation, increasing the average distance between D2D pairs and cellular user (lower interference), is the reason for decreasing the outage probability. Furthermore, it is clear that increasing the Nakagami fading factor is the reason for decreasing the outage probability
    corecore