12,084 research outputs found

    A Survey on Handover Management in Mobility Architectures

    Full text link
    This work presents a comprehensive and structured taxonomy of available techniques for managing the handover process in mobility architectures. Representative works from the existing literature have been divided into appropriate categories, based on their ability to support horizontal handovers, vertical handovers and multihoming. We describe approaches designed to work on the current Internet (i.e. IPv4-based networks), as well as those that have been devised for the "future" Internet (e.g. IPv6-based networks and extensions). Quantitative measures and qualitative indicators are also presented and used to evaluate and compare the examined approaches. This critical review provides some valuable guidelines and suggestions for designing and developing mobility architectures, including some practical expedients (e.g. those required in the current Internet environment), aimed to cope with the presence of NAT/firewalls and to provide support to legacy systems and several communication protocols working at the application layer

    Architecture and Protocols for Service and Application Deployment in Resource Aware Ubiquitous Environments

    Get PDF
    Realizing the potential of pervasive computing will be predicated upon the availability of a flexible, mobility-aware infrastructure and the technologies to support seamless service management, provisioning and delivery. Despite the advances in routing and media access control technologies, little progress has been made towards large-scale deployment of services and applications in pervasive and ubiquitous environments. The lack of a fixed infrastructure, coupled with the time-varying characteristics of the underlying network topology, make service delivery challenging. The goal of this research is to address the fundamental design issues of a service infrastructure for ubiquitous environments and provide a comprehensive solution which is robust, scalable, secure and takes into consideration node mobility and resource constraints. We discuss the main functionalities of the proposed architecture, describe the algorithms for registration and discovery and present a power-aware location-driven message forwarding algorithm to enable node interaction in this architecture. We also provide security schemes to ensure user privacy in this architecture. The proposed architecture was evaluated through theuse of simulations. The results show that the service architecture is scalable and robust, even when node mobility is high. The comparative analysis shows that our message forwarding algorithm consistently outperforms contemporary location-driven algorithms. Furthermore, thisresearch work was implemented as a proof-of-concept implementation and tested on a real world scenario

    Proxy-based Mobile Computing Infrastructure

    Get PDF
    In recent years, there has been a huge growth in mobile applications. More mobile users are able to access Internet services via their mobile devices e.g., smartphones ans tablets. Some of these applications are highly interactive and resource intensive. Mobile applications, with limited storage capacity, slow processors and limited battery life, could be connected to the remote servers in clouds for leveraging resources. For example, weather applications use a remote service that collects weather data and make this data available through a well-defined API. This represents a static partitioning of functionality between mobile devices and a remote server that is determined at run-time. Regardless of the network distance between the cloud infrastructure and the mobile device, the use of a remote service is well suited for mobile device applications with relatively little data to be transferred. However, long distances between a mobile device and remote services makes this approach unsuitable for applications that require larger amounts of data to be transferred and/or have a high level of interactiveness with the user. This includes mobile video communications (e.g., Skype, Face-Time, Google-Hangout), gaming applications that require sophisticated rendering and cloud media analysis that can be used to offer more personalized services. The latency incurred with this architecture makes it difficult to support real-time and interactive applications. A related problem is that the static partitioning strategy is not always suitable for all network conditions and inputs. For example, let us consider a speech recognition application. The performance depends on the size of the input and the type of connectivity to the backbone. Another challenge is that the communication medium between the mobile application and the remote service includes wireless links. Wireless links are more error prone and have less bandwidth than wired links. Often a mobile application may be disconnected. One approach to addressing these challenges is the use of a proxy. A proxy is computing power that is located at the network edge. This allows it to address problems with latency. It is possible for a proxy to have services that allow for offloading tasks from either the cloud or the mobile device and to deal with communication challenges between the mobile application and the mobile device. This work proposes a proxy-based system that acts as a middleware between the mobile application and the remote service. The proposed middleware consists of a set of proxies that provide services. The proposed middleware includes services for proxy discovery and selection, mechanisms for dealing with balancing loads on proxies and handoff. A prototype was developed to assess the effectiveness of the proposed proxy-based system

    Privacy Protection and Mobility Enhancement in Internet

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)The Internet has substantially embraced mobility since last decade. Cellular data network carries majority of Internet mobile access traffic and become the de facto solution of accessing Internet in mobile fashion, while many clean-slate Internet mobility solutions were proposed but none of them has been largely deployed. Internet mobile users increasingly concern more about their privacy as both researches and real-world incidents show leaking of communication and location privacy could lead to serious consequences. Just the communication itself between mobile user and their peer users or websites could leak considerable privacy of mobile user, such as location history, to other parties. Additionally, comparing to ordinary Internet access, connecting through cellular network yet provides equivalent connection stability or longevity. In this research we proposed a novelty paradigm that leverages concurrent far-side proxies to maximize network location privacy protection and minimize interruption and performance penalty brought by mobility.To avoid the deployment feasibility hurdle we also investigated the root causes impeding popularity of existing Internet mobility proposals and proposed guidelines on how to create an economical feasible solution for this goal. Based on these findings we designed a mobility support system offered as a value-added service by mobility service providers and built on elastic infrastructure that leverages various cloud aided designs, to satisfy economic feasibility and explore the architectural trade-offs among service QoS, economic viability, security and privacy

    A Web Service-Based Framework Model for People-Centric Sensing Applications Applied to Social Networking

    Get PDF
    As the Internet evolved, social networks (such as Facebook) have bloomed and brought together an astonishing number of users. Mashing up mobile phones and sensors with these social environments enables the creation of people-centric sensing systems which have great potential for expanding our current social networking usage. However, such systems also have many associated technical challenges, such as privacy concerns, activity detection mechanisms or intermittent connectivity, as well as limitations due to the heterogeneity of sensor nodes and networks. Considering the openness of the Web 2.0, good technical solutions for these cases consist of frameworks that expose sensing data and functionalities as common Web-Services. This paper presents our RESTful Web Service-based model for people-centric sensing frameworks, which uses sensors and mobile phones to detect users’ activities and locations, sharing this information amongst the user’s friends within a social networking site. We also present some screenshot results of our experimental prototype
    • …
    corecore