355 research outputs found

    Modified Threshold-based Spectrum Sensing Approach for VANETs

    Get PDF
    The Primary User (PU) signal detection in Cognitive Radio (CR) is crucial and is achieved through spectrum sensing techniques. The Energy Detection method is a commonly used technique, and selecting a proper threshold is essential to enhance the efficiency of the CR system. This research paper demonstrates the maximum achievable throughput and validates a Modified Threshold (MT) approach. The authors consider a scenario with multiple antennas at the receiver, where these antennas are correlated and subjected to mobility effects, and they employ the Energy Detection (ED) for spectrum sensing. The study analyzes the system's performance over a Nakagami-m fading channel, considering available correlations among the antenna elements. To compute important statistical values, the Moment Generating Function (MGF) method is employed. The research employs specialized mathematical functions, such as the Lauricella and confluent hypergeometric functions, to derive closed-form expressions for the Probability of Detection when employing the diversity technique. The results indicate a significant enhancement in the performance of the proposed algorithm when utilizing the modified threshold parameter across a wide range of Signal to Noise Ratio (SNR) values. Additionally, increasing the number of branches in the antenna system further improves detection performance. Interestingly, under high fading parameter conditions (m=4), the detection probability is found to be superior with exponential correlation among the L antenna elements compared to other available correlated branches

    Generalized detector as a spectrum sensor in cognitive radio networks

    Get PDF
    The implementation of the generalized detector (GD) in cognitive radio (CR) systems allows us to improve the spectrum sensing performance in comparison with employment of the conventional detectors. We analyze the spectrum sensing performance for the uncorrelated and spatially correlated receive antenna array elements. Addi¬tionally, we consider a practical case when the noise power at the output of GD linear systems (the preliminary and additional filters) is differed by value. The choice of the optimal GD threshold based on the minimum total error rate criterion is also discussed. Simulation results demonstrate superiority of GD implementation in CR sys¬tem as spectrum sensor in comparison with the energy detector (ED), weighted ED (WED), maximum-minimum eigenvalue (MME) detector, and generalized likelihood ratio test (GLRT) detecto

    Spectrum Sensing and Multiple Access Schemes for Cognitive Radio Networks

    Get PDF
    Increasing demands on the radio spectrum have driven wireless engineers to rethink approaches by which devices should access this natural, and arguably scarce, re- source. Cognitive Radio (CR) has arisen as a new wireless communication paradigm aimed at solving the spectrum underutilization problem. In this thesis, we explore a novel variety of techniques aimed at spectrum sensing which serves as a fundamental mechanism to find unused portions of the electromagnetic spectrum. We present several spectrum sensing methods based on multiple antennas and evaluate their receiving operating characteristics. We study a cyclostationary feature detection technique by means of multiple cyclic frequencies. We make use of a spec- trum sensing method called sequential analysis that allows us to significantly decrease the time needed for detecting the presence of a licensed user. We extend this scheme allowing each CR user to perform the sequential analysis algorithm and send their local decision to a fusion centre. This enables for an average faster and more accurate detection. We present an original technique for accounting for spatial and temporal cor- relation influence in spectrum sensing. This reflects on the impact of the scattering environment on detection methods using multiple antennas. The approach is based on the scattering geometry and resulting correlation properties of the received signal at each CR device. Finally, the problem of spectrum sharing for CR networks is addressed in or- der to take advantage of the detected unused frequency bands. We proposed a new multiple access scheme based on the Game Theory. We examine the scenario where a random number of CR users (considered as players) compete to access the radio spec- trum. We calculate the optimal probability of transmission which maximizes the CR throughput along with the minimum harm caused to the licensed users’ performance
    corecore