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Abstract

Increasing demands on the radio spectrum have driven wireless engineers to rethink

approaches by which devices should access this natural, and arguably scarce, re-

source. Cognitive Radio (CR) has arisen as a new wireless communication paradigm

aimed at solving the spectrum underutilization problem. In this thesis, we explore a

novel variety of techniques aimed at spectrum sensing which serves as a fundamental

mechanism to find unused portions of the electromagnetic spectrum.

We present several spectrum sensing methods based on multiple antennas and

evaluate their receiving operating characteristics. We study a cyclostationary feature

detection technique by means of multiple cyclic frequencies. We make use of a spec-

trum sensing method called sequential analysis that allows us to significantly decrease

the time needed for detecting the presence of a licensed user. We extend this scheme

allowing each CR user to perform the sequential analysis algorithm and send their

local decision to a fusion centre. This enables for an average faster and more accurate

detection.

We present an original technique for accounting for spatial and temporal cor-

relation influence in spectrum sensing. This reflects on the impact of the scattering

environment on detection methods using multiple antennas. The approach is based

on the scattering geometry and resulting correlation properties of the received signal

at each CR device.

Finally, the problem of spectrum sharing for CR networks is addressed in or-

der to take advantage of the detected unused frequency bands. We proposed a new

multiple access scheme based on the Game Theory. We examine the scenario where a

random number of CR users (considered as players) compete to access the radio spec-

trum. We calculate the optimal probability of transmission which maximizes the CR

throughput along with the minimum harm caused to the licensed users’ performance.

Keywords: Cognitive Radio, Dynamic Spectrum Access, Primary User, Sec-

ondary User, Spectrum Sensing, Sequential Probability Ratio Test, Sequential Anal-

ysis, Multi antenna Detectors, Game Theory, Nash Equilibrium.
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Chapter 1

Introduction to Cognitive Radio Networks

1.1 Introduction

Nowadays, depending on the purpose, the geographical region, the particular carrier,

and many other factors, the electromagnetic spectrum assigned to wireless networks

is controlled by governmental agencies such as Industry Canada, the Federal Com-

munications Commission (FCC) in the United States1 or the Federal Commission of

Telecommunications in Mexico. Responsibilities of these agencies include, allocating

frequencies and call signs, managing the broadcast spectrum, and regulating other

technical issues such as interference with electronics equipment. They assign the

spectrum to licensed holders, also known as Primary Users (PUs) on a long-term

basis. There have been several measurements and observations about the current

usage of the radio spectrum performed by private and federal organizations [1,2]. In

Figure 1.1 [2], we show an example of such measurements where can observe that

some frequency bands are largely wasted, as they are unoccupied most of the time;

some frequency bands are only partially occupied or are used in a sporadic man-

ner. Finally, the rest of the frequency bands are heavily used. Particularly, it can

be seen that frequency bands in the 1500 MHz to 1520 MHz range show significant

unoccupied spectrum during the two time intervals when these measurements were

obtained. Also, the recent increase in access to the limited spectrum for mobile ser-

vices, has made it necessary to change the way in which devices are allowed to use

the spectrum. The limited available spectrum and the inefficiency in spectrum usage

1. Contrary to popular belief, the Canadian Radio-television and Telecommunications
Commission (CRTC) is not completely equivalent to the FCC in the United States. The
FCC has additional responsibilities and jurisdictions over technical matters which concerns
broadcasting and other aspects of communications.
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Figure 1.1: Shared Spectrum Company measurements, Dublin, April 2007.
(Reproduced from http://www.sharedspectrum.com).

necessitate a new communication paradigm in order to exploit the existing wireless

spectrum. The new paradigm aimed to solve these problems is called Cognitive Ra-

dio (CR) or Dynamic Spectrum Access (DSA) [3,4]. CR networks focus on providing

high bandwidth to mobile users via heterogeneous wireless architectures and dynamic

spectrum techniques. The main idea behind CR networks is to allow users with no

spectrum license rights to use temporarily unused licensed spectrum. These users,

from now on referred to as Secondary Users (SUs), are capable of changing their trans-

mitter parameters according to the interactions with the operating environment. CR

devices differ from conventional radio devices in that CR provides SUs with cognitive

capability and reconfigurability. Cognitive capability is defined as the ability of the

device to sense, understand, and be aware of the conditions related to the surround-

ing environment, e.g., presence of the PU, information about transmission frequency,

bandwidth, transmission power and modulation among others [3,5]. Reconfigurability

is the SUs’ capacity to make decisions and rapidly adapt their operation parameters

accordingly. Because of more flexible and intelligent use of the spectrum in CR,

new and novel spectrum management techniques must be developed to address the
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new challenges, specifically those related to spectrum sensing and dynamic spectrum

sharing. CR systems do allow coexistence between PUs and SUs; however, PUs will

always have priority in using the spectrum. It is the responsibility of the SUs to sense

their surroundings in real time and to know whether a PU is transmitting or not.

Based on this information, the SUs can decide between transmitting with low power

at the same time as the PU, or wait until the PU stops transmitting before using the

channel.

1.2 Fundamentals

1.2.1 Cognitive Radio Description

The cognitive radio concept was first introduced in [6], where the main focus was on

the Radio Knowledge Representation Language (RKRL) [7]. A few formal definitions

of Cognitive Radio exist; the two most complete are given by Haykin and Thomas

in [4, 8] respectively:

• “Cognitive radio is an intelligent wireless communication system that is aware

of its surrounding environment (i.e., outside world), and uses the methodol-

ogy of understanding-by-building to learn from the environment and adapt its
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internal states to statistical variations in the incoming RF stimuli by making

corresponding changes in certain operating parameters (e.g., transmit-power,

carrier-frequency, and modulation strategy) in real-time, with two primary ob-

jectives in mind:

-highly reliable communications whenever and wherever needed;

-efficient utilization of the radio spectrum.”

• “A Cognitive Radio is a radio that can change its transmitter parameters based

on interaction with the environment in which it operates.”

The ultimate objective of CR is to obtain the best available spectrum band through

cognitive capability and reconfigurability. In order to take advantages of CR tech-

niques we must find the unused portions of the spectrum also known as spectrum

holes or white spaces [9]. If these bands are later used by a PU, the CR device has

the choice of either moving to another spectrum hole or staying in the same band

but adapting its transmission power or modulation scheme in order to avoid the in-

terference to PUs. Figure 1.2 shows the spectrum hole concept. In this figure we can

observe the detection of the aforementioned white spaces by real time sensing the

the wideband channel followed by the selection of the more suitable frequency bands.

Finally, the multiple spectrum access coordination with other SUs who finally vacate

the channel when a PU needs to transmit.
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1.2.2 Interference Temperature

The determination of the available portion of the spectrum can be made according

to different metrics. The traditional approach is to limit the transmitter power of

interfering devices, i.e., the transmitted power should be no more than a prescribed

noise floor with respect to a certain distance from the transmitter. Nevertheless,

due to the increased mobility and variability of radio frequency (RF) emitters, con-

straining the transmitter power becomes more challenging, since unpredictable new

sources of interference may appear. In order to address this issue, the FCC Spectrum

Task Force [10] proposed a new metric to assess the interference called interference

temperature, which enforces an interference limit perceived by receivers. The inter-

ference temperature is a measure of the RF power available at a receiving antenna

to be delivered to a receiver, reflecting the power generated by other emitters and

noise sources. This is depicted in detail in Figure 1.3. The interference temperature

is defined as the temperature equivalent to the RF power available at a receiving

antenna per unit bandwidth, i.e.,

TI(fc, B) =
PI(fc, B)

kB
, (1.1)

where PI(fc, B) is the average interference power in Watts centred at the carrier

frequency fc, B is the bandwidth measured in Hertz, and k represents the Boltzmann’s

constant equal to 1.38 × 10−23 Joules per degree Kelvin. The FCC also defined the

concept of interference temperature limit as the maximum tolerable interference for a

given frequency band at a particular location. Any unlicensed secondary transmitter

using this band must guarantee that their transmission plus the existing noise and

interference will not exceed the interference temperature limit at a PU. If a regulatory

body sets an interference temperature limit TL for a particular frequency band with

bandwidth B, the SUs must keep the average interference below kBTL. Therefore,

the interference temperature serves as a cap on potential RF energy that could appear

on a specific band.
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1.2.3 Cognitive Radio Tasks

Figure 1.4, shows a typical CR duty cycle, that presents the major functions that

relate to cognitive capability and reconfigurability. The cognitive cycle consists of

the following tasks:

1. Spectrum Sensing : Detects unused spectrum and shares the spectrum without

negative interfering with other users.

2. Spectrum Analysis : Captures the best available spectrum to meet user com-

munication requirements.

3. Spectrum Management and Handoff : Enables SUs to choose the best frequency

band and hop among multiple bands according to the time varying channel

characteristics to meet the different Quality of Service (QoS) requirements.

4. Spectrum Allocation and Sharing : Provides a fair spectrum scheduling method

between coexisting SUs and PUs.

In general, the dynamic use of the spectrum has a negative impact on the perfor-

mance of conventional communication protocols that were designed for fixed frequency

bands. It is important to consider this type of impact when designing CR systems.
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1.2.4 Network Architecture

With the inclusion of SUs in the framework of a wireless communication network,

it is logical to assume that they will change the way in which the networks are

formed. Moreover, since SUs use the temporarily unused licensed bands owned by

the PU, the network architecture of the CR includes both a primary network and a

secondary network, as seen in Figure 1.5. A secondary network is composed of a set

of decentralized or centralized SUs, i.e., with or without a secondary base station.

However, the DSA of SUs is usually controlled and coordinated by a secondary base

station (SBS). Both the SUs and the SBS must feature the four tasks of the cognitive

cycle. In Figure 1.5, we can see the central network entity called the spectrum broker,

which coordinates the spectrum usage between two or more secondary networks.

It allocates the network resources by collecting the operation information from each

secondary network so that the SUs achieve an efficient and fair spectrum sharing. The

primary network is formed by the PUs and one or more primary base stations. Within

the context of CR networks, the presence of the secondary network to the primary
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network should be imperceptible, i.e., the PUs’ transmission should be seamlessly

regardless of the SUs. If a secondary network shares the licensed spectrum band

with a primary network, in addition to detecting the spectrum white spaces and

choosing the best available spectrum band, it must also detect the reappearance of

the PUs and direct the secondary transmission to another available band or decrease

the transmission power in order to avoid interfering with the primary transmissions.

1.3 Spectrum Sensing and Analysis

A major requirement of CR networks is the ability to detect the spectrum holes.

Therefore, spectrum sensing and analysis are the first critical steps toward dynamic

spectrum management. The spectrum sensing function enables the cognitive radio to

adapt to its environment by detecting such holes. The most efficient known method

of detecting spectrum holes is to detect the PUs that are transmitting data within the

communication range of a CR user [11]. Generally, the spectrum sensing techniques

can be classified as transmitter detection, cooperative detection, and interference-

based detection, as shown in Figure 1.6 [12, 13]. Interference-based detection is out

of the scope of this dissertation.
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1.3.1 Transmitter detection

Transmitter detection approach is based on the detection of signals from a primary

transmitter through the local observations by cognitive users. The hypothesis problem

can be defined as

y(t) =

{
H0 : n(t)

H1 : hs(t) + n(t),
(1.2)

where y(t) is the signal received by the cognitive user, s(t) is the transmitted signal

from the PU, n(t) is the Additive White Gaussian Noise (AWGN), and h is the

amplitude gain of the channel. In eq.(1.2), H0 is defined as the null hypothesis,

which states that there is no licensed user signal in the analyzed spectrum band. H1

is the alternative hypothesis, which indicates that there exists a PU signal. Using

three different schemes, it is possible to implement transmitter detection according

to the hypotheses model. These schemes are a) matched filter detection, b) energy

detection, and c) cyclostationary feature detection [14].

1.3.1.1 Matched filter detection

When the information about the PU signal is known to the cognitive user, the optimal

detector in stationary Gaussian noise is the matched filter, because it maximizes

the received Signal-to-Noise Ratio (SNR) [15, 16]. Hence, the matched filter can be

thought as an upper bound in detection performance. Although the main advantage

of the matched filter is that it requires less time to achieve high processing gain due

to coherency, it requires a priori knowledge of the PU signal such as the modulation

type and order, the pulse shape, and the packet format. If this information is not

accurate, the matched filter will perform poorly. Most wireless network systems have

pilot signals, preambles, synchronization words or spreading codes which can be used

for coherent detection.

1.3.1.2 Energy detection

When the receiver cannot gather sufficient information about the PU signal, for in-

stance, if the power of the random Gaussian noise is only known at the receiver, the
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optimal detector is the energy detector [15,16]. In order to measure the energy of the

received signal s(t), the output of bandpass filter with bandwidth W is squared and

integrated over the observation interval T . Finally, the output of the integrator, Y , is

compared with a threshold λ to decide whether a licensed user is present or not. The

scheme is summarized in Figure 1.7. However, the performance of energy detector is

susceptible to uncertainty in noise power. To solve this problem, a pilot tone from the

primary transmitter can be used to help improve the accuracy of the energy detector.

Another shortcoming is that the energy detector cannot differentiate signal types but

can only determine the presence of the signal. Thus, the energy detector is prone to

false detection triggered by unintended signals.

1.3.1.3 Cyclostationary feature detection

An alternative detection method is the cyclostationary feature detection [17–19].

Modulated signals are in general coupled with sine wave carriers, pulse trains, re-

peating spreading, hopping sequences or cyclic prefixes, which result in built-in peri-

odicity. These modulated signals are characterized as cyclostationarity because their

mean and autocorrelation exhibit periodicity. These features are detected by ana-

lyzing a spectral correlation function, which is able to differentiate the noise energy

from modulated signal energy. This occurs because the noise is a wide-sense sta-

tionary signal with no correlation, while modulated signals are cyclostationary with

spectral correlation due to the embedded redundancy of signal periodicity. Therefore,

a cyclostationary feature detector can perform better than the energy detector in dis-

criminating against noise due to its resilience to the uncertainty in noise power [19].

However, it is computationally complex and requires significantly long observation
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times. For more efficient and reliable performance, the enhanced feature detection

scheme combines cyclic spectral analysis with pattern recognition based on neural net-

works [20]. Distinct features of the received signal are extracted using cyclic spectral

analysis and represented by both spectral coherent function and spectral correlation

density function. The neural network, then, classifies signals into different modulation

types.

1.3.2 Cooperative detection

In primary transmitter detection, it could be assumed that the locations of the pri-

mary receivers are unknown due to the absence of signalling between PUs and SUs.

Therefore, CR should rely on only weak primary transmitter signals based on the local

observation of the SU. However, in most cases, a cognitive radio network is physically

separated from the primary network so there is no interaction. Thus, with the trans-

mitter detection, the cognitive radio user cannot avoid the interference due to the

lack of the primary receiver’s information, as depicted in Figure 1.8-a. Additionally,

the transmitter detection model cannot prevent the hidden terminal problem [21]. A

CR transmitter can have a good line-of-sight to a receiver, but may not be able to

detect the transmitter due to the shadowing, as shown in Figure 1.8-b. Consequently,

sensing information from other users is required for a more accurate detection [22]. In



Chapter 1: Introduction to Cognitive Radio Networks 12

cooperative detection spectrum sensing methods incorporate information from mul-

tiple SUs for PU detection [23]. Cooperative detection can be implemented either in

a centralized or in a distributed manner. In the centralized method, the CR base-

station plays the role of gathering all sensing information from the CR users and

detecting the spectrum holes [24]. Distributed solutions require exchange of observa-

tions among CR users. Cooperative detection among unlicensed users is theoretically

more accurate because the uncertainty introduced by a single user’s detection can

be minimized [25, 26]. Moreover, the multi-path fading and shadowing effect are the

main factors that, in general, degrade the performance of PU detection methods.

Cooperative detection schemes mitigate the multi-path fading and shadowing effects,

which improve the detection probability in heavily shadowed environments. While

cooperative approaches provide more accurate sensing performance, they also cause

adverse effects on resource-constrained networks due to the additional operations and

overhead traffic. Furthermore, the primary receiver uncertainty problem caused by

the lack of the primary receiver location knowledge is still unresolved with cooperative

sensing.

1.3.3 Other techniques

Although the previous techniques are the most classical in detection theory, new and

novel techniques and variations have been proposed in recent literature.

1.3.3.1 Statistical Covariance-Based Sensing

Generally, the statistical covariance matrices of the received signal and noise are

different. It is possible to distinguish the desired signal component from the back-

ground noise. The eigenvalues of the covariance matrix of the received signal can also

be used for primary detection [27, 28]. This is done by quantizing the ratio of the

maximum eigenvalue to the minimum eigenvalue and forming a detection threshold

between them. This technique is particularly useful when detecting TV signals since

the methods based on statistical covariances are shown to be more robust to noise
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uncertainty while requiring no a priori information of the signal, the channel, and

the noise power.

1.3.3.2 Fast Sensing

In the theory of quickest detection based primarily on sequential analysis, a statistical

test is performed to detect the change in the distribution of spectrum usage observa-

tions as quickly as possible, allowing for agile and robust spectrum sensing [29–31].

The unknown parameters after a PU appears can be estimated using successive re-

finement, which combines both generalized likelihood ratio and parallel cumulative

sum tests. In [32] we proposed cumulant analysis for Dual Sequential Ratio Testing in

CR networks, which uses the basis of fast sensing in a cooperative manner, improving

significantly the detection performance and minimizing the energy used for detection.

1.3.3.3 Coupled Dynamical-Based Sensing

In [26], Nefedov proposed a novel technique to detect the presence of PUs based

on the concept of self-organization of coupled dynamical systems. In this method, a

global estimate (or decision) is obtained in a distributed fashion for complex networks

without a fusion or centralized control centres. The suggested approach is based on

local exchange of information among the nearby nodes within a connected (wireless)

network that allows, under certain conditions, a global decision to be reached based on

locally available decisions or measurements. The author considers network nodes as

local dynamical systems with impulse-like coupling to establish time synchronization

among the transmitted packets together with phase-coupling during packet durations

to achieve distributed estimations.

1.4 Dynamic Spectrum Allocation and Sharing

Once the spectrum holes are found, the SUs are aware of the spectrum bands available

for them to use; nevertheless, the quality and availability of a specific spectrum band

may change rapidly due to the PUs’ dynamic activity and competition from other



Chapter 1: Introduction to Cognitive Radio Networks 14

SUs. It is therefore important to design new spectrum allocation and sharing policies

to address this issue. Open spectrum sharing is referred to spectrum sharing among

the SUs accessing the unlicensed spectrum band (e.g., the open spectrum sharing in

the unlicensed industrial, scientific, and medical (ISM) band). All SUs have the same

rights to use the unlicensed band since no user own spectrum licenses. The hierarchical

access model or licensed spectrum sharing can be divided in two categories: Spectrum

underlay and Spectrum overlay [21, 33].

Spectrum Underlay

Allows SUs to access the channel when PUs are also transmitting as long as

the interference at a PUs’ receiver lies within the interference-temperature

limit. Usually, due to the constrains on transmission power, only short-

range communications are achievable to the SU. Moreover, if PUs transmit

all the time, spectrum underlay does not require SUs to perform spectrum

sensing.

Spectrum Overlay

In this policy, SUs will use the licensed spectrum only when PUs are not

transmitting i.e., SUs need to sense the licensed band and detect the spec-

trum holes to keep from interfering with PUs.

1.4.1 Medium Access Control in CR Networks

One of the most important aspects to be analyzed in dynamic spectrum allocation

and sharing is the concept of Medium Access Control (MAC), which refers to the

techniques that control the way the SUs should access the primary or licensed channel.

There exist several classical approaches to solve the MAC problem in the literature

such as the carrier sense multiple access (CSMA) scheme or the slotted ALOHA

[34]. However, since there is no concept of PUs in traditional networks, classic MAC

protocols are not concerned with interference caused to PUs. Therefore, one of the

main challenges in MAC for CR is to protect the PUs. The MAC protocols for CR

networks should support the following two features:
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• Collision avoidance amongst SUs: Since different SUs can coexist, collisions can

occur if they simultaneously decide to use the same spectrum band, according

to their spectrum sensing results. Thus, the MAC protocol should coordinate

the spectrum access for different SUs in order to avoid the collisions.

• Interference control and avoidance for PUs: This is the ultimate goal of spec-

trum sharing in CR networks. There exist two modes for spectrum sharing

between SUs and PUs: spectrum overlay and spectrum underlay which were

explained before.

In addition to the above essential functions, the MAC layer acts as a bridge between

the physical layer and the network layer in CR networks. It can exploit the spectrum

sensing results from the physical layer, characterize the channels, and determine the

specific channel and instant to access. It can also help the CR network layer de-

cide on the routing path by reporting the characteristic information and listing the

available channels. Moreover, the network layer can inform the MAC layer to choose

a suitable channel based on the QoS requirement. By designing appropriate access

probabilities for the SUs, a good tradeoff can be achieved between spectrum efficiency

and fairness. In [35] we proposed a technique to calculate such probabilities based

on game theory concepts. We also addressed the problem of a multiple access CR

system where the number of users and their types are unknown. The framework is

modelled as a non-cooperative Poisson game in which all the players (or SUs) are

unaware of the total number of devices participating. In our scheme, failed attempts

to transmit (collisions) are penalized, and we calculate the optimum penalization in

mixed strategies. We show that this scheme conveys to a Nash equilibrium where a

maximum in the possible throughput can be achieved.

1.5 Thesis Outline

This thesis consists of six chapters, including this introduction. The remaining six

chapters are organized as follows: Chapter 2 presents three novel methods for spec-

trum sensing in CR networks using multi antenna systems; Chapter 4 assesses the

impact of the scattering environment on the detection performance of multi antenna
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receivers; Chapter 3 introduces the concept of Sequential Analysis and, a novel detec-

tion method is proposed; Chapter 5 provides a comprehensive review of Game Theory

concepts applied to CR Networks and introduces a new interpretation of the MAC

problem based on game theory for CR networks; and finally, Chapter 6 is devoted to

concluding remarks and suggests future directions for extending the current research

topic.

1.6 Contributions

The main contributions of each chapter in the thesis are listed below.

1.6.1 Contributions of Chapter 2

• A multi antenna based spectrum sensing approach is analyzed using the Gen-

eralized Likelihood Ratio Test (GLRT).

• The concept of optimal incoherent diversity combining of virtual diversity branches

is presented in cyclostationary spectrum sensing for single user detection.

• A new detection method based on coupled dynamical systems is presented

within the context of complex networks.

1.6.2 Contributions of Chapter 3

• The concepts of Sequential Analysis and Sequential Probability Ratio Test

(SPRT) are presented as an alternative to fixed number of samples detection

methods such as the Neymann-Pearson test.

• A cumulant analysis for the probability density function of the random time

sequential analysis is obtained.

• An optimal fusion rule for distributed detectors using SPRT is obtained.

• A new detection method called Dual SPRT is presented which minimizes the

energy used for the detection of the PU.
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1.6.3 Contributions of Chapter 4

• An approach for accounting for both spatial and temporal correlation in CR

devices equipped with multiple antennas is presented.

• The impact of spatial and/or temporal correlation between antennas in Single

Input Multiple Output (SIMO) spectrum sensing is assessed.

• An equivalent number of independent samples is derived based on the scattering

geometry and resulting correlation properties of the received signal.

1.6.4 Contributions of Chapter 5

• Some useful tools based on Game Theory are presented to model wireless com-

munications problems.

• The concepts of noncooperative games and Nash Equilibrium are presented and

the Prisoners’ Dilemma example is used to model the MAC problem in IEEE

802.11e wireless networks.

• The problem of games with population uncertainty is modelled with the use of

Poisson games approach.

• A new interpretation for the MAC problem in CR networks is presented for two

different types of SUs competing for access to the wireless channel.

• An accurate analytical approximation of the Pareto frontier of the probability

of transmission of SUs is provided regardless of their type.

• The impact of the PU based on its activity is considered and the optimal mixed

strategies are calculated accordingly.
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Chapter 2

Spectrum Sensing for Cognitive Radio

Networks

2.1 Introduction

As explained in Chapter 1, an essential component of overlay Cognitive Radio Net-

works is the ability to sense the spectrum holes (i.e., the absence of a PU transmitting

in a specific band at a specific moment). The spectrum sensing function enables the

cognitive radio to adapt to its environment and transmit or receive accordingly by

detecting such holes. Currently, the most efficient way to detect spectrum holes, is to

detect the PUs that are receiving data within the communication range of a SU user.

In this chapter we study, analyze and review a few novel spectrum sensing techniques.

The chapter is divided in three parts: Firstly, a muti-antenna based spectrum sensing

is analyzed using the well-known Generalized Likelihood Ratio Test (GLRT) principle

to approach the problem of spectrum sensing in a cognitive radio network. We show

that under mild assumptions on the primary signal, the eigenvalued based algorithm

performs better than the classical energy detector, although the system suffers from

an increase in complexity. Secondly, we show that a cyclostationary spectrum sensing

for CR networks, applying multiple cyclic frequencies for a single user detection, can

be interpreted (under a few assumptions) in terms of optimal incoherent diversity

combining of virtual diversity branches or a SIMO radar. Such an approach allows us

to propose (analogously to diversity combining) some sub-optimal algorithms which

can provide near-optimal characteristics for the NP test in the single user detection

scenario. Finally, a detection method based on a coupled dynamical system approach

is presented in complex networks where a global decision about the presence of the
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PU is obtained in a distributed fashion or centralized control centres. The latter is

based on the local exchange of information among close nodes in a wireless network

which allows the system, under certain conditions, to reach a global decision based

on locally-available measurements or decisions.

2.2 Multi-antenna based Spectrum Sensing

In popular works on spectrum sensing for cognitive radio [40], it is usually assumed

that a full or partial knowledge on the PU signal characteristics is available such as

the channel from the PU to the SU, and/or the noise power level at the CR receiver.

These assumptions may limit the applicability of these algorithms in realistic CR

scenarios. Blind signal detection for multi-antenna sensors can be used with either

no knowledge about the signal to be detected, or in cases where the sensor noise

level has been studied based on information-theoretic criteria rather than in the well-

known GLRT principle. In this first section we present a few very interesting and

applicable methods which avoid the requirement of prior knowledge about the PU

signals or the channels from the PU to the CR [23]. We study and analyze multi-

antenna based spectrum sensing methods for cognitive radio networks using the GLRT

approach. In attempting to sense the presence of a PU, this approach utilizes the

eigenvalues calculated from the sample covariance matrix of the received signal vector

from multiple antennas at the SU. It is therefore possible to take advantage of the

fact that in practice, the PU signals to be detected will either occupy a subspace

of dimension strictly smaller than the dimension of the observation space, or have

a non-white spatial spectrum. By making some assumptions on the availability of

the white noise power at the SU receiver, it is possible to implement two algorithms

which improve the standard energy detector performance.

2.2.1 Signal Model

Let us consider a CR terminal sensing the presence of a PU based on a set of N

discrete-time vector observations x[n], n = 0, . . . , N − 1. The i-th component of
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x[n], denoted by xi[n], i = 0, . . . ,M − 1, is the output of the i-th antenna, where

M is the number of antennas at the CR terminal. For convenience and without loss

of generality we define X = {x[0], . . . ,x[N − 1]}. Using this let us formulate the

hypotheses testing problem as

H0 : x[n] = w[n], n = 0, . . . , N − 1

H1 : x[n] = s[n] + w[n], n = 0, . . . , N − 1
(2.1)

where w[n] is the additive noise at the cognitive radio receiver, modeled as an inde-

pendent and identically distributed (i.i.d.) circularly symmetric complex Gaussian

(CSCG) vector with zero mean and covariance matrix σ2I, with I denoting the iden-

tity matrix, σ2 is the noise variance, and s[n] is the received primary signal to be

detected. In the absence of any prior knowledge of the form of s[n], or any attempt

to estimate it, the signal s[n] is assumed to be an i.i.d. CSCG random vector with

zero mean and the covariance matrix denoted by Rs = E[s[n]sH [n]], where (·)H de-

notes the Hermitian transpose. Analogously, we can also define Rx = E[x[n]xH [n]].

As we do not have always the knowledge of Rx it is possible to use an empirical or

sample covariance matrix denoted by

R̂x =
1

N

N−1∑

n=0

x[n]xH [n] =
1

N
XXH . (2.2)

Assume that it is possible to make an eigenvalue decomposition of eq. (2.2) in such

a way that the unitary eigenvector matrix Ux and diagonal eigenvalue matrix Λx in

R̂x = UxΛxU
H
x are known at each block of N observations. The algorithm proposed

in [27] relies on one of the following conditions to hold:

• Rs is rank-deficient : In other words, rank(Rs) = Ns < M , the dimension of

the received signal space. In this case, the smallest M −Ns eigenvalues of R̂x

will be approximately equal to the noise variance of σ2, while the Ns largest

eigenvalues of R̂x will be approximately the sum of an eigenvalue of Rs and

σ2. These approximations become exact in the limit N →∞.

• Rs is full-rank but Rs 6= αI, where α is an arbitrary positive constant: In this
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case, rank(Rs) = M , and each eigenvalue of R̂x will be approximately the sum

of an eigenvalue of Rs and σ2. Under this condition the eigenvalues of Rs are

unequal and hence so are those of R̂x.

It is important to note that when the primary signal is not present, R̂x → σ2I as

N → ∞, i.e., R̂x is a full-rank diagonal matrix with equal eigenvalues, which is

different from R̂x when the primary signal is present, provided that one of the above

two conditions is satisfied. Consequently, the existence of a primary signal can be

directly obtained from R̂x.

2.2.2 Detection Algorithms

There exists two very well-known methods in detection literature: the energy detector

(ED) and the more general estimator-correlator (EC) detector. When the PU signal

covariance matrix, Rs, and the noise variance σ2 are both known, the Neyman-

Pearson scheme, makes the EC detector the optimal in the sense of maximizing the

probability of detection PD given a probability of false alarm (PFA). Now, for the

case when Rs = αI, the optimal solution is the ED. Such detectors are used as a

departure point in order to explain the derivations and advantages of the two new

algorithms.

2.2.2.1 Energy Detector

This detector computes the energy in the received data and compares it to a prede-

termined threshold γ. Intuitively, if the signal is present, the energy of the received

data increases. This is the most basic type of detectors [15,41]. Equation (2.3) shows

the expression of the test statistic for the energy detector in the Neyman-Pearson

(NP) criteria.

TED(X) =
N−1∑

n=0

||x[n]||2
H1
≷
H0

γ (2.3)
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Figure 2.1: Energy detector performance (N = 25).

where the threshold γ can be calculated in terms of the probability of false alarm

(PFA) or the probability of detection (PD) as [15]

γ = σ2Q−1
χ2
N

(PFA) ,

γ = (1 + σ2)Q−1
χ2
N

(PD) ,
(2.4)

where Q−1
χ2
N

(·) is the inverse of the right-tail probability of a chi square Q
χ2
N

ran-

dom variable with N degrees of freedom which can be calculated numerically1. The

performance characteristic of the energy detector is given in Figure 2.1. It can be

seen that the performance increases monotonically with the SNR defined as σ2
s/σ

2.

In Figure 2.2, the threshold λ is depicted for different values of PFA. It can be seen

that as PFA gets smaller, the threshold has to increase in order to detect an absent

PU.

1. In fact, the equivalent test statistic T ′(X) = 1
N

∑N−1
n=0 ||x[n]||2 can be thought of as

an estimator of the variance. Comparing this to a threshold, it recognizes that the variance
under H0 is σ2 but under H1 it increases to σ2s + σ2.
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Figure 2.2: Threshold levels λ for different false alarm probabilities (N = 25).

2.2.2.2 Estimator-Correlator Detector

If the primary signal covariance matrix, Rs, and the noise variance, σ2, are both

known, the Neyman-Pearson approach leads to the following estimator-correlator

detector that is optimal (in the sense of maximizing PD, at a given PFA) for the

hypotheses testing problem in equation (2.1). The test statistic can be expressed as

TEC(X) =
N−1∑

n=0

xH [n]Rs

(
Rs + σ2I

)−1
x[n]

H1
≷
H0

γ, (2.5)

where (·)−1 denotes the matrix inverse, while γ is set to provide a desired target

PFA. It is worth noting that the energy detector is a special case of the estimator-

correlator when Rs = αI. Consequently, the energy detector and the estimator-

correlator detector can be considered extreme opposites in terms of information about

the PU signal. In the ED, no prior information is estimated while performing the

decision; however, in the EC, all information is known, and an optimal detection
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is therefore achieved. In the following we present cases where some information is

known and some is somehow estimated.

2.2.2.3 Arithmetic-to-Geometric Mean Detector

Now we present the case when we do not know either the covariance matrix, Rs, or the

noise variance, σ2, and we try to estimate them in order to approach the performance

given by the EC. If the secondary sensor does not know Rs and/or σ2 prior to

spectrum sensing, the detection problem becomes a hypotheses testing problem in the

presence of uncertain parameters, which is generally known as a composite hypothesis

testing. One useful solution for this type of problems is the GLRT, which first obtains

the maximum likelihood estimate (MLE) of the unknown parameters under H0 and

H1 as

θ̂0 = arg max
θ0

p(X|H0, θ0),

θ̂1 = arg max
θ1

p(X|H1, θ1),

where θ0 and θ1 are the set of parameters unknown under H0 and H1 respectively.

Accordingly, the GLRT test statistic can be formed as

LG(X) =
p(X|θ̂1,H1)

p(X|θ̂0,H0)

H1
≷
H0

γ. (2.6)

If we do not know either Rs or σ2, the log-likelihood function (LLF) under H0 of the

unknown parameter σ2 can be expressed as

ln p(X|θ̂0,H0) = −MN

2
ln(2πσ2)− 1

2σ2

N−1∑

n=0

||x[n]||2. (2.7)

The MLE of σ2 under H0 minimizes eq. (2.7), and is given by

σ̂0
2 =

1

MN

N−1∑

n=0

||x[n]||2, (2.8)
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which upon substitution into eq. (2.7) yields

ln p(X|θ̂0,H0) = −MN

2


ln


 2π

MN

N−1∑

n=0

||x[n]||2

+ 1


 . (2.9)

Similarly, the LLF under H1 for both unknown Rs and σ2, can be expressed as

ln p(X|θ̂1,H0) = −MN

2
ln(2π) − N

2
ln(det(Rx)) − 1

2

N−1∑

n=0

xH [n]R−1
x x[n], (2.10)

where det(·) denotes the matrix determinant. The MLE of Rx under H1 can be

derived as follows. First, by defining A = R−1
x , eq. (2.10) can be written as

f(A) = −MN

2
ln(2π) +

N

2
ln(det(A))− 1

2

N−1∑

n=0

xH [n]Ax[n]. (2.11)

Since Rx � 0 i.e., Rx is positive definite, so is A. It is then easy to verify that f(A)

is a concave function of A. By setting the first derivative of eq. (2.11) with respect to

A equal to the all-zero matrix, the optimal A that maximizes f(A) can be obtained.

Equivalently, the MLE of Rx that maximizes p(X|H1,Rx) is obtained as

R̂x =
1

N

N−1∑

n=0

x[n]xH [n]. (2.12)

Using eq. (2.12), we obtain

ln p(X|H1, R̂x) = −MN

2
ln(2π)− N

2
ln
[
det(R̂x)

]
− MN

2
. (2.13)

Let the M eigenvalues of R̂x be denoted by λx =
[
λ1,x, . . . , λM,x

]
. It is then possible

to obtain from eq. (2.13) the following

lnLG(X) =
MN

2



ln


 1

M

M∑

m=1

λ1,x


− 1

M
ln




M∏

m=1

λ1,x





 . (2.14)
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Finally, removing constant terms and using the monotonicity of the logarithm func-

tion, the GLTR statistic test is calculated as

TAGM (λ) =
1
M

∑M
m=1 λm,x

(∏M
m=1 λm,x

) 1
M

H1
≷
H0

γ. (2.15)

Notice that the above test statistic depends only on the eigenvalues of the sample

covariance matrix, λx [42]. This test statistic is the ratio of the arithmetic mean (AM)

to the geometric mean (GM) of the eigenvalues. Hence, this detection algorithm shall

be called the Arithmetic to Geometric Mean (AGM) method [27].

2.2.2.4 Signal-Subspace Eigenvalues

Finally, we consider the case of a detector when it is assumed that σ2 is known but Rs

is unknown, and, thus has to be estimated with the GLTR algorithm. The LLF under

H0 is given in eq. (2.7) where σ2 is known, but Rs is now treated as an unknown

parameter, and that under H1, conditioned on the unknown parameter Rs, is

ln p(X|H1,Rs) = −MN

2
ln(2π)−N

2
(det(Rs+σ

2I))−1

2

N−1∑

n=0

xH [n](Rs+σ
2I)−1x[n].

(2.16)

The MLE of Rs under H1 can be obtained as follows. First, as in the previous

scheme, we can introduce A = R−1
x = (Rs + σ2I)−1 so that ln p(X|H1,Rs) can be

rewritten as f(A). Since Rs � 0, it follows that Rx � σ2I and hence A � 1
σ2 I. The

MLE of Rs can be obtained from the MLE of A by solving the following constrained

optimization problem over A:

Maximize f(A)

Subject to A � 0

A � 1
σ2 I.

(2.17)
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Because f(A) is a concave function of A, and because the previous constraints specify

a convex set of A, it follows that the above optimization problem is convex [43]. In [27]

it is shown that by applying the Karush-Kuhn-Tucker (KKT) optimal conditions, the

optimal A for the above problem can be obtained as

A∗ = Ux

[
Diag

(
min

(
1

λ1,x
,

1

σ2

)
. . .min

(
1

λM,x
,

1

σ2

))]
UH
x , (2.18)

where Diag(x) denotes a diagonal matrix with the diagonal elements expressed in x,

while λm,x and Ux are obtained from the eigen-decomposition of R̂x. Without any

loss of generality, we also assume from this point that the eigenvalues are ordered

from largest to smallest, i.e., λ1,x ≥ λ2,x ≥ · · · ≥ λM,x. The MLE of Rs can be then

obtained as

R̂s = Ux

[
Diag

(
(λ1,x − σ2)+, . . . , (λM,x − σ2)+

)]
UH
x , (2.19)

where (x)+ = max(x, 0). Using eq. (2.19) we get the log-GLRT statistic test as

TSSE(λx) =
Nm′

2

[
AM(λsx)

σ2
− ln

(
GM(λsx)

σ2

)
− 1

] H1
≷
H0

γ, (2.20)

where m′ corresponds to the largest m such that λm,x > σ2, λsx denotes the vector

of signal subspace eigenvalues of R̂x, and AM and GM denote the arithmetic mean

and the geometric mean over the elements in a vector x, respectively. This algorithm

is called the SSE (signal-subspace eigenvalues) method.

2.2.3 Receiver Operating Characteristics

A very common way to represent the detection performance of a NP detector is to

plot Pd versus Pfa. For example, in [15], the authors present a DC level detection in
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AWGN. In eqs. (3.6), (3.7), and (3.8) from [15] we see that

Pfa = Q

(
γ′√
σ2/N

)
,

Pd = Q

(
γ′ − A√
σ2/N

)
,

(2.21)

and

Pd = Q
(
Q−1(Pfa)−

√
d2
)
, (2.22)

where d2 = NA2/σ2. The plot corresponding to eq. (2.22) is shown in Figure 2.3

for d2 = 1. Each point on the curve corresponds to the value of (Pfa, Pd) for a

given threshold γ′. By adjusting γ′, any point on the curve may be obtained. As

expected, as γ′ increases, Pfa and Pd decrease; the inverse is also true. This type of

performance description is called the Receiver Operating Characteristic (ROC). The

ROC should always be above the Pd = Pfa line, because the 45◦ ROC can be attained

by a detector that bases its decision on flipping a coin, ignoring all data. Consider the

detector that decides H1 if a flipped coin comes up a head, where Prob{head} = p.

For a tail outcome we decide H0. Then,

Pfa = Prob{head;H0},
Pd = Prob{head;H1}.

(2.23)

But the probability of obtaining a head does not depend upon which hypothesis is

true and so Pfa = Pd = p. This detector then generates the point (p, p) on the ROC.

To generate the other points on the 45◦ line we need only to use points with different

values of p.

2.2.4 Performance comparison

In order to compare the performance of the previous detection schemes, we utilized

the same conditions used by the authors in [27]. We considered the ideal case where

a cognitive radio sensor with M = 8 receiving antennas is to detect Q = 3 single-
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Figure 2.3: Receiver Operating Characteristics for a DC level in AWGN (d2 = 1).

antenna primary signal sources, each carrying an equal-power and independent data

stream. For each data stream, the transmitted primary signals are i.i.d. CSCG ran-

dom variables. A Rayleigh flat fading channel between each transmit-receive antenna

pair is assumed. We performed 1,000 Monte Carlo simulations, each one consisting of

N = 104 independent observations samples. The received signal-to-noise ratio (SNR)

per antenna is fixed at −20dB. It is important to stress that the authors in [27] found

the threshold levels for the simulation purposes using computational resources, i.e.,

they did not derive a closed formula as in [15]. With this in mind, we made use of

some validation simulation in order to verify the correct result of our simulations. In

Figure 2.2 we showed the theoretical values of the threshold γ for different probabili-

ties of false alarm. Using these values, we reproduced the results shown in [15], which

can be seen in Figure 2.1. The author of [15] does not indicate which covariance ma-

trix to use for the simulations; we used the Jakes model, explained in detail in [44].

Consequently, Figure 2.4 shows the ROC curves, each of which constitutes all the
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Figure 2.4: ROC of the presented detection methods.

achievable probability pairs of PD and PFA for each sensing algorithm. We can ob-

serve that, as expected, the estimator-correlator performs the best due to its perfect

knowledge of the received primary signal covariance and the noise variance. When

only the noise variance is perfectly known, the SSE performs better in comparison

to the energy detector. On the other hand if we have no knowledge of the covari-

ance matrix and the noise variance but we try to estimate it using this scheme, the

detection performance of the AGM method is still better than the energy detector,

which makes no effort in trying to estimate the unknown variables whatsoever2. It is

important to stress that the proposed schemes suffer from an increasing complexity

on the system, due to the inherent need to estimate the signal covariance matrix, and

perform an eigen-decomposition on such estimation.

2. The results of this simulation agree with the conclusions of [27]; however the authors’
plots are mislabeled.
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2.3 Cyclic Frequency Detection, Diversity

Combining Approach

In this section, we study a cyclostationary feature detection technique applying mul-

tiple cyclic frequencies in order to detect the presence of a single PU in CR networks.

Cyclostationary detection was first proposed in [45] and it was later generalized for

multiple cyclic frequencies in [14]. Cyclostationarity is not a recent development (see

for example [17]), but effective tests for indication of second order cyclostationarity

using a NP test statistic were proposed only in the last decade [14]. A natural gener-

alization for multiple cyclic frequencies was recently proposed for PU detection in CR

networks [30]3. In the following, it will be shown that the single user detection algo-

rithms (in the form of expected value estimation of the cyclic autocorrelation) can be

interpreted as a specific case of the mixed frequency-delay incoherent diversity com-

bining block. The number of virtual branches is equal to the product of the number

of cyclic frequencies and the time delays. This diversity technique can also be called a

SIMO radar. Based on real-life scenarios, it is possible to assume that such branches

suffer from fading, which, in the general case, can be modelled using generalized

Gaussian statistics or the Klovski-Middleton model [46]. Moreover, depending on the

frequency and the delay diversity parameters, the fading in these branches or antennas

can be divided as non-homogeneous, homogenous, and totally correlated or statisti-

cally independent. The concept of diversity approach for multiple cyclic detection is

useful not only for effective development of quasi-optimal approaches as mentioned

above, but also because it allows us to consider the necessary tradeoff between the

number of delays and cyclic frequencies for the detection procedure and the statistical

dependence on the corresponding diversity branches in order to fulfill a specific ROC

requirement. Finally, it will be shown that the diversity concept for spectrum sensing

is rather constructive for the analysis of collaborative sensing as well. For instance,

a set of SUs, collaborating between themselves or operating through a Fusion Center

(FC), can be interpreted as virtual branches (antennas) of the distributed detection

3. This work was also presented in poster form at the 2010 School of Information Theory
in addition to the journal publication in [30].
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system, which can apply NP detection techniques or sequential analysis methods (see

Chapter 4).

2.3.1 Generalized Gaussian (Klovsky-Middelton) Channel

Model

Most of the existing fading channel models are based on the concept of the envelope

and phase of the random vector with Gaussian Probability Density Functions (PDF).

This PDF can be expressed, for orthogonal statistically independent quadrature com-

ponents x and y, as [46,47]

W (x, y) =
1

2πσxσy
exp

{
−(x− µx)2

2σ2
x

− (y − µy)2

2σ2
y

}
, (2.24)

where σ2
x, σ

2
y and µx, µy are the variances and expectations of the x and y quadrature

components respectively. Thus, by defining the module z =
√
x2 + y2 and the phase

of the random vector ϕ = arctan y
x , we obtain the following

W (z) =
z

2πσxσy

2π∫

0

exp

{
−(z cosϕ− µx)2

2σ2
x

− (z sinϕ− µy)2

2σ2
y

}
dϕ. (2.25)

From eq. (2.25) it is possible to obtain several representations for W (z), which

depend on the four parameters {µx, µy} and {σ2
x, σ

2
y}. For this reason, the term four

parametric distribution is adopted. Hereafter the following two equivalent forms for

the four parametric distribution W (z) are used:4

W (z) =
z

σxσy
exp

{
−
µ2
y + z2

2σ2
y
− µ2

x

2σ2
x

} ∞∑

k=0

H2k(α)

(2k)!!2k
σk

(
σ2
y

µy

)k(
1

σ2
x
− 1

σ2
y

)k
Ik

(
zµy

σ2
y

)
,

(2.26)

4. Considering that in the rest of this chapter the incoherent diversity combining is
applied, the PDF of the phase ϕ is no longer needed.
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W (z) =
∞∑

k=0

Rk

k!
σ2k ∂2k

∂
µkI
∂kII

{
z

σ2
exp

(
−z

2 + µ2
I + µ2

II

2σ2

)
I0

(
z

σ2

√
µ2
I + µ2

II

)}
,

(2.27)

where I0(·) is the modified Bessel function of order zero, Hn(·) stands for the Hermi-

tian polynomials, and the following auxiliary functions are defined as

µI =
µx + µy√

2
, µII =

µx − µy√
2

, σ2 =
σ2
x + σ2

y

2
,

R =
σ2
y − σ2

x

σ2
x + σ2

y
, σ =

µx√
2

(
1
σ2
x
− 1

σ2
y

)
σ2
y

(σ2
x ≤ σ2

y).

Eqs. (2.26) or (2.27) are called the Generalized Gaussian (GG) model because the

Beckman, Hoyt, Rice, Rayleigh, and truncated Gaussian distributions can all be

directly obtained from it. To demonstrate this, the next new parameters are defined

as

q2 =
µ2
x + µ2

y

σ2
x + σ2

y
, β2 =

σ2
x

σ2
y
, z2

0 = µ2
x + µ2

y,

z2 = z2
0 + σ2

x + σ2
y , ϕ0 = arctan

µy
µx
.

From these, the Beckman distribution can be obtained by making µy = 0, z0 = |µx|,
while the Hoyt PDF appears when σ2

x 6= σ2
y , z0 = µx = µy = 0. The Rayleigh

distribution follows from z0 = 0, µx = µy = 0, and finally the truncated Gaussian

distribution occurs when, additionally to previous conditions, σ2
x → 0. One can also

obtain the m parameter for the equivalent Nakagami distribution as

m =
(1 + β2)2(1 + q2)2

2
[
1 + β4 + 2q2(1 + β2)(β2 cos2 ϕ0 + sin2 ϕ0)

] . (2.28)

The Nakagami distribution is only an approximation for the four-parameter case, but

it does accurately represents the dynamics of the variations of the four-parameter

PDF functional form.
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2.3.2 Single User Multiple Cyclic Frequency Detection

The cyclostationary properties of wireless communication signals are very-well known

and widely investigated (see for example [14,27,45]). When the PU signal shapes are

known a priori, their cyclic frequencies of interest are also known. Let us introduce

the set A = {αn}P1 to denote the cyclic frequencies and let N =
∑P
n=1Nn be the

number of integers of the time delays τ for the auto covariance function at each cyclic

frequency [14], with P denoting the number of cyclic frequencies. Thus, the equation

of the auto covariance function is

R̂xx∗(α, τ) =
1

M

M∑

l=1

x(l)x∗(l + τ) exp (−j2παlτ) , (2.29)

where the integer time delay τ and the cyclic frequency are both fixed, M is the

number of observations, and x(l) is the complex sample input with x∗(l) being its

complex conjugate. Now, by representing the complex exponent in eq. (2.29) in

a trigonometric form and assuming that x(l) is a sample of the ergodic stochastic

process, one can easily see that when M >> 1 or the time analysis T >> 1, the R̂xx∗

estimations are simply the estimations of the complex Fourier coefficients for fixed α

and τ (see also [17]). Let r̂xx∗ be a complex vector of estimations (eq. (2.29)) of the

Fourier coefficients (F -coefficients) for different α and τ . Hence, the GLRT for its

estimation is well known and denoted by

r̂xx∗ ε̂
−1r̂Txx∗ ≥ Λ0, (2.30)

where ε is a 2N×2N covariance matrix of r̂xx∗ (in the non-asymptotic case, generally

such coefficients are correlated) and

N =
P∑

n=1

Nn. (2.31)
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Let us define an estimation of the j−th complex F -coefficient as

V̂j = Vj + Ṽj , (2.32)

where Vj and Ṽj are the real and imaginary parts of V̂j . The real F -coefficients

are not correlated; nevertheless, their estimations for a finite M corrupted by the

noise correlated except in the asymptote when M >> 1 and/or T >> 1. With this

assumption, eq. (2.30) can be significantly simplified by taking into account the total

Gaussianity of the terms in eq. (2.32) as [14]

N∑

τ=1

P∑

α=1

ε−1
τ,αV̂

2(τ, α) =

Q∑

i=1

∣∣∣V̂ 2
i

∣∣∣ ε−1
i , Q = NP, (2.33)

where ε−1
i = Diag

{
1

2γ2
1
, . . . , 1

2γ2
Q

}
. Thus the left side in eq. (2.30) can be represented

as the following
Q∑

i=0

V 2
i + Ṽ 2

i

2γ2
i

, (2.34)

where γ2
i = 2Ei/N0,

∣∣∣V̂i
∣∣∣
2

= V 2
i + Ṽ 2

i , Ei = PiT , and Pi is the average power of

each F -coefficient (fading is not considered here). Equation (2.32) represents the

optimum incoherent quadratic diversity combining algorithm having Q total virtual

branches, where 1
2γ2
i

, are weighting coefficients for each branch, generally related to

homogenous conditions for combining. The quadratic combining in order to obtain

the Neyman-Pearson Test (NPT) can be represented as

Q∑

i=1

∣∣∣V̂i
∣∣∣
2

2γ2
i

≥ Λ0, (2.35)

where Λ0 is a detection threshold. Equation (2.35) is not only a formal analogy

to diversity addition or SIMO radar testing, but an essential reflection of the anal-

ogy between the auto covariance estimation and diversity communing of statistically

independent data [48]. In the absence of fading, all branches are asymptotically sta-
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tistically independent. In presence of fading, V̂ 2
i can be statistically independent as

well, but also might be correlated in scenarios of flat fading, both in the frequency

and time domains. In terms of the signal hypotheses, the NPT can be formulated as

follows [49]

H0 :
∑Q
i=1

∣∣∣V̂i
∣∣∣
2

2γ2
i

= n(t)

H1 :
∑Q
i=1
|νi|2
2γ2
i

+ n(t)

, (2.36)

where ν2
i is the i-th real F -coefficient and n(t) is the white Gaussian noise with power

N0. For simplicity, let us suppose that all 2γ2
i are the same and homogenous features

of the virtual branches will be addressed to different z2
i = z2

0 +σ2
xi

+σ2
yi

. This means

that in eq. (2.36) one has to consider only the routine form for quadratic combining

ξ =

Q∑

i=1

∣∣∣V̂i
∣∣∣
2
. (2.37)

The NPT is characterized by Pfa and Pmd which are respectively the probability of

false alarm and the probability of miss detection [49]. In the absence of fading, ξ

is formed by the squares of the normally distributed components and its PDF for

different hypothesis can be defined as

H0 : χ2
2Q(ξ) Central chi-square PDF

H1 : χ2
2Q

(
ξ,
∑Q
i=1

〈
V̂i

〉2
)

Non central chi-square PDF
, (2.38)

where
∑Q
i=1

〈
V̂i

〉2
is the expectation of the sum of V̂ 2

i and is a parameter of the non

central chi-square distribution [50]. In the presence of fading, the functional forms for

these distributions will differ depending on the scenarios for the GG channel model,

and will be considered in the following section.
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2.3.3 Statiscally Independent Virtual Branches with Flat

Generalized Gaussian Fading

Let us assume that V̂ 2
j can be represented as V̂ 2

j = x̂2
i + ŷ2

i , where x̂i = xiVi, ŷi = yiṼi

and {xi, yi} are the quadrature Gaussian components of the GG fading model. For

both hypotheses, each of the quadrature components in Ṽ 2
i are Gaussian as before,

but their means are not equal and their variances are arbitrary. Now, if

ξ =

Q∑

i=1

{
V 2
i + Ṽ 2

i

}
, (2.39)

the routine procedure for calculus of the noise immunity can be applied. For hypoth-

esis H0:

M{Vi} = µxi

√
2Ei
N0

1

2γ2
xi

√√√√ 2γ2
xi

1 + 2γ2
xi

,

M{Ṽi} = µyi

√
2Ei
N0

1

2γ2
yi

√√√√ 2γ2
yi

1 + 2γ2
yi

,

D{Vi} =
2γ2
xi

1 + 2γ2
xi

, D{Ṽi} =
2γ2
yi

1 + 2γ2
yi

,

(2.40)

whereas for hypothesis H1 :

M{Vi} = µxi

√
2Ei
N0

√√√√ 2γ2
xi

1 + 2γ2
xi

,

M{Ṽi} = µyi

√
2Ei
N0

√√√√ 2γ2
yi

1 + 2γ2
yi

,

D{Vi} = 2γ2
xi
, D{Ṽi} = 2γ2

yi
,

(2.41)

where M{·} and D{·} represent the mean and variance respectively,

γ2
xi

= σ2
xi

Ei
N0P 2
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and

γ2
yi

= σ2
yi

Ei
N0P 2

.

In the case of frequency diversity there are P out of Q virtual branches, with the

transmitted power divided between them [51]. From eqs. (2.40) and (2.41) it follows

that for both hypotheses, the PDF of W (ξ) is a non-central chi-square distribution.

For analytical evaluation, the special cases of high reliability detection γ2
xi
, γ2
yi
> 1

are considered. For such conditions, it follows from eq. (2.40) that for H0, M{Vi}
and M{Ṽi} are close to zero while the variances are close to one. Thus, W (ξ) under

H0 tends to χ2
2Q. For this case Pfa can be obtained as

Pfa ∼
1

(Q− 1)!
Γ(Λ0, Q) = exp(−Λ0)

Q−1∑

q=0

(Λ0)q

q!
. (2.42)

By fixing Pfa, one can find Λ0; applying the same conditions γ2
xi
, γ2
yi
> 1 from eq.

(2.41), it follows that for the hypothesis H1, the variances D{Vi} and D{Ṽi} will be

extremely large. In this case Pmd is calculated as

Pmd ∼
Λ
Q
0

Q!

Q∏

i=1

(1 + β2
i )(1 + q2

i )

2γ̄2
i βi

exp

{
−q

2
i (1 + β2

i )

2β2
i

(cos2 ϕ0i + β2
i sin2 ϕ0i)

}
, (2.43)

where γ̄2
i =

2Ei
N0P

2

(
σ2
xi

+ σ2
yi

+ µ2
xi

+ µ2
yi

)
. For the case of the one-sided Gaussian

distribution, eq. (2.43) becomes

Pmd =
Γ(Q+ 1)Λ

Q
0

2γ̄2QQ!Γ
(
Q
2

)√
π
. (2.44)

For the case of Nakagami fading channels, by assuming non-correlated homogenous

conditions for the fading in all virtual branches,

Pmd =
Λ
Q
0

Q!

(
2m

2m+ γ̄2

)Qm
, (2.45)

where Λ0 and m can be calculated using eqs. (2.42) and (2.28) respectively.
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2.3.4 Fully Correlated Virtual Branches (Flat Fading) in

GG Channel

For the case of totally correlated fading processes at the virtual branches, it is known

that the resulting SNR after the combining process is:

γ̄2 =
1

P 2

Q∑

i=1

γ̄2
i .

Thus, the problem can be transferred to the quadrature addition algorithm for one

equivalent branch, i.e., without diversity but with the GG model of flat fading

V0 + Ṽ0 ≥ Λ0, (2.46)

where V 2
0 =

∑Q
i=1 V

2
i and Ṽ 2

0 =
∑Q
i=1 Ṽ

2
i . Here, eqs. (2.40) and (2.41) are still valid,

but for single channel conditions. Consequently, Qeq = 1, and from eq. (2.42)

Pfa = exp(Λ0), Λ0 = ln
1

Pfa
, (2.47)

and

Pmd =
ln 1
Pfa

(1 + β2)(1 + q2)

2βγ̄2
i exp

[
q2i (1+β2)

2β2

(
cos2 ϕ0 + β2 sin2 ϕ0

)] . (2.48)

The ROCs resulting from previous eqs. (2.43) and (2.48) are shown in Figures 2.5-2.7

for difference sets of parameters. By comparing eqs. (2.43) and (2.48) one can see

that:

• For the same value of γ̂2
i and Pfa fixed, the probability of miss detection Pmd

from eq. (2.48) is greater than Pmd from eq. (2.43). This can be explained by

the diversity effect in eq. (2.48) (see also [47,52]).

• It is in fact reasonable to choose a small set of delays and multiple frequencies

(Q ≤ 5 [52,53]) in order to provide (as long as the channel condition allows it)

statistically independent fading in those virtual branches, i.e., it is reasonable to

“sacrifice” the value of P by greater intervals between α and τ so as to artificially
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Figure 2.5: Probability of miss detection, eq.(2.43) is shown in solid line while
eq.(2.48) is shown in the dotted line (β2

i = 0.1, Pfa = 0.001, q2
i = 2).

Figure 2.6: Probability of miss detection, eq.(2.43) is shown in solid line while
eq.(2.48) is shown in the dotted line (β2

i = 0.5, Pfa = 0.1, q2
i = 2).
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Figure 2.7: Probability of miss detection, eq.(2.43) is shown in solid line while
eq.(2.48) is shown in the dotted line (β2

i = 0.1, Pfa = 0.001, q2
i = 4).

create independent fading in the frequency and deal domains, leading to better

noise immunity after diversity combining. Therefore, an appropriate choice of

cyclostationary features Q = NP of the desired PU signals can significantly

improve their ROC properties.

2.3.5 Special Case of Covariance Matrix for Correlated

Branches at the Quadratic Incoherent Addition

Algorithm

Let us consider in the following special case of the covariance matrix for quadrature

components x = {xl}Q1 and y = {yl}Q1 , and assume that across all the branches xl

or yl the Gaussian components are correlated with coefficients Rx or Ry and there is

no cross-correlation at all between xl and yl Gaussian components. This assumption

restricts (in general) the type of the covariance matrix of the GG channel model

but might be useful for the first step examination of the influence of the covariance

between virtual branches at the noise immunity characteristics of the SU. It is well
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known that for each pair of x or y Gaussian variables, it is possible to obtain a new

set of statistically independent Gaussian variables by rotating the coordinate system

(linear transformation) by the angle

Ψ = arctan

{
2R

σ1σ2

σ2
1 − σ2

2

}
, (2.49)

where R is the correlation coefficient and σ2
1,σ2

2 are the variances of two correlated

Gaussian quadrature components, while new Gaussian variables are statistically inde-

pendent [50,54]. In order to provide tractable analytical results, only the case Q = 2

from eq. (2.37) will be considered. The variances for hypotheses H0 and H1 are

calculated as

σ2
I,II =

2σ2
1σ

2
2(1−R)

(σ2
1 − σ2

2)

[
1±

√
1− (1−R2)

4σ2
1σ

2
2

σ2
1+σ2

2

] , (2.50)

where σ2
I,II are the new variances of the quadrature components after the angle

rotation (for each two branches). Moreover, assuming for simplicity that Rx = Ry =

R, one obtains

µI = (µ1 cos Ψ− µ2 sin Ψ) ,

µII = (µ1 sin Ψ− µ2 cos Ψ) ,
(2.51)

where µI and µII are the new means after the angle rotation. Consequently, this set

of parameters can be considered as new parameters of the GG model with the sta-

tistically independent branches. The ROC can be calculated in the same way as eqs.

(2.42) and (2.43); however, this calculation is in general rather cumbersome because

the new parameters of the GG model come from rather complex expressions. There-

fore, assuming that Pfa << 1 and Pmd << 1, it is possible to apply an asymptotic

calculation. Particularly, for the H0 hypothesis, all the means will be close to zero

and all the variances will be equal to (1−R2). Thus, Pfa can be calculated using eq.
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(2.42) but using a new threshold obtained with

Λ′ =
Λ0

1−R2
.

Hence, for the case Pmd << 1 one obtains

Pmd ≈
Λ
′2

2
exp


−

µ2
Ix

2(1 + σ2
Ix

)
−

µ2
IIx

2(1 + σ2
IIx

)
−

µ2
Iy

2(1 + σ2
Iy

)
−

µ2
IIy

2(1 + σ2
IIy

)


×

[
1 +

σ2
Ix

2(1 + σ2
Ix

)

(
1 +

µ2
Ix

σ2
Ix

(1 + σ2
Ix

)

)
+

σ2
IIx

2(1 + σ2
IIx

)

(
1 +

µ2
IIx

σ2
IIx

(1 + σ2
IIx

)

)

+
σ2
Iy

2(1 + σ2
Iy

)


1 +

µ2
Iy

σ2
Iy

(1 + σ2
Iy

)


+

σ2
IIy

2(1 + σ2
IIy

)


1 +

µ2
IIy

σ2
IIy

(1 + σ2
IIy

)




 .

(2.52)

Let us consider the special case when σ2
Ix

= σ2
IIx

= σ2
Iy

= σ2
IIy

= σ2; by also

introducing z2
0I

= µ2
Ix

+ µ2
Iy

and z2
0II

= µ2
IIx

+ µ2
IIy

, we get

Pmd ≈
Λ
′2

2σ4

(
3 +

z2
0I

2σ4
+
z2
0I

σ4

)
exp

{
−
z2
0I

2σ2
−
z2
0II

2σ2

}
. (2.53)

For this case σ2 can be calculated as

σ2 =
2γ2

01
γ2

02
(1−R2)

(γ2
01

+ γ2
02

)

[
1±

√
1− (1−R2)

4γ2
01
γ2

02
(γ2

01
+γ2

02
)2

] , (2.54)

and for the case of
z2
0I

2σ2 ,
z2
0II

2σ2 << 1 (strong fading), we obtain

Pmd ≈
3Λ
′2

2σ4
=

3

2
(Λ
′
)2 1

γ2
01
γ2

02
(1−R2)

. (2.55)

Equation (2.55) shows that losses related to the correlation between diversity branches

depend mainly on 1
1−R2 (see [46,47]). For the case of a fading following the truncated
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Gaussian PDF,

Pmd ≈
Λ
′2

2

1√
(1 + σ2

Iy
)(1 + σ2

IIy
)


3

2
+

σ2
Iy

2(1 + σ2
Iy

)
+

σ2
IIy

2(1 + σ2
IIy

)


 , (2.56)

and for Pmd << 1,

Pmd ≈
Λ
′2

2

5

8γ2
01
γ2

02
(1−R2)

(2.57)

Here, the losses also depend mainly on 1
(1−R2)

. Changes of the threshold, which

depends on R, influence the character of the dependence of ROC on the correlation

properties of the GG model in a nonlinear way. From diversity combining theory, it

is well known [46, 47] that correlation between branches has an influence mainly in

the ROC when the resulting SNR is rather high, i.e., the correlation is much smaller

than one.

2.3.6 Suboptimal algorithms and their Noise Immunity

The first suboptimal algorithm considered here will be an energy receiver where the

desired signal is represented by

x(t) =
B∑

i=1

αiϕi(t), (2.58)

where B is the total number of orthonormal functions {ϕi(t)}B1 applied for the ex-

pansion of the desired signal x(t). Consequently, the corresponding signal given the

hypothesis can be represented as

H0 :z(t|H0) =
B∑

j=1




T∫

0

z(t)ϕi(t)dt




2

,

H1 :z(t|H1) =
B∑

j=1




T∫

0

x(t)ϕi(t)dt




2

+
B∑

j=1




T∫

0

z(t)ϕi(t)dt




2

,

(2.59)
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being

n(t) =
B∑

j=1




T∫

0

z(t)ϕi(t)dt




2

,

and

x(t) =
B∑

j=1




T∫

0

x(t)ϕi(t)dt




2

,

where the T is the time of analysis. Now, for the representation of x(t) and n(t) let

us apply the F -basis as in [53] (see also [48] and references therein). We now have

x(t) =
B∑

k=0

ak cos(kω0t) + bk sin(kω0t)

n(t) =
B∑

k=0

αk cos(kω0t) + βk sin(kω0t)

, (2.60)

where ω0 = 2π
T , B = 2FT , F =

k2−k1
F + 1 - frequency bandwidth, and k2, k1 are the

upper and lower indexes taken into account for the F -series expansion. Then, the

signal under hypothesis becomes,

H0 : 1
2

∑B
j=1

(
α2
k + β2

k

)
,

H1 : 1
2

∑B
j=1 (αk + ak)2 + (βk + bk)2 .

(2.61)

All of ak, bk, αk and βk are Gaussian distributed coefficients; the left side in eq. (2.61)

therefore has central and non-central χ2
2B distributions respectively. By defining the

left sides in (2.61) as λ1 and λ2 we can define the following equations:

W (λ1) =
1

D2B/2Γ(B/2)

(
λ1

D

)B/2−1

exp

(
− λ1

2D

)
,

W (λ2) =
1

2D

(
λ2

∆

)B/2−1
2

exp

(
−λ2 + ∆

2D

)
IB/2−1

(√
λ2∆

D

)
,

(2.62)
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where ∆ =
∑B
j=1

(
α2
k + β2

k

)
= 2Px is the average power of x(t) and the parameter

D =
N0T

2 . The miss detection probability Pmd is then

Pmd =
1

2
exp

(
−γ

2

2

)
F

(
Λ0

D
, γ2, B

)
≤ 1

2
exp

(
−γ

2

2

)
, (2.63)

where 0 ≤ F
(

Λ0
D , γ2, B

)
≤ 1 is the Cumulative Distribution Function (CDF) of the

non-central χ2
2B PDF. The upper bound of Pmd for the GG channel model with flat

fading is known from [47] as

Pmd ≤
1

C1
exp

{
− q2γ2

2(1 + q2)

[
(1 + β2)(1 + q2) cos2 ϕ0

(1 + β2γ̄2)
+

[
(1 + β2)(1 + q2) sin2 ϕ0

(1 + γ̄2)

]]}
,

(2.64)

where γ̄2 = z2 2E
P 2N0

and

C1 = 2

√
1 +

β2γ̄2

(1 + β2)(1 + q2)
.

An exact tractable analytical expression of Pmd for the GG model is not available. In

the absence of fading, it is possible to obtain an analytical result. First, it is possible

to represent the Bessel function as in [55] as

IB/2−1

(√
γ2y

)
=
∞∑

k=0

(
γ2y
)B/2−1

2 +k

k!Γ(B/2 + k)
. (2.65)

Pmd from eq. (2.63) is then

Pmd =
1

2
exp

(
−γ

2

2

) ∞∑

k=0

γ
(
B/2 + k,

Λ0
2D

) (
γ̄2
)B

4 −
1
2+k

k!Γ(B/2 + k)2k−1
, (2.66)

where B = 2Fτ , and γ(α, x) is the lower incomplete gamma function. The analysis

of eq. (2.66) shows that the influence of B can be significant and it can be shown that

for fixed Pfa, while B increases, Pmd increases as well. To the best of our knowledge,
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the influence of B and γ̄2 on the ROC of the energetic (auto covariance) receiver was

first addressed in [48]. For the multiple cyclic frequency case, when the number of

frequencies P is rather large while T is fixed, F is large as well and Pmd increases.

Therefore the energetic detector is not a good candidate for spectrum sensing in

this scenario, as its Pmd is much worse than for the optimum detector. Another

option for suboptimal detection is to take advantage of the analogy between multiple

cyclic frequency detection and quadratic diversity combining and apply a suboptimal

variant of incoherent diversity addition. A selection (switching) combining method

was chosen, assuming that fading has a Nakagami PDF. See for example eq. (2.28) to

adjust parameters of the Nakagami PDF and four-parameter distribution. There are

several different approaches for switching combining but in the following we analyze

only the algorithm of selection of the virtual branch with

z′ = max
z

zi,

for i = 1, . . . Q0. Let us assume here, for simplicity, homogeneous fading conditions.

Then, the distribution of the maximum value of the identically distributed random

values is given by [11] as

W (z′) = QW (z = z′)



z′∫

0

W (y)dy




Q−1

. (2.67)

If W (z) is given by [56] as

W (z) =
2mmy2m−1

Γ(m)Ω2m
exp

(
−my2

Ω2

)
, (2.68)

Pmd must be averaged for one virtual branch without fading through eq. (2.67) with

the help of eq. (2.69), while Pfa is

Pfa = exp(−Λ), (2.69)
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Figure 2.8: Probability of miss detection comparison for the optimum (eq. (2.45)),
and quasi optimum (eq. (2.71)) cases.

where Λ is the threshold. The Pmd of the channel without fading is then

Pmd = Q (
√
γ,Λ) . (2.70)

For the case of Q = 2 and γ > 1, one can get from eqs. (2.67)-(2.70) the approximate

formula

Pmd =
Λ2

(
1 + γ2

2m

)m





1−
m−1∑

i=0

(m− 1 + i)!

(
1 + γ2

2m

)m

i!(m− 1)!
(

2 + γ2

2m

)m+i




, (2.71)

for m- integers. One can compare this method of switching combining (with fixed

γ̄2 and Q = 2) with the optimum approach. Notice that in fading channel condi-

tions when the number of virtual branches is growing, one encounters the so-called

hardening effect, i.e. while Q is increasing, the increment of the ROC might be low.

Therefore, with Q = 2, there is reason to compare the effectiveness of the selection

combining method with the optimum one. In Figure 2.8, the ROC for this method

is presented. One can see that the energetic losses for Pmd = 10−4 are rather small
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and for m = 1 are negligible. In the same manner as above, the well known set of

sub-optimum combining algorithms can be applied: other methods of switching com-

bining, linear (weighted and non-weighted) addition, etc. Their application is rather

straightforward. Both algorithms (eq. (2.37)) and (eq. (2.40)) rely on quadratic

addition of the F -coefficients, but their noise immunity is quite different, particu-

larly with the GG channel fading.The reason for this is rather straightforward: in eq.

(2.37) the object of the quadratic addition is the F -coefficients, but from the auto

covariance function of the output of the multiple cyclic frequency optimum detector,

i.e., after optimum processing of the quadrature components of the input signals. It

is also possible to provide statistically independent fading of the virtual branches for

incoherent addition by properly choosing the cyclic frequencies and delays. which

drastically increase the noise immunity (through the diversity effect). In contrast,

the energetic receiver, as it is in (2.59)-(2.61), does not apply specific properties of

the cyclic frequencies and only extracts the total energy of the aggregate input signal.

It is unlikely in this case for the F -coefficients of the input signal to exhibit statistical

independency in fading conditions. Moreover, for the energetic receiver (eq. (2.61)),

the noise immunity (even in the case of a constant channel without fading) decreases

when the bandwidth F grows (B = 2FT , with T fixed) as the noise power grows.

Therefore the energetic receiver for multiple cyclic frequency signals might not be

practical when FT >> 1. For a quasi-optimum alternative for optimum quadratic

combining it is possible to consider all the set of switching combining algorithms, as

well as a whole set of quasi-optimum algorithms of non-coherent diversity combining,

such as a set of linear combining methods with rather low power losses for fixed Pfa

and Pmd.

2.4 Coupled Dynamical Systems Approach

In this section, self-organization of coupled dynamical systems are used in to establish

a decentralized synchronization and to be detect the presence of an external agent (a

PU for instance) in a distributed fashion with the use of only local measurements.

In CR systems, such local measurements may present interference temperature at
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certain frequency bands at different locations to facilitate dynamic spectrum access

and solve the hidden terminal problem. This method can also be implemented in the

analog domain without the need of any analog-digital converters (ADC) and extensive

digital signal processing.

2.4.1 Coupled Dynamical System Model

Let us assume a network with N nodes, all of them with access to a common inter-

action media which measures their environment and obtains a local decision about

interference, temperature interference, frequencies, etc. Each node is initialized using

this local decision. These decisions are shared among all nodes; through this, they

attempt to achieve a globally stable behaviour, such as synchronizing the dynamics

of states for all nodes (a synchronization mode). Within this context, each node is

considered as a single dynamical system depicted in Figure 2.9. The node architecture

shown in Figure 2.9 is divided into:

• A local decision block which performs the local decision on a variable yn(tk) at

time tk.

• A processing block that calculates a function of the measurement, gn(yn(tk)),

whose presents an initial state of n-th node xn(t0).

• A front-end that senses the environment and obtains local decisions from other

nodes.

• A dynamical system, characterized by a state xn(t) which dynamics depends

on a local decision gn(yn(tk)) and decisions obtained from other states xm(t).

• An interface block to map a local state xn(t) on some physical carrier and to

broadcast it to its neighbors.

• A synchronization block (dashed lines in Figure 2.9).

The system dynamics may be described by the motion equations in continuous time

ẋn = gn(yn(t)) +
K

cn

N∑

m=1

anmψ(xm(t − τnm) − xn(t)) + ηn(t), n = 1 . . . N

(2.72)
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Figure 2.9: Dynamical System Node Architecture

where ψ(·) is a coupling function, K is a global coupling gain, and cn are the local

positive coefficients. These coefficients are related to the reliability or SNR of the local

measurements, and anm and τnm are the coupling strength and propagation delay

between nodes n and m respectively. The radio-wave propagation loss in wireless

communications, the distance between nodes, and the effect of fading can be taken

into account by the anm coefficient:

a2
nm =

pm|hnm|2
d2
nm

, (2.73)

where pm is the power transmitted by the m-th node, hnm is the amplitude fading

coefficient, and dnm is the distance between nodes n and m. For the local decision

mapping to the model, we consider a mapping of local measurements on radio fre-

quencies (RF) of local nodes, i.e. gn = ωn. In this way, we can describe the dynamics

of a local state as the dynamics of an oscillator and the coupling effect may be seen

as a mean field acting on a selected oscillator. By using ψ(·) = sin(·) as a coupling

function in equation (2.72) and neglecting the delays, the dynamics of the fully con-

nected network can be described by the Kuramoto model of weakly phase-coupled

oscillators

θ̇n(t) = ωn +
K

N

N∑

m=1

sin(θm(t)− θn(t)), n = 1 . . . N (2.74)
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where ωn = gn(yn) are the local frequencies and θn(t) = xn(t) are the initial phases.

Hence, it is possible to define a complex mean field for N globally coupled oscillators

with equal unit amplitude as follows

R(t) =
1

N

N∑

n=1

eiθn(t) = reiφ(t), (2.75)

where r and φ are the mean-field amplitude and the phase, respectively. Using eq.

(2.75), we can rewrite eq. (2.74) as

ẋn(t) = θ̇n(t) = ωn + anmKr sin(φ− θn + αnm). (2.76)

Notice that, unlike [25] and [26], we have introduced the fading coefficient anm = hnm

(assuming pn/d
2
nm = 1) and the influence of the fading in the phase denoted by αnm.

This allow us to consider a more realistic physical scenario.

2.4.2 Fading Generating Algorithm

In order to generate the fading coefficients, two white random processes hR and hI

with variances σR and σI , respectively, are used. These are later passed through a

linear time invariant second order filter to produce two coloured random processes

according to some target autocorrelation function (e.g. Bessel or exponential). We

then add the corresponding means µR and µI to each process. Finally we describe

the sum of all scattered components as the complex Gaussian random process [57]

h = hR + jhI . (2.77)

This process is described in detail in Figure 2.10.

2.4.3 Autoregressive Model

There are several methods of implementing linear time invariant filters to provide

some autocorrelation function at the output. We use the well known Autoregressive
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Model (AR) [58]. The AR-model of a random process y(n) is defined by the following

expression:

y(n) =
m∑

i=1

aiy(n− i) +
√
Kξ(n), (2.78)

where ai are the coefficients of the recursive filter, m is the order of the model, and

ξ is a white noise sample. We determined a second order model (m = 2) provides

sufficient accuracy, so eq. (2.78) is therefore

y(n) = a1y(n− 1) + a2y(n− 2) +
√
Kξ(n), (2.79)

where a1 and a2 can be calculated using the very well known Yule-Walker equations

as

a1 =
ρ1 − ρ∗1ρ2

1− |ρ1|2
(2.80)

a2 =
ρ2 − ρ2

1

1− |ρ1|2
(2.81)

and ρi is the i-th autocorrelation coefficient. Finally, K can be calculated as

K =
a1ρ1 + a2ρ2 − 1

σ2
n

, (2.82)
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Figure 2.11: Bessel Autocorrelation

where σn is the variance of the white noise. In Figures 2.11 and 2.12 we show the

performance of the second order filter in comparison to the theoretical Bessel and

Exponential curves.

2.4.4 Distributed Estimation Results

Provided that global coupling strength K in equation (2.74) is large enough compared

to some frequency variations, the systems can evolve from quasi-chaotic to partial fre-

quency synchronization where nodes with close frequencies are locked. This behaviour

is analyzed in Figure 2.13 where no fading is considered. Partial synchronization is

achieved when K = 0.5 and the frequency locking is achieved when K = 0.6. In

Figure 2.14 we present the synchronization considering the influence of a Rayleigh

fading amplitude without taking the phase into account. In Figure 2.15 we consider

the influence of both amplitude and phase fading having a distribution shown in

Figure 2.16. The amplitude is Rayleigh distributed while the phase is uniform dis-
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Figure 2.12: Exponential Autocorrelation
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Figure 2.14: Evolution of frequencies (local decisions) in time (K = 0.9, 1.0).

tributed. These were generated considering σR = σI = 1 and µR = µI = 0. In

Figure 2.17 we plot the synchronization considering a different distribution for the

amplitude and phase fading which are shown in Figure 2.18. These were generated

considering σR = σI = 1, µR = 0, and µI = 2. The amplitude is Rician distributed.

2.4.5 Networks with Complex Topology

So far, we have considered only the case when the network is fully connected and a

fast convergence to the sync mode can be achieved. This in general is not true for

real cases, where the networks are only locally connected (seen in Figure 2.19). In

general, wireless networks may be seen as locally coupled systems where the inter-

action strength anm depends on the distance dnm between n and m nodes. As seen

before, we can describe the system as

θ̇(t) = ωn +
K

cn

N∑

m=1

anm sin [θm(t)− θn(t)] , (2.83)
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Figure 2.15: Evolution of frequencies (local decisions) in time (K = 4.0, 5.0).

where

anm =
pm

(1 + dnm)α
for ∈ conn

anm = 0 otherwise

, (2.84)

and conn is the set of all nodes connected to node n (all the nodes inside a circle or

radius rcon (Figure 2.19). As in [26], we have set pn = 1 without loss of generality,

and anm = amn. If each node is capable of making an estimation of the local signal-

to-interference ratio (SIR) we can define cn as

cn =
pn∑

m∈con2

pm
(1+dnm)α

. (2.85)
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2.4.6 Networks dynamics using a graph Laplacian

presentation

The connectivity of the network can be modelled as a graphG = {vn, en;n = 1, 2, . . . , N}
with |v| = N nodes and |e| = E edges. This graph can be described by an oriented

incidence matrix (N × E), i.e., in the column of edge e there is a +1 in the row

corresponding to one vertex of e and a −1 in the row corresponding to the other

vertex of e, and all other rows have 0. Using this, it is possible to rewrite eq. (2.83)

as

Θ̇(t) = Ω−KD−1
C BDA sin

[
BTΘ(t)

]
, (2.86)

where the vectors and matrices are now defined as follows:

Θ(t) = [Θ1(t), . . . ,ΘN (t)]T ,

Ω(t) = [ω1(t), . . . , ωN (t)]T ,
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Figure 2.17: Evolution of frequencies (local decisions) in time (K = 1.0, 1.2).

DC = diag {c1, . . . , cN} ,

DA = diag {a1, . . . , aE} ,

where a1, . . . , aE are weights anm indexed from 1 to E. In order to take into account

the radio-wave path loss in wireless networks, the weighted Laplacian is introduced

which is defined as

LA = BDAB
T . (2.87)

By multiplying eq. (2.86) by the row vector cT = 1TNDC we obtain

cT Θ̇(t) = cTΩ−K1TNDCD
−1
C BDA sin

[
BTΘ(t)

]
. (2.88)
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Figure 2.19: Partially connected network

If the system in eq. (2.86) is in frequency sync then the derivative of the state function

is constant and converges to

θ̇∗(t) = ω∗ =
cTΩ

1TN c
=

∑N
i=1 ciωi∑N
i=1 ci

. (2.89)
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2.4.7 Synchronization Mode

If we assume that a network is connected, there exists then a convergence to a stable

state for a sufficiently high K. Consequently, we use the upper and lower bounds to

evaluate the coupling strength when the distributed estimation converges to the sync

state. The authors in [59] conclude that

• The synchronized state exists for all K > Ks where

Ks ≤
2||DC∆Ω||2
λ2(LA)

,where∆Ω = Ω− ω∗1N (2.90)

• No synchronized state exists for all K < Kns where

Kns ≥
||DC∆Ω||∞

dmax
(2.91)

where dmax denotes the maximum degree of the weighted graph, dmax =

maxi
∑N
j=1 aij .

2.4.8 Simulation Results

We simulated a wireless network with N nodes randomly distributed within a unit

square. By means of the distance rcon we derived a connectivity matrix in such a

way that a connectivity exists within a circle of radius rcon around each node. We

modelled the local measurements as random values taken from a Gaussian distribution

with variance σ2
ω. In Figure 2.20, we present the behaviour of bounds Ks and Kns

calculated using eqs. (2.90) and (2.91) respectively as a function of the density of

nodes per unit area averaged over 100 randomly generated topologies. The local

estimates ωn are simulated as normally distributed random variables with mean µ = 0

and variance σω = 0.02. It has been shown that the influence of fading directly

impacts the convergence of the distributed estimation. In Figure 2.20, the values of

Ks and Kns decrease when the connectivity is increased. By setting rcon = 1.4, the

networks always form fully connected graphs; this case presents the lowest value of Ks,

as can be seen in Figure 2.13. We can also see that if one of the local measurements

has a high reliability (high SNR) and differs significantly from others nodes, this
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Figure 2.20: Dependance of bounds Ks and Kns on node density.

frequency will not be locked and the local mean field amplitude r will have a lower

value and some significant variations in amplitude. The change in the mean field r

below a pre-established threshold may be used in CR systems to indicate that one of

the nodes senses a strong signal in a certain frequency band which is not visible for

the other nodes. This can be very useful in solving the hidden terminal problem in

CR networks. In the analysis of the convergence properties we do not consider the

influence of fading, because the sin(·) term disappears when multiplying by the row

vector cT = 1TNDC in equation (2.86). However we are investigating this for further

studies.
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Chapter 3

Sequential Analysis Detection in

Cognitive Radio Networks

Most of the existing spectrum sensing schemes found in the literature are based on

fixed sample size detectors, which have a preset and fixed sensing time. In this

chapter, we present some novel results based on the work of Abraham Wald [29], who

showed that a detector based on a sequential detection requires less average sensing

time than a fixed size detector. We show that, in general, it is possible to achieve the

same performance as other fixed sample based techniques using as few as half of the

samples on average for low SNR scenarios. We then assess the impact of non-coherent

detection with signals detected using sequential analysis, and we use the Wald test as

a new of cooperative approach for sensing. This is addressed as an optimal fusion rule

for distributed Wald detectors, and its performance is assessed. Later on, we present

a novel methodology to evaluate the cumulants of the sample random distribution

in sequential analysis. We use this to present a modification of the Dual Sequential

Ratio Test algorithm used for Primary User (PU) detection in Cognitive Radio (CR)

networks. In the considered scenario, the Secondary Users (SUs) utilize the sequential

ratio test to sense the wireless channel looking for the presence of a transmitting PU.

A Fusion Centre (FC) gathers the decisions from the SUs in order to perform a

sequential ratio test and achieve a final verdict. Collection instance by the FC is

optimized such that the total time to make a decision is minimized. This allows for

better energy usage from the SUs along with reliable and fast detection of the PU.
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3.1 Introduction

There exist several spectrum sensing algorithms aimed to solve the hypotheses testing

problem explained in the previous chapters. In CR networks it is also of major

importance to be able to detect the presence of PU as fast as possible, since the time

of decision has great impact on the overall throughput of the system [60]. It is shown

in [29,31] that Wald’s Sequential Probability Ratio Test (SPRT) results in a savings

of about fifty percent in the average number of observations in comparison to other

well-known techniques such, as the Neyman-Pearson (NP) test. In order to improve

performance and avoid hidden terminal problems, cooperative sensing can also be

used [11]. There exist several papers in the literature focused on reducing the power

consumption in distributed CR sensing scenarios. A distributed scheme is proposed

in [61] which groups SUs into clusters and assigns one specific user as a cluster head,

which gathers the spectrum sensing results from the other users in the cluster and

forwards the local result to a FC. The energy savings comes from some SUs now

sending their decision to their cluster head and not to the FC. In [62], a sleeping and

censoring scheme for distributed networks is proposed in order to minimize energy

consumption. In this case, each radio stops sensing while in sleep mode. The results

from each user are sent to the FC only when they are within a reliable energy region

defined by two thresholds which are to be optimized. While an energy savings occurs

in [61] and [62], nothing is said about how fast their detection scheme performs.

In [63], the authors use a Bayesian formulation to detect abrupt changes in multiple

on-off processes. While they use a modification of the cumulative sum algorithm

(CUSUM) for multiple channels, they do not address with the distribution approach.

Moreover, a priori information about PU activity must be assumed. In [64], a random

access-based reporting order control scheme is proposed for cooperative sensing. In

this scenario, the local test statistics are reported to the FC in descending order of

magnitude. They gain in time of detection by reducing the reporting time to the FC.

In [65], the authors propose a Dual SPRT to perform collaborative spectrum sensing.

Here, the SPRT is used at both the SU front-end and the FC in charge of taking the

final decision about the presence of the PU. The FC is required to gather information
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about the decisions made by SUs at a particular instance. However because of the

nature of sequential analysis, those decisions are not always available at the same

time. If the FC waits to gather information until all SUs have made a decision,

the accuracy of the sensing improves but the overall throughput decreases. On the

other hand, if the FC makes a decision with very little information, the reliability

of its final decision is compromised. For this reason, we suggest that decisions from

SUs are only transmitted after an optimal time τ0 in order to decrease power usage

and provide sufficient number of decisions to the FC. In [66], a threshold broadcast

scheme is proposed for collaborative quickest spectrum sensing. The authors obtain

a reduction in the detection delay in comparison to schemes using random broadcast.

Our approach differs from theirs, as we use a FC to make a final decision and do not

consider limited communication slots.

3.2 Sequential Analysis of A. Wald

The sequential analysis and the sequential probability ratio test (SPRT) were in-

troduced by A. Wald in 1943 [29] and have proven to be highly effective in taking

decisions between two known hypotheses (H0,H1). While most of the efforts in the

analysis of detection are focused on the NP detectors [16], it is well known that, on av-

erage, sequential detection provides a substantially faster operation. As shown in [29],

the SPRT frequently results in a savings of about fifty percent in the average number

of observations in comparison to other well-known detection techniques, such as the

aforementioned NP decision test which is based on fixed number of observations. In

the NP detection test, the logarithm of the Maximum Likelihood Ratio (MLR) is

compared to a single threshold Λ0 at a predefined and fixed observation interval T .

In contrast, the sequential test compares the MLR to two thresholds Λ1 and Λ2 until

a certain condition is satisfied. The parameters of the test are calculated based on

the required Pfa and Pmd as described in [29, 49]. Unlike the NP test where the

duration of testing is chosen based on the desired probabilities of errors, the decision

time in the Wald test is allowed to fluctuate. As a result, a faster decision time can be

achieved on average. The thresholds in question can be calculated (upper bounded)
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as

Λ1 = ln
1− Pmd
Pfa

= lnD,

Λ2 = ln
Pmd

1− Pfa
= lnC.

(3.1)

The test procedure consists of sequentially accumulate m samples and calculate the

cumulative sum of the m-th log-LR as

Λ1 <
m∑

i=1

Ri < Λ2, (3.2)

whereRi is a single log-likelihood ratio sample. If eq. (3.2) is satisfied, the experiment

is continued by taking an additional sample and increasing m by 1. However, if

m∑

i=1

Ri ≥ Λ2, (3.3)

the process is terminated with the acceptance of H1. Similarly,

m∑

i=1

Ri ≤ Λ1 (3.4)

leads to termination with the acceptance of H0. An illustrative example of Wald test

can be seen in Figure 3.1, where a decision is not made as long as the MLR remains

between the thresholds Λ1 and Λ2. The decision in favour of the hypothesis H0

(absence of PU) is made if the MLR becomes smaller than Λ1, whereas the hypothesis

H1 (presence of PU) is admitted if the MLR exceeds Λ2. Therefore, in contrary to the

NP test, decision-making instance for sequential analysis is not fixed, and is generally

a random variable. It is thus possible to obtain an average number of samples (mean

decision time) for accepting either one of the two hypotheses, depending on which of

the two (H0 or H1) is correct, as:

E {ν|H0} =
1

A

[
(1− Pfa) lnC + Pfa lnD

]
, (3.5)
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E {ν|H1} =
1

B
[Pmd lnC + (1− Pmd) lnD] , (3.6)

where

A = E {R|H0} ,
B = E {R|H1} ,

(3.7)

andR is the log-likelihood ratio after ν steps. It follows that the decision time is given

by T = νTs where Ts is the sampling interval and ν is the number of steps necessary

to make a decision. The decision time T is a random variable, and can be described

by its PDF pν(t). An exact solution for such PDF is still unknown, although some

approximations are suggested by Wald [29] for the asymptotic cases when D = const,

C → 0 or C = const, D → ∞. This approximated solution is known as the Wald’s

PDF. The estimates of the variance σ2
ν are also known under the assumption that

Pfa � Pmd. The derivations for the parameters of the distribution pν(t) are based

on the notion of the so-called Operation Characteristic (OC) L(a). This is defined

for the low SNR case as:

L(a) =
Dh(a)−1

Dh(a) − Ch(a)
, (3.8)

where a is the parameter of the hypothesis testing. In other words, a = a0 corresponds

to the hypothesis H0 while a = a1 corresponds to the hypothesis H1. For detection
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problems in fading conditions, a is simply proportional to the SNR of the PU, so that

a0 = 0 if the PU is absent, and equal to the average link SNR (a1) in the case of H1.

Furthermore, h(a) is a unique non-zero root of the equation:

∞∫

−∞

[
pa1(x)

pa0(x)

]h(a)

pa(x)dx = 1, (3.9)

where pa(x) is the PDF of the observation based on the parameter a, and pa1(x)/pa0(x)

is the likelihood ratio for two hypotheses H0 and H1. It is shown in [29] that

h(a1) = −1 and h(a0) = 1.

3.2.1 Wald Test for Complex Random Variables

Let us consider the testing zero mean hypothesis in complex Additive White Gaussian

Noise (AWGN) described as

H0 : zi = xi + jyi = wi

H1 : zi = m+ wi
(3.10)

where m = mI + jmQ = µ exp(jφm) 6= 0 is the complex non-zero mean, and wi

is the i.i.d. complex zero-mean Gaussian process of variance σ2. A single sample

log-likelihood ratio Ri is given by

Ri = ln
p1(zi;H1)

p0(zi;H0)
= ln

C exp
[
−(xi − µ cosφm)2/σ2 − (yi − µ sinφm)2/σ2

]

C exp
[
−x2

i /σ
2 − y2

i /σ
2
] =

2µ (xi cosφm + yi sinφm)− µ2

σ2
.

(3.11)

After N steps of the sequential test the cumulative log-likelihood R ratio becomes

R =
N∑

n=1

Ri =
2µ

σ2
TN −

Nµ2

σ2
, (3.12)
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Figure 3.2: Comparison of Neyman-Pearson Test and Sequential Probability Ratio
Test (PFA = 0.1,PD = 0.9).

where

TN = cosφm

N∑

n=1

xn + sinφm

N∑

n=1

yn. (3.13)

The rest of the test follows the procedure outlined in Section 3.2. Figure 3.2 shows

the performance comparison in number of samples needed between the Wald Test

and the NP Test. Notice that the NP test needs in general almost twice the number

of samples in order to detect the presence of the signal. It follows from eq. (3.13)

that the sufficient statistic in the case of complex observations is given by

T =
N∑

n=1

<{x exp(−jφm)}. (3.14)

The processing of the received signal is implemented in two stages: first, the data is

unitary rotated by the angle φm in order to align the mean along the real axis; then,

the real part of the data is analyzed using the same procedure as with purely real
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data.

3.2.2 Average Number of Samples

Following the sequential test procedure defined in eq.(3.2) we can rewrite the log-

likelihood ratio as

R =
m∑

i=1

Ri = ln
p(z1, . . . , zm|H1)

p(z1, . . . , zm|H0)
, (3.15)

where the random variable m represents the required number of samples needed to

terminate the test. As stated in [29], it is possible to neglect the excess on threshold

Λ1 and Λ2, and the random variable can therefore have four possible combinations of

terminations and hypotheses:

R =





PFAΛ1 if H0 is true

PDΛ1 if H1 is true

(1− PFA)Λ2 if H0 is true

PMΛ2 if H1 is true

. (3.16)

Following the same reasoning, we can calculate the conditional expectation for the

random variable R as

R̄ =

{
PFAΛ1 + (1− PFA)Λ2 if H0 is true

PDΛ1 + PMΛ2 if H1 is true
. (3.17)

It is now possible, to obtain the average number of samples (decision time) for ac-

cepting one of the two hypothesis as:

n̄(H0) =
PFAΛ1 + (1− PFAΛ2)

R̄(H0)
,

n̄(H1) =
PDΛ1 + (1− PDΛ2)

R̄(H1)
,

(3.18)
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Figure 3.3: Average Number of Samples for Detection in Sequential Analysis
(PD = 0.9).

where the term R̄(H0) can be calculated as

R̄(H0) =

∑N
i=1Ri
N

, (3.19)

if no signal is present. The term R̄(H1) can be calculated analogously assuming there

is a signal present as follows:

R̄(H1) =

∑N
i=1Ri
N

. (3.20)

Figure 3.3 shows the average number of samples needed to achieve PD = 0.9 for

different SNR. The deviation at high SNRs occurs in practice for very high SNRs,

when just one sample is more than enough to detect the presence of a PU.
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Figure 3.4: Approximation of decision time using Wald Distribution (PD = 0.9).

3.2.2.1 Decision Time Distribution

The decision time when using sequential analysis for detection can be modelled as

a random variable, which means that it can be completely described by its PDF.

Although an exact shape or closed analytical solution for such a PDF is not generally

known, a very good approximation is available (especially in the the low SNR region)

called the Wald distribution or the inverse Gaussian distribution, defined as

f(x) =
λ

2πx3
exp
−λ(x− µ)2

2µ2x
x > 0, (3.21)

where µ stands for the mean and λ > 0 is the shape parameter. Figure 3.4 shows

Wald’s distribution in order to approximate the decision time for PD = 0.9.
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3.3 Sequential Probability Ratio Test for

Partially Coherent Channels

Let us consider the detection of a signal in a channel a with partially known phase.

Hence, the received signal can be modelled as

zi = m exp(j∆) + wi, (3.22)

where m = mI + jmQ = µ exp(jφm) is a deterministic and known complex constant,

and wi is a complex zero mean Gaussian noise sample with variance σ2. The random

variable ∆ represents the uncertainty in the measurement of the phase of the carrier,

and its distribution can be described by the PDF p∆(∆). In the following analysis, it

is assumed that the phase uncertainty is described by the Von Mises (or Tikhonov)

PDF defined as [67]:

p∆(δ) =
exp [κ cos(∆−∆0)]

2πI0(κ)
. (3.23)

The parameter ∆0 represents the bias in the determination of the carrier’s phase,

while κ represents the quality of the measurements. A few particular cases can be

obtained from eq. (3.23) using the proper choice of parameters. We summarize three

major cases as:

1. Perfect phase recovery (coherent detection): κ = ∞, ∆0 = 0, and, thus,

p∆(∆) = δ(∆).

2. No phase recovery (non-coherent detection): κ = 0 and, p∆(∆) = 1
2π .

3. Constant bias: κ =∞, ∆0 6= 0, p∆(∆) = δ(∆−∆0).

We will derive the general expression first, and then investigate particular cases to

isolate effects of the parameters on the performance of SPRT.
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3.3.1 Average Likelihood Ratio

For a single observation zi, the probability densities p1(zi) and p0(zi) corresponding

to each of the hypotheses H1 and H0 are given by [31]

p1(zi) = C exp

[
−(xi − µ cos(φm + ∆))2

σ2

]
exp

[
−(yi − µ sin(φm + ∆))2

σ2

]
, (3.24)

and

p0(zi) = C exp

[
−x

2
i + y2

i

σ2

]
. (3.25)

For a given ∆, the likelihood ratio Li can be calculated to be

Li =
p1(zi)

p0(zi)
= exp

[
2µ (xi cos(φm + ∆) + yi sin(φm + ∆))− µ2

σ2

]
. (3.26)

The conditional (on ∆) likelihood ratio L(N |∆) considered over N observation is

then, the product of the likelihoods of individual observations, therefore

L(N |∆) =
N∏

n=1

p1(zn)

p0(zn)
= exp

[
2µ
∑N
n=1 (xn cos(φm + ∆) + yn sin(φm + ∆))−Nµ2

σ2

]

= exp

[
2µT (N,∆)

σ2

]
exp

[
−Nµ

2

σ2

]
,

(3.27)

where

T (N,∆) = cos(φm + ∆)
N∑

n=1

xn + sin(φm + ∆)
N∑

n=1

yn. (3.28)

Let us introduce the new variables X(N), Y (N), Z(N) and Ψ(N), defined by

X(N) = Z(N) cos Ψ(N) =
N∑

n=1

xn (3.29)

Y (N) = Z(N) sin Ψ(N) =
N∑

n=1

yn (3.30)
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Using this notation, eq. (3.28) can now be rewritten as

T (N,∆) = Z(N) cos [φm + ∆−Ψ(N)] . (3.31)

The average likelihood [49] L(N) can now be obtained by averaging eq. (3.27) over

the distribution of p∆(∆) to produce

L̄(N) = exp

[
−Nµ

2

σ2

] π∫

−π
exp

[
2µZ(N) cos [φm + ∆−Ψ(N)]

σ2

]
p∆(∆)d∆. (3.32)

In turn, this expression can be further specialized if p∆(∆) is given by eq. (3.23) as

L̄(N) = exp

[
−Nµ

2

σ2

]
1

I0(κ)
I0



√

4µ2Z2(N)

σ4
+

4µZ(N)κ

σ2
cos [φm −Ψ(N)−∆0] + κ2


 .

(3.33)

Equation (3.33) is reduced to eq. (3.13) if ∆0 = 0 and κ = ∞. Furthermore, the

deterministic phase bias ∆0 can be eliminated from consideration by taking z̃i =

zi exp[−j(φm + ∆0)] instead of zi. Therefore, eq. (3.33) can be simplified to

L̄(N) = exp

[
−Nµ

2

σ2

]
1

I0(κ)
I0

[
1

σ2

√
4µ2Y 2(N) +

[
2µX(N) + κσ2

]2
]
. (3.34)

In the case of non-coherent detection, i.e. κ = 0, eq. (3.34) assumes the very well

known form

L̄(N) = exp

[
−Nµ

2

σ2

]
I0

[
2µZ(N)

σ2

]
. (3.35)

The construction of the likelihood ratio can be considered a two-step process. In the

first step, the inphase and quadrature components are independently accumulated in

order to lessen the effect of AWGN. In the second step, the values of X(N) and Y (N)

must be combined, depending on the available information. For the case of coherent

reception, it is know a priori that the quadrature component Y (N) contains only

noise and it is ignored in the likelihood ratio. However, for a non-coherent reception

scenario, one cannot distinguish between the in-phase and quadrature components,

and their powers are equally combined to form Z(N). In the intermediate case, both
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Figure 3.5: Impact of coherency on the average number of samples.

of the components are combined according to (3.34) with more and more emphasis

put on the in-phase component X(N) as coherency increases along with κ. In Figure

3.5, we present the impact of the non-coherent detection in the number of samples

needed in order to detect a signal with respect to a PD target. Notice that the main

repercussion of the non-coherence detection, is the increase of samples to nearly twice

that of the coherent detector. The non-coherent Wald sequential test procedure can,

therefore be thought as having the same efficiency (in terms of number of samples)

as the coherent NP test.

3.4 Cumulant Analysis of the PDF of the

Random Time of Sequential Analysis

As shown in Section 3.2.2, the expression for the average detection time in sequential

detection can be easily obtained for the case of low SNR [29]. However, obtaining
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other statistical characteristics, such as a complete probability density of the decision

time, is a rather difficult task. Approximations by the Wald PDF or by the first

few cumulants have been suggested only in cases of significantly different thresholds

of detection. It is assumed that the probability of false alarm (Pfa) is significantly

smaller than the probability of miss detection (Pmd) (i.e., Pfa << Pmd), but this

is not always applicable for CR networks. Since the analysis time T and the num-

ber of samples ν needed to make a decision are related through T = νTs, we will

focus on determining the parameters of the distribution of ν. The average time (eqs.

(3.5),(3.6)) can be expressed in terms of the OC as:

Ea{ν} =
L(a) lnC + 1− L(a) lnD

Ea{R}
, (3.36)

where C and D are the thresholds defined in eq. (3.1) and

Ea{R} =

∞∫

−∞
ln
pa1(x)

pa0(x)
pa(x)dx. (3.37)

Here

R(x) = ln
pa1(x)

pa0(x)
(3.38)

is the log-likelihood ratio for the two hypothesesH0 andH1. The cumulant generating

function defined as

Ψν(ϑ) = ln Θν(ϑ), (3.39)

where

Θν(ϑ) =

∞∫

−∞
pν(x) exp (jϑx) dx, (3.40)

can be represented by the following series:

Ψν(ϑ) =
∞∑

i=1

κi
i!

(jϑ)i. (3.41)
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The coefficients κi in eq.(3.41) are the cumulants of pν(t) [50]. Given Θν(ϑ) or Ψν(ϑ),

the cumulants in question can be calculated by

κi = j−i
di

dϑi
ln Θν(ϑ)

∣∣∣∣∣
ϑ=0

= j−iΨ(i)(0).

Particularly,

κ1 = −jΨ′ν(0) = Ea{R},
κ2 = −Ψ

′′
ν(0) = σ2

a.
(3.42)

If only two cumulants κ1 and κ2 are taken into account, a Gaussian approximation of

the real distribution Wν(t) ≈ N(κ1, κ2) is obtained; if the first four cumulants κ1-κ4

are taken into account, we obtain the so-called curtosis approximation. The curtosis

approximation is a more accurate approximation for values near the mean, however it

is poor in approximating the tails of the distribution. Given the complexity of calcu-

lating higher-order cumulants, we focus here only on the Gaussian approximation. It

is shown in [29] that eq. (3.9) leads to the following expression for the characteristic

function ΘT (jϑ):

θν(jϑ) =
Dt2(ϑ) −Dt1(ϑ) + Ct1(ϑ) − Ct2(ϑ)

Ct1(ϑ)Dt2(ϑ) −Dt1(ϑ)Ct2(ϑ)
, (3.43)

where t(ϑ) are the roots of the equation:

g(t) =

∞∫

−∞

[
pa1(x)

pa0(x)

]t(ϑ)

pa(x)dx = e−jϑ, (3.44)

which satisfy the following conditions:

lim
ϑ→0

t1(ϑ) = 0,

lim
ϑ→0

t2(ϑ) = h(a).
(3.45)
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Using eq. (3.44) and expanding the exponent under the integral sign into Taylor series,

one obtains the following relationship between moments MN (R) of the log-likelihood

R and values of t1(ϑ) and t2(ϑ):

g(t) =

∞∫

−∞
et(ϑ)R(x)pa(x)dx, (3.46)

and

ln g(t) = Ea{R}t(ϑ) +
σ2
a

2
t2(ϑ) + · · · = −jϑ. (3.47)

Consequently, the algorithm for evaluating any cumulant κi can be accomplished

using the following steps:

1. Differentiate the logarithm in eq. (3.43) i-times and evaluate it for ϑ→ 0.

2. Differentiate eq.(3.44) or eq. (3.47) i-times and evaluate it for ϑ → 0 taking

into account that t1(0) = 0, t2(0) = h(a).

3. Obtain recurrent expressions for t
(i)
k (0) from t

(i−1)
k (0),t

(i−2)
k (0),. . . (k = 1, 2).

4. Use 3. to define ψ(i)(0) and, therefore, κi

After some simple but lengthy calculations one obtains the following values of the

derivatives of t1 and t2:

t
′
1(0, a1) = − j

Ea1{R}
t
′
1(0, a0) = − j

Ea0{R}
t
′
2(0, a1) = − j

Ea0{R}
t
′
2(0, a0) = − j

Ea1{R}

t
′′
1(0, a1) =

σ2
a1
{R}

E3
a1
{R} t

′′
1(0, a0) =

σ2
a0
{R}

E3
a0
{R}

t
′′
2(0, a1) =

σ2
a0
{R}

M3
a0
{R} t

′′
2(0, a0) =

σ2
a1
{R}

E3
a1
{R}

. (3.48)

For the case of κ1, this immediately results in the expressions given by eqs. (3.5)

and (3.6) for the mean values (or first cumulant). The variance σ2
a = κ2 can then be
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found from eqs. (3.43) and (3.48) to produce:

σ2
a0

=

[
(D2 −D + C −DC) ln(C)

E3
a0
{R} +

(C2 − C +D −DC) ln(D)

E3
a0
{R}

]
ln(D)+

[
2C − 2DC

Ea1{R}Ea0{R}
+
DC + C −D − 1

E2
a1
{R}

]
ln2(C)+

[
4DC − 2C − 2D

Ea1{R}Ea0{R}
+

2− 2DC

E2
a1
{R}

]
ln(D) ln(C)+

[
2D − 2DC

Ea1{R}Ea0{R}
+
DC −D + C − 1

E2
a0
{R}

]
ln2(D),

(3.49)

σ2
a1

=

[
(CD2 − C2D + C2 − CD) ln(C)

E3
a1
{R} +

(D2 − CD2 + C2D − CD) ln(D)

E3
a1
{R}

]
ln2(D)+

[
2C −D2 − 2DC

Ea1{R}Ea0{R}
+
C2D −D2C2 + CD − CD2

E2
a1
{R}

]
ln2(C)+

[
4DC − 2CD2 − 2CD

Ea1{R}Ma0{R}
+

2C2D2 − 2DC

E2
a1
{R}

]
ln(D) ln(C)+

[
2C2D − 2CD

Ea1{R}Ea0{R}
+
DC − C2D + CD2 −D2C2

E2
a1
{R}

]
ln2(D).

(3.50)

Equations (3.49) and (3.50) are valid for any relations between Pfa and Pmd [68].

In Figure 3.6 we show the value of the variances σ2
a0

and σ2
a1

obtained with eqs.

(3.49) and (3.50) respectively for different SNRs. The second cumulant κ2 for the

fixed thresholds D and C depends on Ea{R} for different hypothesis H0, H1. The

probability that the duration of the Wald test exceeds some preset value νmax is

calculated by
∞∫

νmax

p(ν)dν ≈ Q

(
νmax −M1

σ

)
. (3.51)

It is often more practical to use νmax instead of the average Ea{ν} since νmax provides

a realistic figure for comparison with the NP test. Moreover, νmax can be used to

compare characteristics of the classical sequential analysis considered here with new
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Figure 3.6: Variance values for the time decision pdf in sequential analysis.

proposals of sequential analysis (e.g., [69]).

3.5 Optimal Fusion Rule for distributed Wald

detectors

This section generalizes the results in [70] to the case of distributed detection using

Wald sequential analysis test as explained in Section 3.2. We assume there exist M

sensors making individual detections according to the SPRT algorithm. Once a de-

cision is made at an individual sensor, it is sent in binary form to the FC for further

combining with other decisions. We assume that the value u = −1 is assigned if the

hypothesis H0 is accepted, u = 1 if the hypothesis H1 is accepted, and u = 0 if no

decision has been made yet. Only u = ±1 are communicated to the FC. Since each

node uses the SPRT detection, the decision is made at a random moments of time.

Therefore, at any given moment of time t, there is a random number L(t) ≤ M of

decisions which are available at FC, as can be seen in Figure 3.7. The probability

distribution of making a decision can be approximated either by the two paramet-

ric Wald distribution [29], or by the three parametric generalized inverse Gaussian
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Figure 3.7: System model of data fusion system

distribution [71] as seen in Figure 3.4. Parameters of such distributions could be

found through moment/cumulant fitting, using expressions derived in [29, 68]. Fol-

lowing [70], we treat this problem as a two-hypothesis detection problem with an

individual detector decision being the observation. For a given number L = L(t) of

decisions made by the time t, the optimum decision rule is equivalent to the following

likelihood ratio test

P (u1, u2, · · · , uL|L,H1)P (L|H1)

P (u1, u2, · · · , uL|L,H0)P (L|H0)

H1
≷
H0

P0(C10 − C00)

P1(C01 − C11)
. (3.52)

Here P (L|H0) is the probability of making exactly L decisions assuming that H1 is

true and ul is the decision made by l-th sensor. Furthermore, assuming the minimum

probability of error criteria, (i.e. by setting C00 = C11 = 0 and C01 = C10 = 1),

introducing the following notation uL = {u1, u2, · · · , uL}, and using the Bayes rule,

one can recast equation (3.52) as

P (H1|uL, l)P (l|H1)

P (H0|uL, l)P (l|H0)

H1
≷
H0

1, (3.53)

or, after taking the natural logarithm on both sides,

ln
P (H1|uL, l)
P (H0|uL, l)

+ ln
P (l|H1)

P (l|H0)

H1
≷
H0

0, (3.54)
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where l is the vector representing which sensors have made their decisions. Once

again, following [70], one can calculate probabilities P (H1|uL, l) and P (H0|uL, l) as

follows. In the case of the hypothesis H1 one can write

P (H1|uL, l) =
P (H1,uL|l)
P (uL|l)

=
P1

P (uL|l)
∏

S+

P (ul = +1|H1)
∏

S−

P (ul = −1|H1) =

P1

P (uL|l)
∏

S+

(1− PM,l)
∏

S−

PM,l,

(3.55)

where S+ is the set of all i such that ui = +1 and S− is the set of all i such that

ui = −1. Analogously, for the case of the hypothesis H0 one obtains

P (H0|uL, l) =
P (H0,uL|l)
P (uL|l)

=
P0

P (uL|l)
∏

S−

(1− PF,l)
∏

S+

PF,l. (3.56)

Finally, using equations (3.55) and (3.56) one obtains the following expression for the

conditional log-likelihood

ln
P (H1|uL, l)
P (H0|uL, l)

= ln
P1

P0
+
∑

S+

ln
1− PM,l

PF,l
+
∑

S−

ln
PM,l

1− PF,l
. (3.57)

In order to evaluate the second term in the sum in eq. (3.54), let us first consider an

arbitrary node 1 ≤ k ≤ N . The distribution pT,k(τ) of the decision time in such a

node is assumed to be known. Therefore, the probability PD,k(t|Hi) that the decision

is made by the time t = mTs given that a specific hypothesis is true is given by

PD,k(t|Hi) =

mTS∫

0

pk(τ |Hi)dτ. (3.58)

The probability that no decision has been made by the time t is then simply 1 −
PD,k(t|Hi). As previously noted, the parameters of this distribution can be defined
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Figure 3.8: Data fusion scheme considering sequential analysis decision from each
sensor

(PM,l = 0.3, PF,l = 0.1).

as in [68]. Therefore , the second term in the equation (3.54) is given by

ln
P (l|H1)

P (l|H0)
=

L∑

l=1

ln
PD,l(t|H1)

PD,l(t|H0)
+

M∑

l=L+1

ln
1− PD,l(t|H1)

1− PD,l(t|H0)
. (3.59)

Finally, the fusion rule in the case of nodes making a decision according to Wald’s

criteria can be written as

f(u) =

{
1 if a0 +

∑L
l=1 alul > 0

−1 otherwise
(3.60)
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Figure 3.9: Data fusion scheme considering sequential analysis decision from each
sensor

(PM,l = 0.1, PF,l = 0.3).

where

a0 = ln
P1

P0
+

L∑

l=1

ln
PD,l(t|H1)

PD,l(t|H0)
+

M∑

l=L+1

ln
1− PD,l(t|H1)

1− PD,l(t|H0)
, (3.61)

al = ln
1− PM,l

PF,l
if ul = 1, (3.62)

al = ln
1− PF,l
PM,l

if ul = −1. (3.63)

Thus, the combining rule is similar to that suggested in [70], but with some significant

differences in the term a0. In Figures 3.8 and 3.9, we show the performance of the

data fusion scheme considering that each one of the sensors takes a decision based

on the sequential detection criteria. In these figures, we plot the probability of miss

detection (PMD) and the probability of false alarm (PFA) versus the moment when
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Figure 3.10: Total Error Criteria

the FC gathers the decisions of the local observers. Notice that for t→∞ all graphs

converge to the data fusion rule of [70]. It is clear that for small values of time, the

FC has less information (since not all the detectors might have achieved a decision by

then) and the final decision taken is much less accurate than for large values of time.

Nevertheless, in some practical systems it would be impossible to wait that long for

getting the decision from the FC, so we can use these results as a trade-off between

the performance on the detection and the time of decision [72]. We also observe the

impact that PD,l and PF,l have on the performance of the data fusion detector. For

very small values of false alarm probability, al ≈ − lnPM,l if u = −1 in eq. (3.61)

which means that the hypothesis H0 is always less weighted in eq. (3.60). In other

words, the FC “trusts” more in those sensors who decide that H1 is true. Similarly,

for very small values of miss detection probability, the hypothesisH0 is more weighted

in the final sum in equation (3.60). A special case occurs when PD,l = PF,l, P0 = P1,

and t → ∞. In this situation, the scheme converts into the more simple majority

decision approach seen in Chapter 2, which sums all ul and compares with zero.
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Although it is simpler, the maximum likelihood approach performs better than the

majority decision scheme in the minimum probability of error criteria, as can be seen

in Figure 3.10 [30]. The perceptive reader may have noticed by now that there might

be some confusion at the FC when there exists an even number of sensors and there

is a tie in the decision. This can be settled by considering the a priori probabilities

P0 and P1 which are inherent to the system.

3.6 Dual Sequential Spectrum Ratio Test

We consider a CR Network consisting of a single PU and L SUs with perfect channel

state information (CSI) cooperating with a FC. Each of the SUs makes an individual

decision using the SPRT and transmits it to the FC for a final decision, as can be seen

in Figure 3.11. Each SU decision is communicated to the FC by sending a constant

signal bi if Hi is accepted. As discussed in previous sections, since each SU node uses

sequential detection, the individual decisions are made at random moments in time.

At any given instance τ there is a random number M(τ) ≤ L of sensors which have

made their decision (see Figure 3.12). The FC can decide when to start performing

its sequential analysis. SUs transmitting before the FC starts the decision procedure

is a waste of power; however, it is important that a sufficient number of SUs have

made their decision in order to improve the reliability from the FC’s final verdict.

Therefore, it is important to identify an optimal instance τo for the FC to start the

sequential analysis in such a way that there is a significant savings in the SUs’ power

and as well as an accurate sensing. Considering the SPRT algorithm explained in

Section 3.2, the signal sent to the FC by the l-th sensor at the moment k ≥ τ can be

expressed as

Yk,l = b11{Rk,l≥Λ2,l} + b01{Rk,l≤Λ1,l} + 0 · 1{Λ1,l<Rk,l<Λ2,l}, (3.64)

where Λ1,l and Λ2,l are the upper and lower thresholds respectively used in the sequen-

tial test by the l-th sensor, and Rk,l is the log likelihood ratio [73]. The thresholds,

as previously mentioned, are calculated in terms of the probabilities of false alarm
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and miss detection of the l-th user as:

Λ1,l ≈ ln

(
1− PMDl

PFAl

)
,

Λ2,l ≈ ln

(
PMDl

1− PFAl

)
.

(3.65)

The PDF of the sent signal (eq.(3.64)), under each of the hypothesis H1 and H0, can

be expressed as follows:

p(k|τ ;H0) = (1− PFA)PD(τ |H0)δ(k − b0) + PFAPD(τ |H0)δ(k − b1)

+ (1− PD(τ |H0))δ(k),
(3.66)

and

p(k|τ ;H1) = PMDPD(τ |H1)δ(k − b0) + (1− PMD)PD(τ |H1)δ(k − b1)

+ (1− PD(τ |H1))δ(k).
(3.67)
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Here, PD(τ |Hi) stands for the probability that the decision is made by the time t = τ

given that the hypothesis Hi is true and can be calculated as [73]:

PD(τ |Hi) = Φ

(√
λ
τ

(
τ
µ − 1

))
+ e

2λ
µ Φ

(
−
√

λ
τ

(
τ
µ + 1

))
, (3.68)

where Φ(·) is the standard Gaussian distribution cumulative distribution function, µ

is the average time of decision in the sequential test, and λ is related to the variance

of the sequential test as

λ =
µ3

σ2
ν
. (3.69)

The expressions to calculate µ and σ2
ν are shown in eqs. (3.5) and (3.6), and eqs.

(3.49) and (3.50), respectively. In the following it is assumed, for simplicity, that

PMD = PMDl
and PFA = PFAl . At the antenna on the FC, the signals sent by

individual SUs are coherently combined, and the receiver’s noise is added as

Yk =
L∑

l=1

√
γlYk,l +Wk, (3.70)

where Wk is an i.i.d. AWGN realization with variance σ2
N and channel coefficient γl,

which is Rayleigh distributed according to

p(γ) =
γ

σ2
h

e
− γ2

2σ2
γ . (3.71)

In order to make a decision on the status of the PU, the FC also performs the SPRT

according to the following:

Fk = Fk−1 + ln
p(Yk;H1)

p(Yk;H0)
+ ln

P (L|H1)

P (L|H0)
. (3.72)

In eq. (3.72), F0 = 0 and P (L|Hi) is the probability of having exactly L sensors

with decisions made given that Hi is true. The process is then repeated until either

Fk > Λ2FC
or Fk < Λ1FC

, where Λ1FC
and Λ2FC

are the two thresholds defined

analogously as in eq. (3.65) for the FC. If the first situation is true, H1 is claimed to
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be correct; if the latter is true, we say that H0 is correct. The log-likelihood ratio Fk

used to perform the Wald test in the FC as required by eq. (3.72) can be evaluated in

terms of the PDF p(Yk;Hi). In order to do so, one needs to perform L+1 convolution

operations, which can be an overwhelming task. Nevertheless, it is possible to get

a very accurate approximation of the PDF p(Yk;Hi) for low SNR utilizing a small

deviation of the Gaussian distribution as follows [74]:

p(Yk;Hi) ≈ p
(i)
0 (Yk)


1 +

κ
(i)
3

3! · κ3/2(i)
2

H3

(
Yk − µi
σi

)
+

κ
(i)
4

4! · κ2(i)
2

H4

(
Yk − µi
σi

)
 ,

for i = 0, 1 (3.73)

where p
(i)
0 (·) is a Gaussian PDF with mean value µi and variance σ2

i , Hn(·) stands

for the Hermitian polynomial of the n-th order [75], and κn is the n-th cumulant of

the distribution p(Yk;Hi). In order to obtain such an approximation, one needs to

estimate the first four moments m
(i)
k (or cumulants) of the desired PDF p(Yk;Hi).
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Given the properties of cumulants [74], we can show that:

κ
(i)
1 = Lm

(i)
1 ,

κ
(i)
2 = L[m

(i)
2 −m

2(i)
1 ],

κ
(i)
3 = L[m

(i)
3 − 3m

(i)
2 m

(i)
1 + 2m

3(i)
1 ],

κ
(i)
4 = L[m

(i)
4 − 4m

(i)
3 m

(i)
1 + 12m

(i)
2 m

2(i)
1 − 3m

2(i)
2 − 6m

4(i)
1 ],

σ2
i = κ

(i)
2 + σ2

N .

(3.74)

The moments m
(i)
k can be found directly from eqs. (3.66) and (3.67) as

m
(0)
1 = σh

√
π

2
([(1− PFA)PD(τ |H0)] b0 + [PFA · PD(τ |H0)] b1) ,

m
(0)
2 = 2σ2

h

(
[(1− PFA)PD(τ |H0)] b20 + [PFA · PD(τ |H0)] b21

)
,

m
(0)
3 = 3σ3

h

√
π

2

(
[(1− PFA)PD(τ |H0)] b30 + [PFA · PD(τ |H0)] b31

)
,

m
(0)
4 = 8σ2

h

(
[(1− PFA)PD(τ |H0)] b40 + [PFA · PD(τ |H0)] b41

)
,

m
(1)
1 = σh

√
π

2
([PMD · PD(τ |H1)] b0 + [(1− PMD)PD(τ |H1)] b1) ,

m
(1)
2 = 2σ2

h

(
[PMD · PD(τ |H1)] b20 + [(1− PMD)PD(τ |H1)] b21

)
,

m
(1)
3 = 3σ3

h

√
π

2

(
[PMD · PD(τ |H1)] b30 + [(1− PMD)PD(τ |H1)] b31

)
,

m
(1)
4 = 8σ2

h

(
[PMD · PD(τ |H1)] b40 + [(1− PMD)PD(τ |H1)] b41

)
.

(3.75)

In order to show the accuracy of this approximation, numerical examples are shown

in Figure 3.13. The approximation performs quite well for values of SNR up to about

0 dB. For greater values, the deltas resulting from the sum of random variables in

eqs. (3.66) and (3.67) become more evident due to the lack of noise power.

3.6.1 Optimization of Decision Time

One of the most important features required from a CR sensor is making decisions

regarding the presence of the PU as fast as possible. From this perspective the FC
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Figure 3.13: Approximation of p(Yk;H1) for
L = 5, SNR = 0dB, Pmd = 0.2, Pfa = 0.1.

has to start to collect information from SU sensors as soon as possible. However, this

may unnecessarily drain energy at some of the SUs. Therefore, it is important to find

an optimal value of time τ = τ0, when the FC starts to acquire decisions from the

SUs. The total time to make a decision is:

f(τ) = τ + E [N(τ)] ∆Ts, (3.76)

where N(τ) is the number of samples required to make a decision at the FC, given

that the FC starts making decision at time τ . Therefore, our goal is to minimize the

function f(τ). Notice that in eq. (3.76), the first term is clearly an increasing function,

while the second term is a monotonically decreasing function due to the nature of the

analysis. Therefore, when τ is small, a larger number of samples are needed because

fewer sensors are contributing their decisions. Equation (3.76) is therefore a convex

function, as shown in Figure 3.14. In order to calculate the average number of samples
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E {N(τ);Hi} required at the FC in order to make a decision, we utilize eqs. (8) and

(9) in [76] expressed as:

E {N(τ);H0} ≈
−(AFC −BFC − AFCeAFC )(

eAFC − eBFC
)

[D(p(Yk;H0)||p(Yk;H1))]
,

E {N(τ);H1} ≈
AFC −BFC − AFCeAFC(

e−AFC − e−BFC
)

[D(p(Yk;H1)||p(Yk;H0))]
,

(3.77)

where D(p(Yk;Hi)||p(Yk;Hj)) is the Kullback-Leibler (KL) distance defined as

D(p(Yk;Hi)||p(Yk;Hj)) =

∞∫

∞
p(Yk;Hi) ln

(
p(Yk;Hi)
p(Yk;Hj)

)
dYk, i, j = 0, 1 i 6= j.

(3.78)

From eq. (3.76), the nonlinear function needed to be optimized is thus given by

f(τ) = τ + p(H0)E {N(τ);H0}+ p(H1)E {N(τ);H1} . (3.79)

Using numerical simulation, we show results in Section 3.6.2, including average energy

used by the SUs in order to assess energy savings. As explained in Section 3.6, the

l-SU sends its result as soon as it becomes available. Nevertheless, the FC makes its

final decision at time t = τ . Thus the average energy spent by the SUs is

E {ε(τ)} =
L∑

l=1

[τ − µl]PDl(τ |Hi)b
2
l , (3.80)

where µl is the average decision time for user l.

3.6.2 Numerical Results

Figure 3.15 shows the average number of samples needed at the FC in order to make

a decision from the moment it starts running the SPRT algorithm. Notice that as

the FC acquires information from more sensors (i.e., τ →∞), it takes fewer samples

on average to achieve the final decision. These results confirm that there exists an
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Figure 3.14: Optimum τ0 for different number of sensors (SNR = -25dB).

important trade-off between how much energy is used to send the result from sensors

to the FC and how fast the FC achieves a decision. Figure 3.14 shows that an optimum

value τ0 exists such that the net decision time in eq. (3.79) can be minimized (i.e.,

eq. (3.79) is convex). Figure 3.16 shows values of τ0 for different values of SNR

and different number of sensors. The importance of this result is that it allow us

to deterministically configure the moment when the FC should collect the decision

from the sensors. Notice that such a instance can be chosen even before the optimal

result, due to the high stability of the system in terms of decision time. We can see

in Figure 3.14 that although the optimal time for L = 3 sensors is 125 samples, it

would be possible to configure the FC to start gathering decisions with approximately

110 samples without significantly sacrificing the overall performance of the detection.

Similar assumption can be made for cases where L = 5 and L = 11. We present

in Figure 3.17 the total energy used by the sensors to transmit their decision: the

energy spent when the FC starts the SPRT algorithm in the optimum time proposed

(τo), and when it waits for all sensors to finish. Table 4.1 shows it is possible to get
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a very high reduction in energy compared to a classical DSPRT algorithm while at

the same time significantly reducing the samples required to make a decision.

No. of Sensors Optimum Decision Time Energy Saved

3 75 97.63%
5 100 89.78%
11 125 82.43%

Table 3.1: Energy savings considering the optimum time for decision (τo).

3.7 Conclusions

This chapter was devoted to the application of the sequential analysis technique to

achieve faster spectrum sensing in CR networks. By using the SPRT, it is possible

to detect the presence of a PU almost twice as fast as other fixed sample approaches
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such as NP detectors. This can be achieved when dealing in low SNR cases, a fre-

quent real-life scenario. The effect of errors in the estimation of the phase of the

carrier on the duration of the sequential analysis was also investigated. It was shown

that using non-coherent detection in sensing the presence of PUs using sequential

analysis requires almost twice as many samples as a coherent detection approach. We

derived an optimal fusion rule using detectors that use sequential analysis for taking

decisions. We assessed the performance of the system in terms of the time that it

takes to gather the decision from all detectors. It was shown that for faster decision,

the FC does not consider the verdict of all sensors and therefore the performance is

reduced. On the other hand, as we wait longer to gather the decisions, the detection

performance is better but the system experiences a higher latency. We presented a

novel methodology to obtain any order cumulant of the PDF of the sample distribu-

tion in sequential detection. We investigated some further considerations of the dual

SPRT not previously covered in the literature. In addition, we derived a very accurate

approximation for the log-likelihood ratio needed to run the SPRT algorithm at the

FC in the dual SPRT. We showed that it is possible to reduce the energy usage on

SU sensors by optimizing the instance τ when the FC gathers their local decision in

order to run its own SPRT. This instance can be evaluated by calculating the average

number of samples needed to make a decision at the FC and optimizing the value of τ

in such a manner that the total average time of decision in the system is minimized.
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Chapter 4

Impact of Scattering Environment on

Spectrum Sensing for Multi Antenna

Detectors

In Chapter 2, we showed that the amount of information the SUs have regarding the

characteristics of the PU signal (noise variance, covariance matrix, cyclic frequencies,

etc.) has a significant influence on the detection probability of the PU presence in CR

networks. We also showed, that it is possible to improve the performance of the de-

tection algorithms by using more than one antenna at each of the secondary sensors.

Nevertheless, when working with multiple antenna systems, the spatial and/or tem-

poral correlation between antennas has a great impact on the overall performance of

the communication system. In this chapter, we present a novel approach for account-

ing for both spatial and temporal correlation in CR devices equipped with multiple

antennas. We derive an equivalent number of independent samples based on the

scattering geometry and resulting correlation properties of the received signal. The

performance of the system is investigated in terms of the Neyman-Pearson detec-

tion criteria. The results of this theoretical analysis are verified through extensive

numerical simulations.

4.1 Introduction

Improving spectrum sensing reliability while limiting sensing duration to preserve

power is still a subject of intensive research. A large number of approaches have been

developed, including energy detection [18,36], matched-filter detection [12], cyclosta-

tionarity based detection [12, 14, 37]. However, most of these studies are focused on
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investigating the performance of particular schemes in ideal environments such as

independent antennas in cooperative scenarios or in uniform or isotropic scattering

conditions [27]. Such considerations eliminate the impact of the real environment and

its variation even though that it is shown in many publications [46, 91] and realistic

measurements that such environments change frequently, especially in highly built

areas. Understanding how a particular radio environment affects the performance

of CR sensing abilities is, therefore, an important issue to consider. Furthermore,

it is well known [92] that the distribution of the angle of arrival (AoA) (itself de-

fined by the scattering environment) affects both temporal and spatial correlation of

signals in antenna arrays. In this chapter we utilize a simple but generic model of

the AoA distribution, suggested in [91], to describe the impact of scattering on the

statistical properties of received signals. We also show how to incorporate the con-

cept of Stochastic Degrees of Freedom (SDoF) [28,93] in order to obtain approximate

expressions for the probability of missed detection in terms of number of antennas,

scattering parameters and number of observations. Finally, we investigate the trade-

off between the number of antennas and the required observation interval in correlated

fading environments. This chapter is organized as follows: Section 4.2 presents the

corresponding signal model, and in Section 4.3 we derive the performance of SIMO

detection schemes for three different cases: constant independent channels, constant

spatially correlated channels, and independent channels with temporal correlation.

A few examples of correlation models are shown in Section 4.4. In Section 4.5 we

evaluate the space-time processing trade-off of the framework while in Section 4.6 the

conclusions of the chapter are presented.

4.2 Signal Model

Let us consider a primary transmitter which transmits a pilot signal s over L symbols

in order to sound the primary channel. The CR network can sense the pilot signal

using NR receiving antennas as depicted in Figure 4.1a. The received signal matrix X

of size NR×L can be written in terms of the NR×L channel matrix H = {hrl} ∈ C
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Figure 4.1: System Model.

and the noise matrix W of the same size as

X = Hs+ W, (4.1)

where W is a zero mean matrix of covariance σ2
nIn and H is a zero mean Complex

Gaussian matrix with covariance matrix RH. The element hrl is the channel transfer

coefficient from the transmitter to the r-th receiving antenna measured at the l-th

pilot time slot as depicted in Figure 4.1b. Using the vectorization operation, it is
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possible to rewrite eq. (4.1) as

x = hs+ w, (4.2)

where x = vec (X), h = vec (H) and w = vec (W). The vec(·) operator is defined

as the NRL × 1 vector formed by stacking the columns of the NR × L matrix i.e.

vec (H) =
[
h′1h′2 . . .h

′
L

]′
. The detection problem comes from distinguishing between

the two hypotheses

H0 : x[n] = w[n] n = 0, 1, . . . , NRL− 1

H1 : x[n] = h[n]s+ w[n] n = 0, 1, . . . , NRL− 1
. (4.3)

The sufficient statistic in this case is given by [15,16]

T = xHQx = |s|2xHRh

[
|s|2Rh + σ2

nI
]−1

x, (4.4)

where Rh = E
{

hhH
}

is the correlation matrix of the channel vector h. This corre-

lation matrix reflects both the spatial correlation between different antennas and the

time-varying nature of the channel. Let Rh = UΛUH be the eigendecomposition of

the correlation matrix Rh. In this case, the test statistic T can be recast in terms

of the elements of the eigenvalues λi of the matrix Λ and the filtered observations

y = UHx:

T = yHΛ
[
Λ + σ2

nI
]−1

y =

NRL∑

k=1

λ2
k

λ2
k + σ2

n
|yk|2, (4.5)

which is analogous to equation (5.9) in [16]. The elements yk of the vector y could be

considered as filtered version of the received signal x with a set of orthogonal filters uk

(columns of the matrix U), i.e., it could be considered as multitaper analysis [94] as

depicted in Figure 4.2. Linear filtering preserves the Gaussian nature of the received

signals, and, the distribution of T can therefore be described by the generalized χ2

distribution1 [28]:

p(x) =

NRL∑

k=1

αk exp(−x/2λk) (4.6)

1. Assuming that all eigenvalues λk of Rh are different.
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Figure 4.2: Filtered Observations

and

α−1
k = 2λk

NRL∏

l=1,l 6=k

(
1− λl

λk

)
. (4.7)

Theoretically, equation (4.6) could be used to set up the detection threshold γ. How-

ever, it is difficult to use for analytical derivations. Consequently, we will consider a

few particular cases of the channel where the structure of the correlation matrix can

be greatly simplified to reveal its effect on the detection performance.

4.3 Pilot assisted detection in SIMO

configuration

4.3.1 Constant Independent Channels

In this case, the full covariance matrix Rh = σ2
hOL ⊗ INR is modelled as the Kro-

necker product of the NR × NR identity correlation matrix INR and OL = 11H

is a L × L matrix consisting of ones. Accordingly, there are NR eigenvalues λk,

k = 1, · · ·NR equal to L. The k-th orthogonal filter uk is the averaging operator

applied to the data collected from the k-th antenna. Thus, the decision statistic is
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simply

TCI =

NR∑

k=1

∣∣∣∣∣∣

L∑

l=1

xkl

∣∣∣∣∣∣

2

=

NR∑

k=1

Pk, (4.8)

where

Pk =

∣∣∣∣∣∣

L∑

l=1

xkl

∣∣∣∣∣∣

2

. (4.9)

In the absence of a signal, the samples xkll are drawn from an i.i.d. complex Gaussian

random variable with zero mean and variance σ2
n. Therefore, the distribution of Pk

is exponential, with mean value Lσ2
n:

p(P ) =
1

Lσ2
n

exp

(
− P

Lσ2
n

)
, (4.10)

and the distribution of T is just the gamma distribution

pCI(T |H0) =
1

Γ(NR)

T NR−1

(Lσ2
n)NR

exp

(
− T
Lσ2

n

)
. (4.11)

If γCI is a detection threshold for the statistic TCI then the probability PFA of the

false alarm is

PFA =

∞∫

γCI

p(TCI |H0)dTCI =
Γ
[
NR, γCI/Lσ

2
n

]

Γ(NR)
, (4.12)

or

γCI = Lσ2
nΓ−1 [NR, PFAΓ(NR)] , (4.13)

where Γ−1 [NR,Γ(NR, x)] = x and Γ(·), Γ(a, x) are respectively defined as

Γ(x) =

∞∫

0

e−ttx−1dt,

Γ(a, x) =

∞∫

a

e−ttx−1dt.
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If the signal is present, i.e., if the hypothesis H1 is correct, then the signal yi has a

zero mean with variance σ2 = L2|s|2σ2
h + Lσ2

n. As a result, the distribution of the

test statistic TCI under the hypothesis H1 is given by the central χ2 distribution with

NR degree of freedom and the probability of the detection is simply

PD =

∞∫

γCI

p(TCI |H1) =
1

Γ(NR)
Γ
(
NR,

γCI
σ2

)

=
1

Γ(NR)
Γ

(
NR,

1

1 + Lµ̄
Γ−1 [NR, PFAΓ(NR)]

) (4.14)

where

µ̄ = |s|2σ
2
h

σ2
n
,

is the average SNR per symbol. Figure 4.3 shows the performance of optimal detector

in SIMO constant channel for L = 100 and NR = 3. It can be seen from both eqs.

(4.8) and (4.14) that under the stated channel model, the improvement in performance

of PD comes either by means of the reduction of noise through accumulation in each

of the antennas (i.e., increase in the effective SNR) or as a consequence of exploitation

of the diversity in NR antennas. Consequently, increasing the number of antennas

leads to a faster detection.

4.3.2 Performance of the Estimator-Correlator detector in

flat block fading (Constant Spatially Correlated

Channel)

Let us assume that the values of the channel remain constant over L symbols but that

the values of the channel coefficients for different antennas are correlated. In other

words, we will assume that Rh = σ2
hOL ⊗ Rs where Rs is the spatial correlation

matrix between antennas. Let Rs = UsΛsU
H
s be the spectral decomposition of Rs.



Chapter 4: Impact of Scattering Environment on Spectrum Sensing for Multi Antenna Detectors105

−25 −20 −15 −10 −5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR, dB

P
D

Theory (solid) vs. Simulation (x)

 

 

P
FA

 = 0.1

P
FA

 = 0.01

P
FA

 = 0.001

P
FA

 = 0.0001

P
FA

 = 0.00001

Figure 4.3: Theoretical ROC and its simulation of the constant independent channel
under AWGN. Solid lines - theory, x-lines - simulation.

Then, the test statistic TCC can be expressed, according to equation (4.5), as

TCC =

NR∑

k=1

|s|2σ2
hλk

|s|2σ2
hλk + σ2

n
|yk|2 =

NR∑

k=1

µ̄λk
µ̄λk + 1

|yk|2, (4.15)

where σ2
h is the variance of the channel per antenna. The eigenvalues λk of Rs reflect

the accumulation of SNR in each “virtual branch” of the equivalent filtered value

yk. In general, all the eigenvalues are different, and one should utilize equation (4.6).

While these calculations are relatively easy to implement numerically, it gives little

insight into the effect of the correlation on the performance of the detector. Under

certain scattering conditions [92], the eigenvalues of the matrix Rs are either all close

to some constant λ > 1 or close to zero. If there are Neq < NR non-zero eigenvalues,

their values have to be equal to λk = NR/Neq to preserve trace, and the rest NR−Neq
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are equal to zero. In this case, the test statistic TCC can be rewritten as

TCC(Neq) =

Neq∑

k=1

|yk|2, (4.16)

where the index k corresponds to non-zero eigenvalues. Hence, the problem is equiv-

alent to the one considered in Section 4.3.1 with Neq independent antennas and the

expression for the threshold γCC and the probability of detection are given by

αγCC = σ2
nΓ−1 [Neq, PFAΓ(Neq)

]
, (4.17)

where 0 < α < 1 performs as a corrector variable. In Figure 4.4 the ROC of the es-

timator correlator using this approximation are shown. The effect of the correlation

between branches has a dual effect on the performance of the system. The number

Neq of equivalent independent branches is reduced, compared to the number of an-

tennas NR, therefore reducing diversity. However, an increase in correlation results

in an additional accumulation of SNR (or, equivalently, an additional noise reduction

through averaging) by a factor of NR/Neq ≥ 1. Therefore,

PD =

∞∫

γCC

p(TCC |H1)dTCC =
1

Γ(Neq)
Γ

(
Neq,

αLγCC
σ2

)

=
1

Γ(Neq)
Γ

(
Neq,

1

1 + LNRµ̄/Neq
Γ−1 [Neq, PFAΓ(Neq)

])
.

(4.18)

In general, the number Neq does not need to be integer in calculations of the threshold

and detection probability PD. This allows us to account for some eigenvalues of

intermediate values (further discussed in Section 4.4).

4.3.3 Independent SIMO Channels with Temporal

Correlation

In the case of independent antennas but temporally correlated fading, the full cor-

relation matrix can be represented as Rh = RT ⊗ IL where RT = UH
T ΛTU is the
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Figure 4.4: ROC approximation vs. simulation results (α = 0.8) . Solid lines -
theory, x-lines - simulation.

temporal correlation matrix of an individual channel and its eigendecomposition. The

decision statistic can now be be represented as

TICC =

NR∑

k=1

xHk RT

(
RT +

1

µ̄
IL

)−1

xk =

NR∑

k=1

TICCk , (4.19)

where xk is the 1×L time sample vector received by the k-th antenna. Therefore, each

antenna signal is processed separately and the results are added afterwards. Taking

advantage of the eigendecomposition of the correlation matrix RT , the calculation of

the decision statistic Tk can be recast as a multitaper analysis

TICCk = ykΛk

(
Λk +

1

µ̄
IL

)−1

yk =
L∑

l=1

λl
λl + 1/µ̄

|ykl|2. (4.20)
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We can utilize an approximation of the correlation matrix by one with constant or

zero eigenvalues as in Section 4.3.2. In this case, there will be

Leq =
(tr RT )2

tr RTRH
T

(4.21)

eigenvalues of size L/Leq and the rest are zeros. Therefore, there are NRLeq terms

in the sum (4.19) each one contributing with

L/Leq
L/Leq + 1/µ̄

=
µ̄L+ Leq

µ̄L
(4.22)

into the variance of TICC . The corresponding equations for choosing the threshold

become

γCC = Lσ2
nΓ−1 [NRLeq, PFAΓ(NRLeq)

]
, (4.23)

PD =

∞∫

γICC

p(TICC |H1)dTICC =
1

Γ(Leq)
Γ
(
Leq,

γICC
σ2

)

=
1

Γ(Leq)
Γ

(
Leq,

1

1 + LNRµ̄/Leq
Γ−1 [Neq, PFAΓ(Leq)

])
.

(4.24)

4.3.4 SIMO Channel with Separable Spatial and Temporal

Correlation

The correlation matrix of the channel with separable temporal and spatial correlation

has a correlation matrix of the form Rh = RT ⊗Rs. The correlation in both coordi-

nates reduces the total number of degrees of freedom from NRL to NeqLeq ≤ NRL.

The loss of degrees of freedom is offset by an accumulation of SNR due to the av-

eraging over the correlated samples. The equivalent increase in the average SNR is

NRL/NeqLeq. Thus, the problem is equivalent to the detection using

Keq = NeqLeq =
(trRs)

2

||Rs||2F
(trRT )2

||RT ||2F
(4.25)
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independent samples in the noise with an average SNR

µ̄eq =
NRL

NeqLeq
µ̄, (4.26)

where || · ||F stands for the Frobenius norm defined as

||A||F =
√

tr(AA∗).

The sufficient test statistics in the case of a SSTCC channel can be easily obtained

from the general eqs. (4.4) and (4.5). By using the Kronecker structure of Rh, one

obtains

TSSC =

Keq∑

k=1

|yk|2. (4.27)

4.4 Examples and Simulation

4.4.1 Correlation models

While the Jakes correlation function J0(2πfDτ) is almost universally used in stan-

dards on wireless channels, the realistic environment is much more complicated. A

few other models can be found in the literature, with some chosen for their simplic-

ity, and others based on experimental measurements. In most cases, we are able to

calculate Neq analytically, as shown below.

1. Sinc type correlation If a scattering environment is formed by a single

remote cluster (as shown in [92]), the spatial covariance function Rs(d) as a

function of electric distance between antennas d is given by

Rs(d) = exp (j2πd sinφ0) sinc (∆φd cosφ0) , (4.28)

where φ0 is the central angle of arrival, and ∆φ is the angular spread. More-

over, this correlation matrix has approximately b2∆φ cosφ0N + 1c eigenvalues

which are nearly equal; the rest will be close to zero [95].
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2. Nearest neighbour correlation By neglecting the correlation between any

two non-neighbouring antennas, one obtains the following form of the correla-

tion matrix Rs

Rs =
{
rij
}

=





1 if i = j

ρ if i = j + 1

ρ∗ if i = j − 1

0 if |i− j| > 1

, (4.29)

where ρ is the correlation coefficient. The eigenvalues of eq. (4.29) are well

know as [96]

λk = 1− 2|ρ| cos
kπ

N + 1
, 1 ≤ k ≤ N. (4.30)

The square of Frobenius norm of eq. (4.29) ||Rs|| is given by

||Rs||2 = N + 2(N − 1)|ρ|2. (4.31)

The equivalent number of independent virtual antennas is given by

Neq =
N2

N + 2(N − 1)|ρ|2 =
N

1 + 2|ρ|2 (1− 1/N)
. (4.32)

3. Exponential spatial correlation For this case the correlation matrix Rs is

given by

Rs =
{
rij
}

=
{
|ρ|i−j

}
. (4.33)

The eigenvalues of this matrix can be obtained as follows [96]

λk =
1− |ρ|2

1 + 2|ρ| cosψk + |ρ|2 , (4.34)

where ψk are roots of the following equation

sin(N + 1)ψ − 2|ρ|ψ sinN + |ρ|2 sin(N − 1)ψ

sinψ
= 0. (4.35)
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If |ρ| � 1, the eigenvalues of eq. (4.33) can be substituted by those of eq.

(4.29), i.e. the equation (4.30) can be directly used. However, if |ρ| ≈ 1 then

λ1 = 1 + (N − 1)|ρ|, λk = 1− |ρ|, 2 ≤ k ≤ N. (4.36)

4. Temporal correlation model for nonisotropic scattering Considering

the extended case of the Clarke’s temporal correlation model for the case of

nonisotropic scattering around the user, the temporal correlation function is

[91]:

Rs(τ) =
I0

(√
κ2 − 4π2f2

Dτ
2 + j4πκ cos(µ)fDτ

)

I0(κ)
, (4.37)

where κ ≥ 0 controls the width of angle of arrival (AoA), fd is the Doppler

shift, µ ∈ [−π, π) is the mean direction of AoA seen by the user and I0(·) stands

for the zeroth-order modified Bessel function. Figure 4.5a, shows the general

scenario of non isotropic scattering (κ = 5) which corresponds to directional

signal reception- the user receives the signal only from a particular direction

through a narrow beamwidth. In the same figure we can also see the special

case of isotropic scattering (κ = 0) where the user receives signals from all

directions with equal probability. In Figure 4.5b, the temporal correlation

function (eq.(4.37)) for the isotropic and non isotropic cases is shown. Notice

that for non-isotropic cases, eq.(4.37) reduces to the classic Clarke’s temporal

correlation model J0(2πfDτ).

Figure 4.6 shows the eigenvalues behavior for different values of the κ factor.

Notice that for κ = 0 (isotropic scattering), the values of the eigenvalues are

spread in an almost equally and proportional fashion manner. As κ tends to

infinity (extremely nonisotropic scattering), we obtain N − 1 zero eigenvalues

and one eigenvalue with value N . In other words, as κ increases, the number

of “significant” eigenvalues decreases and therefore so does the value of Neq as

shown in Figure 4.8.
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Figure 4.5: Comparison of Isotropic vs. Nonisotropic scattering.
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Figure 4.7: Effect of correlation between antennas in the probability of detection.
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Figure 4.8: ROC approximation for the estimator correlator considering the
temporal correlation for isotropic and nonisotropic scattering (κ = 0 and κ = 10

respectively).

4.5 Space-Time Processing Trade-Off

It is common to assume that increasing the number of antennas improves performance

of detection algorithms due to the increased degree of diversity. This assumption is

correct when the number of time samples remains the same. However, in cognitive

networks it is desirable to reduce decision time as much as possible, sometimes by

introducing some added complexity in the form of additional number of antennas [28].

The goal of this section is to show the existing tradeoff between how fast it is possible

to make a decision about the presence of the PU and the number of antennas needed

at the receiver side. Equation (4.16) shows that the processing of the signal consists

of two separate procedures: averaging in time along with accounting for diversity

and suppressing noise in spatial diversity branches. Depending on the amount of

noise (SNR) and fading, one of these two techniques provides a greater benefit to

the net result. For relatively low levels of SNR, noise suppression is the dominant
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task, and it is therefore more advantageous to have a single antenna and as many

samples of time as possible. However, if the SNR is somewhat higher, the noise is

sufficiently suppressed even by a short time, and averaging and suppressing fading

through diversity combining is more beneficial. Figure 4.7 shows the performance for

different configurations of the receiver in such a way that the product NRL remains

constant. The figure also shows the effect that correlation, and thus the scattering

environment, plays on quality of reception. For very strong correlations ρ ≈ 1 and

Neq ≈ 1. Consequently, all the collected samples are used to reduce the noise. Such

a scheme performs the best at low SNRs. However, when ρ = 0 and Neq = NR,

the gain from diversity is higher and the scheme outperforms for higher SNR. The

intermediate case allows for a smooth transition between these two regions. Only in

the case of ρ = 1, is there an equivalent trade-off between the number of antennas

and the samples of time, i.e., the performance depends only on Q = NRL and not

on the individual values of NR and L. Nevertheless, lower correlation results in an

unequal trade-off with gain or loss defined by the SNR and the amount of correlation.

4.6 Conclusion

In this chapter we assessed the impact that scattering environment has on the perfor-

mance of a PU detection. We obtained approximate expressions for the probability

of missed detection as function of the number of antennas, scattering parameters and

number of observations. We have also shown that for low SNR scenarios, it is preferred

to have only a single antenna and many time samples to emphasize noise suppresion.

On the contrary, for high SNR cases, noise is suppressed relatively quickly, and it

is therefore better to have more antennas in order to mitigate the fading. We also

showed that for very strong correlations, with ρ ≈ 1 and Neq ≈ 1- this scheme can be

usefully applied to low SNR situations if enough time samples can be obtained. As

ρ → 0, the diversity gain is increased, making this approach more suitable for high

SNR situations.
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Chapter 5

Multiple Access Games for Cognitive

Radio Networks

In this chapter, we introduce a very useful mathematical tool for wireless engineering

named game theory. In recent years, interest in understanding and applying game

theory concepts to wireless communications and networking problems has increased.

Game theory analyses the dynamics of interactive decision-making between rational

individuals who compete for common interests. It also provide us with tools to predict

what might (and possibly what should) happen when agents with conflicting desires

interact- in other words, it can recognize stable outcomes. As seen in Chapter 1,

Secondary Users(SUs) in cognitive radio networks need to be aware of the changes in

the dynamic spectrum environment and make decisions accordingly, such as adjusting

their operating parameters. SUs have the ability to observe, learn and act to optimize

their total performance, unlike conventional spectrum sharing where it is generally

assumed that all users cooperate in a static environment. We can observe that an

inherent characteristic of a SU is to compete for a licensed band with the ultimate goal

of maximizing benefits. Within this context, game theory arises as a natural solution

to the Cognitive Radio paradigm [97]. In this chapter some game theory concepts are

presented along with their application in order to address wireless communications

problems and (more specifically) cognitive radio problems. Later on, we present a

new multiple access algorithm for cognitive radio networks based on the game theory.

We address the problem of a multiple access system where the number of users and

their types are random. In order to do this, the framework is modelled as a non-

cooperative Poisson game in which all players are unaware of the total number of

devices participating (population uncertainty). We propose a scheme where failed

attempts to transmit (collisions) are penalized and calculate the optimum penalization
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in mixed strategies. The proposed scheme converges to a Nash equilibrium where the

maximum possible throughput is achieved.

5.1 Noncooperative games and Nash equilibrium

The three main components of any game are:

A set of Players

The players are the decision makers in the modelled scenario. Examples of

these could be people, countries, a group of companies or, some biological

species. In a wireless system, the players are most often the nodes of the

network- secondary or PU nodes in CR networks. We denote this set by N .

A set of Strategies

Once the players have been defined, they will each have a set of possible

strategies; these are the actions they may choose to follow. The action

or actions taken by each player will determine the outcome of the overall

game. This set is denoted by Ai, for each player i ∈ N.
A payoff or utility function

For every outcome product of an action taken by each player, there is some

associated numerical utility or payoff. These payoffs represent the value of

the outcome to the different players. This set will be denoted by ui : A→ R
which measures the outcome for player i determined by the strategies of

the rest of the players, A = Ai × Aj ∀i 6= j ∈ N.
In Table 5.1 two examples of the application of these components are shown in the

context of CR networks. Generally games may be divided into noncooperative games

and cooperative games. Cooperative games will be briefly explained at the end of the

chapter although, they are out of the scope of this thesis. A Noncooperative game

is a game modelled under the basis that all players make choices or play strategies

considering only their own selfish interests- their final objective is to maximize their

own total utility. Noncooperative games can be categorized accordingly to the play-

ers’ moves and to the information availability. In a static game, players make their
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Open spectrum sharing
Players SUs who will compete for some unlicensed electromagnetic

spectrum.
Strategies General transmission parameters such as probability of

transmission, waveforms, power level of transmission, access
rates, time of transmission, receiver nodes, relay choice, etc.

Utility Non-decreasing function reflecting the QoS obtained by using
the unlicensed spectrum.

Licensed spectrum sharing
Players SUs who will compete for some unlicensed electromagnetic

spectrum and PUs willing to lease some licensed band to SUs.
Strategies PU: Choice of SUs allowed to transmit within leased band,

amount of leased band, price per Hert. SUs: Choice of band
to rent and price to pay for renting such spectrum band.

Utility PU: Revenue minus the cost of leasing the licensed spectrum.
SUs: Non-decreasing function reflecting the QoS obtained by
using the leased spectrum.

Table 5.1: Example of Game Theory components in CR networks.

decisions simultaneously with no information about the decisions taken by other play-

ers1. The most common representation of static games is in a table called strategic

form or normal form of the game. On the other hand a dynamic game occurs when

there is a strict order of turns that the players must obey, and players must strate-

gize accordingly. In this type of game, players know what other players have done

before having the opportunity to make a move. These kind of games are more easily

depicted in the way of game trees, or most common, in the literature as the exten-

sive form of a game. This illustrates all possible actions that can be taken by all

players and indicates the possible outcomes from the game. Games can also be classi-

fied, depending on the amount of information, into two types: complete information

and incomplete information games. In complete information games all players are

aware of the number of players, the strategies and the utility function of the rest,

1. A game is also simultaneous when players choose their actions in isolation, with no
information about what other players have done or will do, even if the choices are made at
different points in time.
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Static game Dynamic game
Complete Informa-
tion game

Complete information
static game.
Nash equilibrium (John
Nash [98,99] ).

Complete information dy-
namic game.
Subgame perfect Nash equi-
librium. (Reinhard Selten
[100]).

Incomplete Infor-
mation game

Incomplete information
static game.
Bayesian Nash equilibrium
(John Harsanyi [101]).
Poisson Games (Roger
Myerson [102]) .

Incomplete information dy-
namic game.
Perfect Bayesian Nash equi-
librium. (Reinhard Selten
[103]).

Table 5.2: Categories of noncooperative games and corresponding equilibria.

whereas incomplete information games, one of more of these components has to be

estimated or assumed. Table 5.2 shows the four types of noncooperative games and

their corresponding equilibrium concepts, along with the associated researchers.

5.1.1 Nash Equilibrium

Once the noncooperative game is defined the logical question arises: given a game

with two or more players in conflict, what will be the most likely outcome of the

game? Arguably, one could assume that in general all players would try to play the

best strategy which leads to the best utility, considering what other players would

play. In game theory context, this type of logic is called a Nash Equilibrium. A

Nash equilibrium is a set of strategies, one for each player, with the property that

no player can unilaterally change his/her stately and get a better payoff. This is

the central concept and focal point of noncooperative game theory. That being said,

the next questions that pop out are: Does a Nash equilibrium always exist?, and

once defined is this unique? The answer to the first question is generally yes. The

question about uniqueness is trickier and needs to be analyzed in a case by case basis,

but indeed, more than one Nash equilibrium can exist in a game. When more than

one equilibrium exists, it is important for the players to try to converge to the best

one. Some equilibria selection criteria is therefore necessary. Although the existence
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of a Nash equilibrium is guaranteed in noncooperative games, it does not provide

us with any clues on how to converge to it. Furthermore, if players start from a

strategy profile that is a Nash equilibrium, there is no reason to believe that any of

the players will deviate, and the system will be in equilibrium provided no conditions

(set of players, payoffs, etc.) change. However, what happens if the players start

from a non equilibrium strategy profile? In CR networks, for instance, players can

start from an arbitrary strategy, update their strategies following some rule and hope

for the best towards the equilibrium convergence. Another important concept close

related to the Nash equilibrium is the Pareto optimality, defined as such strategy

profile in which no player can improve his utility without making any other player’s

utility worse. The Pareto optimality is very useful to compare multi-dimension payoff

profiles so that equilibriums not as favourable as others in the Pareto sense can be

neglected. Nash equilibrium has some shortcomings, a significant one being fact that

it is almost impossible to justify why players in a real game would necessarily play

such an equilibrium. Let us define formally the Nash equilibrium as

Definition 1. A Nash equilibrium of any strategic game 〈N,Ai, ui〉 is a strategy

profile a∗ ∈ A of actions such that for every player i ∈ N the following relation

stands

ui
(
a∗i , a

∗
−i
)
≥ ui

(
ai, a

∗
−i
)

∀i ∈ N (5.1)

where ai denotes the strategy of player i and a−i denotes the strategies of all players

other than player i.

If all players choose a strategy according to a Nash equilibrium criteria, no

player can improve his payoff by unilaterally deviating from such equilibrium. From

this we can define the best response function for the i-th player a∗i ∈ Bi(a∗−i) as

Bi(a−i) =
{
ai ∈ Ai : ui(a−i, ai) ≥ ui(a−i, a

′
i)
}
∀a′i ∈ Ai. (5.2)

5.1.2 Mixed Strategies

In the previous discussion, we assumed that each player chooses a single strategy in

their strategy set and continues with it in every game. These types of strategies are
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Rock

Scissors

Rock

Scissors

Figure 5.1: Strategic form Representation of the Paper-Scissors-Rock Game

called pure strategies. Nevertheless, the situation in which players need to randomize

their choices of strategy arises quite often in game theory scenarios. Figure 5.1 de-

pictes the strategic form of the classic Paper-Scissors-Rock game. Following tradition,

a rock will break scissors, scissors cut paper, and paper wraps rock. One can notice

that there are no Nash equilibria in pure strategies by simply analyzing there is not

such a strategy which satisfies eq. (5.4). For example, if one player decides to al-

ways play rock, the other player will decide to always play paper. The same situation

would occur with the rest of the strategies. Hence, the question arises: which strategy

should a player choose in order to be able to win at least a some of the time? The

more logical and straightforward strategy to follow (tested in playgrounds all over

the world) is to randomize the election among the three pure strategies, assigning a

probability of 1
3 to each. When players randomize over their strategy set, is called a

mixed strategy. Thus, the mixed strategy available to player i can be denoted as σi,

and the probability that σi assigns to the strategy ai is denoted by σi(ai). Following

the previous notation, the expected utility of player i under the joint mixed strategy

σ is given by

ui(σ) =
∑

a∈A




N∏

j=1

σj(aj)


ui(a). (5.3)

The space of player i’s mixed strategies is Σi, and a mixed strategy profile σ =

(σ1, σ2, . . . , σN ) and the mixed strategy space Σ can therefore be formed by the
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Cartesian product as Σ = Σi × Σj ∀i 6= j ∈ N . The Nash equilibrium defined for

strategic games, where players take pure strategies, can then be naturally extended,

and a mixed strategy Nash equilibrium of a strategic game is a Nash equilibrium where

players in the game adopt mixed strategies. We can then generalize the concept of

Nash equilibrium in order to incorporate mixed strategies as follows:

Definition 2. A mixed strategy profile σ ∈ Σ is a Nash equilibrium if

ui(σ) ≥ ui(ai, σi) ∀i ∈ N,∀ai ∈ Ai. (5.4)

5.1.3 Existence of Nash Equilibria

The existence of a Nash equilibrium is an important aspect to analyze in game mod-

elling. The following theorem based on the fixed point establishes the existence of a

Nash equilibrium [104].

Theorem 1 (Existence). Given a game in strategic form with 〈N,Ai, ui〉, a Nash

equilibrium will exist if the action set Ai of player i consists in a non-empty compact

convex subset of a Euclidian space, and the payoff function ui is continuous and

quasi-concave on Ai for all i.

This results in the subsequent theorem as one of the most important keystones in

game theory.

Theorem 2 (Nash [98]). Every finite strategic game has a Nash equilibrium in

either mixed or pure strategies.

The case of pure strategies is just a particular case of the mixed strategies case

when the assigned probability to each action is equal to one.

5.1.4 Equilibrium selection

More than one Nash equilibrium may exist in a game which produces different utilities

to the players. Therefore, it is natural to question whether one equilibrium outper-

forms others. It is important to know if there are better Nash equilibriums in the
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Confess Not confess

Confess

Not confess

Homer

Bart

Figure 5.2: The Prisoners’ Dilemma

same game or even if an optimal equilibrium exists. This is, most of the time, a non

trivial problem since game theory solves multi-objective optimization situations, and

it is not easy to define such an optimality. For example, when players have conflicting

interests, an increase in one player’s payoff might decrease others’ payoffs. The most

popular technique used in game theory models is called the Pareto optimality, which

is a payoff profile in which no strategy can make at least one player better off without

making any other player worse off.

5.1.4.1 Pareto optimality

The Pareto efficiency, or Pareto optimality, has been widely used in game theory, as

well as economics, engineering and social sciences. If more than one equilibrium exists,

usually the optimal ones in the Pareto sense are preferred. The Pareto optimality is

defined as follows:

Definition 3. Let U ⊆ RN be a set. Then u ∈ U is Pareto efficient if there is no

u′ for which u′i ≥ ui for all i ∈ N and u′i > ui for some i ∈ N . Subsequently, the

Pareto frontier is defined as the set of all u ∈ U that are Pareto efficient.

These concepts can be better explained in the context of a two application

problems:The Prisoners’ Dilemma and The DCF Game.
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5.1.5 The Prisoners’ Dilemma

In the Prisoners’ Dilemma game, two prisoners, Homer and Bart, are arrested outside

of a store. They are alleged to have to robbed the store, but the police can only

prove that the suspects were trespassing. Thus, the police need one of the criminals

to “rat out” the other in order to charge him for the greater crime of attempted

robbery. To get them to confess, they will both be offered a deal simultaneously

while they are being interrogated in separated rooms. The deal looks like this: if no

one confesses to the robbery, the police can only charge the prisoners for trespassing

and the punishment for that is one month in jail each. If one confesses and the

other does not, the police will be lenient on the “rat” by letting him free, and will

severely punish the other with 15 months in jail. Finally, if both confess, the police

will punish them equally for attempted robbery which is more severe than simply

trespassing. The punishment here is 5 months in jail each. The Prisoners’ Dilemma

is a complete information static noncooperative game between two players (Homer

and Bart). Each player must decide between two strategies: Confess or Not confess.

In Figure 5.2 the game is shown in a strategic form (payoff matrix). Bart will choose

a row, and simultaneously Homer will choose one of the columns. The strategy

combination {Confess, Confess} produces a payoff of 5 for each player whereas the

combination {Not Confess, Not Confess} produces a payoff of 1. The combination

{Confess, Not Confess} results in a payoff of 0 for Bart and a payoff of 15 for Homer,

and finally the combination {Not Confess, Confess} ends in a payoff of 15 for Bart

and 0 for Homer. It is normally assumed in game theory models that each player

will choose in a rational manner- he will tend to choose the strategy that maximizes

(or minimizes) his payoff according to what he prefers the most. At the same time,

he will assume that his opponent will follow the same reasoning. Notice that in

this example, a smaller payoff is preferred since it translates to a shorter time in

prison. The strategy Confess is therefore the best strategy for a player regardless of

the strategy chosen by his opponent. Moreover, both players are convinced that their

counterpart will choose Confess. The strategy profile {Confess, Confess} is composed

of the best strategy that each player chooses and, it therefore represents a Nash
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equilibrium. This is the result that the police expects (both players being imprisoned

for five months). Interestingly, from the players point of view, the Nash equilibrium

outcome ({Confess, Confess}) is greatly inferior to the outcome from the strategy

profile {Not Confess, Not Confess}, which results in 1 month of jail for each. We can

conclude that the Nash equilibrium of this game is not Pareto optimal. The Prisoners’

Dilemma has three Pareto optimal outcomes (where it is impossible to improve the

payoff of any player without negatively affecting the payoff of at least other player):

{Confess, Not Confess}, {Not Confess, Confess} and {Not Confess, Not Confess}.
It is an interesting phenomena that in real life scenarios, individual rationality is

often incompatible with collective rationality in noncooperative games. If the game

is played not just once, but repeated infinitely, both players might cooperate by

choosing the strategy Not Confess in early plays in hopes of arriving at the Pareto

optimality ({Not Confess, Not Confess}). The players have also the option of playing

what is called a grim strategy which consists in a Nash equilibrium strategy profile

of the infinitely repeated game in order to ensure cooperation. In this strategy, each

player will always choose the cooperative strategy Not confess in each sub game (a

single Prisoners’ Dilemma game) until his counterpart chooses the strategy Confess,

and then he will always choose the strategy Confess in the following games to punish

the traitor. Some form of coalition and cooperation is forced since each player is

afraid of the punishment by the rest of players. Hence, individual rationality becomes

consistent with collective rationality.

5.1.6 Application of the Prisoners’ Dilemma: The DCF

Game

In the IEEE 802.11 standard [105], the Distributed Coordination Function (DCF)

is used as the medium access protocol in almost all of the testbeds and simulations

for wireless ad hoc network research [106]. The DCF provides two access schemes:

the basic scheme and the request to send/clear to send (RTS/CTS) scheme. In

the basic scheme, transmitting and receiving nodes only exchange data frames and

acknowledgement (ACK) frames. The RTS/CTS scheme adds a RTS/CTS dialog
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before the data frame in order to reduce the probability of collisions on the channel,

because the collision probability of a RTS frame (20 octets) is less than that of a data

frame (up to 2346 octets). The RTS/CTS scheme works as follows: every time a node

wants to transmit a data frame, it will first transmit an RTS frame in order to reserve

the channel. The receiving node replies with a CTS frame if it is ready to receive. If

the transmitting node successfully receives the CTS frame, it starts transmitting the

data frame. After receiving the data frame, the destination node replies with an ACK

frame to the source. If the CTS frame was not successfully received by the receiving

node, the source times out from waiting. It will then perform the Binary Exponential

Backoff (BEB) algorithm in order to calculate a new random back off time with a

larger window opportunity in order to transmit the RTS frame and hence decrease

the probability of collision. For every RTS retransmission, the back off time is chosen

uniformly within the range (0, CW − 1), where CW is the size of the contention

window which is function of the number of previous failed transmissions of the RTS

frame. In the first retransmission attempt, CW is equal to the minimum contention

window CWmin. Every time an unsuccessful transmission occurs, the value of CW

is doubled up to the maximum value CWmax. If this value is achieved, no further

doubling is performed and the value stays constant. If reception is unsuccessful after

seven tries, the RTS frame is dropped. In the IEEE 802.11 DCF standard there

are no centralized infrastructures, and all nodes therefore transmit their data frames

in a competitive manner. One node must compete with its neighbouring nodes in

such a way that it can transmit as many packets as possible. In addition, the BEB

algorithm presents a fairness problem among TCP flows in multi-hop ad hoc networks,

as it always favours the latest successful nodes. In this case game theory can be used

as a model to solve the unfairness problem. In order to do this we model the IEEE

802.11 DCF as a game. In the DCF game, each player (node) has two strategies:

Transmit or Not transmit analogous to Confess and Not confess in the Prisoners’

Dilemma. The game is presented in Figure 5.3 for the particular case of two players

representing two competing nodes in the system. Figure, us represents the payoff

when the respective node performs a successful transmission, ui is the payoff when a

node decides to stay idle for the particular slot and uf is the payoff in case of a failed
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Figure 5.3: The DCF game with two nodes

transmission. Chapter 5 analyzes in more detail the respective values of these payoffs;

however, at this point we can see a self-evident relation among them as follows:

uf < ui < us. (5.5)

This is obviously a noncooperative game with complete information in which the

players aim to obtain higher payoffs. It can be seen that this game has two Nash equi-

libriums in pure strategies: {Transmit, Not transmit} and {Not transmit, Transmit}.
The DCF realizes the two equilibrium strategies by first listening to the busy/idle

state of the medium when a node wants to transmit packets. If the channel is idle for

a period of time equal to a distributed inter frame space (DIFS), the node transmits.

Otherwise, the node does not transmit and persists in monitoring the channel until

the medium is determined to be idle without interruption for a DIFS. Moreover, the

DCF game has another Nash equilibrium in mixed strategies, in which each node

chooses the strategy Transmit with probability

us − ui
us − uf

,

and chooses the strategy Not transmit with probability

ui − uf
us − uf

.
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The DCF analyzes the mixed strategy as follows. When the channel is busy, the node

persists in listening to the channel until it becomes idle for a DIFS; the node then

waits a random back off interval. The random back off integral can be modelled by

the mixed strategy. By analyzing the possible values of us, ui and uf further, it is

possible to see that:

• ui indicates the delay sensitivity of the traffic being transmitted. The smaller

the value of ui, the more delay-sensitive the traffic.

• us should be the increasing function of the length of the data frame. The longer

the data packet transmitted successfully, the higher the channel utility ratio.

• uf should be the decreasing function of the length of the data frame. A trans-

mission failure of a long data frame does more harm to the network than that

of a short frame, since a wireless node cannot sense the channel while it is

transmitting.

The DCF does not consider how the priorities of different traffic affect the performance

of a network, nor does it consider how the lengths of different data frames affect the

performance of a network. However, it is possible to construct different DCF game

models for traffic with different priorities and different lengths by adjusting the values

of ui, us, and uf accordingly, giving different Nash equilibriums in mixed strategy and

thus different random waiting intervals so that we can improve the performance of the

DCF (e.g., the fairness). In addition, if each node contends for the channel repeatedly

and the network has multiple nodes, a very complex method to determine the values

of ui, us, and uf is needed.

5.2 Random Access Games

As presented in previous section, because of the inherently competitive nature of

CR networks, the game theory arises as a straightforward approach to deal with

several application problems [97, 107–113]. The Secondary Users (SU) in Cognitive

Radio (CR) networks can be considered players competing for some specific license

band, resulting in different kinds of payoffs for them. Specifically, the Medium Access

Control (MAC) problem has been analyzed using game theory tools in the literature
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[114–123]. In [117] a game theory model is presented as a starting point for the

Distributed Coordination Function (DCF) mechanism in IEEE 802.11. As seen in

Chapter 5, in the DCF there are no base stations or access points which control access

to the channel, and all nodes therefore transmit their data frames in a competitive

manner. However, as noted in [117], the proposed DCF game does not consider how

the different types of traffic can affect the sum throughput of the system. In [124]

it is assumed that the total number of players is known in order to evaluate the

performance of the DCF, whereas in [116] a game-theoretic model of multipacket

slotted ALOHA with perfect information is studied. The authors show in [116], the

Nash equilibrium must exist in this model, and its stability region is characterized.

Furthermore, a pricing strategy based on slotted ALOHA with multipacket reception

is proposed in [125] in order to enforce fairness among the players. In [126] the author

calculates an optimal access probability based on slotted ALOHA, which maximizes

the successful delivery probability in CR networks. The author also assumes that

the number of transmitters and receivers is always known during the analysis and all

users share a common access probability (i.e., all users are treated equally.) In [127] a

distributed MAC algorithm with one-slot memory is proposed in order to coordinate

the access among the SUs and restrict interference to the PU. An optimal probability

of attempting to access the channel for the SUs in order to maximize the throughput is

obtained. A p-persistent protocol to control the selection of the contention window in

the IEEE 802.11 backoff algorithm is described in [106]. The authors in [106] showed

how to maximize the throughput of the scheme. Nevertheless, the authors in [127]

and [106] do not consider either the possibility of having different types of users,

nor the randomness in the number of SUs in the system. In contrast, this chapter

addresses the problem similar to that approached by the Enhanced DCF included in

IEEE 802.11e [128], which is a natural extension of the DCF mechanism. Specifically,

we provide a novel interpretation and analysis in order to solve the problem of multiple

access for a heterogenous and random population of SUs, based on Myerson’s results

for Poisson games [129]. This branch of game theory analysis addresses the problem
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of games with an uncertain population- when the number of players2 is unknown and

can be modelled as a random variable.

In this chapter, Section 5.3 summarizes the theoretical basis of Poisson Games,

and two multiple access examples are given. Section 5.4 presents our novel Poisson

game model, and we calculate the optimal mixed strategies and the optimal penaliza-

tions used in the game. Section 5.4.2 extends the aforementioned analysis to the case

of two types of SUs and provides an accurate analytical approximation of the Pareto

frontier. In Section 5.5, the impact on the PU based on its activity is considered and

the optimal mixed strategies are calculated accordingly. Finally, some conclusions are

drawn in Section 5.6.

5.3 Poisson Games

It is very well established in [129] that a Poisson Game is a special case of a more

general type of games called Random Player Games. In games with population un-

certainty [102,130], there is a nonempty finite set of players types T which is known a

priori. In the context of communications systems, this set could contain the different

types of services offered by the network (voice, video, data, etc.). There is also a

finite set of available choices or pure actions C that a player may take. For instance,

these could be all the different transmission powers that the SU may utilize [131] or,

in the context of this chapter, the decision to transmit or not. The set of possible

actions is the same regardless of the type of player. The main characteristic of a

Poisson Game is that the total numbers of players of certain types, are modelled as

random variables. We use the definition given by Myerson [130] which presents a

Poisson Game Γ as the five-tuple (λ, T , r, C, u). Here, the parameter λ corresponds to

the average number of users described by a Poisson random variable with probability

mass function defined as

f(k) = e−λ
λk

k!
. (5.6)

2. Throughout this chapter the terms players and SUs shall be used interchangeably.
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Thus, the number of players in the game is a Poisson random variable with average

number of players3 λ >> 1. Each user from the complete population belongs to one

of the types t ∈ T . The probability of a user being of type t is given by r(t) =

Prob(type = t). This information is embedded in the vector r ∈ ∆(T ), where ∆(·)
represents the set of probability distributions over T . By applying the decomposition

property [130, 132] of the Poisson distribution, we can establish that the number of

players in the game of type t is also a Poisson random variable with parameter λr(t).

We assume that the set C of possible actions is common to all players, regardless

of their type. Thus, the set ∆(C) is the set of mixed actions associated with the

players. In Poisson games, the utility of a specific player depends on its type, the

action he chooses, and on the number of players (not counting himself) who choose

each possible action. The number of players for each possible element in C is listed in

a vector called the action profile. The last term of the tuple is the utility, defined as

u = (ut)t∈T , where ut(a, x) is the payoff that a player of type t receives when a pure

action a is chosen and the number of players who choose action b is x(b), for all b ∈ C.
If the participants play in accordance to the strategy σ, we call σt(a) the probability

that a player of type t chooses the pure action a. Using the decomposition property

again, we can establish that the number of players of type t ∈ T who choose the pure

action a is Poisson distributed with mean λr(t)σt(a). Since the sum of independent

Poisson random variables is also a Poisson variable with mean equal to the sum of the

means, the total number of players who take the pure action a is Poisson distributed

with mean λτ(a), where

τ(a) =
∑

t∈T
r(t)σt(a).

It follows that a player of type t who plays a pure action a ∈ C while the rest of the

players are expected to play using strategy σ has a expected utility of

Ut(a, σ) =
∑

x∈Z(C)
P (x|σ)ut(a, x), (5.7)

3. In the original paper by Myerson, the value of λ is chosen to be very large; however
the validity of the results can be applied here as long as a relatively large λ is used so that
the probability of having zero players in the Poisson game is negligible.
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where

P (x|σ) =
∏

b∈C
e−λτ(b) (λτ(b))x(b)

x(b)!
, (5.8)

while the expected utility when the player chooses action θ ∈ ∆(C) is

Ut(θ, σ) =
∑

a∈C
θ(a)Ut(a, σ). (5.9)

5.3.1 Nash Equilibrium in Poisson Games

It is very well known [107] that a Nash equilibrium is achieved when each strategy

played by all players corresponds to the best response to all other strategies in such

equilibrium. Consequently, no player has anything to gain by changing his own strat-

egy unilaterally. The set of best responses for a player of type t against a strategy σ

is then the set of actions that maximizes his expected utility given that the rest of

the players (including those whose type is t) play as prescribed by σ. Let us define

the set

Bt(σ) =

{
b ∈ C : b ∈ arg max

a∈C
Ut(a, σ)

}
(5.10)

as the set of pure best responses against σ for a player of type t. Equally, the set for

mixed best responses against σ is the set of actions ∆(Bt(σ)). Therefore, the strategy

σ∗ is a Nash equilibrium if σ∗t ∈ ∆(Bt(σ)) ∀t.

5.3.2 Examples and Motivation

5.3.2.1 Example 1

Let Γ be a Poisson game with λ = 15, only one type of players, set of available choices

C = {ON,OFF}, and the utility function:

u(ON, x) =

{
R if x(ON) ≤ Kmax

0 otherwise
,

u(OFF, x) = 0 ∀x ∈ C,
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Figure 5.4: Average utility for Poisson Game in Example 1 (λ = 15).

where Kmax is the maximum number of players that can transmit at the same time

beside one transmitting player without causing a collision, and R > 0 is the trans-

mission rate payoff when the player achieves a successful transmission. This game

follows the mixed strategies defined as σ(ON) = p and σ(OFF ) = 1− p, where p is

the probability of transmission by any given player. Using eq. (5.9), we can calculate

the expected utility as

U(p) = R

Kmax+1∑

n=1

∞∑

i=n

n

i

(
i

n

)
pn(1− p)i−n

{
e−λ

λi

i!

}

= R

Kmax+1∑

n=1

pnλn [Γ(n+ 1)− nΓ(n,−λ(1− p))]
eλn!(−λ(1− p))n , p < 1.

(5.11)

The dependence of U(p) as a function of p is shown in Figure 5.4 for different values

of Kmax. The solid line represents the utility of the Poisson game and the dashed

lines represent the utility of a game with complete information (i.e., fixed number of

players known for all). Considering that a Nash equilibrium predicts in a consistent
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manner the way in which a game will be played, it is evident that in this game

there exists just one logical outcome. In other words, the Nash equilibrium is strict,

which by definition must occur in non-degenerate strategies [104]. The equilibrium

occurs when all players transmit all the time (p = 1). As seen in Figure 5.4, this

converges to a zero utility for all the users. This game is designed in such a way

that the players have no motivation to not transmit. The utilities obtained are very

far from the Pareto optimal4, which could be achieved by playing a mixed strategy

(p < 1). Figure 5.5 shows the achievable utilities if the players were motivated to

play Pareto dominant strategies, and thus transmitting only a fraction of the time

p < 1. By increasing the value of Kmax, the probability of transmission by a player

also increases, resulting in a higher utility. As Kmax tends to the maximum number

of players known in a game with complete information, the average utility converges

to 100%. At the same time, in a Poisson game, because of the uncertainty of the

number of players, the average utility does not achieve the maximum when Kmax

tends to λ. Thus, it is important to consider the Poisson game in detail.

5.3.2.2 Example 2

Consider the Poisson game defined by Γ = {λ, T , r, C, u}, with expected number of

players λ = 15, set of types T = {1, 2} with probabilities r1 and r2 = 1 − r1 set of

choices C = {ON,OFF} and the utility function:

u1(ON, x) =

{
R1 if x(ON) ≤ Kmax1

0 otherwise
,

u1(OFF, x) = 0 ∀x ∈ C,

u2(ON, x) =

{
R2 if x(ON) ≤ Kmax2

0 otherwise
, (5.12)

u2(OFF, x) = 0 ∀x ∈ C,

4. As explained in Chapter 5, Pareto Optimality is defined as a specific set of strategies
in which no player can change their strategy and have a greater utility without making any
other player utility worse.
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Figure 5.5: Pareto Optimality Utilities for Example 1.

where Kmax1 and Kmax2 are the maximum number of players who can transmit

simultaneously with type 1 and type 2 players, respectively. Similarly to Example 1,

R1 and R2 are the achievable rates the in case of a successful transmission. We define

the mixed strategies σ1(ON) = p1 and σ2(ON) = p2 as the transmission probabilities

by type 1 and type 2 players, respectively. The expected utilities can be calculated
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using of eqs. (5.7)-(5.9) as follows:

U1(p1, p2) = R1

Kmax1+1∑

n=1

n∑

k=1

{ ∞∑

i=k

k

i

(
i

k

)
pi1(1− p1)i−k

×
[
e−r1λ

(r1λ)i

i!

] ∞∑

j=n−k

(
j

n− k

)
p
j
2(1− p2)j−n+k

×
[
e−r2λ

(r2λ)j

j!

]}
,

U2(p1, p2) = R2

Kmax2+1∑

n=1

n∑

k=1

{ ∞∑

i=k

k

i

(
i

k

)
pi2(1− p2)i−k

×
[
e−r1λ

(r2λ)i

i!

] ∞∑

j=n−k

(
j

n− k

)
p
j
1(1− p1)j−n+k

×
[
e−r1λ

(r1λ)j

j!

]}
.

(5.13)

Figures 5.6 and 5.7 show the expected utility for this example. Again, the players have

no incentive to use mixed strategies, and the same strict Nash equilibrium therefore

occurs- all players transmit all the time (i.e. p1 = p2 = 1), resulting in zero utility to

all of them. However, unlike Example 1, there exist several Pareto dominant mixed

strategies in terms of the pairs of probabilities (p1, p2) forming a Pareto frontier which

will produce a set of optimal strategies [104, 133]. In the following section, we will

reformulate the proposed Poisson games in order to achieve the Pareto optimality.

Notice that the analysis of Examples 1 and 2 concentrates only on symmetric Nash

equilibria since this game has also an asymmetric equilibria.

5.4 System Model and Corresponding Game

Let us assume for a moment that there is a fixed number N of SUs competing sta-

tions while the PU is in the idle state. The transmission queue for all SUs is assumed

to be always nonempty, i.e., each user always has a packet ready to be transmitted

right after the completion of each transmission. We consider that the system works
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in a slotted ALOHA fashion where each slot of the system is modelled as a one-stage

game. At the beginning of each slot, the players have to choose between the two pos-



Chapter 5: Multiple Access Games for Cognitive Radio Networks 138

(−��,−��) 

(�, 0) 

(0, �) 

(0,0) 

ON 

ON 

OFF 

OFF 

Player I 

Player II 

Figure 5.8: Strategic form of multiple access game (N = 2).

sible actions C ∈ {ON,OFF}, which represent their ability to transmit or to back off.

Every time a player decides to transmit, he can either succeed, in which case he gains

throughput, or fail due to a collision, resulting in some penalty (negative throughput)

associated with such a failure. The system is capable of handling multi-packet recep-

tion (MPR) [134], i.e., it is possible to receive several packets simultaneously5. We

consider that the channel has no influence on the loss of any package, and that the

only option for a failure transmission is therefore due to collisions with any package

over the MPR limit (Kmax +1). As shown in Example 1 and Figure 5.4, it is possible

to obtain a maximum utility by controlling the probability of transmission among

the players. This is equivalent to players choosing to play mixed strategies instead of

playing the single pure strategy. However, as discussed above, they do not have any

incentive to cease transmission to avoid collisions, and the expected outcome would

be all of them transmitting, resulting in zero throughput. It is shown in [135] that

by introducing some penalty to the game, it is possible to get closer to the Pareto

optimality. In terms of this we propose the following game models:

5. This might be achievable by using certain enhancements to the physical layer such as
beamforming in MIMO systems, frequency hopping, or multiuser detection.
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5.4.1 Poisson Game, Single Type of Players

Let us reformulate Example 1 by adding a penalty in the case of a collision

u(ON, x) =

{
R if x(ON) ≤ Kmax

−αR otherwise
,

u(OFF, x) = 0 ∀x ∈ C,
(5.14)

where α ≥ 0 is a penalization constant. First, we consider a multiple access game

with N ≥ 2 transmitters (players) and Kmax = 0. In the case of a collision the

transmitter is penalized by some constant quantity −αR. Figure 5.8 shows the game

in strategic form for the case of N = 2. A similar game can be found in [117] as

an alternative approach to the distributed coordination function (DCF) in the IEEE

802.11 standard. Each player transmits with probability p following a mixed strategy

policy. Consequently, when the number of users is known, the multiple access could

be cast as a game with the following utilities:

UOFF,k = 0,

UON,k = p(1− p)N−1R− αRp[1− (1− p)N−1]

= (1− ϑ)[ϑN−1R− αR(1− ϑN−1)],

(5.15)

for k = 1, 2, . . . N . Here we make use of the notation ϑ = 1 − p. In order for this

game to be in equilibrium we need to ensure, by choosing a proper penalty α, that

UOFF,k = UON,k = 0,∀k. In other words the following should be true

ϑN−1R = αR(1− ϑN−1),

ϑ =

(
α

1 + α

) 1
N−1

,

As a result, the mixed strategy in equilibrium given as peq is achieved by

peq = 1−
(

α

1 + α

) 1
N−1

, (5.16)
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and it can be seen that

peq =

{
1 if α = 0

0 if α→∞
. (5.17)

Notice that for arbitrary N ≥ 2 and α = 0 (i.e., no collision penalty), peq = 1. This

shows that in general, a game without penalty would have no purpose considering no

data can be transmitted at the equilibrium in pure strategies for N > Kmax. The

amount of data transmitted for a given α > 0 is then

pϑN−1R =


1−

(
α

1 + α

) 1
N−1



(

α

1 + α

)
R. (5.18)

The probability of having a particular player transmitting successfully is given as

P1,k = p(1− p)N−1, (5.19)

and, the maximum of P1,k can be found by taking the partial derivative of its loga-

rithm as follows
∂ lnP1,k

∂p
=

1

p
− N − 1

1− p = 0,

This results in the unique solution

p =
1

N
, (5.20)

which is clearly maximum (see also [34]). It follows from eq. (5.16), that

1

N
= 1−

(
α

1 + α

) 1
N−1

,

and, therefore

α =
1

(
N
N−1

)N−1
− 1

. (5.21)
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If N = 2, the corresponding value of α is

α(2) =
1

2− 1
= 1.

On the other extreme, when N →∞, one can calculate that

α(∞) = lim
N→∞

1
(

N
N−1

)N−1
− 1

=
1

e− 1
≈ 0.5.

Thus, the range of variation of α is 1
e−1 ≤ α ≤ 1, as depicted in Figure 5.9. Collisions

are frequent for smaller N , and they therefore require a higher penalty to prevent

SU from continuous transmission. The case of MPR Kmax > 1 could be treated in a
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similar manner. The probability of transmitting without collision can expressed as

P
(p)
nc =

Kmax∑

k=0

p

(
N − 1

k

)
pk(1− p)N−1−k

=

Kmax∑

k=0

(
N − 1

k

)
pk+1(1− p)N−1−k

= I1−p(N − 1−Kmax, Kmax + 1),

(5.22)

where I1−p(a, b) is the incomplete beta function (see [75], Chapter 6) and N > Kmax.

For moderately large N , the binomial distribution of interferers could be considered

as a sum of N − 1 binary random variables. Its distribution can be very well approx-

imated by a normal random variable ξ ∼ N (µ, σ2), where

µ = (N − 1)p,

σ2 = (N − 1)p(1− p) = (N − 1)pq.

Therefore,

Pnc ≈ Prob(ξ < K) =

Kmax∫

−∞

1√
2π(N − 1)pq

exp

(
[x− (N − 1)p]2

2(N − 1)pq

)
dx

≈ Φ

(
Kmax + 0.5− (N − 1)p√

(N − 1)pq

)
,

(5.23)

for large N compared to Kmax
6

Kmax < (N − 1)p. (5.24)

6. One can assume that the maximum Pnc(p) is achieved when p << 1 (or more accu-
rately p ∼ Kmax/N).
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As the next step, let us maximize the last term in the expansion in eq. (5.22) with

respect to p,

P ∗nc(p) =

(
N − 1

Kmax

)
pKmax+1(1− p)N−1−Kmax ,

∂ lnP ∗nc(p)
∂p

=
Kmax + 1

p
− N − 1−Kmax

1− p = 0,

(5.25)

(Kmax + 1)(1− p) = (N − 1−Kmax)p

or

pmax =
Kmax + 1

N
. (5.26)

This term represents the largest contribution to Pnc given by eq. (5.22). Furthermore,

(N−1
Kmax

)
pKmax+1(1− p)N−1−Kmax

( N−1
Kmax−1

)
pKmax(1− p)N−Kmax

=
N −Kmax

Kmax

p

1− p ≈
Np

Kmax

1

1− p >> 1. (5.27)

The optimized term provides the bulk contribution to Pnc. Taking one more term in

eq. (5.22) and following the same reasoning, it is possible to obtain a very accurate

approximation of the optimum probability of transmission as

Popt ≈
Kmax + 1

Kmax +N
. (5.28)

The accuracy of such an approximation can be seen in Figure 5.10, where Popt cal-

culated by (5.28) is shown as a special character, described in the plot legend. Using

this value of Pnc we can reformulate eq. (5.15) as

UOFF,k = 0

UON,k = RPnc(Popt)− αRPc(Popt)
, (5.29)

where Pc = 1− Pnc represents the probability of collision. Therefore, at the equilib-

rium

UOFF,k = UON,k ,

Pnc = αPc ,



Chapter 5: Multiple Access Games for Cognitive Radio Networks 144

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

p

P
nc

 

 
K

max
 = 0

P
opt

K
max

 = 2

≈ P
opt

K
max

 = 5

≈ P
opt

Figure 5.10: Approximation of optimal probability Popt considering N = 20 and
different values of Kmax.

and

α =
Pnc

1− Pnc

∣∣∣∣
p=Popt=

Kmax+1
Kmax+N

=

∑Kmax
k=0

(N−1
k

)
(1− p)N−1−kpk

∑N−1
i=Kmax

(N−1
i

)
(1− p)N−1−ipi

∣∣∣∣∣
p=Popt=

Kmax+1
Kmax+N

.

(5.30)

It is consistently assumed in all modelled game theory problems that the players take

decisions based on the most basic notion of rational play where dominated strategies

can be iteratively eliminated [114]. It is in this sense that the Nash equilibrium

predicts the most likely outcome of the game. The SUs in this game transmit with

a certain probability. If such probability coincides with the one in equilibrium, then

no player has any incentive to change it. We consider that the number of players

is a random variable distributed according to some probability distribution PN (N).
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Conditioned on the number of players N , the pay-off can be rewritten as

UOFF |N = 0,

UON |N = pϑN−1R− p(1− ϑN−1)αR,

= pR[(1− α)ϑN−1 − α].

(5.31)

Averaging over the distribution of N (eq. 5.9), the unconditional utilities can be

expressed as

UOFF =
∑

UOFF |NPN (N) = 0

UON =
∑

UON |NPN (N) =

pR

[
(1 + α)

∞∑

N=1

ϑN−1PN (N)− α
∞∑

N=1

PN (N)

]
= 0.

(5.32)

By making use of the notation

FN (ϑ) =
∞∑

N=1

ϑN−1PN (N), (5.33)

eq. (5.32) can be rewritten as

(1 + α)FN (ϑ) = α[1− PN (0)],

or

ϑ = F−1
N

[
α

1 + α
(1− PN (0))

]
, (5.34)

where F−1
N is the inverse function of FN (ϑ). For instance, if PN (N) = δ(N − N0)

N0 > 0, i.e., the game corresponding to a game with complete information (fixed and

known number of players), then

PN (0) = 0,

FN (ϑ) = ϑN0−1,
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which coincides with eq. (5.16). For the Poisson distribution (5.6)

PN (N) =
λN

N !
e−λ, (5.35)

one can easily obtain

PN (0) = e−λ,

FN (ϑ) =
∞∑

N=1

ϑN−1λN

N !
e−λ =

e−λ

ϑ
[exp(ϑλ)− 1] . (5.36)

Notice that eq. (5.36) must be inverted numerically. The required equation for

equilibrium is then

e−λ

ϑ
[exp(ϑλ)− 1] =

α

1 + α

(
1− e−λ

)
,

eϑλ − 1

ϑ
=

α

1 + α

(
eλ − 1

)
.

(5.37)

If α = 0,
eϑλ − 1

ϑ
= 0

does not have solution ϑ = 0 since

lim
ϑ→0

eϑλ − 1

ϑ
= λ 6= 0.

Consider the reduced Poisson distribution where N = 0 is not possible. For the

case in which there is a random number of transmitters trying to access the channel,

the question arises: which penalization α should be chosen in order to obtain the

maximum throughput? We can substitute the optimum probability of transmission
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for each player by averaging eq. (5.28) with a Poisson distribution as

Popt ≈
Kmax∑

N=0

1 · λ
N

N !
e−λ +

∞∑

N=Kmax+1

Kmax + 1

Kmax +N

λN

N !
e−λ =

(Kmax + 1) [Γ(Kmax + 1)−KmaxΓ(Kmax,−λ)]

Kmaxeλ(−λ)Kmax
.

(5.38)

Notice that eq. (5.38) provides an upper limit in the achievable Popt. A more ex-

act expression could be obtained by taking the expectation of the payoff and then

maximize it, however for sake of simplicity, only the average of the maximum point

is taking into consideration. For the case when Kmax << λ, the first term in eq.

(5.38) can be neglected; using the asymptotic of Γ(x, a), one obtains the following

approximation

Popt ≈
Kmax + 1

λ+Kmax − 1
. (5.39)

Figure 5.11 shows the accuracy of such an approximation for different values of Kmax.

Figures 5.12 and 5.13 show the gain in throughput that can be achieved by exact

knowledge of the number of SUs compared to the averaged method described by eq.

(5.39). The x-axis in Figure 5.12 represents the number of players N for the case of

a game with complete information, or the average number of users λ for the Poisson

game analysis. Analogously to eq. (5.30), we can calculate the optimal α using the

following:

α =

∑∞
N=Kmax+1

∑Kmax
k=0

(N−1
k

)
(1− Popt)N−1−kP kopt

λN

N ! e
−λ

∑∞
N=Kmax+1

∑N−1
i=Kmax

(N−1
i

)
(1− Popt)N−1−iP iopt

λN
N ! e
−λ

. (5.40)

5.4.1.1 Throughput Analysis

Following the analysis of the MAC with exponential backoff with MPR [118, 119],

we calculate the normalized throughput as follows. First, we obtain the conditional

probability of having k packets transmitted successfully given that at least one player
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Figure 5.11: Approximation of optimal probability Popt with λ = 20 and different
values of Kmax.

transmits in any slot as

P
(k)
succ =

(
N

k

)
P kopt(1− Popt)N−k

PTx
, (5.41)

where PTx is the probability of having at least one player transmitting in the slot

time, which can be computed as

PTx = 1− (1− Popt)N .

Therefore, the normalized throughput for the case of a game with complete informa-

tion is

T =

Kmax∑

k=1

kP
(k)
succPTx =

Kmax∑

k=1

k

(
N

k

)
P koptN (1− PoptN )N−k, (5.42)
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depending whether the number of players N is fixed and known or it is a random

Poisson variable with average number of players λ.

where PoptN is given by eq. (5.28). For the case of Poisson game, eq. (5.42) becomes

TR =

Kmax−1∑

j=0

λje−λ

(j − 1)!
+

∞∑

n=Kmax

Kmax∑

k=1

k

(
n

k

)
P koptλ(1−Poptλ)n−k

λne−λ

n!
, (5.43)

where Poptλ is obtained from eq. (5.39). In order to assess the performance of the

proposed scheme, we compare the throughput obtained using Poisson games and the

throughput obtained from a binary exponential backoff algorithm implemented in the

IEEE 802.11 standard [124]. Standard contention windows W0 = 16 and W0 = 32

were used for comparison. The results are shown in Figure 5.14. In [118] it is shown

that as the number of nodes (players) increases, the throughput converges to a nonzero

constant in all cases (1
2 ln 2 for the case of the binary exponential backoff). The case

for the game with complete information is also included. Notice that the throughput

obtained by means of the Poisson game outperforms the throughput obtained with
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Figure 5.13: Probability of non-collision comparison between the fixed number of
users scheme and random number of users for different values of Kmax.

the classic exponential backoff for the case of small number of users. This can be

explained by the large size of the contention window compared with the number of

users.

5.4.2 A Poisson Game with Two Types of Players

In this section we extend the Poisson game interpretation of Multiple Access to the

case of two types of SUs, defined by different Quality of Services (QoS) requirements

on their rate. For example, some users might use voice services while the rest require

a video streaming service. Within this framework, we consider that type 1 and type 2

players transmit with rates R1 and R2, respectively. Depending on the QoS for each

type of user, we assume that the maximum number of simultaneous transmissions

supported by users of first type could be no more than Kmax1 + 1, and the maximum

supported by the second type could be no more than Kmax2 + 1. The corresponding
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Poisson game can be modelled as

u1(ON, x) =

{
R1 if x(ON) ≤ Kmax1

−αR1 otherwise
,

u1(OFF, x) = 0 ∀x ∈ C,

u2(ON, x) =

{
R2 if x(ON) ≤ Kmax2

−βR2 otherwise
, (5.44)

u2(OFF, x) = 0 ∀x ∈ C,

where α, β > 0 are the two penalization constants in order to guarantee the conver-

gence to a Nash equilibrium in mixed strategies7. Similar to eq. (5.29) for the case

of a single type of player, it is possible to write the utilities functions in terms of the

7. Notice that x(ON) is the sum of all transmitting players regardless of their type.
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probabilities of non-collision and collision as

U
(1)
OFF = 0,

U
(1)
ON (p1, p2) = R1P

(1)
nc (p1, p2)− αR1P

(1)
c (p1, p2),

U
(2)
OFF = 0,

U
(2)
ON (p1, p2) = R2P

(2)
nc (p1, p2)− βR2P

(2)
c (p1, p2).

(5.45)

Here p1 and p2 are the probabilities of transmission (mixed strategies) of type 1

and type 2 players, respectively. Let us assume, as in the case of a single type of

player, that this is a game with complete information with N1 and N2 players of each

type. The probability of non-collision for both types can be found using the following

expressions:

P
(1)
nc (p1, p2) =

Kmax1∑

j=0

j∑

i=1

(
N1 − 1

i

)(
N2

j − i

)
pi+1

1 (1− p1)N1−i−1p
j−i
2 (1− p2)N2−j+i,

P
(2)
nc (p1, p2) =

Kmax2∑

j=0

j∑

i=1

(
N2 − 1

i

)(
N1

j − i

)
pi+1

2 (1− p2)N2−i−1p
j−i
1 (1− p1)N1−j+i.

(5.46)

As shown in Example 2 (6.2.2.2), there is a tradeoff in the choice of p1 and p2.

It is clear that if p1 is fixed and p2 is decreased, type 1 players benefit, and vice

versa. Therefore, it is desirable to assign penalties α and β in such a way that the

system works in the boundaries of the Pareto frontier, i.e., ensure all choices of mixed

strategies be Pareto efficient. The question is how to find such a frontier. We start

by noting that if N1 = 0 or N2 = 0, the maximum utility for each type of users is

given by eq. (5.28) when

P
(1)
nc

(
1 +Kmax1

N1 +Kmax1

, 0

)
or P

(2)
nc

(
0,

1 +Kmax2

N2 +Kmax2

)
.
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Figure 5.15: Approximation of the Pareto frontier for a complete game with two
type of players (N1 = 15, N2 = 10, Kmax1 = 5, Kmax2 = 3).

Similarly, using eq. (5.28) we can see that for the case of p1 = p2, the maximum

probability of non collision for both utilities is achieved by

P =
1 + K̄max

N1 +N2 + K̄max
, (5.47)

where K̄max is the arithmetic mean of Kmax1 and Kmax2 . Using these three points,

one can construct an approximation of the Pareto frontier by connecting them with

straight lines, as shown in Figure 5.15. The analytical approximation of such a frontier

follows:

p2 =





m1p1 +
1+Kmax2
N2+Kmax2

0 ≤ p1 ≤ 1+K̄max
N1+N2+K̄max

m2

(
p1 −

1+Kmax1
N1+Kmax1

)
1+K̄max

N1+N2+K̄max
≤ p1 ≤

1+Kmax1
N1+Kmax1

(5.48)
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Figure 5.16: Pareto Frontier (N1 = 15, N2 = 10, Kmax1 = 5, Kmax2 = 3).

where m1 and m2 are calculated as

m1 =

(
1+K̄max

N1+N2+K̄max
− 1+Kmax2

N2+Kmax2

) (
N1 +N2 + K̄max

)

1 + K̄max
,

m2 = − 1 + K̄max
(
N1 +N2 + K̄max

) ( 1+Kmax1
N1+Kmax1

− 1+K̄max
N1+N2+K̄max

) .
(5.49)

The accuracy of the approximation achieved by eq. (5.48) is shown in Figures 5.15-

5.16, where we compare it with the Pareto frontier obtained by simulation using a

genetic algorithm with 30 iterations in Matlab [136]. All solutions in a Pareto set are

equally optimal, so it is up to the wireless designer to select a solution in that set

depending on the application or the QoS goal. Furthermore, extending this to the

case of a Poisson game, the probability of non collision for both types can be obtained
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using the equations

P
(1)
nc =

Kmax1∑

j=0

j∑

i=0

P1(i)P2(j − i),

P
(2)
nc =

Kmax2∑

j=0

j∑

i=0

P1(j − i)P2(i),

(5.50)

where

Pn(x) =
x−1∑

s=0

(rnλ)s

s!
e−rnλ +

∞∑

l=x

(
l

x

)
pxn(1− pn)l−x

(rnλ)l

l!
e−rnλ. (5.51)

The Pareto frontier for the case of Poisson games can be calculated as

p2 =





m1p1 +
1+Kmax2

r2λ+Kmax2−1 0 ≤ p1 ≤ 1+K̄max
λ+K̄max

m2

(
p1 −

1+Kmax1
r1λ+Kmax1−1

)
1+K̄max
λ+K̄max

≤ p1 ≤
1+Kmax1

r1λ+Kmax1−1 ,

(5.52)

where m1 and m2 are calculated as

m1 =

(
1+K̄max
λ+K̄max

− 1+Kmax2
r2λ+Kmax2−1

) (
λ+ K̄max

)

1 + K̄max
,

m2 = − 1 + K̄max
(
λ+ K̄max

) ( 1+Kmax1
r1λ+Kmax1−1 −

1+K̄max
λ+K̄max

) ,
(5.53)

following the same technique used in deriving eqs. (5.48) and (5.49). The Pareto

Frontier for the Poisson game with two types of players is shown in Figure 5.17. The

solid line represents the utility obtained by using eq. (5.52) to calculate the mixed

strategies in eq. (5.50). Consequently, the necessary condition for the system to be

in equilibrium is

U
(1)
OFF = U

(1)
ON (p1, p2) = 0

U
(2)
OFF = U

(2)
ON (p1, p2) = 0

, (5.54)
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Figure 5.17: Pareto Frontier (λ = 30, r1 = 0.3, Kmax1 = 8, Kmax2 = 5).

and the penalization factor α and β can be obtained using

α =
P

(1)
nc (p1, p2)

1− P (1)
nc (p1, p2)

and β =
P

(2)
nc (p1, p2)

1− P (2)
nc (p1, p2)

. (5.55)

Here p1 and p2 are obtained from the Pareto frontier using eq. (5.52).

5.5 Game Model with Primary User Activity

In this section we consider the existence of a single PU transmitting within the same

channel as the SUs. We assume that the PU transmits in a slot by slot basis with

probability PT , and that the slots are synchronized between the PU and the SUs. In

this sense, we consider a PU transmitting to be in an ON state. Let N̄ON be the

average number of consecutive slots in which the PU is in an ON state, and let us

observe the PU over ν >> N̄ON sequential time slots. Then, on average, there will
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Figure 5.18: Primary User Activity

be νPT ON states, and the average number of transitions from the OFF to ON state

is therefore

η
OFF→ON ≈

νPT
N̄ON

. (5.56)

We assume that all SUs have perfect detection of the PU activity; when the PU is

transmitting, all SUs remain silent. Let PSU,T be the probability that there is a

transmission from one or more SUs when the state of the PU is turned ON for the

first time after being in an OFF state, creating a collision with the PU. The average

number of collisions N̄col is given by

N̄col = PSU,T · ηOFF→ON =
νPTPSU,T

N̄ON
. (5.57)

Consequently, the average probability of collision between SUs and the PU is

Pcol,PU =
N̄col
νPT

=
PSU,T

N̄ON
. (5.58)

For the game with full information, the probability PSU,T represents the probability

of having at least one SU transmitting at the same time as the PU. This can be

calculated as follows

PSU,T (p) = 1− (1− p)N . (5.59)

As an example of eq. (5.59), let us assume that the transmissions from a single

PU operate in a channel inversion with cut-off mode [137]. The transmissions follow
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a Gilbert-Elliot (GE) model (particularly one which imposes a correlation ρ in the

time domain) [138] [139] where the “GOOD” state occurs with probability PT and

the “BAD” state occurs with probability 1 − PT . In this case, the probability of

transmission PT is directly related to the fading channel as

PT =

∞∫

γ0

pγ(γ)dγ, (5.60)

where γ0 is an energy threshold above which a transmission is possible and pγ(γ)

is the fading distribution of the channel. Within this context, we consider that the

PU will transmit in a slot only within a “GOOD” state and otherwise remain silent.

As seen in Figure 5.18, we can model the dynamic traffic from the PU with r and q

defined as follows [139]:

q = PT (1− ρ),

r = (1− PT )(1− ρ),
(5.61)

where 0 ≤ ρ ≤ 1 is the correlation coefficient. The average duration of the PU in the

ON state N̄ON can be calculated as

N̄ON =
∞∑

i=1

i(1− r)i−1r =
1

r
=

1

(1− PT )(1− ρ)
. (5.62)

Let PThcol be a pre-established tolerance threshold defined as the maximum average

probability of collision Pcol,PU the PU would be able to tolerate. It follows from

equation (5.58) that

PSU,T (p) ≤ N̄ONP
Th
col . (5.63)

Note that for PThcol ≥ 1/N̄ON , any value of p satisfies eq. (5.63). This means that

the SUs can transmit with any probability, and simply stop transmitting when they

detect the presence of a transmitting PU. When PThcol < 1/N̄ON , there is a value p∗

such that

PSU,T (p∗) = N̄ONP
Th
col , (5.64)
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Figure 5.19: Restriction frontier approximation for N1 = 25, N2 = 20.

which can be rewritten as

p∗(N) = 1−
(

1− N̄ONPThcol
) 1
N . (5.65)

If p∗ ≥ Kmax+1
Kmax+N in eq. (5.28), the impact to the PU can once again be ignored.

However, if p∗ < Kmax+1
Kmax+N , a different value of Popt must be used in order to calculate

the penalty α in eq. (5.30). Consequently, Popt in eq. (5.28) will be given as

Popt = min

(
p∗(N),

Kmax + 1

Kmax +N

)
. (5.66)

Considering the example, one can note that for a fixed tolerance PThcol , the SUs can

transmit using the optimal strategy without significantly affecting the PU if it has

very poor channel conditions and/or the channel is uncorrelated. By extending this

analysis to the case of two types of players, the analogous effect of eq. (5.66) is

to create a restriction frontier under which the SUs can calculate their penalization



Chapter 5: Multiple Access Games for Cognitive Radio Networks 160

factor α and β using equation (5.55). Such a frontier can be obtained by rewriting

eq. (5.59) as

PSU,T (p1, p2) = 1− (1− p1)N1(1− p2)N2 ≤ N̄ONP
Th
col , (5.67)

and noting that the maximum PSU,T for each type of player that satisfies eq. (5.67)

occurs when either all type 1 SUs transmit with probability p∗1(N1) and none of

the type 2 SUs transmit (i.e., P
(1)
SU,T

(
p∗1(N1), 0

)
), or all type 2 SUs transmit with

probability p∗2(N2) and none of the type 1 SUs transmit (i.e., P
(2)
SU,T

(
0, p∗2(N2)

)
).

Therefore, an accurate approximation of the restriction frontier can be formed by

connecting the two points with a straight line, as shown in Figure 5.19. It can be

seen that the quality of such an approximation is very good for the selected values

of parameters. We omit a detailed analysis due to lack of space. Finally, in order to

calculate p∗ for a Poisson game with the average number of SUs denoted as λ, we

have to average eq. (5.65) over the Poisson distribution analogously with eq. (5.38)

as

p∗(λ) =
∞∑

k=0

p∗(k)
λke−λ

k!

=
∞∑

k=0

{
1−

(
1− N̄ONPThcol

) 1
k

}
λke−λ

k!
.

(5.68)

Here p∗(k) can be expanded in terms of a Taylor series with respect to the number

of players k around the average value λ to produce

p∗(k) = e
ln(1−N̄ONP

Th
col )

λ − e
ln(1−γ)

λ
ln(1− N̄ONPThcol )(k − λ)

λ2

+O
{

(k − λ)2
}
.

(5.69)
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By taking the first two terms of eq. (5.69), we can approximate the solution of eq.

(5.68) for large λ (as assumed throughout this chapter) as

p∗(λ) ≈ 1−
λeλ − λ− ln

(
1− N̄ONPThcol

)

λe
λ−ln

(
1−N̄ONPThcol

) . (5.70)

Therefore Popt in eq. (5.39) can be obtained simply by

Popt = min

(
p∗(λ),

Kmax + 1

Kmax + λ− 1

)
. (5.71)

Analogously, for the case of two types of players, eq. (5.67) becomes

PSU,T (p1, p2) =
∞∑

i=0

∞∑

j=0

{
1− (1− p1)i(1− p2)j

}
×

eλ
(r1λ)i

i!

(r2λ)j

j!
≤ N̄ONP

Th
col .

(5.72)

The restriction frontier can therefore be formed, simply by connecting the two points

corresponding to

P
(1)
SU,T (p∗1(r1λ), 0) and P

(2)
SU,T (0, p∗2(r2λ)) .

In Figures 5.20 and 5.21, the influence of the PU activity on the strategy choice by SUs

in the case of two types of players is shown for different values of Kmax. We present

three different scenarios. In Figures 5.20(a) and 5.21(a), the restriction frontier is

below the Pareto frontier. This means that the SUs must limit their transmission

probabilities within the boundaries of the shown area in order to avoid significantly

affecting the PU. However, in Figures 5.20(b) and 5.21(b), the Pareto frontier below

the restriction frontier. Here, the SUs can choose their strategies based on the Pareto

frontier already calculated with the guarantee that the PU’s performance will remain

unaltered and at the same time, obtain a maximum throughput. In Figures 5.20(c)-

(d) and 5.21(c)-(d), we show the case of an intersection between the Pareto frontier

and the restriction frontier. Here, the SUs can use any transmission strategy within
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Figure 5.20: Restriction Frontier and Pareto Frontier for two types of players with
full information (N1 = 25, N2 = 20, γ = 0.9).

the area shown in order to minimize the effect on the PU to a minimum. However,

it is always better to choose strategies which lie on the Pareto frontier boundaries as

opposed to the restriction frontier boundaries in order to obtain a better throughput

for all players.
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Figure 5.21: Restriction Frontier and Pareto Frontier for Poisson games
(λ = 25, γ = 0.9).

5.6 Conclusion

In this chapter, we provided a comprehensive overview of game theory and its appli-

cation to research on cognitive radio networks. The concept of noncooperative game

was explained along with the Nash equilibrium for mixed and pure strategies. We

explained the notion of Pareto optimality as a criteria for equilibrium selection when

more than one Nash equilibrium are present in a game. Finally, we reviewed the well

known Prisoners’ Dilemma problem and we used to analogously model the multiple

access problem in the IEEE 802.11 DCF standard. Also, in this chapter we present

a game-theoretic perspective on the SUs multiple access problem in cognitive radio

networks. We have showed how to design a game with a fixed number of homogeneous

SUs with penalization. The Nash equilibrium from such a game results in an optimal

throughput of the network per SU. Corresponding analytical expressions have been
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obtained for the SU nodes with MPR properties. Furthermore, we have extended

these results to be incorporated into a game with a random number of players (SUs).

The Poisson games allow us to account for a dynamically changing number of ac-

tive SUs. An optimal probability of transmission for the SUs (a mixed strategy) is

calculated in order to achieve the Pareto optimality in the system. This was proven

to achieve a better performance for a small number of users than other well known

approaches, such as the DCF. We extended the game-theoretic analysis to the case

of two different types of SUs with different QoS requirements. We showed that the

Pareto frontier can be accurately approximated by means of connecting a piece-wise

function based on the optimal probability of transmission obtained from each type of

player in isolation. Finally, we considered the impact of the dynamic activity of the

PU on the optimal strategy for the SUs. We showed that the optimal probabilities of

transmission for the SUs are influenced by the PU pattern only under certain condi-

tions. More specifically, we derived the conditions for the Pareto frontier under which

the SUs’ activities are limited by either the equilibrium strategy in games without

a PU, by constrains on the SINR of a PU, or by both in a piece-wise manner. In

particular, we showed that if the PU has low intermittency in the transmitting inter-

vals, its effect on the SU strategy can be neglected. However, for PUs with relatively

bursty activities, the strategy of SUs is limited by the SINR requirements at the PU.
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Chapter 6

Thesis Summary and Future Work

In this thesis, we explored a number of topics surrounding spectrum sensing and spec-

trum sharing for Cognitive Radio networks. The available electromagnetic spectrum

useful for wireless communication devices is of limited physical extent. Cognitive

Radio (CR) has been raised as a feasible solution to the spectrum underutilization

problem by dynamically accessing to the channel. A CR is an intelligent entity that

is aware of its surroundings and adapts its transmission parameters accordingly. In

this way, the performance of the of wireless transmissions can be optimized, and

the utilization of the frequency spectrum can be enhanced. The major functionali-

ties of a CR device include spectrum sensing, spectrum management, and spectrum

mobility. Through spectrum sensing, information on the target radio spectrum is

obtained. Different spectrum sensing techniques have been developed, e.g., energy

detection, matched filter detection, and cyclostationary detection among others This

information is then used by the spectrum-management function to determine spec-

trum opportunities and make decisions on spectrum access. If the status of the target

spectrum changes, the spectrum mobility function can change the operational param-

eters.

6.1 Thesis Summary

In Chapter 1, a thorough review of the concept, applications and challenges of CR

networks was provided. It was discussed that the major factor that leads to an in-

efficient use of radio spectrum is the spectrum licensing scheme itself. Two kinds of

users were defined, Primary Users (PUs) who are licensed to use the radio spectrum

allocated to them, and Secondary Users (SUs), who are not licensed. To improve the
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efficiency and utilization of the available spectrum, new spectrum licensing models

have been introduced. The idea is to make spectrum access more flexible by allowing

SUs to access the radio spectrum under certain conditions. Two major approaches

for spectrum sharing in CR networks were introduced: spectrum overlay approach

and spectrum underlay approach. In the spectrum underlay approach, power control

is important for SUs not only for maximizing the transmission rate but for main-

taining the interference below target levels so that the PUs are not harmed. For

this purpose, the concept of interference temperature was introduced as a new metric

on interference assessment. In the spectrum overlay approach, based on the shared

user model, Medium Access Control (MAC) is important to SUs for detecting and

accessing spectrum opportunities. Several classic transmitter detection techniques

for spectrum sensing and analysis were described, along with a few new techniques.

We explained the need for dynamic spectrum allocation and sharing methods in CR

networks once the spectrum holes or spectrum opportunities are found.

In Chapter 2, a multi-antenna based spectrum sensing in CR networks is stud-

ied using the well known Generalized Likelihood Ratio Test (GLRT) approach and

the Neyman-Pearson (NP) criteria. Depending on the information about the PU sig-

nal, different GLRT approaches can be used. If neither the signal covariance matrix

Rs nor the noise variance σ2 are known, the easiest and less complex option is to use

the energy detector. Nevertheless, if we are willing to increase the complexity of the

detector by trying to estimate the unknown parameters, we can significantly increase

the performance of the energy detector using the arithmetic to geometric detector.

On the other hand, if we assume that the noise power σ2 is known, but Rs is un-

known, the optimal approach in the GLRT criteria is given by the signal-subspace

eigenvalues method which attempts to estimate the covariance matrix σ2. Finally,

if both parameters are known, the optimal detection in the GLRT sense is to apply

the estimator-correlator detector. In Chapter 2, we also showed that cyclostationary

spectrum sensing as well as collaborative spectrum sensing in CR networks can be

interpreted as a special case of the concept of optimum or sub-optimum incoherent

diversity combining approach (SIMO radar). The number of virtual branches is equal

to the product of the number of cyclic frequencies and the time delays. The concrete
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detection algorithms using the NP test lead to the SIMO radar algorithms, and their

performance was analyzed for the case of the Generalized Gaussian channel fading

models. Finally, the idea of self-organization of coupled dynamical systems was pre-

sented as a decentralized synchronization approach that is able to detect the presence

of a PU (acting as an external agent). One significant advantage of the method is its

ability to be implemented with analog circuitry without any need of analog to digital

converters and extensive digital signal processing. This approach is also very useful

in addressing the hidden terminal problem in CR networks.

Chapter 4 presents a novel analysis that allows us to take into account the in-

fluence of both spatial and temporal correlation in CR receivers equipped with more

than one antenna. An approximate expression for the probability of miss detection

as a function of the number of antennas, scattering parameters, and number of ob-

servations is obtained. Using this expression, we are able to assess the impact that

scattering has on the detection performance of the PUs. We shown that in low Signal-

to-Noise Ratio (SNR) scenarios, it is more convenient to include only one antenna

and consider many time samples. This allows for a better noise suppression. In the

high SNR regime, it is more appropriate to have more receiving antennas to mitigate

the fading due to the high noise immunity.

In Chapter 3, we introduced the sequential analysis or Wald’s Sequential Prob-

ability Ratio Test (SPRT) detection method for PU detection in CR networks. We

show that SPRT can result in a savings of nearly fifty percent of the average number

of observations (in comparison to the NP test) needed to detect the presence of the

PU. We also show that non-coherent detection requires almost twice as many samples

as a coherent detection approach. We derived an optimal fusion rule with detectors

using sequential analysis and showed that in order to achieve a faster decision, the

Fusion Center (FC) does not consider the information of sensors that have not made

a decision at some point. Subsequently, we presented a novel procedure to obtain

any order cumulant of the probability density function (PDF) of the average sample

distribution in sequential analysis. Using this procedure, we present a new approach

to the dual SPRT scheme. We showed that SU sensors can save energy if we optimize

the instance when the FC gathers their local decisions and then performs itself the
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SPRT algorithm.

Chapter 5 reviews several important Game Theory (GT) concepts and links

their application to wireless communications systems by means of some practical

examples. Specifically, the topics of non-cooperative games and Nash equilibrium

were covered in great detail. Using GT concepts, we showed that, especially in multi-

channel environments, channel selection/allocation to avoid congestion among SUs

can be formulated as a non-cooperative game. We presented a GT model of the

Distributed Coordination Function (DCF) in the IEEE 802.11 standard and addressed

the MAC problem from a different perspective in such networks. This Chapter also

presents a game theoretic treatment to the MAC problem in CR networks. We

proposed a game which penalizes failed transmission attempts by the SUs. We showed

that the Nash equilibrium achieved by this game results in an optimal throughput

of the network per SU. A very novel result and model was obtained by introducing

population uncertainty into the game, i.e., a random number of players. To the best

of our knowledge, this analysis has not been considered in any previous literature.

We also considered two types of SUs or players in this game, and their optimal

probabilities of transmission are calculated in order to achieve the Pareto optimality

of the system. Finally, we examine the impact of the dynamic activity of the PU on

the SUs’ optimal strategies. We derived useful conditions for the Pareto frontier under

analysis such that the SU transmissions are limited by either the equilibrium strategy

in games with no PU or by constrains on the SINR (or interference temperature) of

a PU.

6.2 Future Work

The work in this thesis investigates some of the major aspects and challenges involved

in CR networks; however, we have just scratched the surface concerning this new

communication paradigm. Here we present a few possible future directions that could

be taken to extend this important topic even farther.
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6.2.1 Coalitional Game for Spectrum Sensing

As presented in Chapters 2 and 3, cooperative spectrum sensing can lead to more

accurate decisions by SUs than independent sensing, especially when the signal from

a PU presents fading or shadowing. The FC processes the individual results and

achieves a final decision. However, the performance of the spectrum sensing method

can be improved if cooperation among SUs is allowed. The SUs form coalitions

(i.e., groups) and share individual sensing results. With more information from the

coalition, the decisions on spectrum sensing can be made more accurate.

6.2.2 Power Allocation as a Non-Cooperative Game

In underlay DSA, SUs and PUs can access the same spectrum simultaneously. In this

case, the interference to the PU can be limited by controlling the transmit power of

the SUs. This is similar to the concept of the CDMA cellular system. Power/control

allocation is crucial in order for the SUs to achieve the best performance, while inter-

ference to the PU is maintained below a target level. Power allocation by SUs becomes

more challenging when the SUs are non-cooperative. All SUs need equilibrium strate-

gies (i.e., transmission power) to ensure not only that none of them deviates from the

equilibrium, but also that the interference requirement is not violated. This problem

of power allocation can be formulated as a non-cooperative game.

6.2.3 Spectrum Leasing and Cooperation

In CR networks, the PU needs an incentive to share the spectrum with SUs. This

incentive could be done through pricing. Alternatively, SUs can help the PU transmit

data so that the PU’s transmission rate and reliability are improved. For instance, we

can consider the incentive in which the cooperative diversity technique (e.g., decode-

and-forward) is used so that SUs can relay the transmitted data of the PU. In return,

the PU could allow the SUs to access the spectrum. This approach could save a great

deal of spectrum sensing processing on the SU side since they already know when the

PU will cease or start transmitting. This exchange of resources can be formulated as

a hierarchical game.
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6.2.4 Radio Resource Competition Based on Stochastic

Learning Games

In order to obtain spectrum access, a SU can bid competitively for the spectrum from

a central spectrum moderator (i.e., a spectrum broker) as explained in Chapter 2. To

bid for the spectrum, not only the channel state but also the local state (e.g., buffer

occupancy) of the SU will impact the strategy selection. In a dynamic environment,

a stochastic game model can be formulated to obtain a competitive strategy for

spectrum bidding. Additionally, if information about the other SUs is not publicly

available, each user has to learn and adapt its strategy dynamically to achieve the

highest reward, or equivalently, the lowest cost.
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Appendix A

Collaborative Spectrum Sensing with

Censoring

It is understood that spectrum sensing is based on the cyclostationary properties of

the signals from the PU and that the SUs are spatially distributed within a certain

area. All the SUs can sense the whole frequency band of interest or each SU may

sense just a partial band. Hereafter it will be assumed that all SU are sensing the

same frequency band. In both cases of spectrum monitoring, the SUs must share the

sensing information between them or it can be coordinated by a Fusion Centre (FC).

It seems reasonable that, no matter what kind of exchange information is used, the

local decision information must be obtained by a minimum set of observations M

in eq. (2.29) having N and P fixed1. In other words, the time of analysis must be

reduced as much as possible; it is then opportunistic to apply the sequential analysis

of A. Wald [29] where the ML test, in contrary to NPT, must be compared with two

thresholds related to the requirements of Pfa and Pmd. Let us suppose that for the

latter, highly reliable final results for the test are predefined, so Pfa and Pmd must be

rather low. Each SU will obtain those reliable final results at different time instants.

This information must be sent to other fellow SUs or to a FC in a binary way. Let

us consider, several rather general but different scenarios of collaborative spectrum

sensing:

• Each of the n-th (n = 1 . . . K) SUs sends, after time T , the information (not

1. The asymptotic conditions for M(T ) are assumed to be valid here in order to preserve
the uncorrelated conditions for F -coefficients.



Appendix A: Collaborative Spectrum Sensing with Censoring 188

binary) of ξn to the system. The quadratic combining at the FC is then

Ξ =
K∑

n=1

ξ2
n. (A.1)

Ξ can then be analyzed by the NPT, assuming that the channel from the SUs

and the FC is error free. Hence, after the final addition, the result of the

quadratic diversity combining of KQ virtual branches (or of K SU) is analyzed,

assuming statistically independent fading along all summations (see eqs. (2.36)

and (2.37)). This scenario can be called a distributed optimum incoherent

SIMO passive radar, and its characteristics are equal to eqs. (2.42) and (2.43)

with the number of virtual branches equal to KQ.

• Each of the n-th SUs makes an individual decision regarding the presence of

the PU and then sends the binary decision to the FC through an error free

channel. Assuming that all those decisions are statistically independent, the

final result at the FC can be obtained according to the majority rule with the

majority not-weighted (or weighted) diversity addition method. This scenario

can be also called SIMO radar but contrary to the first one, it is non-optimum.

If the majority principle is applied at the FC, then the decision is made by analysis

of the partial decisions at each SU (here the SU acts as a virtual diversity branch),

and the decision which takes place at the majority of the branches is favoured. This

method is called majority diversity combining [30] . If partial solutions are binary

and the number of virtual branches is odd, there cannot be any confusion in the final

decisions. Let K = 2q− 1 and P0 denote the event of the existence of the PU after q

tests on the branches. If after m − 1 probes on the virtual branches, one gets q − 1

results of the existence of the PU and the m-th probe gives the same, then for the q

test one gets the probability of this event as

Prob(P0) =

(
m− 1

q − 1

)
P
q
1 (1− P1)m−q m ≥ q, (A.2)

where P1 can be Pfa or Pmd. Prob(P0) is therefore a final probability of false alarm

or miss detection [11, 50], depending on which hypothesis is considered. From the
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theory of diversity combining, it is also known that majority addition is equivalent

to the optimal incoherent addition with the number of branches (here virtual ones)

q, i.e., to incoherent (quadratic) addition with almost half as many branches. By

comparing the characteristics of majority addition with those of the optimum SIMO

radar, one can see several limitation of the former:

• Optimum SIMO radar with incoherent addition actually operates with almost

twice as many virtual branches and therefore provides significantly better de-

tection characteristics (ROC’s).

• The majority addition operates successfully only with odd number of virtual

branches, while optimum SIMO radar operates with any number of branches.

The price one has to pay for the advantages of the optimum SIMO radar is a more

complex data transmission scheme: in the majority addition, simply binary results are

transmitted, whereas for SIMO radar the information of the ξ value for each SU must

be transmitted to FC through error free channels. In order for the noise immunity

properties of the majority addition to approach those of the optimum incoherent

addition, some modifications of the former have been proposed. The so-called weighted

majority addition is proposed in [140]. In this method, the channel gains for each

partial solution are introduced as weights in the majority addition algorithm. In this

way the channel gains for the diversity branches work as weighting coefficients in the

process of majority selection. It was shown that this suboptimal method provides very

close results to those of the optimum incoherent addition [140] if the communication

scenario allows taking advantages of channel gains. It is not the case for one of the

scenarios at the FC: the results of detection at the SU were obtained through the

optimum quadratic addition by the SU itself, and the resulting fading at the SU

has a very low variance when Q is rather large (a hardening effect) [52]. Therefore,

it is difficult to improve the results of majority addition by introducing weighting

coefficients, as all the weights might be practically equal. However it is known that

if the channels are sufficiently heterogeneous, the hardening effect does not appear,

or it appears very slowly when Q → ∞ at the SU. Let us consider another extreme

special case. Let us assume that the fading at the SUs are so heterogeneous that

almost no quadrature addition algorithms work as the diversity combining algorithm,
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and each SU has Q ≈ 1 (single reception) with an m-distributed fading2 (generally

heterogenous). With this assumption, one can see that the problem is covered to the

case of SIMO radar: the SUs send the binary information of their weights in order to

provide the FC with weighted addition. Let us formulate here an assumption: if the

final decisions are taken at the FC by applying the technique of weighted addition of

partial decisions, then the SUs must transmit to the FC not only the information of

partial decisions, but information of their reliability as well. The whole system (PU,

SU, and FC) works as a distributed quasi-optimum SIMO radar. In the previous

scenario, the decision of the PU existence in the majority of branches can be obtained

by the algorithm:
K∑

j=q+1

µj

∣∣∣∣∣∣H0

>

q∑

j=1

µj

∣∣∣∣∣∣H1

, (A.3)

where
{
µj
}K

1 are magnitudes of the channel gains. From Bayes theorem, each of the

summands in eq. (A.3) have the following PDFs:

W (µj |H0) =
W (µj)Pfa

∣∣
µj

Pfa
,

W (µj |H1) =
W (µj)Pmd

∣∣
µj

Pmd
.

(A.4)

Let us assume that [56]

W (µj) =
2m

mj
j µ

2mj−1

j

Γ(mj)(z
−2
i )mj

exp

(
−mj

µ2
j

z−2
i

)
, (A.5)

where mj and the corresponding parameters for the four-parametric distribution are

related by mj ≥ 1
2 . Then introducing the new variable

xj = µj

√
mj + γ2

2

mj
, (A.6)

2. In relation to the fading model assumed here for simplicity, see eq. (2.28) for the
definition of the parameter m through the parameters of the Generalized Gaussian model.
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we obtain

W
(
xj ;H0

)
=

2m
mj
j x

2mj−1

j

Γ(mj)(z
−2
i )mj

exp

(
−mj

x2
j

(z−2
i )mj

)
,

W
(
xj ;H1

)
=

2m
mj
j x

2mj−1

j

Γ(mj)
(
γ2

2mj
z−2
i

)mj exp


−mj

x2
j(

γ2

2mj
z−2
i

)mj


 ,

(A.7)

for Pfa << 1 and Pmd < 1. It is clear from eq. (A.7) thatW
(
xj ;H0

)
andW

(
xj ;H1

)

have the Nakagami PDF form. Recalling eq. (A.3) and introducing the following

variables

ζq =

q∑

j=1

xj

∣∣∣∣∣∣H0

,

ηQ−q−1 =

Q∑

j=q+1

xj

∣∣∣∣∣∣H1

,

(A.8)

one can formally calculate the error probability in eq. (A.3). In the general case of

the heterogenous scenarios according to [141] it is possible to find distributions of ζq

and ηQ−q−1 in a Nakagami PDF form after rather complicated calculation. In the

most straightforward manner, following equations (77)-(89) in [56], it is possible to

provide the error analysis for the following special case when

z−2
1

m1
=
z−2
2

m2
= · · · = z−2

n

mn
,

with n denoting the number of Nakagami variables at eq. (A.8). Thus, the sums in eq.

(A.8) will have an equivalent Nakagami parameters m̂ ∼= mn and ẑ−2 ∼= nz−2. Notice

that for the general case, the calculus of m̂ and ẑ−2 can be done mainly numerically.

From eq. (A.3) it is possible to get the conditional error probability (with q fixed):

P (q) =
qm̂(K−q)Γ(m̂K)

Γ(m̂(K − q) + 1)Γ(m̂K)
[
γ2(K−q)

2m̂

]m̂(K−q) . (A.9)
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Figure A.1: Probability of miss detection for the WMA. Eqs. (2.43) and (2.48) are
shown with a solid line whereas eq. (A.10) is shown in a dotted line.

Figure A.2: Probability of miss detection for WMA with different parameters values.

The number of virtual branches q with errors, both for Pmd and Pfa is a random

variable with Bernoulli PDF when the virtual branches have statistically independent
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Figure A.3: Probability of miss detection for WMA with different parameters values.

fading [140]. It follows that

Perror =
K−1∑

q=1

PK(q)P (q) + PK(K), (A.10)

where PK(q) =
( q
K

)
P
q
1 (1 − P1)K−q and P1 stands for Pfa or Pmd from eqs. (2.42)

and (2.43) respectively, when Q = 1. Notice that at eqs. (2.42) and (2.43), the four

parameters must be modified from eq. (2.28) with the value of m̂ and ẑ−2 at γ−2.

Equation (A.10) is universal in the sense that the final Pmd and Pfa can be calculated

through it because the inequality in the eq. (A.3) type can be applied for calculus

of false alarm as well. The ROCs for the WMA is shown in Figures A.1-A.3. For

Pmd = 10−4, the energetic losses are less than 1.5-2 dB.

Finally, let us compare the technique majority addition with some of the ap-

proaches mentioned in [142]. The simple counting approach is simply selecting for

the FC decision only highly weighted SUs. This addition is less optimum than the ap-

proach in [140] because some of the SUs with small weights do not participate in the

decision making process at the FC. Two other methods Partial Agreement Counting

and Collision Detection, assume the existence of a feedback channel between SUs and

FC, which can be used for comparing partial decisions at the SU and final decisions at
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the FC in order to select the “true” final decision. The collision detection method is

not considered in the current analysis. Indeed, the application of the feedback channel

opens the possibility of improving the reliability of the final decision at the FC. Tak-

ing into account that weighted majority addition is practically optimum incoherent

addition, the final characteristics might be better than those obtained in [142].
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Appendix B

Performance Derivation of Data Fusion

Rule

Let us introduce the following notations

ai =





ln
1−PMD
PFA

if ui > 0

ln
1−PFA
PMD

= − ln
PMD

1−PFA if ui < 0
, (B.1)

and

ξi =





ai = ln
1−PMD
PFA

if ui > 0

bi = −ai = − ln
1−PFA
PMD

if ui < 0
. (B.2)

Consider a T (test statistic) given by eq. (3.60)

T = a0 +
K∑

k=1

akuk = a0 +
K∑

k=1

ξk|uk| = a0 +
K∑

k=1

ξk. (B.3)

Here ξk could be considered as a random variable with PDF

Pξ(x) = P+δ(x− a) + P−δx− b
= Pδ(x− a) + (1− P )δ(x− b),

(B.4)

where

a = ai = ln
1− PMD

PFA

b = −ai = − ln
1− PFA
PMD

. (B.5)
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and P+ is probability of u = +1 decision, equal to

P+ = p(H1)(1− PMD) + p(H0)PFA

= p(H1)(1− PMD) + [1− p(H1)]PFA

, (B.6)

The corresponding characteristic function of ξ is then given by

Θξ(s) = P+e
−sa + P−e−sb, (B.7)

and the characteristic function of T could be evaluated as

ΘT = ΘK
ξ e
−sa0 =

[
P+e

−sa + (1− P+)e−sb
]K

e−sa0

=
K∑

k=0

(
K

k

)
P k+(1− P+)K−ke−s[ka+(K−k)b+a0]

. (B.8)

Equivalently, the PDF is given by

PT (x) =
K∑

k=0

(
K

k

)
P k+(1− P+)K−kδ[x− (ka+ (K − k)b+ a0)]. (B.9)

If k = 0 then

ka+ (K − k)b− a0 = Kb+ a0

= −K ln
1− PFA
PMD

+ ln
P (H1)

1− P (H1)
. (B.10)

If P (H1) ≈ 1 such that

P (H1)

1− P (H1)
>

(
1− PFA
PMD

)K
, (B.11)

then the FC makes only H1 decisions i.e.

PMD = 0,

PFA = P (H0) = 1− p(H1).
(B.12)
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If (B.11) is not satisfied then there is kmax > 0 such that

kmaxa+ (K − kmax)b+ a0 < 0, (B.13)

and

(kmax + 1)a+ (K − kmax − 1)b+ a0 > 0. (B.14)

In this case the scheme suggested in [70] is equivalent to (kmax + 1) out of K scheme

(this is assuming that are statistically equivalent). Let H1 be true. Then the target

is missed if there are no more than kmax positive decisions, or, equivalently, no less

than K − kmax negative decisions. The probability of miss detection at FC is then

given by

PMDF
=

kmax∑

k=0

(
K

k

)
P kMD(1− PMD)K−k. (B.15)

To more decisions H1 there should be at least kmax + 1 partial 1. If H0 is true, the

probability of false alarm at the fusion center is then:

H1 :PMDF
=

kmax∑

k=0

(
K

k

)
(1− PMD)kPK−kMD

H0 :PFAF =
K∑

k=kmax

(
K

k

)
(PFA)k(1− PFA)K−k

. (B.16)
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