4 research outputs found

    Orthogonal Pseudo-Random Sequence Enabled Cognitive and Emergency Communications

    Get PDF
    With the ever-increasing demands for the broadband mobile communications, it is becoming more and more difficult to accommodate all existing and emerging wireless services and applications due to the limited communication resources particularly radio spectrum. In addition, system parameters of wireless communications often need to be adapted due to the variation of channel characteristics and user demands. Cognitive communication is emerged as an effective technique, particularly to improve the utilization rate of limited communication resources adaptively according to the change in its operating conditions and requirements. To handle these challenges efficiently and reliably in cognitive radio scenario, cyclic prefix (CP) of the OFDM system is precoded in this thesis using pseudo-random sequence. This signaling link can effectively carry transmission parameters and system adaptation information. In first part of the thesis, mutual interference minimization and transmission power adaptation enabled by the additional signaling link are also investigated. In order to make use of this precoded cyclic prefix (PCP) signaling link, an efficient demodulation scheme is needed to reduce the implementation complexity. Therefore, a low complexity signaling demodulator along with a multipath combining technique to further improve the performance in real communication scenario like in multipath channel is proposed in the thesis. The final aspect of this thesis is the investigation of a robust communication system using digital television (DTV) transmitter identification watermark signal which is also a modulated pseudo-random sequence. The previous study on PCP signaling is thus extended to an emergency communication system using DTV watermark. It is found that watermark based communication system is more robust than the DTV broadcasting and can reach a much wider coverage with significantly increased network reliability, which is suitable for national emergency situations

    Location-Aware Cross-Layer Design Using Overlay Watermarks

    Get PDF
    A new orthogonal frequency division multiplexing (OFDM) system embedded with overlay watermarks for location-aware cross-layer design is proposed in this paper. One major advantage of the proposed system is the multiple functionalities the overlay watermark provides, which includes a cross-layer signaling interface, a transceiver identification for position-aware routing, as well as its basic role as a training sequence for channel estimation. Wireless terminals are typically battery powered and have limited wireless communication bandwidth. Therefore, efficient collaborative signal processing algorithms that consume less energy for computation and less bandwidth for communication are needed. Transceiver aware of its location can also improve the routing efficiency by selective flooding or selective forwarding data only in the desired direction, since in most cases the location of a wireless host is unknown. In the proposed OFDM system, location information of a mobile for efficient routing can be easily derived when a unique watermark is associated with each individual transceiver. In addition, cross-layer signaling and other interlayer interactive information can be exchanged with a new data pipe created by modulating the overlay watermarks. We also study the channel estimation and watermark removal techniques at the physical layer for the proposed overlay OFDM. Our channel estimator iteratively estimates the channel impulse response and the combined signal vector from the overlay OFDM signal. Cross-layer design that leads to low-power consumption and more efficient routing is investigated

    Investigations of Dempster-Shafer theory in the context of WLAN-based indoor localization

    Get PDF
    Accurate user's locations and real-time location estimations in indoor environments, are important parameters to achieve reliable Location Based Services (LBSs). Non-Bayesian frameworks are gaining more and more interest in order to improve the location accuracy indoors when WLAN positioning is used. The main objective of this thesis is to study the feasibility of Dempster Shafer non-Bayesian combining in the context of received signal strength (RSS)-based indoor WLAN localization. The motivation of our work has been to look for new approaches in order to try to deal better with the incomplete or erroneous data measurements used in the training phase of any WLAN positioning algorithm. State-of-art studies show that the accuracy of mobile position estimation by WLAN localization algorithms with the Bayesian framework is not satisfactory. Thus, it makes sense to try to investigate non-Bayesian approaches and to see their usefulness in the context of WLAN localization. First, a comprehensive analysis of various DST combining rules with RSS-based positioning methods has been performed. Then, the idea has been implemented via MATLAB simulator and the outputs were compared to the Bayesian approaches. The comparison is in terms of root mean square errors, correct floor detection probabilities and error radius and we used real-field data measurements as test data. Typically, the current published research work based on non-Bayesian frameworks in the context of wireless localization is limited to fingerprinting methods. Both the fingerprinting and the path-loss model using the DST frameworks are carried out in this thesis. The thesis results contain two parts. The first one examines the fingerprinting with various DST combination while the other one deals with the path-loss and DST combination. The positioning accuracy estimated by Bayesian framework is compared to the DST and a high correlation between these two has been observed. As expected, the Bayesian framework results are slightly less accurate (on average) than the DST, because the DST fuse RSS from multiple access points with different beliefs or underlying uncertainty and allows the uncertainty to be a model parameter

    Interface air pour systèmes de navigation en bande S : étude détaillée des signaux OFDM

    Get PDF
    Positioning in urban or indoor environment is a hot topic, either due to regulations such as the E911 requiring US mobile telecommunication operators to be able to locate their subscribers in case of emergency, or due to the market development, with the extension of location - based services targeting the mass market concentrated in metropolitan areas. In urban or indoor areas, it is generally recognized that satellite - based positioning systems are not suitable (alone) to provide a continuous, reliable and accurate position to the user. Therefore, alternative positioning techniques may be useful to complement or replace satellite positioning in these environments. This PhD study ha s studied the possibility of using a mobile TV system based on the DVB - SH standard as system of opportunity for positioning. The advantage s of using a DVB - SH system for positioning are multiple. First, such system has a good availability in metropolitan areas, including indoor. Secondly, the emitters are synchronized and their density should be sufficient to track signals from several emitters simultaneously. This opens the possibility of using timing measurements from several emitters to find a position by trilateration . Also, the large bandwidth of the TV signal, required for the transmission of video content, should be beneficial for the accuracy of the timing measurements and for the robustness against multipath . Therefore, DVB - SH system seems to be an interesting candidate as system of opportunity for positioning. However, several challenges are to be solved for such a solution to be relevant. First, the signals propagate in the urban environment, which creates challenging conditions for positioning su ch as strong power fading, blockage of the desired line - of - sight signal or large echoes. Secondly, the DVB - SH standard uses an OFDM modulation, which has not been studied for positioning purpose. Therefore, techniques for fine tracking of the first receive d signal replica will have to be developed. Finally, a particularity of modern broadcast system is the use of a Single Frequency Network, in which all emitters send the same signal on the same carrier frequency. Therefore emitter identification in a Single Frequency will be another issue to be solved. This PhD study has proved the feasibility of positioning using DVB - SH signals. The main contributions of this work are the propositions of (1) an OFDM signal delay tracking method working in urban propagation channels, and (2) a modification to the network deployment permitting emitter identification and (3) a first assessment of the position accuracy using the proposed algorithms. These two methods have very low impact on the initial TV broadcasting service if the right set of signal parameters is chosen: no signal modification is required and the network deployment modification uses a feature already present in the DVB - SH standard. The positioning method was simulated using real urban propagation channel measurements. The obtained position has root mean square error of 4 0m. The main error contribution comes from tracking a non - line - of - sight signal. Further work would be required to deal with this issue, which would lower the position root mean square error to 7 m, which has been locally observed in the simulation for good tracking conditionsLe positionnement en environnement urbain est un domaine de recherche actif, de par la croissance des services grand public liées à la localisation, et à cause de réglementations émergentes liées aux situations d'urgence (E911). En environnement urbain ou à l'intérieur des bâtiments, il est communément admis que les systèmes de positionnement basés sur des satellites ne sont pas suffisants pour fournir une position précise, fiable et de manière continue. Des techniques de positionnement alternatives sont donc développées afin de remplacer ou compléter les systèmes de positionnement par satellite. Cette thèse étudie la possibilité de fournir un service de positionnement utilisant un futur système de diffusion de télévison vers les mobiles basé sur le standard DVB-SH. Le principal attrait de ce système pour du positionnement est sa bonne couverture en milieu urbain, ainsi que l'utilisation d'un réseau d'émetteurs synchronisés. Il est donc possible d'employer des mesures de temps d'arrivée des signaux afin de réaliser une triangulation pour calculer la position d'un récepteur. Afin de fournir ce service innovant, des techniques spécifiques d'estimation de pseudo-distance et d'identification d'émetteurs ont été développées dans le cadre de cette thèse. Le principal résultat de cette étude est d'avoir montré la faisabilité du positionnement utilisant un système DVB-SH, ne nécessitant que de légères modifications du système qui n'apportent aucune dégradation auservice de diffusion TV. De premières simulations ont montré une précision de positionnement autour de 40m en utilisant des mesures réalistes de canal de propagation urbain
    corecore