
PARINAZ KASEB ZADEH
INVESTIGATIONS OF DEMPSTER-SHAFER THEORY IN
THE CONTEXT OF WLAN-BASED INDOOR LOCALIZA-
TION
Master of Science Thesis

Examiners:
Associate Professor Dr.Tech. Elena-Simona
Lohan
Dr. Tech. Alireza Razavi
Professor Dr. Tech. Mikko Valkama

Examiners and topic approved in the
Faculty of Computing and Electrical
Engineering Council meeting on 5th June
2013



I

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master's Degree Program in Information Technology
KASEB ZADEH, PARINAZ : Investigations of Dempster-Shafer theory in the

context of WLAN-based indoor localization

Master of Science Thesis, 66 pages
November 2013
Major: Communication Engineering
Examiner(s): Associate Professor, Dr. Tech. Elena- Simona Lohan
Dr. Tech. Alireza Razavi, Professor, Dr. Tech. Mikko Valkama
Keywords: LBS, RSS, WLANs, �ngerprinting, path-loss model, DST

Accurate user's locations and real-time location estimations in indoor environments,

are important parameters to achieve reliable Location Based Services (LBSs). Non-

Bayesian frameworks are gaining more and more interest in order to improve the

location accuracy indoors when WLAN positioning is used. The main objective of

this thesis is to study the feasibility of Dempster Shafer non-Bayesian combining in

the context of received signal strength (RSS)-based indoor WLAN localization.

The motivation of our work has been to look for new approaches in order to try to

deal better with the incomplete or erroneous data measurements used in the train-

ing phase of any WLAN positioning algorithm. State-of-art studies show that the

accuracy of mobile position estimation by WLAN localization algorithms with the

Bayesian framework is not satisfactory. Thus, it makes sense to try to investigate

non-Bayesian approaches and to see their usefulness in the context of WLAN lo-

calization. First, a comprehensive analysis of various DST combining rules with

RSS-based positioning methods has been performed. Then, the idea has been im-

plemented via MATLAB simulator and the outputs were compared to the Bayesian

approaches. The comparison is in terms of root mean square errors, correct �oor

detection probabilities and error radius and we used real-�eld data measurements

as test data. Typically, the current published research work based on non-Bayesian

frameworks in the context of wireless localization is limited to �ngerprinting meth-

ods. Both the �ngerprinting and the path-loss model using the DST frameworks are

carried out in this thesis.

The thesis results contain two parts. The �rst one examines the �ngerprinting

with various DST combination while the other one deals with the path-loss and

DST combination. The positioning accuracy estimated by Bayesian framework is

compared to the DST and a high correlation between these two has been observed.

As expected, the Bayesian framework results are slightly less accurate (on average)

than the DST, because the DST fuse RSS from multiple access points with di�erent

beliefs or underlying uncertainty and allows the uncertainty to be a model parameter.
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1. INTRODUCTION

1.1 Introduction and motivation

The mobile wireless systems and networks have been developed widely in the recent

years. Nowadays, a variety of Location Based Services (LBSs) exist on mobile

devices such as laptops or smart phones. Navigation, people and assets tracking,

location based security and coordination of emergency and maintenance responses

to accidents, interruptions of essential services, mapping the location of disaster

victims, location-based shopping, geotagging, o�ering remote health care services

and helping elderly people with dementia, etc. are the examples of many applications

which are based on the locations of these mobile devices. Accurate user's locations

and real-time locations are the parameters that give us reliable LBSs. Consequently,

there is a growing interest in developing e�ective positioning and tracking systems.

Global Navigation Satellite System (GNSS) systems are widely spread for outdoor

positioning, but their performance is not good in indoor environment because the

line-of-sight to GNSS satellites is typically not available inside buildings or it is very

weak. Hence, the GNSS system has limited indoors usage. Expensive instrumenta-

tion is required to augment GNSS in indoor environments. Signal attenuation and

multipath propagation are really a�ecting GNSS systems in indoor environment.

These are the reasons that make the alternative techniques for indoor positioning

as an increasingly popular research topic nowadays. WLANs, cellular, Bluetooth,

ZigBee and other indoor available wireless signals are alternative techniques which

can be used for indoor localization.

The Gaussian framework and the Bayesian data fusion are usually the default

choices to address indoor positioning, due to their ease of being understood and

modeled. Bayesian theory typically minimizes the probability of a wrong classi�ca-

tion. Bayesian methods have the following limitations:

• The di�culty for expressing the conditional probabilities.

• The Bayesian methods cannot assume values from the whole ordered set.

• It is hard to obtain the prior probabilities needed in Bayesian combining.

• Bayesian theory cannot deal well with uncertain states or with incomplete or

incorrect data measurements.
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Classical Bayesian framework with underlying Gaussian assumption is one of

popular methods that is used for wireless positioning but the accuracy of this method

is not good enough. In addition, classical Bayesian framework with non-Gaussian

could not be a good assumption with high performance. These limitations led to

more challenges in wireless localization and bring in our mind that new approaches

need to be investigated whether they may work better [33].

One of the new approaches is focusing on localization algorithms and meth-

ods based on non-Bayesian statistical frameworks. Dempster-Shafer Theory (DST)

could be an alternative to the classical Bayesian framework, which is the sub-

ject of this thesis. Indeed, Dempster-Shafer evidence theory fuse received signal

strengths from multiple access points with di�erent beliefs or underlying uncertainty.

Dempster-Shafer theory is based on the nonclassical idea of "mass" as opposed to

probability.

1.2 Thesis objectives and Author's contribution

This thesis considers the ways to improve the accuracy of indoor localization based

on cellular and WLAN-based positioning using RSS measurements. The objectives

and the parts where we contributed are:

1. Understanding the pros and cons of traditional WLAN-based algorithms for

indoor localization.

2. Modeling as accurately as possible for the WLAN localization based on the

DST combination.

3. Investigating alternative statistical frameworks for data fusion in the context

of wireless indoor positioning. The analysis includes Bayesian-based versus

DST-based approaches for two di�erent wireless indoor positioning algorithms,

namely the �ngerprinting and the path-loss model.

4. Investigating the performance (e.g., based on Root Mean Square Error (RMSE),

correct �oor detection probability and mean or standard deviation of error ra-

dius) in locating a Mobile Station (MS) with real-�eld measured data.

1.3 Thesis organization

This thesis is organized under following chapters:

Chapter 2 brie�y describes di�erent technologies used for indoor localization.

Cellular-based technologies and wireless signal-based technologies are schemes on
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which we focus a bit more in this chapter. These methods can be used as alternative

for GNSS in indoor localization.

In Chapter 3, traditional methods for location estimation based on RSS measure-

ments are presented. Two main methods, the "�ngerprinting" and the "path-loss

model", are addressed and some comparison between these two approaches are done.

The concept of Dempster-Sha�er theory and di�erent DST combination rules are

presented in Chapter 4. Author combination rule proposal, is also presented through

this chapter.

In Chapter 5, we present an implementation of the �ngerprinting based on DST

combination with real-�eld data measurements. Investigation of these results and

comparison between them and the traditional approaches (the �ngerprinting with

Bayesian framework) are done.

The simulation results from the path-loss implementation based on two di�erent

approaches, which are DS combination rules and Bayesian-based, are shown in the

Chapter 6.

Conclusions and future works are considered in the Chapter 7.
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2. UNDERLYING TECHNOLOGIES FOR

INDOOR LOCALIZATION

Wireless communications and wireless sensor network technology have been rapidly

developed in the past 10 years. However, GNSS systems are widely spread for out-

door positioning, but their performance is not good in indoor environments because

the Line-Of-Sight (LOS) to GNSS satellites is typically not available inside buildings

or it is very weak. Hence, the GNSS system has limited usage indoors. Expensive

instrumentation is required to augment GNSS disadvantages in indoor environment.

Signal attenuation and multipath propagation are really a�ecting GNSS systems in

indoor environment.

In this chapter we review di�erent methods that can be used as alternative to

GNSS in indoor localization.

2.1 Cellular-based location

As mentioned in the introduction, determining location of Mobile Station (MS) is

one of the problems with considerable interest these days. Most important reasons

for choosing cellular-based location systems are: the possibility of using the existing

transceivers, higher accuracy, consistency and robustness.

Current techniques that use cellular-based systems are cell-based (Cell-ID), Time

of Arrival (TOA), Time Di�erence of Arrival (TDOA), Angle of Arrival (AOA) and

Signal Strength measurement. In the following, we go through all these methods in

details.

2.1.1 Cell-based (Cell-ID)

Cell-ID is a network-based method which is used for MS location estimation. Cell-

ID method works based on the fact that each cell has its own identity number for its

location. Base transceiver stations cover a speci�c area and transmit the information

of the cell to the MS. Then MS is able to �nd the location based on the cell identity

of its cells and the BS location (known by the network) with an accuracy bounded

by the cell size.

Figure 2.1 shows the concept of cell-based network. A Base Transceiver Station

(BTS) covers a set of cells, each of them identi�ed by a unique Cell-ID such as C1
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Figure 2.1: An illustration of cellular network. Mobile station is located on cell 3 [11].

.

and C2 and C3 in the �gure.

Most papers in the literature dealing with cell-ID algorithms are based on regular

geometric area [23][32][2]. Cell-based method takes advantage of mobile subscribers

for cellular distance calculation. However, some defects in the algorithm used for

estimation, make this method ine�cient in real world. The �rst problem is related

to the di�erences between the shape of area that are imagined and simulated, and

the one that exist in reality. In other words, there are some speci�c shapes of areas

that are used for simulation, and all the accuracy results are based on them; by

changing the areas maps the accuracy reduces dramatically.

Each BTS uses a limited number of frequencies meaning a restriction in the

amount of available capacity. Additionally, the number of cells that each BTS can

cover is dictated with its antenna direction and varies from 1 to 3. On the other

hand, depending on the diversity and the number of users, a gradual increment in

the number of MSs will demand more cells. Considering the limitations of BTSs'

capacity and cell coverage, we have to add more BTSs to the network infrastructure

to cover all subscribers disseminated in di�erent cells. In this situation, all cell IDs

should be changed and cells rearrangement is necessary. This process is another

de�ciency of cell-based networks [23][32][37].

2.1.2 Angle of Arrival (AOA) Technique

Angle of Arrival (AOA) is another network-based positioning method which com-

putes the position of a mobile device based on the direction of incoming signals

from other transmitters that have unknown locations. The location of the measured

mobile device is typically calculated by triangulation technique. Nevertheless, for

measuring the angle, a special antenna array is needed. Figure 2.2 is an illustration

of AOA concept [6].

2.1.3 Time of Arrival (TOA) Technique

The Time of Arrival (TOA) is another method which measures the travel time of

a radio signal from a transmitter to a remote receiver. The time distance between
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Figure 2.2: Illustration of AOA concept

transmitter and receiver is measured as:

Distance = TOA× c, (2.1)

where, TOA is the time of �ight of the transmitted signal and, c is the velocity of

light in free space. The participation of all base stations in the network is required

in this method. Also for having higher accuracy, the mobile clock synchronization

between the transmitter and receiver is needed [14]. TOA estimation is based on

Round-Trip Time (RTT) measurements. TOA algorithms also need to have informa-

tion about the signal modulation and other signal structures. Thus, such methods

are typically suitable for GSM and UMTS cellular systems, but not for LTE or

WLAN systems, which use multi-carrier signals [10] [29]. The following �gure is

an illustration of the TOA concept. R1, R2 and R3 are the distance between the

receiver and di�erent transmitters.

Figure 2.3: Illustration of TOA based on base station centered circles intersection [2].
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Round-Trip Time (RTT) in GSM

The time di�erences between transmitting the signal from transmitter to receiver

and back to transmitter call Round-Trip Time (RTT). RTT is estimated based on

the following two frames under 802.11 standard: The frame sent by transmitter and

the frame replied by receiver which are called Request To Send (RTS) and Clear To

Send (CTS), respectively. An illustration of RTT concept is represented in Figure

2.4. In this �gure, ttRTS represent the time of sending RTS frame to MS. tpRTS

shows the time of RTS propagating from BS to MS, the processing time for RTS in

MS shows with tprocRTS, and TpCTS is CTS propagation time from MS to BS.

Figure 2.4: Illustration of RTT

2.1.4 Time Di�erence of Arrival (TDOA) Technique

The Time Di�erence of Arrival (TDOA) is another method which has been proposed

for indoor localization. TDOA relies on processing the di�erence in time at which

the signal from a mobile phone arrives at multiple base station receivers. Receiver

and transmitter may need some synchronization in this method [6]. The equation

(2.2) estimates the distance between the transmitters.

(d1 − d2) = c× TDOA = c (TOA1 − TOA2), (2.2)

where d1 is the distance between the receiver and �rst transmitter, d2 is the distance

between the receiver and second transmitter, c is the velocity of light in free space,

TOA1 and TOA2 are the time of arrival of signals from �rst and second transmitters,

respectively. TDOA is measured by the di�erences between TOA1 and TOA2.

Figure 2.5 represents the TDOA concept.
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Figure 2.5: Illustrated of TDOA concept

2.1.5 Trilateration

Trilateration is a technique for localization based on a condition that the distance

between MS location and three references should be known or estimated. Trilatera-

tion estimates the MS position based on the intersection of sphere surface. Although

this method works with any number of spheres, having less than 3 transmitters in-

creases uncertainty of the estimation. The trilateration principle is illustrated in

Figure 2.6.

Figure 2.6: Illustrated of Trilateration concept

2.1.6 Received Signal Strength (RSS)

Strength of incoming signal in a receiver is called RSS values. RSS values denote

the received power in decibel (dB) or decibel miliwatt (dBm) in any kind of wireless



2. Underlying technologies for indoor localization 9

devices. The stronger signal has the higher RSS value. Each receiver measures a

Received Signal Strength Indicator (RSSI), dependent on manufacturer, that is then

delineated to an RSS value.

RSS is more attractive than other methods due to using existing wireless infras-

tructure for localization. RSS is a method for indoor localization which is used for

estimating the distances and based on the di�erent techniques is able to compute

the MS location. For example, trilateration is a range based algorithm, RSS can be

a parameter in this algorithm to �nd distance between the transmitter and receiver.

The RSS also can be used as a parameter for �ngerprinting or path-loss model al-

gorithms. The RSS positioning system can be a cost e�ective solution compared to

location metrics like AOA or TOA [38].

These days WLAN RSS-based indoor positioning algorithms turn to one of the

hottest research topics. In the next chapter, RSS concepts and techniques that use

the RSS as a base parameter for location estimation will be represented, in details.

RSS is a main parameter that is used for estimation in this thesis.

2.1.7 AFLT in American 3G Standard

Advanced Forward Link Trilateration (AFLT) uses cell tower for location estimation.

AFLT works in very much the same way as A-GPS due to cell towers synchronizing

with GPS time. AFLT phones are able to collect signals from nearby cellular base

stations and measure time and distance, then they report their readings to the

network. Trilateration method also is used for getting optimal position detection.

AFLT needs synchronization for transmitting, and Time Division Multiple Access

(TDMA) tra�c channel resources also requirements to transmit location of data.

AFLT is supported by Third Generation Partnership Project 2 (3GPP2) standards

[4].

2.1.8 Enhanced cell (cell-based and RSSI)

Location Area code (LAC), Service cell ID, Timing advance, and measured RSS

are essential parameters for location determination in GSM standard. Location

Area code (LAC) is identifying a location area within GSM using �xed length code.

Service cell ID is an identity number that each cell has for its location. Timing

advance is a time that takes a signal transmit from base station to mobile station.

While the cell is on, all these parameters should be known for both MS and

cellular network. However, in the idle mode the LAC is the only parameter that

should be known by the network. Other parameters are known by the MS in the

idle mode. LAC, cell-ID and timing advance would be enough for determining the

MS location. By using RSS, the higher accuracy would be achieved [1].



2. Underlying technologies for indoor localization 10

The MS movement speed is the most important factor that should be coping with

while using RSS algorithm. Indeed, using RSS for the MS that have fast motion

leads to fast fading. Therefore the algorithm that uses signal strength values for

positioning should not be too sensitive to such variations [1].

2.2 WLAN-based positioning

WLAN positioning is a particular solution in terms of hardware and costs of instal-

lation problems due to the ubiquity of WLAN infrastructure.

2.2.1 WLAN Standards

802.11

The Institute of Electrical and Electronics Engineers (IEEE) created IEEE802.11

WLAN standard. It only supports a maximum network bandwidth of 2 Mbps which

means it is too slow for most applications. Therefore these product was not manu-

factured for long time. It uses the unregulated radio signaling frequency (2.4 GHz).

802.11b

802.11b is created by the original IEEE802.11 standard expansions. It supports

bandwidth up to 11 Mbps. 802.11b uses the same unregulated radio signaling fre-

quency as the original 802.11 standard ,2.4 GHz. Although costs of this product are

low and vendors prefer to these frequencies, it incurs interference from microwave

ovens, cell phones, and other appliances using the same frequency range. 802.11b

has lowest cost and signal range among its predecessor WLAN technologies. 802.11b

has the slowest maximum speed and when IEEE802.11b is using in home appliances

may interfere on the unregulated frequency band.

802.11a

802.11a and 802.11b were created at the same time. 802.11a has less popularity

because of higher cost. It has been used in business networks whereas 802.11b

better serves the home market. 802.11a supports bandwidth up to 54 Mbps and

signals in a regulated frequency spectrum around 5 GHz. 802.11a signals have more

di�culty penetrating walls and other obstructions. 802.11a has a fast maximum

speed and because of regulated frequencies, it can prevent signal interference from

other devices. High cost is one of the 802.11a problems and obstruction also happens

more easily because it has short range signal.
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802.11g

802.11g attempts to combine the best of both 802.11a and 802.11b. 802.11g supports

bandwidth up to 54 Mbps, and it uses the 2.4 GHz frequency for greater range.

802.11g is backwards compatible with 802.11b, meaning that 802.11g access points

will work with 802.11b wireless network adapters. Fast maximum speed is one of

the 802.11g advantages. In addition, 802.11g has a good signal range which is avoids

obstructions. The cost of 802.11g is more than 802.11b. In 802.11g, appliances may

interfere on the unregulated signal frequency.

802.11n

802.11n is one of the new IEEE standard in the Wi-Fi category that has been

�nalized in recent years. 802.11n improves the amount of bandwidth supported by

utilizing multiple wireless signals and antennas (called MIMO technology) compared

to 802.11g. 802.11n supports data rates of over 100 Mbps. 802.11n signal intensity

has better range than earlier Wi-Fi standards. The fastest maximum speed and the

best signal range in comparison with its predecessors are 802.11n advantages. A

disadvantage of 802.11n is that it has higher cost than 802.11g. Also, the use of

multiple signals may greatly interfere with nearby 802.11b/g based networks.

802.11af

This standard de�nes the use of Wi-Fi in newly opened TV white space frequen-

cies between 50 and 600MHz. The available bandwidth in this band is scattered,

with handful of 6MHz wide channels. The application throughputs will be rela-

tively lower compared to 802.11a/g standards. As this is a low frequency band, the

range would be very good due to signal penetration. This standard can be used

for rural broadband applications where coverage is crucial and throughputs are less

important.

802.11ac

802.11ac is the latest WLAN technology which builds on 802.11n with a wider

RF bandwidth (up to 160 MHz), MIMO and high density 256QAM modulation.

802.11ac will provide high throughput of 1 Gigabytes/sec below 6 GHz for multiple

stations [22].

A brief summery of all 802.11 standards is represented in Table 2.1.
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Table 2.1: Summary of 802.11 Standard Networks

Standard Carrier Frequencies Modulation Bandwidth Maximum
(GHz) (MHz) number of

streams

802.11 2.4 DSSS, FHSS 20 1
802.11a 5 OFDM 20 1
802.11b 2.4 DSSS 20 1
802.11g 2.4 OFDM,DSSS 20 1
802.11n 2.4 / 5 OFDM 20 to 40 4
802.11af 4.6 OFDM 6 4
802.11ac 5 OFDM 20 to160 8

2.2.2 WLAN-based positioning approaches

Due to wireless Internet access advantages, WLAN are being deployed widely in

o�ces and homes. WLAN has become the method of choice for wireless access

in indoor and public areas rapidly. In every 802.11 interface, RSS sensor function

can be available. Therefore RSS-based positioning systems can be a cost e�ective

solution in location determination. Whereas, the main issue with RSS-based systems

is getting true distance location between MS and AP or base station [7].

Two methods of WLAN localization are the �ngerprinting and the path loss

model.

Location Fingerprinting

Location �ngerprinting determines the location of the user by comparing the ob-

tained RSSI values to a radio map. Location �ngerprinting consists of two following

phases [26].

• O�ine phase, where a database is created which contains the RSSI patterns at

certain locations. This is called location �ngerprints or radio map. Although,

o�ine phase is a useful way to avoid complex signal propagation modeling it

needs large memory for storing the databases and time consuming.

• Online phase, where MS Location s computed by comparing the MS' measured

RSSI with the RSSI patterns collected during the o�ine phase.

Path Loss Model or probabilistic approaches

Path loss model is one of the methods based on maximum likelihood estimation.

The di�erence between the RSS (measured) and the transmitted signal power is

called path loss. At a presumed position the value of likelihood can be calculated,
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then the estimated position is corresponding to the expected value of a position.

Path loss model also has both o�ine and online phases.

• O�ine phase, Access Point (AP) positions and AP parameters such as transmit

power and path loss coe�cients are estimated based on measured RSS.

• Online phase, at �rst the distances between MS and APs are estimated based

on the measured RSSs. Secondly, based on a re-created grid around the MS,

the RSS in each grid point are estimated using the path loss modeling. Then,

the position of MS will be estimated by computing the Gaussian likelihood.

Fingerprinting versus path loss model

Typical di�erences between the �ngerprinting and the path-loss modeling are:

• Fingerprinting requires a large memory for storing the databases while in the

path-loss model the size of databases are reduced dramatically.

• In indoor location, there are multipath and attenuation caused by walls and

�oors and other obstacles. Therefore, path-loss error positioning is typically

larger than the �ngerprinting.

• It is hard to �nd good generic path loss models.

2.3 Other wireless signals-based positioning technologies

This section presents the various wireless signal-based technologies. The majority

of the present research is focused on RSS method for calculating distances although

many recent articles have examined a cell based approach for localization techniques

[23][32][2].

Here some other Wireless signals-based technologies are represented.

2.3.1 Bluetooth

Bluetooth is invented in 1994 and now it is managed by the Bluetooth Special Inter-

est Group (SIG). It is a technology that provides communication between wireless

electronic devices. Low power consumption and cheap transceiver microchips are the

Bluetooth advantages. Bluetooth communicates using radio waves. Its frequency is

within the 2.4 GHz ISM frequency band.

One of the Bluetooth advantages is its availability. Almost all cell phones, com-

puters and headsets are equipped with Bluetooth, nowadays. Bluetooth is a cheap

technology. The Bluetooth RSSI also has the advantage of being very stable, thus
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could be appropriate for the �ngerprinting technique since �ltering algorithms are

not necessary, as is the case with WLAN RSS.

The disadvantage is Bluetooth beacons intended for indoor positioning purposes

simply do not exist [5].

2.3.2 DTV/DVB-based positioning

Using Digital television (DTV) system for positioning is proposed by some litera-

tures due to high transmission power and large coverage area of digital television

(DTV) transmitting stations [28] [36]. In order to do the position determination,

synchronization signals speci�ed by the Advanced Television Systems Committee

(ATSC) standards were utilized to achieve location estimation with accuracy of few

meters. For detecting DTV signal from di�erent transmitters methods like transmit-

ter identi�cation (TxID) watermark is proposed. Location estimation is determined

by combining the measurements of at least three DTV transmitters.

In Digital Video Broadcasting-Terrestrial (DVB-T) location is calculated based on

the timing estimation derived from the cross-correlation between the received signal

and known pilot. The uncertainty of the threshold selection causes less accuracy.

Therefore it could not be an e�ective method for indoor positioning [25] [35].

2.3.3 Pseudolite-based positioning

Pseudolite are used to provide and maintain navigational capabilities with degraded

GNSS signal conditions. They are enhancing GPS navigation and navigate on its

own without satellites. Therefore, pseudolite can be used as a standalone positioning

system.

The main important issues for using pseudolite system as indoor location estima-

tion is related to carrier phase which should be used in indoor environment. Carrier

phase measurements of pseudolite in indoor environment are not the same as GPS.

A major di�erence between them is carrier phase integer ambiguity resolution [34].

However, pseudolite systems can do code measurements, so the main problem with

pseudolite is the infrastructure cost.

2.3.4 RF-ID based

Radio Frequency IDenti�cation (RFID) technology is widely used in di�erent re-

search areas these days. Tracking and electronic identi�cation are among those

areas that take advantage of this technology. RFID have three components; Tag,

reader localization and server. Tags are categorized on three groups. They are

passive tags, active tags and semipassive tags.
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An active tag can have sensor, memory and cryptography module. A passive tag

size is the same as active one. But it is cheaper than active tags because it has no

internal power supply. Passive tags functionality is very limited. The semipassive

tags communicate with the readers like passive tags but they embed an internal

battery that constantly powers their internal circuitry.

RFID readers contain two interfaces. First, RF interface which communicates

with tags in their read range in term of save identities of tags. Second, Communi-

cation interface, mostly IEEE 802.11 or 802.3, provide communication with servers.

The main link between RFID components is half duplex. First, Reader connects

to tag and then tag response to reader. Therefore there are some communication

disabilities between readers. In addition, for providing energy and memory asym-

metric short-range communication and centralized systems, tags have very limited

capabilities. Reader diversity, mobility, security failures are the issues which will

have to be considered for future localization methods [12].

2.3.5 Ultra Wide Band (UWB)-based positioning

The principle of UWB operation is based on the indirect measurement of the distance

between transceivers, obtained by measuring the round-trip time of an UWB pulse.

UWB signals use high bandwidth for the transmission and thus in time domain they

appear as pulses.

UWB has a �ne time resolution and it provides resilience to multipath signal

propagation. Due to these reasons, UWB signal could be used in indoor positioning.

UWB is a system that can work below the noise �oor of narrow band signal devices.

UWB may also use RTT measurements, but this may cause some latency which is

related to the responder devices. This is the main reason that makes UWB ine�cient

for using indoor positioning [3].

2.4 Assisted-GNSS

The Global Positioning System (GPS) is a system used for satellite navigation. GPS

was designed to work outdoors and it also had some military purposes which pro-

vides time and location information. The satellites are far away from earth and the

received GPS satellites signal is extremely weak. Nowadays, GPS is used in more

civilian than military purposes and it is expected to work almost anywhere, even

indoors. The most important issues are delivering information with less price and

power consumption. In addition, GPS receivers perform poorly in indoor environ-

ments because of radio signal attenuation from walls and multi propagation. These

reasons led to Assisted-GPS (A-GPS) development [8].

GPS satellite sends pseudorandom noise (PRN) code and data stream. When
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Figure 2.7: A-GPS [8]

signals go through the obstacles, the signals power gets weaker. Although in this

situation the data may not be detectable, the code is. Assisted GPS (A-GPS)

cellular network is developed to improve the GPS performance [8].

In the A-GPS the cell tower provides the data which is exactly the same as the

one that could be received from the satellite. Therefore, in the A-GPS, data will

be received with fewer error compare to the satellite because the signals are more

strong, so that A-GPS is able to determine the position more e�cient and with

less error that the GPS. A-GPS provides similar information as the GPS receiver

would ordinarily have received from the satellites themselves. On the other hand

A-GPS simply makes data transmission with more accuracy and diminishing the

search space from a large area to a smaller one. All in all, the A-GPS receiver

measurement from the satellites is done with more accurate data and it also work

with poor signals, those the GPS was not able to measure [8].

A-GPS consists of assistance data which used to reduce the frequency and code-

delay search. Reducing the frequency search and code-delay depend on assistance

availability in a certain time. The network assistance also helps in increasing the

sensitivity of the receiver and in acquiring signals within buildings [8].

As Figure 2.7 shows, A-GPS network and location server collect and process the

data spread from satellite. Location estimation is computed from database of cell

tower location.

GPS, GLONASS and Galileo receivers are also called Global Navigation Satellite
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System (GNSS) receivers. A-GNSS reference station is used in cities with a good

communication network infrastructure. A-GNSS reference stations are going to

be able to collect data from all operation GNSS satellites including Galileo and

Compass, with one or more receivers [8].

Although GNSS systems are very useful in outdoors environments, in the indoor

environment they have signi�cant limitations due to the absence of Line-Of-Sight

(LOS) and to the weak received signals inside buildings. In addition, users have to

pay cost for buying an A-GNSS capable device and also for the data transmission

[24].
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3. TRADITIONAL FINGERPRINTING AND

PROBABILISTIC RSS-BASED LOCALIZATION

One important step for location determination is estimating the parameters reviewed

in previous chapter such as TOA, AOA, or RSS. Another step is estimating the

locations which was also mentioned in the previous chapter. The two methods

proposed for location estimation based on RSS measurements are the �ngerprinting

and the path-loss methods.

In this chapter, these methods are reviewed in details and they will be applied in

real scenarios. At the end of this chapter, the results will be compared and pros and

cons of both methods will also be reviewed. The �ngerprinting and the path-loss

methods consist of two phases. These two phases are: o�ine phase or training phase

and online phase or estimation phase. First we review the concept of the path-loss

model. Then, we go through to de�ne each phase for each model separately.

3.1 Path-loss models

While we move away from transmitter, typically the RSS is decreased. Based on

the free space loss model, the RSS is inversely proportional to the square of the

distance between the transmitter and the receiver. The signal attenuation between

the e�ective transmitted and the received power represents the path-loss. If it

is assumed that the RSS drops logarithmically with distance, the received power

equation, in linear scale, is [18]:

PR(d) = PR(d0)[
d

d0

]
n

, (3.1)

where PR(d0) is the received power at the reference point d0 which is close to the

transmitter (e.g., 1 meter), d is the distance from the reference point and n is the

path-loss exponent and it depends on the propagation environment. In free space

loss, n = 2. The path-loss equation in dB is:

LdB = 10nlog10[
d

d0

], (3.2)

but assuming that the RSS only depends on the distance between transmitter and

receiver would not give a high accuracy result because during the propagation path
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always some obstacles would exist that prevent the direct LOS propagation of radio

signals between the transmitter and the receive, or may introduce shadowing and

fading phenomena [18].

The signal level is highly a�ected by shadowing from large obstacles in indoor

environments like walls, doors, etc. along the signal path. In outdoor environments

obstacles are tall buildings and hills, etc. If we add shadowing in the above simpli�ed

path-loss model's equation, then the combined path-loss and shadowing model in

linear scale is [18]:

PR(d) = PR(d0)[
d

d0

]
n

Ψ, (3.3)

and in logarithmic scale:

PR(d) = PR(d0)− 10nlog10(
d

d0

) + ΨdB, (3.4)

where ΨdB is typically modeled as a zero mean Gaussian distributed random variable

(in dB) with certain standard deviation σ (also in dB).

Okumura-Hata, COST231 and wall and �oor propagation models are overviewed

in this section.

3.1.1 Okumura-Hata model and COST 231 model

Okumura-Hata model is used for predicting the cellular networks coverage in macro

cells in urban and sub-urban areas. This is an empirical propagation model and

valid between 150 and 1500 MHz. COST 231 model is an extension of Okumura-

Hata model that is valid in the range of 1500 MHz - 2GHz. The path-loss equation

of Okumura Hata/ COST 231 model is given by [18].

LdB = A+Blog10(fMHz)− 13.82log10(hb) + (c− 6.55log10(hb))log10(dkm)− k, (3.5)

where hb is base station antenna height [m], dkm is distance between transmitter and

receiver [km], fMHz is carrier frequency [MHz], c is tunable parameter [44-47], K

is correction factor [default = 0] and A and B are frequency dependent parameters

given as in Table 3.1.

A WLAN spectrum is not covered well with these models because it starts from

2.4 GHz to tens of GHz and they are not suitable for generic RSS-based positioning

due to having many parameters.
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Table 3.1: A and B parameters in Okumura Hata and COST 231 model

150-1000 1500-2000
[ MHz] [ MHz]

A 69.55 46.3
B 26.16 33.9

3.1.2 Floor and wall factor model

Floor and wall factor model is an empirical indoor propagation model. The shad-

owing attenuation is an important factor in this model and it depends on number of

�oors and walls across the propagation path. The path-loss equation for this model

is given by

LdB = Lref + 20log10(d) + nfaf + nwaw, (3.6)

where nf is the number of �oors, nw is the number of walls, af and aw are the �oor

and wall attenuation factor respectively, Lref is the reference path-loss at d=1 meter

distance and d is distance between transmitter and receiver in meter [18].

In practice, equal attenuation per �oor and per wall inside a building would not

be a true assumption as we had in previous formula. Table 3.2 shows some �oor and

wall attenuations at various operating frequencies due to common building materials

as found in literature [18].

Table 3.2: Attenuation due to common building materials

Loss Frequency
[dB]

All metal 26 815 MHz
Concrete block wall 8-15 1300MHz

Concrete �oor 10 1300MHz

3.2 O�ine phase

Measurement data is collected in o�ine phase. Datasets of the RSS in several

location points in speci�c building are created in this phase. This dataset of RSS

are called radio map or location �ngerprints. On the other hand, the radio map

stores the RSS from each AP at each sampled location. This dataset will be used

in online phase to �nd MS location.

The way of creating this dataset is di�erent in the �ngerprinting and the path-loss

model. They are represented in following sub-sections.
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3.2.1 Data gathering phase for both the �ngerprinting and

the path-loss algorithms

Data collection is done by capturing the RSS value along a speci�c building. We

manually set the user positions when doing the measurements, and we took between

5 and 20 scans in each measurement points. The scans were places 9 seconds apart

from each other. The geometric mean of all the scans in one point was �nally saved

in the �ngerprint database. In order to get better results, increasing the number

of capture points would be a good option but the problem is that it needs huge

memory for storing a data. The �ngerprint measurement data for indoor WLAN in

one of the �oor in the Tampere University of technology (TUT) building is shown

in Figure 3.1.

Figure 3.1: Example of measured �ngerprint data for indoor WLAN networks

3.2.2 Training phase or o�ine phase

In this section the �rst phase of two di�erent RSS-based WLAN algorithms, which

are proposed for indoor localization, are reviewed. They are the �ngerprinting and

the path-loss models.

Fingerprinting algorithms

In �ngerprinting technique, the user location is determined by comparing RSS values

to a dataset of RSS, instead of calculating the distance between transmitting AP

and receiver and triangulating the user's location. This is the di�erence between

location �ngerprinting technique and other localization [20].

The received RSS is compared with that dataset. MS location will be at the

position where the RSSs stored in the datasets are best matching the receiver RSS.
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[20]. The �ngerprinting technique became one of the popular methods in indoor

localization due to using RSS as a main parameter for localization. RSS is a good

parameter because it is available in all wireless equipments.

Path-loss algorithms

In the path-loss method the dataset can be created with fewer samples than in the

�ngerprinting case. The MS RSS is compared with radio map that is generated by

our own implementation. In other words, we create the PL radio map based on the

dataset, instead of using the whole dataset as the radio map that we have in FP

model.

A path-loss model is built based on the data collected previously in the o�ine

stage which connects the distance values to the RSS values via a certain path-loss

model. The traditional and simplest path-loss computed by equation (3.4) is used

in this thesis.

On equation (3.4), Ψi is a noise term including measurement noise and shadowing

and fading �uctuations. It is usually modeled through a Gaussian distribution and

is shown as :

Ψ ∼ N (µ, σ
2

), (3.7)

In the o�ine phase based on measured RSS, the Access Point (AP) positions and

AP parameters (such as path loss coe�cient and transmit power) are estimated.

The equation for determining the P(T,ap) and n is :
PRap,1

PRap,2

..

..

PRap,n

 =


1 −10log10dap,1

1 −10log10dap,2

.. ..

.. ..

1 −10log10dap,n


(
PTap
nap

)
, (3.8)

where dap,i is computed by using Euclidean distance between the apth access point

location and ith measurement point [30]. Other distances like Manhattan distance

and Entropy based could also be chosen for �nding the di�erence in RSS between

the MS and the �ngerprints. During this thesis we used Euclidean distance:

dist(api,iap) =
√

(xi − xap)2 − (yi − yap)2 − (zi − zap)2, (3.9)

where (xap, yap, zap) is the position of access point apth and (xi, yi, zi) is the position

of measurement point ith. Then, we can re-write this in a matricial form via:

Y = HX, (3.10)
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Figure 3.2: (a) O�ine phase and (b) Online phase in the�ngerprinting [20]

Finally, the P(T,ap) and n will be calculated by fallowing equation:

X = (HTH)−1HTY, (3.11)

where X is a n× 2 matrix [30].

AP location is also estimated in this phase for example by taking an average over

the positions of the measurements with the highest RSS.

3.3 Online phase (Estimation phase)

The MS location is determined based on RSS at the user point in online phase. MS

RSS is compared with all RSS in dataset which is created on o�ine phase and �nd

the point that has the closest match with the RSS dataset. The point with minimum

di�erences will be chosen as a location of MS.

3.3.1 Fingerprinting algorithms

There are di�erent methods which may be used for �ngerprinting online phase to

�nd the closest match in a better way with a less mathematical time and cost. Some

of them are illustrated in this Section. An overview of two �ngerprinting phases are

illustrated in a block digram of Figure 3.2.

The nearest neighbor and K-Nearest Neighbor (KNN) methods

K-Nearest Neighbors (KNN) is one of the most popular algorithms in the �nger-

printing method. When K = 1, K-Nearest Neighbors (KNN) method becomes NN

and it calls nearest neighbor method. It used for WLAN-based indoor localization

in online phase of �ngerprinting method. KNN algorithm estimates the MS position

by �nding the K nearest reference points from radio map [15][16]. Then by get-

ting average of the position between K points based on di�erences of RSSs between
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the MS and K reference points that was found. The equation (3.12) is used for

calculating the di�erence between RSS of ith �ngerprint and MS.

Di =

√√√√ n∑
j=1

(RSSij −RSSj)2, (3.12)

where RSSij is RSS of jth access point that heard by ith measurement point , and

RSSj is RSS of j
th access point that heard by MS. A weighting factor, which is used

for determining the MS position, calculated by

wi = mini(Di), (3.13)

where wi is the weighting factor of i -th neighbor among K selected �ngerprints.

Then in all distance values �nd the set of K �ngerprints that have the minimum

amount as compare with all of them. The collected position signal then is calculated

as

(x, y) = argmin(Di(xi, yi)) (3.14)

where, (xi, yi) and (x, y) are the position of i -th neighbor and the user position in

Cartesian coordinates, respectively.

In indoor environments the signal propagation is attenuated by re�ection or radio

wave is scatted by walls. Hence, the chosen neighbors may not be close to each other

and the location estimation accuracy is degraded due to multipath propagation.

Rank Based Fingerprinting (RBF) algorithm

There are several ways to de�ne the rank based �ngerprinting (RBF) algorithm. In

this part we represents two di�erent ways for implementing the RBF algorithm. The

�rst one is represented by [21] and the other one is based on our implementation.

In classical �ngerprinting method, �rst the RSS values vectors measured and then

compared to each other directly. However, in RBF algorithm, �rst the RSS values

are measured in the positioning phase from di�erent APs and then we sort them

from strongest to weakest. Then a rank vector comparison is made as shown in

Figure 3.3. Finally the sorted vector in positioning phase is compared with the one

in training phase [21].

Ranks are assigned based on the AP rank in positioning phase and on the AP

MAC (Media Access Control) address. The length of ranked vector training phase

and the length of the positioning phase vector should be equal. Therefore, zero

padding algorithms are applied for those APs which are not found in the dataset,

in order to achieve to this condition. Afterwards, the ranked vectors and position-
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Figure 3.3: RBF block diagram [21]

ing phase vector are compared to each other based on similarity measures such as

Spearman distance, Spearman's footrule, Jaccard coe�cient, etc [21]. For determin-

ing the MS location estimation, K location points which have smallest di�erence

are used based on the weighted average equation (3.13). Figure 3.3 shows the RBF

block diagram [21].

Rank based �ngerprinting algorithm that we propose, is based on �nding all

common APs heard by both MS and measurement points. We compute the RSS

di�erences between the MS and the measurement points that were found with com-

mon APs. Then, among the APs that can be heard with the maximum number of

measurement points, we choose the one that have the minimum RSS di�erences.

3.3.2 Path-loss model

In this section we review the concepts of path loss modeling, useful for those esti-

mation methods which are based on path loss instead of the �ngerprinting.

Based on path-loss parameters (path loss coe�cient and transmit power) and

APs location which are estimated at o�ine phase, all components which are needed

for MS location estimation are ready.

In the training, �rst the distances between MS and AP are estimated based on

the measured RSS. Secondly, based on a re-created grid around the MS, the RSS

in each grid point is estimated using the path loss modeling. Now a RSS dataset

is ready and estimating the MS location is next step. The position of MS will be

estimated by computing the Gaussian likelihoods per heard AP, then summing them

for all heard APs.

Figure 3.4 is an illustration of RSS-based path-loss used in this thesis. in Figure

3.4, the path loss models are characterized by two parameters per AP, namelyPTap

and nap, which stand for received signal power from AP and path-loss coe�cient,

respectively. In this �gure, AT REF. Pt2, represents that at �ngerprint point num-
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Figure 3.4: Path-loss phases block diagram (a) O�ine phase, (b) Online phase [29]

ber 2 , the location is (x, y)2 and also shows the number of APs that are hearable

by this speci�c �ngerprint point.

3.3.3 Advanced algorithms

According to the problems that both �ngerprinting and path-loss model are facing,

we investigate here several advanced algorithms in order to deal with those problems,

while try to improve the accuracy of location estimation. The algorithms which are

proposed for this purpose are based on Dempster-Shafer Theory.

Dempster-Shafer Theory concepts and details of the algorithms that apply for

indoor localization will be reviewed in the next chapters of this thesis. The important

things that should be mentioned about the DST algorithms are:

• In o�ine phase

� By gathering the RSS of each AP, dataset of AP RSS is created.

� The AP parameters are stored in the database in the same way as for

�ngerprinting or for path loss models (two alternative approaches).

• In online phase

� We apply the Dempster-Shafer (DS) combination rule or a variant of it

in order to merge the information coming from various APs (instead of

simply summing the likelihoods as in the Bayesian approach)
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� We associate three types of weights or 'masses' to each grid point: m(I),

m(N) and m(I,N). m(I) represents the probability that the user is

"In this position". m(N) shows the probability that the user is "Not

this position". m(I,N) shows the uncertainty about evidence. In other

words, our belief to the evidence is shown by 1−m(I,N).

More details about these advanced approaches are given in Chapter 4.

3.4 Implementation issues

Both the �ngerprinting and the path-loss model techniques have some shortcoming

that lead to some errors in MS location estimation. Therefore, it is still an open

research topic how to reduce the amount of errors. By combining some new idea as

Dempster-Shafer theory with these techniques, we are able to improve the location

estimation accuracy. In this section some problems of both �ngerprinting and path-

loss model are reviewed, and a scenario for each model also is illustrated.

3.4.1 Power maps measurement

Here, we show some power maps from the measured data in 2D case. Figure 3.5

shows the power map from 4 di�erent APs in an indoor environment.

Figure 3.5: Power map from di�erent APs in indoor environments (University building)
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As Figure 3.5 shows, the RSS power is very strong in the vicinity of an AP, which

is likely situated in the darkest red areas of the map near APs, and it typically

becomes weaker when going away from AP. Therefore, if the MS location were near

to AP, there is more chance to get the location with higher accuracy.

3.4.2 Fingerprinting implementation

Fingerprinting technique has some problems [20]:

• The �ngerprinting requires a large memory for storing the datasets and the

computational burden. It also requires large data transfers from the database

to the mobile and from the mobile to the database.

• The establishment of the location �ngerprint database is an essential prereq-

uisite.

• Getting higher accuracy typically needs a large number of measurements at

each point. It means that the o�ine phase has signi�cant role in the �nal

result and takes more time and task to get the better datasets.

Figure 3.6: Fingerprinting implementation

Figure 3.6 shows an illustration of MS location estimation with �ngerprinting

technique. The blue dots are representation of the �ngerprint locations or radio

map that are measured manually. The red circle shows the location of the user and

the pink square is representing the �ngerprint location estimation. The amount of

distance RMSE and �oor detection probability are shown in the �gure, respectively.

Path-loss method is the suggested technique to overcome �ngerprinting problems.
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3.4.3 Path-loss implementation

The path-loss model also can be used for indoor positioning. This method tries to

avoid the use of huge datasets and to decrease the memory consumption and the

amount of data transferred to/from the mobile, the things that are most important

issues in �ngerprinting model. One approach to deploy path-loss models is examining

the actual measurements at each reference position. One can also use other methods

for deployment purposes. In some algorithms it is possible to estimate parameters

with less measurements over the coverage area.

Figure 3.7: Path-loss implementation

Figure 3.7 is an example of the path-loss model implementation by us. The

black dots are representing the �ngerprint locations or radio map that are measured

manually. The blue dots are APs location estimation which are computed by our own

implementation. The red circle shows the location of the user and the pink square is

representation of the �ngerprint location estimation. The amount of distance RMSE

and �oor detection probability are shown in the �gure, respectively.

In indoor location, there are multipaths and attenuation caused by walls and

�oors and other obstacles. Therefore, path loss error positioning are typically larger

than in �ngerprinting. This is the most important Path-loss model shortcoming.

3.5 Comparative results between the traditional methods

Data has been collected and stored in dataset in o�ine phase for both the �nger-

printing and the path-loss model. The di�erence between these two methods in

o�ine phase is in the way of storing the reference location points. In the �nger-

printing technique, all data location is stored and then a direct comparison is done
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between MS RSS value and all the reference points RSS which exist in dataset. But

in the path-loss model, the transmit power and the path loss coe�cients are deter-

mined and the AP location also is estimated. Then, based on these parameters the

grid points are re-created. At last, the MS RSS value is compared with the new

reference points RSS [19] [17][31].

Both methods need a dataset of reference points for comparing with the AP values

heard by the MS RSS value. This dataset is unique for a particular place and any

changes on AP locations will have e�ect on propagation at the situation, therefore

updating the dataset is required in every certain period. The regular updating of

databases is a known problem in WLAN positioning, however it is not within the

scope of this thesis.

An advantage of path-loss model is the lower number of parameters to be stored

in the database compared to that needed in the �ngerprinting method. Therefore,

there is no need for huge memory to store lots of location information and also the

run time for comparing will be dramatically reduced.

Accuracy is one of the most important factors in indoor positioning. By esti-

mating the AP location instead of using the exact location of APs, the accuracy

will be reduced compared with the �ngerprinting method in most scenarios, but in

some cases may have similar or better performance. Therefore, there is a trade o�

between higher accuracy and saving memory.

The main parameters for comparing these two di�erent methods are Root Mean

Square Error (RMSE) and probability of correct �oor detection (Pd ).

RMSE formula is represented by:

RMSE =

√√√√ 1

N

N∑
i=1

(errori)2, (3.15)

where N is the number of estimated user track points, and error is determined

based on Euclidean distance computed as

errori =
√

(xtrue − xest)2 − (ytrue − yest)2 − (ztrue − zest)2, (3.16)

where MS location is denoted by (xtrue, ytrue, ztrue) and the position of MS based on

our own implementation is denoted by (xest, yest, zest).

Floor detection probability is calculated as following equation.
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Pd =
Number of correct floor estimates

Number of total estimates
, (3.17)

where Pd is the probability of �oor detection.

Table 3.3: Fingerprinting Versus path-loss model. Results in term of �oor detection prob-
ability Pd and 3D distance RMSE

Fingerprinting Path Loss Model Fingerprinting Path Loss Model
Senarios RMSE [m] RSME [m] Floor detection Floor detection

probability [%] probability [% ]

Senario 1 9.00 13.43 73 98
Senario 2 6.35 10.06 95 75
Senario 3 6.96 9.51 95 46
Senario 4 5.02 16.21 93 60
Senario 5 13.5 12.9 93 59
Senario 6 8.52 9.94 81 62
Senario 7 14.17 12.08 87 61
Senario 8 5.78 7.77 93 46
Senario 9 13.91 9.83 100 72
Senario 10 11.88 7.32 91 45

Average 9.52 10.90 90.1 62.4

Table 3.3 presents a comparison between FP and PL classical algorithms, based

on measurements done in a university building at TUT. The used PL approach

is the deconvolution approach introduced in [30]. In this implementation di�erent

scenarios stand for di�erent user tracks.

As the table shows, although the �oor detection probability in �ngerprinting

method is really much better than the path-loss model, the RMSE is not consistently

better for FP than for PL. Undoubtedly, in PL cases, some inherent smoothing is

also taking place, and this may reduce the e�ect of the shadowing noise.
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4. DEMPSTER SHAFFER THEORY (DST)

4.1 DST History

The Bayesian theory is the common method for statistical inference problems. Bayes

works with probabilities; it calculates how often an event will happen if an experi-

ment is performed a large number of times, by taking into account also the priors

(i.e. the a priori knowledge about an event).

Dempster (1967) developed new concept for combining belief degrees derived

from independent evidence event, by combining iteratively the available evidence

and able to deal better with contradictory evidence. Then, in 1976, Glenn Shafer

developed the method. The result is Dempster-Shafer theory which is an approach

for combining evidence [27].

The main goal of this thesis is to investigate the use of this theory in the context

of wireless localization.

4.2 DST Principle

Dempster-Shafer (DS) is a generalized Bayesian theory. It is a mathematical theory

of evidence and plausibility reasoning. The main feature of DS theory is combination

evidence obtained from multiple sources and making a model of con�ict between ev-

idences. Image processing, signal detection, target identi�cation, multiple-attribute

decision making, location detection and other intelligent systems are the �elds where

the DST provides an e�ective way to solve various problems [9].

The DS has some advantages over Bayes theory. Some of the advantages of DST

are as follows [39] :

• A popular method for data fusion.

• Suitable method to cope with the randomness in variables (in our case, the

randomness of RSS).

• A di�erent level of abstraction is able to represent evidence easily.

• Ability to join di�erent sources of evidence, including contradictory informa-

tion coming from two sources.
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• The DS does not need prior probabilities like the Bayes but it needs preliminary

assignment of masses.

• The Dempster-Shafer theory explicitly allows for an undecided state of our

knowledge but the Bayes does not.

A DST di�erence with the traditional probabilistic method is in number of evi-

dence sources that they need. The DST works with multiple possible events, whereas

the traditional probabilistic method just works with one event. In fact, if only one

source of information is available, e.g., one AP, then the DST reduces to the Bayes

theory. In other words, when the evidence is completely adequate to let probabilities

mission to single events, then the DST works similarly with the traditional prob-

abilistic formulation. The Dempster-Shafer (DS) is coping with uncertainty issues

more easily and has less limited uncertainty speci�cation than the Bayesian the-

ory. The DST represents the information without more assumptions. Furthermore,

the DST is able to handle data with di�erent levels of accuracy without any more

requirements for representing data assumption [27].

The Dempster-Shafer theory main functions are:

• Belief function (Bel),

• Plausibility function (Pl)

• Basic probability assignment function (bpa) or mass function (m) will con-

tribute its observation by assigning its beliefs over.

In the DS theory, all possible mutually exclusive context facts of the same kind will

be in "the frame of discernment" which is denoted by θ. The frame of discernment, θ,

consists of all hypotheses which the information sources can provide evidence. This

set is �nite and consists of mutually exclusive propositions that span the hypotheses

space. The size of the frame of discernment is 2n where n is number of events.

The mass function (m) is a fundamental part of the evidence theory. It sets to

the interval between 0 and 1. The mass function will be equal to 0 when set is null,

and the mass functions summation of all the subsets of the power set is 1.

m : 2θ → [0, 1], (4.1)

where set 2θ of all possible combination within the frame of discernment, including

the empty set.

m(A) means the value of the mass function for a given set A. The value of m(A)

is only related to the set A, and does not related to subsets of A. The mass function

is illustrated as following equations:
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m(∅) = 0 (4.2)

∑
A⊆θ

m(A) = 1, (4.3)

The belief function and the plausibility function are de�ned based on the lower and

upper band of bpa interval.

[Belief(A), P lausibility(A)], (4.4)

The belief function is the function that accounts for all the evidence B that sup-

ports the given hypothesis A. On the other hand, lower band belief for a hypothesis

A is calculated by the bpa summation of the evidence B of the set of interest hy-

pothesis A. The belief function illustrates the lower probability limit. It is expressed

as equation (4.5)

Bel(A) =
∑

B|B⊆A

m(B), (4.5)

The plausibility function accounts for all the observations that do not rule out

the hypothesis A. The plausibility function presents the upper probability limit. In

addition, the upper band belief for a hypothesis A is calculated by the bpa summa-

tion of the evidence B that intersect the set of the hypothesis A. It is illustrated as

(4.6)

Pls(A) = 1−
∑

B∩A=∅

m(B), A ∈ 2θ, (4.6)

Neither plausibility nor belief is additive measures. This means that the summa-

tion of all beliefs or plausibility is not mandatory to be equal to 1 [27].

Furthermore, the plausibility function can also be derived from the belief function;

it is illustrated by equation (4.7)

Pls(A) = 1−Bel(Ā), (4.7)

where Ā is the complement of A. By de�ning plausibility in term of the belief come

from the fact that is all basic assignments must sum to 1.

One of the ways that can help the analysis to be more cost e�ective is using

the belief entropy or the core entropy due to using di�erent features of information

content in a mass distribution, equation (4.1). Dissonance measures and confusion

measures which represent the uncertainty in mass distribution are expressed by

following formula:
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E(m) = −
∑
A∈2θ

m(A)log2Pls(A), (4.8)

C(m) = −
∑
A∈2θ

m(A)log2bel(A), (4.9)

where pls(A), bel(A) are as de�ned in equations(4.6) and (4.5), respectively. E(m)

and C(m) represent also measure of dissonance and measure of confusion, respec-

tively. They display the uncertainty in a mass distribution.

To determine the information source between events, the following equation which

is called nonspeci�city measure:

V (m) =
∑
A∈2θ

m(A)log2(card(A)) (4.10)

where card(A) is cardinality of set A and V (m) is the measure of non-speci�city.

We also can de�ne the belief function as the following equations:

Bel(Ā) =
∑

B|B⊆Ā

m(B) =
∑

B|B∩A=∅

m(B), (4.11)

∑
B|B∩A=∅

m(B) = 1−
∑

B|B∩A=∅

m(B), (4.12)

4.3 Evidence combination rules

Data from single or multiple sources should be combined to become more mean-

ingful in a way that we need to work with them; arithmetic averages, geometric

averages, harmonic averages, maximum values, and minimum values are techniques

that already are used for this purpose. The combination rule is a speci�c technique

that is used for multiple sources situations. If we assume that the multiple sources

are not dependent to each other, they will produce di�erent estimation for the same

frame of discernment in the Dempster-Shafer theory [27].

The DST rule focuses on using a normalization factor for matching multiple

sources together and ignores all of the con�icting evidences. This works as a strict

AND-operation. The biggest problem with Dempster rule is in situations with con-

�icting data. According to other literatures some DST rules are modi�ed in a way

getting rid of con�ict and having better result [9][27]. Furthermore, Dempster rules

will be distinguished from each other base on a solution that is proposed for con-

�ict problem and the way of associating the mass function allocation. Choosing the

combination rules could be a way for solving the con�ict issue.
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In what follows we summarize the main DS combination rules found in the liter-

ature and we introduce few more rules which we study in our implementations.

4.3.1 DST combination rules

The belief and the plausibility can be obtained from the mass functions. Then by

using the Dempster combination rule, we are able to multiply the belief functions

with their mass function. It is mentioned before that the important issues in the

Dempster combination rule is to have independent evidences. Therefore, the basic

di�erences between the fallowing combination methods are based on this factor [27].

The DS combination rule could be a conjunctive operation (AND). This is the

�rst method for providing a formula for the DS combination rule. Based on this

concept the combination is formulated as equation (4.13).

m1 ⊕m2(C) =

∑
A,B|B∩A=Cm1(A)m2(B)

1−K
, (4.13)

where C 6= ∅ and K is calculated by equation (4.14).

K =
∑

A,B|B∩A=∅

m1(A)m2(B), (4.14)

The main idea behind equation (4.13) is that the join mass maximizes the evidence

which supports the same conclusion, while minimizing the contradictory evidence.

where K is mass function with con�ict. 1 − K is a normalization factor in the

DS combination rule formula. This normalization factor could have some e�ect of

completely ignoring con�ict. The way that we de�ne the normalization factor have

e�ect on the result that we get from the DS combination rule because its in�uence

on con�ict. There are di�erent ways to determine normalization factor.

What we are doing in the rest of this chapter is looking at some combination

rules based on normalization factor di�erences and then �nding out which one could

be helpful for our situation and then using that one in following chapter in our

simulation and discusses about the results that we get.

4.3.2 Yager's rule

Dempster's rule is an associative combination operation and the order of the infor-

mation does not a�ect the fused structure. Yager introduced a concept of quasi-

associative operator because he believed that in many cases a non-associative op-

erator is necessary for combination. Quasi-associative means the operator can be
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broken down into associative suboperations. Yager develops a general framework to

look at combination rules where associative operators are a proper subset. [27]

For solving the con�ict problem, Yager suggests another mass function which is

called the ground probability mass assignment. It is formulated as below:

q(C) =
∑

B∩A=C

m1(A)m2(B), (4.15)

where q(A) is ground probability mass assignment associate with C, m1 and m2 are

the basic probability mass assignments and C is the intersection of subsets A and

B . This rule is known as Yager's combination rule and there is no normalization

factor in this rule. In fact, the critical di�erences between ground probability mass

assignment and basic probability assignment are in the normalization factor and the

mass attributed to the universal set.

The relation between the ground probability mass assignments and Dempster's

rules are represented as fallowing equation:

m(∅) = 0 (4.16)

m(X) =
q(X)

1− q(∅)
, (4.17)

where X is universal set.

In a short view, Yager's modi�cation has fallowing advantages [27]:

• It introduces the quasi-associative operators concepts and it used for updating

the evidence.

• It introduces the ground probability mass assignment and its relation with

Dempster's rule mass function or basic probability assignments.

• Normalization does not make any changes on the evidence.

• The allocation of con�ict to the universal set instead of the null set.

4.3.3 Inagaki 's rule

Inagaki proposed a very general formalism for all fusion rules which distributes the

con�ict factorization (1+K), after the conjunctive combination.

m12(C) =
∑

B∩A=C

m1(A)m2(B)(1 +K), (4.18)

where K is calculated by equation(4.14) and C is the intersection of subsets A and

B. The di�erence between Dempster's rule and Inagaki's rule is that Dempster's
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rule tremendously �lters the evidence by ignoring all con�icts, while Inagaki's rule

�lters the evidence by scaling both con�ict and ignorance [13].

4.3.4 Dubois & prade rule

This rule supposes that the two sources are reliable when they are not in con�ict

and at least one of them is right when a con�ict occurs.

m12(C) =
∑

B∪A=C

m1(A)m2(B), (4.19)

where C is the intersection of subsets A and B. According to this principle, the

commutative and quasi-associative Dubois & Prade hybrid rule of combination,

which is a reasonable trade-o� between precision and reliability [13].

4.3.5 Mixing rule

This is similar with the Bayesian. It's a weighted average of all sources, instead of

combining iteratively two by two such as previous rules.

m(C) =
∑
i

mi(C)wi, (4.20)

where wi the reliability of source i (could be for example related to the fraction of

RSS heard from that source).

4.4 DST combination rules in indoor localization

In this section we �rst formulate the WLAN localization problem in terms of masses,

and then we explain how the DST can be applied to this problem.

4.4.1 DS masses for WLAN localization

There are three possibilities based on our model which is partly borrowed from

Zhang paper [39].

• MS present in �ngerprint fp (or in grid point i): I.

• MS not present in �ngerprint fp (or in grid point i):N.

• MS position uncertain in �ngerprint fp (or in grid point i): U.

If the frame of discernment is θ = {I,N} and the power set is 2θ = {∅, I, N, I∪N},
I ∪N has the meaning of 'uncertain' and ∅ is the empty set . Thus, there are three
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set possibilities A ⊂ 2θ : A = I, A = N , or A = I ∪ N (for simplicity, I ∪ N is

denoted by the uncertain case as U)

The following relationships hold:

I ∪ I = I I ∩ I = I, (4.21)

I ∪ U = U I ∩ U = I, (4.22)

('Uncertain' case acts as unit operator for both reunion and intersection)

N ∪ U = U N ∩ U = N, (4.23)

U ∪ U = U U ∩ U = U, (4.24)

I ∪N = U I ∩N = ∅, (4.25)

The DS works with masses instead of probabilities. There are two states: uncer-

tain or certain. The certain state has also two cases: either the MS is in that grid

point: I, or it is not: N . Now, if we assume that a probability a allocated to state

U , it means that the probability of the 'certain' state 1−U is 1−a. In certain state,
the state I is with probability P and state N is with probability 1 − P . It follows
that the masses allocated to all 3 possible states I, N ,U can be set as follows:

m(I) = (1− a)p, (4.26)

m(N) = (1− a)(1− p), (4.27)

m(U) = a, (4.28)

And m(∅) = 0, It means that it is impossible to not be located anywhere.

It follows straightforwardly that∑
A⊆2θ

m(A) = m(I) +m(N) +m(U) +m(∅) = 1, (4.29)

Now the question is how to choose the values a and p . Factor a, can be chosen

in various ways, either equal for all heard APs, or based on RSS heard from an AP.

Here we introduced two ways to choose a factor:
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• Based on number of heard APs at MS It means the more heard APs, the less

uncertainty. Its introduced by us and formulate as follows:

a =

{
0.99 if only one AP heard by the MS

1
NheardAPs

if MS heard NheardAPs > 1
(4.30)

in this situation factor a is depend on the number of AP that is heard by MS.

• Based on the fraction of heard power by an AP. It means that the more higher

heard power, the less uncertainty. It is introduced by Zhang [39]and formulated

as follows:

a = 1− 10
RSSap,MS

10∑
all heard ap 10

RSSap,MS
10

, (4.31)

where RSSap,MS is the RSS (in dB scale) heard at the MS from the access

point ap.

For �nding p, we can use Gaussian likelihood that is for each access point (ap)

compared with each �ngerprint grid point (fp) .

Pap,i = −(
1√

2πσ2
)exp(−(RSSMS −RSSi)2

2σ2
), (4.32)

where RSSap,MS is the RSS (in dB scale) heard at the MS from the access point ap

and RSSap,fp is the RSS heard in �ngerprint fp from the access point ap. There are

two possibilities:

• It is possible to use only the commonly heard access points (ap) between the

MS and the considered fp.

• It possible to use all heard Access points, either by the MS or by the fp, by

setting the non-heard RSSs to a su�ciently small value the not-heard RSS

(for example, if ap is heard by MS but not by the fp , take RSSap,fp = −100

(dB)).

4.4.2 First combination rule

The classical DS combination rule tells that, if we have two sources of evidence (eg,

two Access points), we can combine their masses via:

m12(C) =

∑
A∩B=Cm1(A)m2(B)

1−
∑

A∩B=∅m1(A)m2(B)
(4.33)
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This translates into the followings, for C = I, C = N and C = U respectively.

They represent based on DS classical combination rule:

m12(I) =
m1(I)m2(I) +m1(U)m2(I) +m1(I)m2(U)

1−m1(I)m2(N)−m1(N)m2(I)
, (4.34)

m12(N) =
m1(N)m2(N) +m1(U)m2(N) +m1(N)m2(U)

1−m1(I)m2(N)−m1(N)m2(I)
, (4.35)

m12(U) =
m1(U)m2(U)

1−m1(I)m2(N)−m1(N)m2(I)
, (4.36)

Equation (4.34) tells us how to combine the information coming from two APs:

1 and 2. If 3 APs are heard, then we will combine m12(X) with m3(X), X = I, N

or U , and so on.

All the above can be written succinctly as:

{m12,fp(I),m12,fp(N),m12,fp(U)} = CombiningDSrule1(m1,fp(I),m1,fp(N),m1,fp(U),

m2,fp(I),m2,fp(N),m2,fp(U))

(4.37)

where fp is the grid point index. Thus each grid point will have three masses

associated to it, based on all the evidence coming jointly from all heard APs.

The problem with the above approach is that the assumption I ∩ N = ∅ is not
true, because the mobile has to be in one of the three states I,N,U, and cannot be

not present (∅).

4.4.3 Second combination rule (Our proposal)

We proposed a modi�ed DS rule for WLAN positioning, for solving the classical

combination rule problem which is mentioned in previous section, which use I ∩
N = U and the 'uncertain evidence' instead of using the con�icting evidence. The

combining rule becomes ( ∅ was replaced with U in the denominator):

m12(C) =

∑
A∩B=Cm1(A)m2(B)

1−
∑

A∩B=U m1(A)m2(B)
, (4.38)

This translates into the followings, for C = I, C = N and C = U , respectively.

They represent based on DS modi�ed combination rule1:
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m12(I) =
m1(I)m2(I) +m1(U)m2(I) +m1(I)m2(U)

1−m1(I)m2(N)−m1(N)m2(I)−m1(U)m2(U)
, (4.39)

m12(N) =
m1(N)m2(N) +m1(U)m2(N) +m1(N)m2(U)

1−m1(I)m2(N)−m1(N)m2(I)−m1(U)m2(U)
, (4.40)

m12(U) =
m1(I)m2(N) +m1(N)m2(I) +m1(U)m2(U)

1−m1(I)m2(N)−m1(N)m2(I)−m1(U)m2(U)
, (4.41)

All the above can be written succinctly as:

{m12,fp(I),m12,fp(N),m12,fp(U)} = CombiningDSrule2(m1,fp(I),m1,fp(N),m1,fp(U),

m2,fp(I),m2,fp(N),m2,fp(U))

(4.42)

where DSrule2 stands for modi�ed classical Dempster-Sha�er combination rule. This

combination rule is implemented for both the �ngerprinting and the path-loss model

in the next two chapters.

4.4.4 Third combination rule (Zhang combination)

Another possible modi�cation of DS combining rule proposed by Zhang [39] is for-

mulated by following equations

m12(C) =

∑
A∩B=Cm1(A)m2(B)

1−
∑

A∩B=Cm1(A)m2(B)
, (4.43)

Thus, this translates into the followings, for C = I, C = N and C = U respec-

tively. They represent based on DS modi�ed combination rule 2 :

m12(I) =
m1(U)m2(I) +m1(I)m2(U)

1−m1(I)m2(N)−m1(N)m2(I)
, (4.44)

m12(N) =
m1(U)m2(N) +m1(N)m2(U)

1−m1(I)m2(N)−m1(N)m2(I)
, (4.45)

m12(U) =
m1(U)m2(U)

1−m1(I)m2(N)−m1(N)m2(I)
, (4.46)
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All the above can be written succinctly as:

{m12,fp(I),m12,fp(N),m12,fp(U)} = CombiningDSrule3(m1,fp(I),m1,fp(N),m1,fp(U),

m2,fp(I),m2,fp(N),m2,fp(U))

(4.47)

where DSrule3 stands for Zhang Dempster-Sha�er combination rule. This combina-

tion rule is implemented for both the �ngerprinting and the path-loss model in next

two chapters. The result of Zhang combination is compared to our combination in

chapter 5 and chapter 6, for both RSS-based algorithms.

4.4.5 Decision making

In the DS theory, the belief and the plausibility are de�ned as equations (4.5) and

(4.6), respectively. In WLAN localization, this translates to

belfp(I) = mjoin,fp(I), (4.48)

And to a modi�ed plausibility Plsm that looks at the uncertainty values:

Plsm,fp(I) =
∑

B
⋂
I ⊂{N,U}

mjoin,fp(B) = 1−mjoin,fp(N)−mjoin,fp(U), (4.49)

Once the joint masses are computed, it is a question of how to decide where the

MS is. There are several variants possible:

1. maximizing the belief or mass (I)

maxap (mjoin,fp(I))

This corresponds to maximizing the Belief in DS theory.

2. maximizing the plausibility or mass (N)

maxap (1−mjoin,fp(N)−mjoin,fp(U))

3. Maximizing the mass showing that we are at that point and minimizing the

uncertainty:

maxfp(mjoin,fp(I)−mjoin,fp(U))

4. Maximizing the mass showing that we are at that point and minimizing the

uncertainty plus the mass showing we are not in that point:

maxfp(mjoin,fp(I)−mjoin,fp(U)−mjoin,fp(N))
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maxapmjoin,fp(I) corresponds to maximizing the gap between belief and plausi-

bility.
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5. FINGERPRINTING RESULTS WITH

DEMPSTER SHAFFER APPROACH

In this chapter, the simulation results are produced via MATLAB simulator. The

results presented here are from the real-�eld measured data.

All the real-�eld measured data used here correspond to indoor WLAN networks

and the simulations have been executed under WLAN networks parameters. The

�eld measurement data is gathered from two building of Tampere University of

Technology and a shopping center in Tampere. The set of dataset were collected

in TUT's four-�oor building and in three-�oor shopping center. For measurements,

we used a Windows tablet with incorporated WLAN receiver and its associated

software. A snapshot of the software used to do the measurements is shown in

Figure 5.1. We manually set the user positions when doing the measurements,

see for example the circled point, and we took between 5 and 20 scans in each

measurement points. The scans were places 9 seconds apart from each other. The

geometric mean of all the scans in one point was �nally saved in the �ngerprint

database. A step grid of 5 meter was used in the analysis.

Figure 5.1: A Windows tablet is used for RSS measurements

In this chapter, we �rst implemented the �ngerprinting based on the Bayesian

theory. Then, we implemented the DST �ngerprinting and �nally, at the end of this
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chapter, the combination of Bayesian and DST have been considered. We compare

the Bayesian combining with Zhang's combining and with our DS combining . In

all 3 methods we use the Gaussian likelihood, either to directly compute the cost

function, or to build the masses.

5.1 Fingerprinting based on Bayesian theory

This section investigates the �ngerprinting based on the Bayesian theory. The ac-

curacy location of this method is measured through 2 performance criteria:

• The �oor detection probability (Pd). The �oor is taken as the nearest �oor to

the z-estimate (or height estimate) of the mobile. The number of hits (exact

correct �oor was estimated) is divided by the number of all user points. Pd is

computed from equation (3.17).

• The Root mean square distance error (RMSE) between the estimated point

and the true user point. The equation (3.15) illustrated the formula for RMSE

computation.

Figure 5.2 is an illustration of our implementation for one point in a user track in

di�erent buildings that we have applied our implementation. Figure 5.2 is plotted

based on Gaussian likelihood. Gaussian likelihood is computed by equation (5.2).

It is important to note that since the log-likelihood is negative, we �rst shifted it to

zero values, then normalized it to its maximum and �nally the likelihood is plotted.

According to Figure 5.2, the pink circle is related to exact MS location and the

green one is the MS estimated location. Distance Error of each implementation

is also represented in this �gure. What we can see from Figure 5.2 is that the

Gaussian-based likelihoods are not exactly the expected Gaussian bell shaped, but

they depend on the environment.

The results are given in Table 5.1. Calculations are carried out for 12 scenarios

in four buildings, in various situations ( di�erent times, user locations etc), and

the number of user points per each track (or scenario) varies from one scenario to

another. It must be mentioned that we have done measurements twice in Tietotalo

building. The second measurement is done to update our data as con�guration of

access points in this building has been changed. These later results are presented in

the table under the name of "NEW Tietotalo"

Two �ngerprinting methods are implemented here. the �rst one is rank-based

�ngerprinting which is explained in chapter 3. The following formula is used for

RBF method.

Pap,i = (RSSi −RSSMS)2, (5.1)
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Figure 5.2: Shape of based on �ngerprinting with Bayesian theory (Upper left side and
lower right side are both in Tiotetalo building, Upper right side is in Sahkotalo building
and lower left side is in a shopping center in Tampere).

where RSSap is ap
th RSS. RSSi is i

th neighbor RSS.

Another method is the Gaussian likelihood represented by equation (5.2). We

used an estimated shadowing variance of 6dB which proved to match slightly nice

with the measurements we did.

Using ranked based and the Gaussian distance methods, we have investigated

the di�erence in the RSS between the MS and the �ngerprints. Estimation is done

averaging over 1 nearest neighborhood. This is for o�ine phase. These methods

are implemented and represented in Table 5.1. The �rst two columns are related to

rank-based �ngerprinting implementation. The last two columns of Table 5.1 show

the accuracy of Gaussian likelihood implementation.

As Table 5.1 demonstrates, in most cases we have a better accuracy in �ngerprint-

ing based on Gaussian likelihood implementation than in rank-based. Additionally,

one can see that the average of �oor detection in Gaussian likelihood implementa-
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Table 5.1: Fingerprinting result based on Bayesian theory. Results in term of �oor detection
probability Pd and 3D distance RMSE

Scenarios FP Rank FP Euclidian
Pd RMSE Pd RMSE
[%] [m] [%] [m]

Tietotalo 1 95.8 6.35 95.8 6.35
Tietotalo 2 95.5 6.96 95.5 5.42
Tietotalo 3 93.3 5.02 100 4.27
Sahkotalo 1 80 25.44 80 25.63
Sahkotalo 2 90.3 17.7 96.7 12.44
Sahkotalo 3 77.2 12.68 95.45 11.36

Shopping Center 5 78.5 23.2 85.71 22.95
Shopping Center 6 92.3 19.2 92.31 19.19
Shopping Center7 85 16.8 85 16.33
NEW Tietotal 1 98 7.71 98 7.68
NEW Tietotal 2 98 5.15 98 6.94
NEW Tietotal 3 91.4 6.4 97.22 4.88

AVERAGE 89.6 12.71 93.30 11.95

tion is better than average Pd in rank-based implementation. Finally, the RMSE in

Gaussian likelihood implementation is also less than RMSE in RBF.

All the above observations point out towards the fact that the Gaussian likelihood

method has a better performance compared with rank based �ngerprinting method.

Calculating the Error Radius (ER) may provide another way for comparing the

performance of the methods introduced before. The �rst step in ER calculation is to

measure the maximum value of cost function for each user point. The cost function

is for example the Gaussian likelihood as plotted in Figure 5.2. The next step is

to �nd all the points that provide a cost function value between maximum and

maximum-1 dB. 1 dB was taken here for illustration purpose, but similar analysis

can be done for other dB values as well. The maximum distance between these

points and true location of user point is named here as the error radius.

We have computed ER for each method. The results of error radius are shown

as "mean ER" and "Standard Deviation (Std)" in Table 5.2. Looking at the results

presented in Table 5.2, one can claim that the Gaussian likelihood method provides

better performance than the rank-based �ngerprinting. On one hand, the mean error

radius of Gaussian likelihood outperforms RBF.On the other hand, the standard

deviation given by Gaussian likelihood is also more acceptable than what we get

using RBF.
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Table 5.2: Fingerprinting error radius result based on Bayesian combining. Results in
terms of mean and std of error radius.

Scenarios FP Rrank FP Euclidian
Mean Std Mean Std
[m] [m] [m] [m]

Tietotalo 1 27.79 8.9 19.05 6.59
Tietotalo 2 36.19 17.29 19.81 6.93
Tietotalo 3 40.63 20.63 26.54 16.91
Sahkotalo 1 53.15 32.68 33.59 23.34
Sahkotalo 2 41.45 15.03 26.83 12.99
Sahkotalo 3 44.71 14.89 24.77 12.44

Shopping Center 5 51.93 24.64 29.78 19.05
Shopping Center 6 48.98 22.19 33.16 21.94
Shopping Center 7 49.5 17.13 32.73 18.66
NEW Tietotal 1 31.21 13.99 33.27 12.48
NEW Tietotal 2 29.31 16.60 16.64 5.72
NEW Tietotal 3 28.01 15.23 18.46 6.39

AVERAGE 40.24 18.26 6.21 13.62

5.2 Fingerprinting based on Dempster Sha�er Theory

This section conducts an investigation into the performance of �ngerprinting while

DST is applied on it. According to chapter 4, DST can be implemented by a variety

of combinations. What we implement here is based on Zhang[39] and also our own

combination. They claim that their combination improved the WLAN localization.

In this work, we are going to introduce a new combination that can be seen as a

modi�cation to theirs. We will provide a comparison between the performance of

these two methods in the rest of this section.

The cost function of Zhang's implementation is demonstrated in Figure 5.3.

This �gure shows the cost function for one user point per track in four di�erent

buildings. the user points within one track in each building are the same as what we

used in Figure 5.1, which means that the results in Figure 5.2 are fully comparable

(sub-plot by sub-plot) with the results in Figure 5.3.

By looking at both Figures 5.2 and 5.3, the improvement of results by applying

DST on �ngerprinting is distinguishable. The plots of DST cost functions are sharper

than Bayesian cost function plots. It could be a useful component which we got

from DST combination. Analyzed algorithms for �nding out pros and cons of the

�ngerprinting with DST combination are currently under study.

The cost function for the �ngerprinting with our DST combination is illustrated

in Figure 5.4 with one user point for di�erent buildings per track of each building.
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Figure 5.3: Shape of cost function for �ngerprinting based on DST with Zhang's combina-
tion(Upper left side and lower right side are both in Tiotetalo building, Upper right side
is in Sahkotalo building and lower left side is in a shopping center in Tampere).

The �ngerprinting with our own DST combination is computed by equations (4.38),

(4.39), (4.40), (4.41) in chapter 4. The performance of our combination is slightly

better than Zhang's combination in most cases. By comparing Figures 5.3 and

5.4, our combination has a sharper cost function than the Zhang's one. It can be

recognized by comparing plot by each other. But it is hard to have an accurate

conclusion considering only one user point or one track as our comparison might not

be accurate enough. To have a better understanding of the performance of these

two combinations, we provide a table for 12 di�erences scenarios.

Table 5.3 shows all non-Bayesian approaches results. Three di�erent approaches

for DST combination are represented in this thesis. The �rst column of Table 5.3

shows the results of Zhang's implementation. Two last columns are based on our

own implementation with two di�erent ways for de�ning the percentage of the RSS.

"a=variable" de�ned as in [18] is computed from (4.31). "a=constant" is based
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Figure 5.4: Illustration of cost function shape of �ngerprinting approach with our proposed
DST combination rule. (Upper left side and lower right side are both in Tiotetalo building,
Upper right side is in Sahkotalo building and lower left side is in a shopping center in
Tampere).

on our approach which depends on the number of APs that heard by user points.

"a=constant" was shown in equation (4.30) .

As Table 5.3 shows, the best result is given by our combination rule in case of

"a=constant".

According to Table 5.3, Zhang's combination rule outperforms Gaussian like-

lihood in some occasions while in most cases the Gaussian likelihood is the better

method. Implementation of the FP with our DST combination provides signi�cantly

more accurate results in most cases compared to the Zhang's implementation. As

it is shown in Table 5.3, the �oor detection improvement is considerable in our

implementation. This improvement also leads to a noticeable reduction in RMSE

values. Comparing Table 5.3 with Table 5.1 implies that in both performance crite-

ria (Pd and RMSE), we reach slightly good improvement by applying non-Bayesian

approaches on �ngerprinting.

In Table 5.4 the result of error radius is shown for �ngerprinting with DST combi-
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nations. As it is demonstrated in Table 5.4, we have better performance by applying

our DST combination with "a=constant" .

Table 5.3: Fingerprinting- DS result. Results in term of �oor detection probability Pd and
3D distance RMSE

Scenarios FP-DS FP-DS Comb rule 1 FP-DS Comb rule 1
Zhang mI with a=variable with a=constant

Pd RMSE Pd RMSE Pd RMSE

[%] [m] [%] [m] [%] [m]

Tietotalo 1 87.5 11.32 87.5 10.25 95.83 6.36

Tietotalo 2 80 15.92 80 15.92 95.56 5.47

Tietotalo 3 86.67 21.2 86.67 21.2 10 4.08

Sahkotalo 1 85 17.08 85 17.08 85 13.14

Sahkotalo 2 90.32 14.11 90.32 14.11 96.77 11.81

Sahkotalo 3 90.91 11.72 90.91 11.72 90.91 11.30

Shopping Center 5 78.57 54.63 78.57 54.63 92.86 22.22

Shopping Center 6 92.31 17.23 92.31 17.23 100 12.23

Shopping Center 7 65 25.07 65 25.07 80 19.52

NEW Tietotal 1 86 12.96 88 11.43 98 7.28

NEW Tietotal 2 80 8.13 80 8.13 98 6.47

NEW Tietotal 3 88.89 9.79 88.89 9.79 97.22 4.98

AVERAGE 76.68 18.26 84.43 18.04 94.17 10.40

Table 5.4: Fingerprinting-DS error radius result. Results in terms of mean and std of error
radius

Scenarios FP-DS FP-DS Comb rule 1 FP-DS Comb rule 1
Zhang mI with a=variable with a=constant

Mean Std Mean Std Mean Std
RE [m] [m] [m] [m] [m]

Tietotalo 1 16.94 7.07 16.75 6.96 5.64 3.58

Tietotalo 2 23.76 16.54 23.38 16.66 4.51 3.73

Tietotalo 3 31.66 24.51 31.61 24.48 4.33 3.29

Sahkotalo 1 35.51 24.77 35.24 24.62 8.35 7

Sahkotalo 2 25.24 15.45 25.05 15.64 8.90 6.99

Sahkotalo 3 21.23 18.33 21.13 18.44 9.55 8.67

Shopping Center 5 38.70 35.57 38.66 35.48 12.34 13.11

Shopping Center 6 34.52 29.23 34.49 29.12 10.89 12.39

Shopping Center 7 30.20 19.07 30.10 18.90 12.77 12.39

NEW Tietotal 1 19.20 15.65 19.15 15.64 7.27 8.06

NEW Tietotal 2 10.81 6.60 10.50 6.57 5.09 5.27

NEW Tietotal 3 13.15 7.56 12.94 7.34 4.75 3.59

AVERAGE 25.07 18.36 24.91 18.32 7.86 7.33
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5.3 Fingerprinting based on combination of Bayesian combin-

ing and Dempster Sha�er combining

In this section a combination of DST and Bayesian Theories is proposed. The goal

is to improve the performance of our implementation in terms of RMSE, ER, and

�oor detection.

Combination formula is illustrated as follow:

Combiningrule =
DST cost function

Max(DST cost function)
+

Bayesian cost function

Max(Bayesian cost function)
,

(5.2)

The implementation of combining rules is also done for both amount of a factor(

"a= constant" and "a= variable"). Although, the result of non-Bayesian approaches

show slight improvement compared to Bayesian methods , our combination with

"a=constant" still has given better result than Zhang's.

Table 5.5: Fingerprinting combination of Bayesian and DS. Results in term of �oor detec-
tion probability Pd and 3D distance RMSE

Scenarios FP combined Bayes FP combined Bayes
+DS with a=variable +DS with a=constant

Pd RMSE Pd RMSE

[%] [m] [%] [m]
Tietotalo 1 91.76 8.56 95.83 6.36
Tietotalo 2 88.89 12.42 95.56 5.47
Tietotalo 3 93.33 14.15 100 4.08
Sahkotalo 1 95 12.30 85 13.14
Sahkotalo 2 96.77 11.78 96.77 11.81
Sahkotalo 3 95.45 12.19 95.45 11.30

Shopping Center 5 100 18.67 92.86 21.26
Shopping Center 6 92.31 17.23 100 12.23
Shopping Center 7 80 17.13 80 19.52
NEW Tietotal 1 92 10.63 98 7.28
NEW Tietotal 2 90 6.54 98 5.20
NEW Tietotal 3 94.44 7.29 97.22 4.98

AVERAGE 92.46 12.40 94.55 10.21

The results of combination rule implementations are shown in Table 5.5.

Table 5.6 shows the error radius for the combination of Bayesian and DST combi-

nation. As it was expected and reported in 5.5, the most acceptable scenario would

be achieved by combining Bayesian and DST with "a=constant" with �xed 'a' factor

combining. It can be seen in Table 5.6.
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Table 5.6: Fingerprinting error radius combination of Bayesian and DS. Results in terms
of mean and std of error radius

Scenarios FP combined Bayes FP combined Bayes
+DS with a=variable +DS with a=constant
Mean Std Mean Std
[m] [m] [m] [m]

Tietotalo 1 16.36 6.94 6.24 4.32
Tietotalo 2 19.16 13.64 5.11 4.09
Tietotalo 3 26.17 21.86 5.06 3.81
Sahkotalo 1 30.57 22.67 10.25 13.11
Sahkotalo 2 21.86 13.84 9.01 7.15
Sahkotalo 3 18.81 15.80 9.88 8.96

Shopping Center 5 32.44 32.55 12.81 13.71
Shopping Center 6 27.15 22.75 11.61 13.32
Shopping Center 7 27.04 18.64 12.99 12.68
NEW Tietotal 1 19.22 12.99 8.39 9.24
NEW Tietotal 2 10.29 6.7 5.74 5.68
NEW Tietotal 3 13.50 7.65 5.02 4.04

AVERAGE 21.88 16.33 8.50 8.34

In summary, we showed that the DST combining can be successfully applied

to �ngerprinting and can slightly improve the results compared to the Bayesian

combining. We managed to show that it could be an e�ective method for improv-

ing WLAN localization compared to traditional way i.e. �ngerprinting based on

Bayesian theory.
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6. PATH-LOSS RESULTS WITH

DEMPSTER-SHAFFER APPROACH

In this chapter, the simulation results are produced via MATLAB simulator. Similar

to the previous chapter, we work with the real-�eld measured data. During this

chapter we reviewed the results of our implementation based on Path-loss model

algorithms. As same as chapter 5, for RSS measurements we used a Windows tablet

with incorporated WLAN receiver and its associated software. The target buildings

for measurements are same as that we had in chapter 5.

This chapter is divided into two sections. In the �rst part we investigate the path-

loss algorithms based on Bayesian theory corresponding to access points situations.

In the second part, we analyses the results obtained from the PL with non-Bayesian

approaches and the Bayesian-based path-loss.

The tables are illustrate the results for path-loss model, and we will compare

Bayesian and non-Bayesian approaches, throughout this chapter.

6.1 Path-loss results based on Bayesian theory corresponding

to di�erent conditions for access points

This section investigates the path-loss based on the Bayesian theory. The accuracy

of path-loss algorithm is also measured through the same performance criteria used

for the �ngerprinting method, namely �oor detection probability (Pd) and RMSE

which are explained in the previous chapter.

In this part two di�erent cases are analyzed. The �rst one is just based on access

points that are heard by user points. All non-heard access points are considered

instead of heard APs in the second case.

The results are given in Table 6.1. As mentioned before, buildings are selected

identical to the �ngerprinting implementation.

As it is shown in Table 6.1, we achieved signi�cantly better results in the �rst

case.

In the second case, we choose a very small "fake" value (e.g. -100 dB) for RSS of

access points. The �oor detection criteria reduces dramatically when APs that are

not heard by user points are chosen. In some cases this method is not able to �nd

a correct �oor of user points at all. We can see zero percentage of �oor detection
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�elds in case of PL with not-heard APs.

Table 6.1: Path-loss model with heard and un-heard APs result. Results in term of �oor
detection probability Pd and 3D distance RMSE

Scenarios PL with heard APs only PL with not heard APs only

Pd RMSE Pd RMSE

[%] [m] [%] [m]

Tietotalo 1 62.5 10.89 41.66 58.69

Tietotalo 2 46.66 9.59 8.88 60.51

Tietotalo 3 46.66 14.92 0 61.61

Sahkotalo 1 95 23.4 50 73.98

Sahkotalo 2 51.61 14.09 0 71.76

Sahkotalo 3 90.9 9.17 4.54 60.53

Shopping center 5 71.42 50.54 0 78.62

Shopping center 6 15.38 25.89 0 102.4

Shopping center 7 60 20.85 0 99.64

New Tietotalo 1 84 10.26 60 58.76

New Tietotalo 2 98 7.19 100 59

New Tietotalo 3 88.88 6.65 97.22 54.62

AVERAGE 67.58 16.95 30.19 70.01

According to the results shown in Table 6.1, we could say that using only the APs

that are not heard by MS would not be a good solution for location determination

by itself.

The result put us in a situation that we thought maybe a combination between

APs heard by MS and the ones that are not heard by MS, would be another choice

for improving our estimation for MS location.

Here we introduce two di�erent ways for combining the APs that are heard by

MS and the ones that are not heard by MS. The �rst combination is formulated as:

CombiningRule1 = Max(
∑

heardAp)

logPap)(1−
∑

not−heardap logPap

Max(
∑

not−heardap logPap
), (6.1)

where Pap is RSS of access point in linear scale. The second combination is computed

based on the following equation.

CombiningRule2 = Max(

∑
heard ap logPap

1 +
∑

not−heard logPap
), (6.2)

where Pap is RSS of access point the same as previous equation. we have imple-

mented this combination rules and the results of them are shown in Table 6.2.
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Table 6.2: Path-loss model combination of heard and not heard APs result. Results in
term of �oor detection probability Pd and 3D distance RMSE

Scenarios
PL with the �rst

combination formula
PL with the second
combination formula

Pd RMSE Pd RMSE

[%] [m] [%] [m]

Tietotalo 1 54.16 44.40 45.83 80.24

Tietotalo 2 35.55 45.17 42.22 78.78

Tietotalo 3 90 44.24 0 81.26

Sahkotalo 1 5 48.54 100 83.02

Sahkotalo 2 70.96 41.94 0 76.76

Sahkotalo 3 0 61.57 0 72.4

Shopping center 5 28.57 62.55 0 104.8

Shopping center 6 61.53 48.41 0 93.88

Shopping center 7 45 53.49 0 100.1

New Tietotalo 1 38 40.46 100 72.77

New Tietotalo 2 76 35.66 100 71.14

New Tietotalo 3 75 28.78 100 70.43

AVERAGE 48.31 46.26 40.67 82.13

According to the Table 6.2, there is a slight improvement with applying combina-

tion rule 1 on PL algorithm compare to PL with APs that are not hearable with MS.

However, there is no improvement for MS location estimation results as compared

with the results achieved by the APs that are heard by user points. In fact, the best

option between all those ideas would be the one that is only based on heard APs for

user points. In other words, taking into account the unheard APs does not improve

the performance.

In the rest of this chapter, we implement path-loss algorithms with deconvolution

method. Then, we apply Dempster-Sha�er theory on path-loss algorithm with three

di�erent combinations. All details will be represented during next section. Finally,

all the results will be compare to each other.

6.2 Comparison of deconvolution approaches Bayesian versus

Dempster-Sha�er

In this section, the results obtained from deconvolution based on Bayesian theory is

compared to deconvolution based on non-Bayesian. The scenarios considered here

are based on the previous implementations i.e. 12 scenarios from four di�erent
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buildings.

Deconvolution method is introduced in chapter 3. The computation steps are

illustrated by Figure 3.4 and equations (3.4), (3.8), (3.9), (3.10) and (3.11). For

DS implementation, the combinations are chosen like previous chapter. We have

implemented path-loss model with the combination that Zhang proposed [39] . Our

proposed DS combinations which are illustrated in chapter 4 with equations (4.38),

(4.39), (4.40), (4.41), are also implemented based on path-loss algorithms.

Table 6.3: Path-loss model error radius results based on Dempster-Shafer theory with
di�erent combinations. Results in term of �oor detection probability Pd and 3D distance
RMSE

Scenarios
PL, Deconvolution,

MMSE
PL, DS Zhang mI

PL, DS, Comb rule

1+ a=variable

PL, DS, Comb rule

1+ a=constant

Pd

[%]
RMSE
[m]

Pd

[%]
RMSE
[m]

Pd

[%]
RMSE
[m]

Pd

[%]
RMSE
[m]

Tietotalo 1 62.5 8.63 66.67 8.30 95.83 8.29 62.5 12.04

Tietotalo 2 73.33 8.08 68.89 8.17 68.89 8.15 60 11.70

Tietotalo 3 83.33 13.45 70 15.90 100 15.86 100 12.53

Sahkotalo 1 95 10.43 90 12.29 90 12.30 95 16.79

Sahkotalo 2 96.77 9.4 93.55 9.07 93.55 9.05 98 17.73

Sahkotalo 3 100 9.17 77.27 10.31 77.27 10.30 72.73 13.15

Shopping center 5 57.14 18.65 85.71 69.64 85.71 69.62 100 17.68

Shopping center 6 7.69 15.42 61.54 22.89 61.54 22.77 69.23 15.46

Shopping center 7 70 22.09 95 22 95 21.96 70 23.22

New Tietotalo 1 72 9.71 32 12.57 32 12.55 66 12.34

New Tietotalo 2 94 6.43 86 8.39 88 8.37 68 12.36

New Tietotalo 3 100 6.75 91.67 9.40 91.67 9.35 91.67 14.88

AVERAGE 74.42 11.51 76.52 17.83 81.62 17.38 79.42 14.99

All the results of the path-loss model with di�erent theories and combinations

are shown in Table 6.3. As mentioned in previous chapter, we implemented our

combination approaches with two di�erent ways of de�ning the percentage of the

RSS. One way is the same as the one introduced in Zhang's approaches [39]. The

other one is introduced by us illustrated in chapter 5.

According to the results shown in Table 6.3, the performance of deconvolution

approaches is almost similar to the one from DS with Zhang's combination. Even

though in some cases deconvolution approaches have a better performance than

Zhang's approaches. Therefore, we try to �nd out better combination to improve

the results of RMSE and �oor detection.

The two last columns of Table 6.3 show the results which are related to our com-

binations of DST implementations. The DS approaches based on our combination

outperform Zhang's approaches. In fact, we are able to improve the results more

than the Zhang's approach. There are some improvements in DS with our combina-

tions as compared with the deconvolution approaches. Speci�cally in terms of �oor
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detection, the improvement is considerable. The distance RMSEs are comparable

in most cases.

By calculating error radius for the path-loss model we try to compare performance

of the methods introduced before. The way of error radius calculation is mentioned

in the previous chapter. We also use the same procedure as the one that is used for

the �ngerprinting algorithm to calculate the path-loss model error radius.

Table 6.4: Path-loss model results based on Dempster-shafer theory with di�erent combi-
nations. Results in terms of mean and std of error radius

Scenarios
PL, Deconvolution,

MMSE
PL, DS Zhang mI

PL, DS, Comb rule
1+ a=variable

PL, DS, Comb rule
1+ a=constant

Mean Std Mean Std Mean Std Mean Std
[m] [m] [m] [m] [m] [m] [m] [m]

Tietotalo 1 32.69 8.48 12.67 6.15 12.59 6.12 16.65 7.90

Tietotalo 2 37.42 10.25 16.31 10.36 16.19 10.39 13.96 8.79

Tietotalo 3 47.02 25.80 22.27 16.99 22.11 16.90 21.53 12.86

Sahkotalo 1 58.63 29.15 28.58 20.51 28.12 20.29 28.82 21.20

Sahkotalo 2 56.60 25.36 21.55 16.43 21.41 16.13 32.05 18.74

Sahkotalo 3 32.32 12.67 12.45 9.22 12.25 8.97 19.61 18.63

Shopping center 5 70.40 42.03 81.22 80.63 80.72 80.75 25.16 20

Shopping center 6 82.44 27.92 53.39 30.87 53.11 30.64 36.66 19.07

Shopping center 7 54.91 26.11 30.29 18.96 29.95 18.99 24.33 16.27

New Tietotalo 1 36.38 16.39 16.20 12.46 16.06 12.32 14.69 11.93

New Tietotalo 2 26.47 8.46 9.06 5.19 9.07 5.18 15.10 11.51

New Tietotalo 3 30.71 7.42 11.87 5.64 11.83 5.64 11.64 7.68

AVERAGE 47.16 20.01 26.32 19.45 26.12 19.36 21.68 14.55

We have applied error radius to the deconvolution approach and the DS ap-

proaches. In Table 6.4 , the result of error radius is shown based on two performance

criteria which are mean of error radius and error radius standard deviation.

We can see from Table 6.4 that for error radius criteria, DS approaches with

any combination outperform deconvolution ones. while our own combinations have

better performance in most scenarios compared to Zhang's combination. In the path-

loss model, the Zhang de�nition of the percentage of the RSS, a factor, illustrated

by equation (4.31), achieves better performance compared to the percentage of the

RSS introduced by us. This improvement can be seen in both mean and standard

deviation of error radius,Table 6.4.

In some buildings such as shopping center, the results are worse than other build-

ings.This is due to a lower number of �ngerprints in that particular building, as well

as to a much lower number of APs per building.

To conclude, by applying DST combination on the path-loss model, the results

are comparable with the one that we had by the path-loss deconvolution. it could be

an e�ective method to promote the performance of WLAN localization algorithms.
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Enhanced algorithms for �oor detection and distance RMSE based on PL with DS

combination approaches are currently under study.
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7. CONCLUSIONS AND FUTURE WORKS

7.1 Conclusions

The main contributions of this thesis have been to analyze several RSS-based lo-

calization algorithms and methods based on Bayesian and non-Bayesian statistical

frameworks and implemented the approaches via MATLAB simulator. The meth-

ods of WLAN-based indoor localization, used for implementation were both �nger-

printing and path-loss algorithms based on Bayesian and non-Bayesian statistical

frameworks. Several of the results shown in this thesis were based on the real-

�eld measurements. Those measurements campaigns were carried out by the author

together with the other positioning group members in Tampere University of Tech-

nology (TUT).

The author studied the characteristics of statistical framework in di�erent WLAN

localization algorithms, by paying a special attention to the �ngerprinting and the

path-loss methods. The WLAN positioning systems were studies in terms of classical

Bayesian framework and their limitations.The Dempster-Shafer Theory (DST) also

were studied as a alternative for non-Bayesian data fusion. Based on this detailed

study, conclusions were made regarding the accuracy of user position estimation that

was obtained from applying Bayesian data fusions on WLAN-based algorithms and

DST framework with di�erent combination rules in term of improving the accuracy

of MS location estimation. RSME, correct �oor detection probability, mean of error

radius and error radius standard deviation are the parameters that are used for

comparing the accuracy of each approach with each other.

In case of the �ngerprinting implementation based on DST combination gave

better result as compared to the �ngerprinting approaches with Bayesian framework.

In other words, the accuracy of the �ngerprinting with DST data fusion results had

considerable improvements. The path-loss model with DST combinations was also

implemented and the results of those approaches were comparable with the result

of Bayesian path-loss model approaches.

Our conclusion is that the non-Bayesian data fusion can be a good alternative

for improving the accuracy of MS location estimation in indoor environment.
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7.2 Future work

There is still room for improvement in this thesis. The work will be continued by

enhancing the accuracy results of MS location estimation that achieved in sections

5.3 and 6.2 .The work can be further developed DST framework with non-Gaussian

underlying assumptions and with more simulated and measured scenarios. In fact,

the main parameters that can be still optimized are:

• The choice of the masses in DST

• The choice of the uncertainty factor (either �xed, or variable, or a combination

between the two)

• The choice of the combining rule

All the above have been addressed to a certain extent in the current thesis, but

optimal theoretical derivations could be investigated in the continuation in order to

�nd the best joint optimal solution. Also various combining rules with DS will be

investigated. Other non-Bayesian frameworks such as Dezert-Smarandache (DSm),

and investigation of additional frameworks currently used in arti�cial intelligence

in the context of wireless localization (e.g. generalized Bayesian theory, �ducial

statistics, etc.) can be further developed and implemented which may also represent

a topic of further research.
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