600 research outputs found

    Comparative analysis of techniques for evaluating the effectiveness of aircraft computing systems

    Get PDF
    Performability analysis is a technique developed for evaluating the effectiveness of fault-tolerant computing systems in multiphase missions. Performability was evaluated for its accuracy, practical usefulness, and relative cost. The evaluation was performed by applying performability and the fault tree method to a set of sample problems ranging from simple to moderately complex. The problems involved as many as five outcomes, two to five mission phases, permanent faults, and some functional dependencies. Transient faults and software errors were not considered. A different analyst was responsible for each technique. Significantly more time and effort were required to learn performability analysis than the fault tree method. Performability is inherently as accurate as fault tree analysis. For the sample problems, fault trees were more practical and less time consuming to apply, while performability required less ingenuity and was more checkable. Performability offers some advantages for evaluating very complex problems

    Modelling network memory servers with parallel processors, break-downs and repairs.

    Get PDF
    This paper presents an analytical method for the performability evaluation of a previously reported network memory server attached to a local area network. To increase the performance and availability of the proposed system, an additional server is added to the system. Such systems are prone to failures. With this in mind, a mathematical model has been developed to analyse the performability of the proposed system with break-downs and repairs. Mean queue lengths and the probability of job losses for the LAN feeding the network memory server is calculated and presented

    Model Checking Markov Chains with Actions and State Labels

    Get PDF
    In the past, logics of several kinds have been proposed for reasoning about discrete- or continuous-time Markov chains. Most of these logics rely on either state labels (atomic propositions) or on transition labels (actions). However, in several applications it is useful to reason about both state-properties and action-sequences. For this purpose, we introduce the logic asCSL which provides powerful means to characterize execution paths of Markov chains with actions and state labels. asCSL can be regarded as an extension of the purely state-based logic asCSL (continuous stochastic logic). \ud In asCSL, path properties are characterized by regular expressions over actions and state-formulas. Thus, the truth value of path-formulas does not only depend on the available actions in a given time interval, but also on the validity of certain state formulas in intermediate states.\ud We compare the expressive power of CSL and asCSL and show that even the state-based fragment of asCSL is strictly more expressive than CSL if time intervals starting at zero are employed. Using an automaton-based technique, an asCSL formula and a Markov chain with actions and state labels are combined into a product Markov chain. For time intervals starting at zero we establish a reduction of the model checking problem for asCSL to CSL model checking on this product Markov chain. The usefulness of our approach is illustrated by through an elaborate model of a scalable cellular communication system for which several properties are formalized by means of asCSL-formulas, and checked using the new procedure

    Construction and Verification of Performance and Reliability Models

    Get PDF
    Over the last two decades formal methods have been extended towards performance and reliability evaluation. This paper tries to provide a rather intuitive explanation of the basic concepts and features in this area. Instead of striving for mathematical rigour, the intention is to give an illustrative introduction to the basics of stochastic models, to stochastic modelling using process algebra, and to model checking as a technique to analyse stochastic models

    Quantification and compensation of the impact of faults in system throughput

    Get PDF
    Performability relates the performance (throughput) and reliability of software systems whose normal behaviour may degrade owing to the existence of faults. These systems, naturally modelled as discrete event systems using shared resources, can incorporate fault-tolerant techniques to mitigate such a degradation. In this article, compositional faulttolerant models based on Petri nets, which make its sensitive performability analysis easier, are proposed. Besides, two methods to compensate existence of faults are provided: an iterative algorithm to compute the number of extra resources needed, and an integer-linear programming problem that minimises the cost of incrementing resources and/or decrementing fault-tolerant activities. The applicability of the developed methods is shown on a Petri net that models a secure database system. Keywords Performability, fault-tolerant techniques, Petri nets, integer-linear programmin

    A template-based methodology for the specification and automated composition of performability models

    Get PDF
    Dependability and performance analysis of modern systems is facing great challenges: their scale is growing, they are becoming massively distributed, interconnected, and evolving. Such complexity makes model-based assessment a difficult and time-consuming task. For the evaluation of large systems, reusable submodels are typically adopted as an effective way to address the complexity and to improve the maintainability of models. When using state-based models, a common approach is to define libraries of generic submodels, and then compose concrete instances by state sharing, following predefined “patterns” that depend on the class of systems being modeled. However, such composition patterns are rarely formalized, or not even documented at all. In this paper, we address this problem using a model-driven approach, which combines a language to specify reusable submodels and composition patterns, and an automated composition algorithm. Clearly defining libraries of reusable submodels, together with patterns for their composition, allows complex models to be automatically assembled, based on a high-level description of the scenario to be evaluated. This paper provides a solution to this problem focusing on: formally defining the concept of model templates, defining a specification language for model templates, defining an automated instantiation and composition algorithm, and applying the approach to a case study of a large-scale distributed system69129330

    SIMULATION-BASED PERFORMABILITY ANALYSIS OF MULTIPROCESSOR SYSTEMS

    Get PDF
    The primary focus in the analysis of multiprocessor systems has traditionally been on their performance. However, their large number of components, their complex network topologies, and sophisticated system software can make them very unreliable. The dependability of a computing system ought to be considered in an early stage of its development in order to take influence on the system architecture and to achieve best performance with high dependability. In this paper a simulation-based method for the combined performance and dependability analysis of fault tolerant multiprocessor systems are presented which provide meaningful results already during the design phase
    • …
    corecore