2,197 research outputs found

    Two-Player Perfect-Information Shift-Invariant Submixing Stochastic Games Are Half-Positional

    Full text link
    We consider zero-sum stochastic games with perfect information and finitely many states and actions. The payoff is computed by a payoff function which associates to each infinite sequence of states and actions a real number. We prove that if the the payoff function is both shift-invariant and submixing, then the game is half-positional, i.e. the first player has an optimal strategy which is both deterministic and stationary. This result relies on the existence of ϵ\epsilon-subgame-perfect equilibria in shift-invariant games, a second contribution of the paper

    Games on graphs with a public signal monitoring

    Full text link
    We study pure Nash equilibria in games on graphs with an imperfect monitoring based on a public signal. In such games, deviations and players responsible for those deviations can be hard to detect and track. We propose a generic epistemic game abstraction, which conveniently allows to represent the knowledge of the players about these deviations, and give a characterization of Nash equilibria in terms of winning strategies in the abstraction. We then use the abstraction to develop algorithms for some payoff functions.Comment: 28 page

    Computer aided synthesis: a game theoretic approach

    Full text link
    In this invited contribution, we propose a comprehensive introduction to game theory applied in computer aided synthesis. In this context, we give some classical results on two-player zero-sum games and then on multi-player non zero-sum games. The simple case of one-player games is strongly related to automata theory on infinite words. All along the article, we focus on general approaches to solve the studied problems, and we provide several illustrative examples as well as intuitions on the proofs.Comment: Invitation contribution for conference "Developments in Language Theory" (DLT 2017

    Expectations or Guarantees? I Want It All! A crossroad between games and MDPs

    Full text link
    When reasoning about the strategic capabilities of an agent, it is important to consider the nature of its adversaries. In the particular context of controller synthesis for quantitative specifications, the usual problem is to devise a strategy for a reactive system which yields some desired performance, taking into account the possible impact of the environment of the system. There are at least two ways to look at this environment. In the classical analysis of two-player quantitative games, the environment is purely antagonistic and the problem is to provide strict performance guarantees. In Markov decision processes, the environment is seen as purely stochastic: the aim is then to optimize the expected payoff, with no guarantee on individual outcomes. In this expository work, we report on recent results introducing the beyond worst-case synthesis problem, which is to construct strategies that guarantee some quantitative requirement in the worst-case while providing an higher expected value against a particular stochastic model of the environment given as input. This problem is relevant to produce system controllers that provide nice expected performance in the everyday situation while ensuring a strict (but relaxed) performance threshold even in the event of very bad (while unlikely) circumstances. It has been studied for both the mean-payoff and the shortest path quantitative measures.Comment: In Proceedings SR 2014, arXiv:1404.041

    07471 Abstracts Collection -- Equilibrium Computation

    Get PDF
    From 18 to 23 November 2007, the Dagstuhl Seminar 07471 ``Equilibrium Computation\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    The Complexity of Nash Equilibria in Limit-Average Games

    Full text link
    We study the computational complexity of Nash equilibria in concurrent games with limit-average objectives. In particular, we prove that the existence of a Nash equilibrium in randomised strategies is undecidable, while the existence of a Nash equilibrium in pure strategies is decidable, even if we put a constraint on the payoff of the equilibrium. Our undecidability result holds even for a restricted class of concurrent games, where nonzero rewards occur only on terminal states. Moreover, we show that the constrained existence problem is undecidable not only for concurrent games but for turn-based games with the same restriction on rewards. Finally, we prove that the constrained existence problem for Nash equilibria in (pure or randomised) stationary strategies is decidable and analyse its complexity.Comment: 34 page

    Simple Stochastic Games with Almost-Sure Energy-Parity Objectives are in NP and coNP

    Get PDF
    We study stochastic games with energy-parity objectives, which combine quantitative rewards with a qualitative ω\omega-regular condition: The maximizer aims to avoid running out of energy while simultaneously satisfying a parity condition. We show that the corresponding almost-sure problem, i.e., checking whether there exists a maximizer strategy that achieves the energy-parity objective with probability 11 when starting at a given energy level kk, is decidable and in NP∩coNPNP \cap coNP. The same holds for checking if such a kk exists and if a given kk is minimal
    • …
    corecore