5 research outputs found

    Two-dimensional crystal melting and D4-D2-D0 on toric Calabi-Yau singularities

    Get PDF
    We construct a two-dimensional crystal melting model which reproduces the BPS index of D2-D0 states bound to a non-compact D4-brane on an arbitrary toric Calabi-Yau singularity. The crystalline structure depends on the toric divisor wrapped by the D4-brane. The molten crystals are in one-to-one correspondence with the torus fixed points of the moduli space of the quiver gauge theory on D-branes. The F- and D-term constraints of the gauge theory are regarded as a generalization of the ADHM constraints on instantons. We also show in several examples that our model is consistent with the wall-crossing formula for the BPS index.Comment: 72 pages, 44 figure

    The simple, little and slow things count : on parameterized counting complexity

    Get PDF
    In this thesis, we study the parameterized complexity of counting problems, as introduced by Flum and Grohe. This area mainly involves questions of the following kind: On inputs x with a parameter k, can we solve a given counting problem in time f(k)*|x|^c for a function f that depends only on k? In the positive case, we call the problem fixed-parameter tractable (fpt). Otherwise, we try to prove its #W[1]-hardness, which is the parameterized analogue of #P-hardness. We introduce a general technique that bridges parameterized counting complexity and the so-called Holant framework. We then apply this technique to the problem of counting perfect matchings (or equivalently, the permanent) subject to structural parameters of the input graph G: On the algorithmic side, we introduce a new tractable structural parameter, namely, the minimal size of an excluded single-crossing minor of G. We complement this by showing that counting perfect matchings is #W[1]-hard when parameterized by the size of an arbitrary excluded minor. Then we turn our attention to counting general subgraphs H other than perfect matchings in a host graph G. Instead of imposing structural parameters on G, we parameterize by the size of H, giving rise to the problems #Sub(C) for fixed graph classes C: For inputs H and G with H in C, we wish to count H-copies in G. Here, C could be the class of matchings, cycles, paths, or any other recursively enumerable class. We give a full dichotomy for these problems: Either #Sub(C) has a polynomial-time algorithm or it is #W[1]-complete. Assuming that FPT and #W[1] do not coincide, we can thus precisely identify the graph classes C for which the subgraph counting problem #Sub(C) admits polynomial-time algorithms. Furthermore, we obtain an unexpected application of our extensions to the Holant framework: We show that, given two unweighted graphs, it is C=P-complete to decide whether they have the same number of perfect matchings. Finally, we prove conditional lower bounds for counting problems under the counting exponential-time hypothesis #ETH. This hypothesis, introduced by Dell et al., asserts that the satisfying assignments to n-variable formulas in 3-CNF cannot be counted in time 2^o(n). Building upon this, we introduce a general technique that allows to derive tight lower bounds for other counting problems, such as counting perfect matchings, the Tutte polynomial, and the matching polynomial.Die vorliegende Arbeit befasst sich mit der parametrisierten Komplexität von Zählproblemen, einem von Flum und Grohe gegründeten Gebiet, in welchem Fragen der folgenden Art betrachtet werden: Können gegebene Probleme auf Eingaben x mit Parameter k in Zeit f(k)*|x|^c gelöst werden, wobei f eine Funktion ist, die nur von k abhängt? Im positiven Falle bezeichnen wir das Problem als parametrisierbar (FPT). Andernfalls versuchen wir typischerweise, dessen #W[1]-Härte zu beweisen - diese lässt sich vereinfachend als ein parametrisiertes Äquivalent der #P-Härte auffassen. Wir führen zunächst eine allgemeine Technik ein, welche die parametrisierte Zählkomplexität mit dem sogenannten Holant-Rahmenwerk verbindet. Anschließend setzen wir diese zum Zählen perfekter Paarungen (oder äquivalent, zur Auswertung der Permanente) unter strukturellen Parametern des Eingabegraphens G ein: Wir zeigen, dass das Zählen perfekter Paarungen parametrisierbar ist durch die minimale Größe eines ausgeschlossenen Minors von G, der höchstens eine Kreuzung besitzt. Dieses algorithmische Resultat komplementieren wir durch die #W[1]-Härte des Zählens perfekter Paarungen, wenn die minimale Größe eines beliebigen ausgeschlossenen Minors als Parameter betrachtet wird. Anschließend widmen wir uns dem Zählen beliebiger Subgraphen H in Graphen G. Anstelle von strukturellen Parametern betrachten wir die Größe von H als Parameter und erhalten hierdurch die Probleme #Sub(C) für feste Graphklassen C: Auf Eingaben H und G mit H in C gilt es, die H-Kopien in G zu zählen. Hierbei kann C die Klasse der Paarungen, Zyklen, Pfade, oder eine beliebige andere Klasse von Graphen darstellen. Wir zeigen eine vollständige Dichotomie für diese Probleme: Das Problem #Sub(C) ist entweder in P oder #W[1]-hart. Unter der gängigen Annahme, dass FPT und #W[1] nicht zusammenfallen, erhalten wir somit eine vollständige Klassifikation der Polynomialzeit-lösbaren Probleme #Sub(C). Weiterhin erhalten wir eine unerwartete Anwendung unserer Erweiterungen des Holant-Rahmenwerks: Wir zeigen die C=P-Vollständigkeit der Frage, ob die Anzahlen perfekter Paarungen in zwei gegebenen ungewichteten Graphen übereinstimmen. Schlussendlich zeigen wir bedingte untere Schranken für Zählprobleme unter der Zählversion der Exponentialzeithypothese #ETH, eingeführt durch Dell et al. Diese postuliert, dass die erfüllenden Belegungen in 3-KNF-Formeln mit n Variablen nicht in Zeit 2^o(n) gezählt werden können. Darauf aufbauend führen wir eine allgemeine Technik ein, die es ermöglicht, scharfe untere Schranken für andere Zählprobleme zu erhalten: Dies umfasst das Zählen perfekter Paarungen, das Tutte-Polynom und das Paarungs-Polynom

    EUROCOMB 21 Book of extended abstracts

    Get PDF

    Generalized Noncrossing Partitions and Combinatorics of Coxeter Groups

    Full text link
    This memoir constitutes the author's PhD thesis at Cornell University. It serves both as an expository work and as a description of new research. At the heart of the memoir, we introduce and study a poset NC(k)(W)NC^{(k)}(W) for each finite Coxeter group WW and for each positive integer kk. When k=1k=1, our definition coincides with the generalized noncrossing partitions introduced by Brady-Watt and Bessis. When WW is the symmetric group, we obtain the poset of classical kk-divisible noncrossing partitions, first studied by Edelman. Along the way, we include a comprehensive introduction to related background material. Before defining our generalization NC(k)(W)NC^{(k)}(W), we develop from scratch the theory of algebraic noncrossing partitions NC(W)NC(W). This involves studying a finite Coxeter group WW with respect to its generating set TT of {\em all} reflections, instead of the usual Coxeter generating set SS. This is the first time that this material has appeared in one place. Finally, it turns out that our poset NC(k)(W)NC^{(k)}(W) shares many enumerative features in common with the ``generalized nonnesting partitions'' of Athanasiadis and the ``generalized cluster complexes'' of Fomin and Reading. In particular, there is a generalized ``Fuss-Catalan number'', with a nice closed formula in terms of the invariant degrees of WW, that plays an important role in each case. We give a basic introduction to these topics, and we describe several conjectures relating these three families of ``Fuss-Catalan objects''.Comment: Final version -- to appear in Memoirs of the American Mathematical Society. Many small improvements in exposition, especially in Sections 2.2, 4.1 and 5.2.1. Section 5.1.5 deleted. New references to recent wor

    Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS'09)

    Get PDF
    The Symposium on Theoretical Aspects of Computer Science (STACS) is held alternately in France and in Germany. The conference of February 26-28, 2009, held in Freiburg, is the 26th in this series. Previous meetings took place in Paris (1984), Saarbr¨ucken (1985), Orsay (1986), Passau (1987), Bordeaux (1988), Paderborn (1989), Rouen (1990), Hamburg (1991), Cachan (1992), W¨urzburg (1993), Caen (1994), M¨unchen (1995), Grenoble (1996), L¨ubeck (1997), Paris (1998), Trier (1999), Lille (2000), Dresden (2001), Antibes (2002), Berlin (2003), Montpellier (2004), Stuttgart (2005), Marseille (2006), Aachen (2007), and Bordeaux (2008). ..
    corecore