248 research outputs found

    Efficient Random Grid Visual Cryptographic Schemes having Essential Members

    Get PDF
    In this paper we consider ``OR based monochrome random grid visual cryptographic schemes (RGVCS) for tt-(k,n)(k,n)^* access structure which is a generalization of the threshold (k,n)(k,n) access structure in the sense that in all the successful attempts to recover the secret image, the tt essential participants must always be present. Up to the best of our knowledge, the current proposed work is the first in the literature of RGVCS which provides efficient direct constructions for the tt-(k,n)(k,n)^*-RGVCS for ``OR based model. Finding the closed form of light contrast is a challenging work. However, in this paper we come up with the closed form of the light contrast for the ``OR based model. In literature, there are visual cryptographic schemes where the secret reconstruction is done by binary ``XOR operation instead of ``OR operation to increase the relative contrast of the decoded image. In this paper, we also propose an extended grid based tt-(k,n)(k,n)^*-RGVCS in which we replace the traditional ``OR operation by ``XOR operation. Note that the use of XOR operation indicates that the decoding must be performed computationally and not visually. We justified our schemes using both experimental as well as simulation based data

    Deterministic Chaos in Digital Cryptography

    Get PDF
    This thesis studies the application of deterministic chaos to digital cryptography. Cryptographic systems such as pseudo-random generators (PRNG), block ciphers and hash functions are regarded as a dynamic system (X, j), where X is a state space (Le. message space) and f : X -+ X is an iterated function. In both chaos theory and cryptography, the object of study is a dynamic system that performs an iterative nonlinear transformation of information in an apparently unpredictable but deterministic manner. In terms of chaos theory, the sensitivity to the initial conditions together with the mixing property ensures cryptographic confusion (statistical independence) and diffusion (uniform propagation of plaintext and key randomness into cihertext). This synergetic relationship between the properties of chaotic and cryptographic systems is considered at both the theoretical and practical levels: The theoretical background upon which this relationship is based, includes discussions on chaos, ergodicity, complexity, randomness, unpredictability and entropy. Two approaches to the finite-state implementation of chaotic systems (Le. pseudo-chaos) are considered: (i) floating-point approximation of continuous-state chaos; (ii) binary pseudo-chaos. An overview is given of chaotic systems underpinning cryptographic algorithms along with their strengths and weaknesses. Though all conventional cryposystems are considered binary pseudo-chaos, neither chaos, nor pseudo-chaos are sufficient to guarantee cryptographic strength and security. A dynamic system is said to have an analytical solution Xn = (xo) if any trajectory point Xn can be computed directly from the initial conditions Xo, without performing n iterations. A chaotic system with an analytical solution may have a unpredictable multi-valued map Xn+l = f(xn). Their floating-point approximation is studied in the context of pseudo-random generators. A cryptographic software system E-Larm ™ implementing a multistream pseudo-chaotic generator is described. Several pseudo-chaotic systems including the logistic map, sine map, tangent- and logarithm feedback maps, sawteeth and tent maps are evaluated by means of floating point computations. Two types of partitioning are used to extract pseudo-random from the floating-point state variable: (i) combining the last significant bits of the floating-point number (for nonlinear maps); and (ii) threshold partitioning (for piecewise linear maps). Multi-round iterations are produced to decrease the bit dependence and increase non-linearity. Relationships between pseudo-chaotic systems are introduced to avoid short cycles (each system influences periodically the states of other systems used in the encryption session). An evaluation of cryptographic properties of E-Larm is given using graphical plots such as state distributions, phase-space portraits, spectral density Fourier transform, approximated entropy (APEN), cycle length histogram, as well as a variety of statistical tests from the National Institute of Standards and Technology (NIST) suite. Though E-Larm passes all tests recommended by NIST, an approach based on the floating-point approximation of chaos is inefficient in terms of the quality/performance ratio (compared with existing PRNG algorithms). Also no solution is known to control short cycles. In conclusion, the role of chaos theory in cryptography is identified; disadvantages of floating-point pseudo-chaos are emphasized although binary pseudo-chaos is considered useful for cryptographic applications.Durand Technology Limite

    Obfuscation Framework Based on Functionally Equivalent Combinatorial Logic Families

    Get PDF
    This thesis aims to be a few building blocks in the bridge between theoretical and practical software obfuscation that researchers will one day construct. We provide a method for random uniform selection of circuits based on a functional signature and specific construction specifiers. Additionally, this thesis includes the first formal definition of an algorithm that performs only static analysis on a program; that is analysis that does not rely on the input and output behavior of the analyzed program. This is analogous to some techniques used in real-world software reverse engineering. Finally, this thesis uses the equivalent circuit library to empirically produce some statistical data about enumerated circuit families and explains how this data may be useful to future researchers

    Cloud-based homomorphic encryption for privacy-preserving machine learning in clinical decision support

    Get PDF
    While privacy and security concerns dominate public cloud services, Homomorphic Encryption (HE) is seen as an emerging solution that ensures secure processing of sensitive data via untrusted networks in the public cloud or by third-party cloud vendors. It relies on the fact that some encryption algorithms display the property of homomorphism, which allows them to manipulate data meaningfully while still in encrypted form; although there are major stumbling blocks to overcome before the technology is considered mature for production cloud environments. Such a framework would find particular relevance in Clinical Decision Support (CDS) applications deployed in the public cloud. CDS applications have an important computational and analytical role over confidential healthcare information with the aim of supporting decision-making in clinical practice. Machine Learning (ML) is employed in CDS applications that typically learn and can personalise actions based on individual behaviour. A relatively simple-to-implement, common and consistent framework is sought that can overcome most limitations of Fully Homomorphic Encryption (FHE) in order to offer an expanded and flexible set of HE capabilities. In the absence of a significant breakthrough in FHE efficiency and practical use, it would appear that a solution relying on client interactions is the best known entity for meeting the requirements of private CDS-based computation, so long as security is not significantly compromised. A hybrid solution is introduced, that intersperses limited two-party interactions amongst the main homomorphic computations, allowing exchange of both numerical and logical cryptographic contexts in addition to resolving other major FHE limitations. Interactions involve the use of client-based ciphertext decryptions blinded by data obfuscation techniques, to maintain privacy. This thesis explores the middle ground whereby HE schemes can provide improved and efficient arbitrary computational functionality over a significantly reduced two-party network interaction model involving data obfuscation techniques. This compromise allows for the powerful capabilities of HE to be leveraged, providing a more uniform, flexible and general approach to privacy-preserving system integration, which is suitable for cloud deployment. The proposed platform is uniquely designed to make HE more practical for mainstream clinical application use, equipped with a rich set of capabilities and potentially very complex depth of HE operations. Such a solution would be suitable for the long-term privacy preserving-processing requirements of a cloud-based CDS system, which would typically require complex combinatorial logic, workflow and ML capabilities

    Design and Cryptanalysis of Symmetric-Key Algorithms in Black and White-box Models

    Get PDF
    Cryptography studies secure communications. In symmetric-key cryptography, the communicating parties have a shared secret key which allows both to encrypt and decrypt messages. The encryption schemes used are very efficient but have no rigorous security proof. In order to design a symmetric-key primitive, one has to ensure that the primitive is secure at least against known attacks. During 4 years of my doctoral studies at the University of Luxembourg under the supervision of Prof. Alex Biryukov, I studied symmetric-key cryptography and contributed to several of its topics. Part I is about the structural and decomposition cryptanalysis. This type of cryptanalysis aims to exploit properties of the algorithmic structure of a cryptographic function. The first goal is to distinguish a function with a particular structure from random, structure-less functions. The second goal is to recover components of the structure in order to obtain a decomposition of the function. Decomposition attacks are also used to uncover secret structures of S-Boxes, cryptographic functions over small domains. In this part, I describe structural and decomposition cryptanalysis of the Feistel Network structure, decompositions of the S-Box used in the recent Russian cryptographic standard, and a decomposition of the only known APN permutation in even dimension. Part II is about the invariant-based cryptanalysis. This method became recently an active research topic. It happened mainly due to recent extreme cryptographic designs, which turned out to be vulnerable to this cryptanalysis method. In this part, I describe an invariant-based analysis of NORX, an authenticated cipher. Further, I show a theoretical study of linear layers that preserve low-degree invariants of a particular form used in the recent attacks on block ciphers. Part III is about the white-box cryptography. In the white-box model, an adversary has full access to the cryptographic implementation, which in particular may contain a secret key. The possibility of creating implementations of symmetric-key primitives secure in this model is a long-standing open question. Such implementations have many applications in industry; in particular, in mobile payment systems. In this part, I study the possibility of applying masking, a side-channel countermeasure, to protect white-box implementations. I describe several attacks on direct application of masking and provide a provably-secure countermeasure against a strong class of the attacks. Part IV is about the design of symmetric-key primitives. I contributed to design of the block cipher family SPARX and to the design of a suite of cryptographic algorithms, which includes the cryptographic permutation family SPARKLE, the cryptographic hash function family ESCH, and the authenticated encryption family SCHWAEMM. In this part, I describe the security analysis that I made for these designs

    Algebraic Frameworks for Cryptographic Primitives

    Full text link
    A fundamental goal in theoretical cryptography is to identify the conceptually simplest abstractions that generically imply a collection of other cryptographic primitives. For symmetric-key primitives, this goal has been accomplished by showing that one-way functions are necessary and sufficient to realize primitives ranging from symmetric-key encryption to digital signatures. By contrast, for asymmetric primitives, we have no (known) unifying simple abstraction even for a few of its most basic objects. Moreover, even for public-key encryption (PKE) alone, we have no unifying abstraction that all known constructions follow. The fact that almost all known PKE constructions exploit some algebraic structure suggests considering abstractions that have some basic algebraic properties, irrespective of their concrete instantiation. We make progress on the aforementioned fundamental goal by identifying simple and useful cryptographic abstractions and showing that they imply a variety of asymmetric primitives. Our general approach is to augment symmetric abstractions with algebraic structure that turns out to be sufficient for PKE and much more, thus yielding a “bridge” between symmetric and asymmetric primitives. We introduce two algebraic frameworks that capture almost all concrete instantiations of (asymmetric) cryptographic primitives, and we also demonstrate their applicability by showing their cryptographic implications. Therefore, rather than manually building different cryptosystems from a new assumption, one only needs to build one (or more) of our simple structured primitives, and a whole host of cryptosystems immediately follows.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/166137/1/alamati_1.pd

    Analysis and Design of Symmetric Cryptographic Algorithms

    Get PDF
    This doctoral thesis is dedicated to the analysis and the design of symmetric cryptographic algorithms. In the first part of the dissertation, we deal with fault-based attacks on cryptographic circuits which belong to the field of active implementation attacks and aim to retrieve secret keys stored on such chips. Our main focus lies on the cryptanalytic aspects of those attacks. In particular, we target block ciphers with a lightweight and (often) non-bijective key schedule where the derived subkeys are (almost) independent from each other. An attacker who is able to reconstruct one of the subkeys is thus not necessarily able to directly retrieve other subkeys or even the secret master key by simply reversing the key schedule. We introduce a framework based on differential fault analysis that allows to attack block ciphers with an arbitrary number of independent subkeys and which rely on a substitution-permutation network. These methods are then applied to the lightweight block ciphers LED and PRINCE and we show in both cases how to recover the secret master key requiring only a small number of fault injections. Moreover, we investigate approaches that utilize algebraic instead of differential techniques for the fault analysis and discuss advantages and drawbacks. At the end of the first part of the dissertation, we explore fault-based attacks on the block cipher Bel-T which also has a lightweight key schedule but is not based on a substitution-permutation network but instead on the so-called Lai-Massey scheme. The framework mentioned above is thus not usable against Bel-T. Nevertheless, we also present techniques for the case of Bel-T that enable full recovery of the secret key in a very efficient way using differential fault analysis. In the second part of the thesis, we focus on authenticated encryption schemes. While regular ciphers only protect privacy of processed data, authenticated encryption schemes also secure its authenticity and integrity. Many of these ciphers are additionally able to protect authenticity and integrity of so-called associated data. This type of data is transmitted unencrypted but nevertheless must be protected from being tampered with during transmission. Authenticated encryption is nowadays the standard technique to protect in-transit data. However, most of the currently deployed schemes have deficits and there are many leverage points for improvements. With NORX we introduce a novel authenticated encryption scheme supporting associated data. This algorithm was designed with high security, efficiency in both hardware and software, simplicity, and robustness against side-channel attacks in mind. Next to its specification, we present special features, security goals, implementation details, extensive performance measurements and discuss advantages over currently deployed standards. Finally, we describe our preliminary security analysis where we investigate differential and rotational properties of NORX. Noteworthy are in particular the newly developed techniques for differential cryptanalysis of NORX which exploit the power of SAT- and SMT-solvers and have the potential to be easily adaptable to other encryption schemes as well.Diese Doktorarbeit beschäftigt sich mit der Analyse und dem Entwurf von symmetrischen kryptographischen Algorithmen. Im ersten Teil der Dissertation befassen wir uns mit fehlerbasierten Angriffen auf kryptographische Schaltungen, welche dem Gebiet der aktiven Seitenkanalangriffe zugeordnet werden und auf die Rekonstruktion geheimer Schlüssel abzielen, die auf diesen Chips gespeichert sind. Unser Hauptaugenmerk liegt dabei auf den kryptoanalytischen Aspekten dieser Angriffe. Insbesondere beschäftigen wir uns dabei mit Blockchiffren, die leichtgewichtige und eine (oft) nicht-bijektive Schlüsselexpansion besitzen, bei denen die erzeugten Teilschlüssel voneinander (nahezu) unabhängig sind. Ein Angreifer, dem es gelingt einen Teilschlüssel zu rekonstruieren, ist dadurch nicht in der Lage direkt weitere Teilschlüssel oder sogar den Hauptschlüssel abzuleiten indem er einfach die Schlüsselexpansion umkehrt. Wir stellen Techniken basierend auf differenzieller Fehleranalyse vor, die es ermöglichen Blockchiffren zu analysieren, welche eine beliebige Anzahl unabhängiger Teilschlüssel einsetzen und auf Substitutions-Permutations Netzwerken basieren. Diese Methoden werden im Anschluss auf die leichtgewichtigen Blockchiffren LED und PRINCE angewandt und wir zeigen in beiden Fällen wie der komplette geheime Schlüssel mit einigen wenigen Fehlerinjektionen rekonstruiert werden kann. Darüber hinaus untersuchen wir Methoden, die algebraische statt differenzielle Techniken der Fehleranalyse einsetzen und diskutieren deren Vor- und Nachteile. Am Ende des ersten Teils der Dissertation befassen wir uns mit fehlerbasierten Angriffen auf die Blockchiffre Bel-T, welche ebenfalls eine leichtgewichtige Schlüsselexpansion besitzt jedoch nicht auf einem Substitutions-Permutations Netzwerk sondern auf dem sogenannten Lai-Massey Schema basiert. Die oben genannten Techniken können daher bei Bel-T nicht angewandt werden. Nichtsdestotrotz werden wir auch für den Fall von Bel-T Verfahren vorstellen, die in der Lage sind den vollständigen geheimen Schlüssel sehr effizient mit Hilfe von differenzieller Fehleranalyse zu rekonstruieren. Im zweiten Teil der Doktorarbeit beschäftigen wir uns mit authentifizierenden Verschlüsselungsverfahren. Während gewöhnliche Chiffren nur die Vertraulichkeit der verarbeiteten Daten sicherstellen, gewährleisten authentifizierende Verschlüsselungsverfahren auch deren Authentizität und Integrität. Viele dieser Chiffren sind darüber hinaus in der Lage auch die Authentizität und Integrität von sogenannten assoziierten Daten zu gewährleisten. Daten dieses Typs werden in nicht-verschlüsselter Form übertragen, müssen aber dennoch gegen unbefugte Veränderungen auf dem Transportweg geschützt sein. Authentifizierende Verschlüsselungsverfahren bilden heutzutage die Standardtechnologie um Daten während der Übertragung zu beschützen. Aktuell eingesetzte Verfahren weisen jedoch oftmals Defizite auf und es existieren vielfältige Ansatzpunkte für Verbesserungen. Mit NORX stellen wir ein neuartiges authentifizierendes Verschlüsselungsverfahren vor, welches assoziierte Daten unterstützt. Dieser Algorithmus wurde vor allem im Hinblick auf Einsatzgebiete mit hohen Sicherheitsanforderungen, Effizienz in Hardware und Software, Einfachheit, und Robustheit gegenüber Seitenkanalangriffen entwickelt. Neben der Spezifikation präsentieren wir besondere Eigenschaften, angestrebte Sicherheitsziele, Details zur Implementierung, umfassende Performanz-Messungen und diskutieren Vorteile gegenüber aktuellen Standards. Schließlich stellen wir Ergebnisse unserer vorläufigen Sicherheitsanalyse vor, bei der wir uns vor allem auf differenzielle Merkmale und Rotationseigenschaften von NORX konzentrieren. Erwähnenswert sind dabei vor allem die für die differenzielle Kryptoanalyse von NORX entwickelten Techniken, die auf die Effizienz von SAT- und SMT-Solvern zurückgreifen und das Potential besitzen relativ einfach auch auf andere Verschlüsselungsverfahren übertragen werden zu können

    Cryptography on Isogeny Graphs

    Get PDF
    corecore