

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Soria-Vázquez, Eduardo

Title:
Towards Secure Multi-Party Computation on the Internet

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/195285456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Towards Secure Multi-Party
Computation on the Internet:

Few Rounds and Many Parties

By

EDUARDO SORIA VÁZQUEZ

Department of Computer Science
UNIVERSITY OF BRISTOL

A dissertation submitted to the University of Bristol in ac-
cordance with the requirements of the degree of DOCTOR OF

PHILOSOPHY in the Faculty of Engineering.

OCTOBER 2018

Word count: 74,000 words

A mi padre.

i

ABSTRACT

Multi-Party Computation (MPC) protocols allow a set of mutually distrustful parties to
securely compute on their joint private inputs, maintaining the privacy of those. Since
its early conception in the eighties, a plethora of research as well as some real world

deployments have taken place, demonstrating the relevance of such an interesting mathematical
problem. Nevertheless, most of the research and all deployments have focused on scenarios where
both the number of parties and network latency are very low. This thesis lays out the first steps
towards practical deployments of large-scale MPC, where many parties may be involved and they
might only be connected through a high-latency network such as the Internet.

Both theoretical and empirical evidence shows that non-constant-round protocols cannot
perform well on slow networks for many functions. In order to overcome this issue, all the works
in this thesis include concretely efficient constant-round protocols based on multi-party garbled
circuits. Chapter 3 and Chapter 4 deal with the very strong setting where an active adversary
corrupts all but one parties. The former achieves such goal by using homomorphic encryption for
low-depth circuits. The latter, based on subsequent work, improves the theoretical understanding
of the problem and utilises oblivious transfer to improve efficiency.

In Chapter 5 we provide both constant and non-constant round protocols that can handle
large numbers of parties more efficiently. We leverage our performance improvements by relaxing
the setting where all but one parties are corrupted to one where a small minority of honest
participants can be assumed. Concretely, such change allows to distribute secret key material
so that each party only holds a ‘short’ part of the key. Security is then based on the concatena-
tion of all honest parties’ keys rather than on each party’s individual key, improving both the
communication and computation complexities.

iii

ACKNOWLEDGEMENTS

The last three years have marked an important period of my life, both personally and as a
researcher. They would have not been the same without the support of family, friends and
colleagues. I would like to start by thanking Nigel Smart for giving me this opportunity, being my
advisor and introducing me to others in the community. Martijn Stam also deserves a mention in
these grounds for his help and advice, specially during the last year.

Science is a collective enterprise. I would not be writing these lines in this precise moment if I
did not get to work with my co-authors Carmit Hazay, Marcel Keller, Yehuda Lindell, Emmanuela
Orsini, Dragoş Rotaru, Peter Scholl, Nigel Smart and Srinivas Vivek. I have learned a great deal
from these collaborations, as well as from general chats about cryptography and research. These
chats have, of course, not been limited neither to those topics, nor to my co-authors. I can only be
grateful for all the nice people and the human aspects of the working environment at University
of Bristol – lunches, coffees and Friday pubs included.

Last, but not least, much of the work and enjoyable conversations would not have taken
place without the support of the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No. 643161, in more familiar
terms, ECRYPT-NET. I can speak for at least many of us the Early Stage Researchers when I say
this project has provided an excellent framework to develop our research and to learn about the
many aspects of cryptography, beyond the purely academic. It has been a true pleasure to also
share this journey with the rest of the programme members!

v

AUTHOR’S DECLARATION

I declare that the work in this dissertation was carried out in accordance with the
requirements of the University’s Regulations and Code of Practice for Research
Degree Programmes and that it has not been submitted for any other academic

award. Except where indicated by specific reference in the text, the work is the
candidate’s own work. Work done in collaboration with, or with the assistance of,
others, is indicated as such. Any views expressed in the dissertation are those of the
author.

SIGNED: .. DATE: ..

vii

TABLE OF CONTENTS

Page

List of Tables xiii

List of Figures xv

1 Introduction 1
1.1 A Brief History of Practical Multi-Party Computation 2

1.2 Outline of this Thesis . 3

1.3 Contributions of the Author . 4

2 Preliminaries 7
2.1 Prerequisites . 7

2.2 Primitives . 8

2.2.1 Secret Sharing . 9

2.2.2 Pseudorandom Functions . 9

2.2.3 Oblivious Transfer . 10

2.3 Multi-Party Computation . 10

2.4 Universally Composable Security . 12

2.5 Garbled Circuits: The Two-Party Setting . 15

2.5.1 Garbling in the Two-Party Setting . 15

2.5.2 Example Garbled Circuit . 16

2.5.3 The Two-Party Computation Protocol . 17

2.6 Multi-Party Garbled Circuits: BMR . 18

2.6.1 Evaluating BMR Garbled Circuits . 20

2.6.2 A Brief History of Efficient Multi-Party Garbled Circuits 20

2.7 A Note on Actively Secure Garbled Circuits . 22

3 Garbling using Somewhat Homomorphic Encryption 25
3.1 Introduction . 25

3.1.1 Our Contributions . 26

3.1.2 Comparison . 28

ix

TABLE OF CONTENTS

3.1.3 Additional Related Work . 29

3.2 Preliminaries . 30

3.2.1 A Basic FHE Functionality With Distributed Decryption 30

3.2.2 Gentry’s FHE-Based MPC Protcol . 32

3.2.3 The BMR-SPDZ Protocol . 32

3.3 Extending the FFHE/FSHE Functionalities . 34

3.3.1 The Extended Functionality Definition . 34

3.3.2 Securely Realising the Extended Functionality 35

3.4 The First Variant of the BMR-SHE Protocol, ΠDepth−4 39

3.4.1 Functionality FPreprocessing for the Offline Phase 39

3.4.2 The BMR-SHE Protocol Specification ΠMPC,4 39

3.4.3 The ΠPreprocessing,4 Protocol . 39

3.4.4 Analysis of Efficiency . 44

3.5 A Lower Depth Variant of the BMR-SHE Protocol, ΠDepth−3 44

3.5.1 Protocol ΠDepth−3 Description . 45

3.5.2 Security Of the Modified Protocol . 48

3.5.3 Analysis of Efficiency of the Modified Protocol 49

4 Garbling using Oblivious Transfer 51
4.1 Introduction . 52

4.1.1 Our Contributions . 52

4.1.2 Technical Overview . 55

4.2 Preliminaries . 56

4.2.1 Security and Communication Models . 57

4.2.2 Circular 2-Correlation Robust Pseudorandom Functions 57

4.2.3 Almost-1-Universal Linear Hashing . 58

4.2.4 Commitment Functionality . 59

4.2.5 Coin-Tossing Functionality . 59

4.2.6 Correlated Oblivious Transfer . 59

4.2.7 Functionality for Secret-Sharing-Based MPC 60

4.3 Generic Protocol for Multi-Party Garbling . 60

4.3.1 The Preprocessing Functionality . 60

4.3.2 Protocol Overview . 61

4.3.3 Bit/String Multiplications . 64

4.3.4 Consistency Check . 65

4.3.5 Security Proof . 69

4.4 More Efficient Garbling with Multi-Party TinyOT 73

4.4.1 Secret-Shared MAC Representation . 74

4.4.2 MAC-Based MPC Functionality . 75

x

TABLE OF CONTENTS

4.4.3 Garbling with Fn-TinyOT . 76

4.5 The Online Phase . 77

4.5.1 The Online Phase with F
KQ
Preprocessing . 85

4.6 Performance . 87

4.6.1 Implementation . 87

4.6.2 Communication Complexity Analysis . 89

4.7 A Multi-Party TinyOT-Style Protocol . 92

4.7.1 Why the Need for Key Queries? . 96

4.7.2 Security . 96

4.7.3 Parameters . 99

4.7.4 Communication Complexity . 99

4.7.5 Round Complexity . 99

4.7.6 Realizing General Secure Computation . 100

5 Multi-Party Computation with Short Keys 101
5.1 Introduction . 102

5.1.1 Our Contributions . 103

5.1.2 Technical Overview . 106

5.2 Preliminaries . 108

5.2.1 Security and Communication Models . 108

5.2.2 Random Zero-Sharing . 108

5.2.3 Syndrome Decoding and Learning Parity with Noise 109

5.2.4 Regular Syndrome Decoding Problem . 110

5.3 GMW-Style MPC with Short Keys . 114

5.3.1 Leaky Two-Party Secret-Shared Multiplication 114

5.3.2 MPC for Binary Circuits From Leaky OT . 119

5.4 Multi-Party Garbled Circuits with Short Keys . 125

5.4.1 The Multi-Party Garbling Scheme . 126

5.4.2 Protocol and Functionalities for Bit and Bit/String Multiplication 129

5.4.3 The Preprocessing Protocol . 130

5.4.4 Complexity and Security . 133

5.4.5 The Online Phase . 136

5.5 Complexity Analysis and Implementation Results 142

5.5.1 Threshold Variants of Full-Threshold Protocols 142

5.5.2 Instantiating the CRS . 142

5.5.3 Concrete Hardness of RSD and Our Choice of Parameters 143

5.5.4 GMW-Style Protocol . 146

5.5.5 BMR-Style Protocol . 147

xi

TABLE OF CONTENTS

6 Conclusions and Future Work 151

Bibliography 153

xii

LIST OF TABLES

TABLE Page

2.1 Comparison of efficient protocols based on garbled circuits which can support any

number of parties. Works are listed in chronological order. 20

3.1 Comparison of Gentry’s, the BMR-SPDZ and our protocol. 29

4.1 Comparison of actively secure, constant round MPC protocols. B =O(1+ s/ log |C|) is a

cut-and-choose parameter, which in practice is between 3–5. Our second protocol can

also be based upon optimized TinyOT to obtain the same complexity as [129]. 53

4.2 Runtimes in ms for AES and SHA-256 evalution with 9 parties. 88

4.3 Communication estimates for secure AES evaluation with our protocol and previous

works in the two-party setting. Cost is the maximum amount of data sent by any one

party, per execution. 91

4.4 Comparison of the cost of our protocol with previous constant-round MPC protocols in

a range of security models, for secure AES evaluation. Costs are the amount of data

sent over the network per party. 92

5.1 Min key-length for BMR-style MPC with 128 bits of security for different n and h

when r = 2`n+2 . 144

5.2 Min key-length for GMW-style MPC with 128 bits of security for different n and h . . 144

5.3 Amortized communication cost (in kbit) of producing a single triple in GMW. We

consider [51] for 1-out-of-4 OT extension in the GMW protocols, and the protocol from

Section 5.3 in our work. 144

5.4 Amortized communication cost (in kbit) of producing a single triple in GMW using

random committees. 146

5.5 Communication complexity for garbling, and size of garbled gates, in BMR-style

protocols in kbit. A = #AND gates, S = #Splitter gates, X = #XOR gates. 147

xiii

LIST OF FIGURES

FIGURE Page

2.1 The MPC Functionality: FMPC . 14

2.2 Point-and-permute garbling for an AND gate. Wire masks: λu = 1,λv = 0,λw = 1. . . . 16

2.3 Evaluation of a garbled circuit. We mark in bold the rows that are decrypted by the

parties when evaluating the circuit on the inputs displayed under the wires. 17

3.1 The FHE/SHE Functionality: FFHE/FSHE . 31

3.2 The Extended Functionality FFHE+ . 35

3.3 Protocol ΠFHE+ . 36

3.4 The Preprocessing Functionality FPreprocessing. 40

3.5 The MPC Protocol - ΠMPC,4. 41

3.6 The Preprocessing Protocol: ΠPreprocessing,4. 42

3.7 Calculate Garbled Gates Step of ΠPreprocessing,4. 43

3.8 The Modified Preprocessing Protocol ΠPreprocessing,3. 46

3.9 The Modified Protocol ΠMPC,3. 46

3.10 The truth table of the vectors for an AND gate computed in Figure 3.8. 48

3.11 The truth table of the vectors for a XOR gate computed in Figure 3.8. 48

4.1 Commitments functionality. 59

4.2 Coin-tossing functionality. 59

4.3 Fixed correlation oblivious transfer functionality. 59

4.4 Functionality for GMW-style MPC for binary circuits. 60

4.5 The Preprocessing Functionality FPreprocessing. 62

4.6 The preprocessing protocol that realizes FPreprocessing in the {F∆-ROT,FBit×Bit,FRand FCommit}-

hybrid model. 63

4.7 Open Garbling stage of the preprocessing protocol. 64

4.8 Subprotocol for bit/string multiplication and checking consistency. 66

4.9 Functionality for secure multi-party computation based on TinyOT 75

4.10 Macro used by Fn-TinyOT to authenticate bits . 76

4.11 The MPC Protocol - ΠBMR. 78

4.12 AES performance (6800 AND gates). 88

xv

LIST OF FIGURES

4.13 SHA-256 performance (90825 AND gates). 88

4.14 Subprotocol for opening and checking MACs on n-party authenticated secret shares. 93

4.15 Subprotocol for private opening to one party. 93

4.16 Protocol for TinyOT-style Multi-Party Computation of binary circuits. 94

4.17 Checking correctness and removing leakage from triples with cut-and-choose. 95

4.18 Subprotocol for multiplying secret shared values using a triple. 95

4.19 Input protocol for TinyOT-style Multi-Party Computation 100

5.1 Random zero sharing functionality. 108

5.2 Functionality for oblivious transfer on random, correlated strings. 114

5.3 Ideal functionality for leaky secret-shared two-party bit multiplication. 116

5.4 Leaky secret-shared two-party bit multiplication protocol. 117

5.5 Multiplication triple generation functionality. 120

5.6 Secret-shared triple generation using leaky two-party multiplication. 121

5.7 Multi-party garbling functionality. 127

5.8 Secret-shared bit multiplication functionality. 129

5.9 Secret-shared bit/string multiplication functionality. 129

5.10 Batch secret-shared bit/string multiplication between P j and all parties. 130

5.11 n-party secret-shared bit/string multiplication using leaky 2-party multiplication. . . 130

5.12 The preprocessing protocol that realizes FPreprocessing. 131

5.13 The gate garbling sub-protocol. 132

5.14 Online phase of the constant-round MPC protocol. 136

5.15 Amortized communication cost (in kbit) for producing triples in GMW for n = 50,100,200,500

and deterministic committees. 145

5.16 Communication complexity cost (in kbit) for garbling when n = 100 and n = 500. . . . 148

5.17 Online time for evaluating various circuits with n = 30,50,100,300. The corresponding

numbers of honest parties are h = 14,21,38,105, respectively. Times for [25] are for a

full-threshold implementation. 149

xvi

C
H

A
P

T
E

R

1
INTRODUCTION

‘Knowledge is power’. Even though there are previous documented occurrences of the

sentence [5, 115], the disputed aphorism is usually miss-attributed to Sir Francis

Bacon, one of the main figures in the empiricist tradition. Following Bacon’s views

[13], knowledge comes through observation, formulation of hypothesis and amassing data. Once

such data is analysed, hypothesis are then confirmed, refined or rejected. More evolved forms of

Bacon’s method have been applied to verify the truthfulness of the ‘knowledge is power’ saying –

as for example in the asymmetry of information concept of economics [2] – but if we conversely

examine the methodology through the proverb’s lenses, we can conclude that data gathering and

processing are sources of power.

The contents of this thesis are related to the field of Cryptography and not (directly, at least)

to Epistemology or Political Science. Nevertheless, as it was simply put in Philip Rogaway’s

distinguished lecture in Asiacrypt 2015 [119], cryptography rearranges power: It determines

who can gather which data, and how such data can be processed. Rogaway was not the first

one to notice this fact. Whitfield Diffie, broadly considered a pioneer in the modern science of

cryptography, recalled during a trial [102, 119] a conversation with his wife in 1973:

‘I told her that we were headed into a world where people would have important,

intimate, long-term relationships with people they had never met face to face. I was

worried about privacy in that world, and that’s why I was working on cryptography’.

Thanks to Diffie’s foundational work together with Hellman [52] (as well as that of many other

authors in the subsequent decades), citizens, businesses and organizations can now enjoy secure

storage and communication systems. When those are properly deployed, they address the issue

of who can collect which data, i.e. the desired sender and recipient(s) of the information. But is

this always enough? What about how is that data used?

1

CHAPTER 1. INTRODUCTION

It is now part of the folklore that businesses, states and others collect and hold vast amounts

of information about people and their surroundings. Such data creates infrastructures which

mediate or even lead, with varying degrees of fairness, numerous aspects of our daily lives:

Whether we have access to a loan or insurance, what we get to see in social media or search

engines, what healthcare treatments we need, etc. The list could go on for pages. On the other

hand, there is a rising concern about the unintended use – from the perspective of the affected

individual, or society more broadly – of collected data by the intended recipients. This worry

seems to be strengthened by the former routine of amassing data, which a lot of times happens

with little transparency about why different pieces are gathered, or in the worst cases without

any consent at all.

Proof that the debate around privacy and data mistreatment has become a very important

one is the introduction of laws such as the European Union’s General Data Protection Regulation

(GDPR) [55]. The new legislation, which started being enforced as recently as May 2018, takes

a tiered approach to the different levels of negligence or misuse. Notoriously and for the most

serious infringements, organizations can be fined up to twenty million euros or 4% of their total

worldwide turnover, whichever is higher [55, Art. 83(5)].

Notwithstanding that policy is part of the solution here, on the purely technical side there

seems to remain an insurmountable dilemma. Can we really control how our information is used?

Computing on data from multiple sources intuitively requires to see their data. Thus, once sources

contribute their information, they have to give up on all privacy and control over it. Surprisingly

as it may seem to outsiders of the field, cryptography has also a solution to this issue, which is

the topic of this thesis: Multi-Party Computation (MPC).

1.1 A Brief History of Practical Multi-Party Computation

Multi-Party Computation allows a set of parties to jointly compute a mutually agreed function on

their data, while keeping their inputs private. Security of MPC guarantees that only the intended

result becomes known, even when a coalition of the participants try to attack the system. Thus,

using cryptography we can, in fact, control who computes on information of our choice and how,

being even able to keep that departing information secret!

Diffie and Hellman foresaw that the development of cheap hardware and the reduction in

cost of cryptographic devices would lead to applications requiring new (in their case, public-key)

cryptographic systems [52]. No such prediction is known to have been stated by them about

Multi-Party Computation, but for the same reasons, as well as a due to a vast body of research in

the area, MPC is also recently becoming an important system deployed in the real world.

The first such deployment was secure computation of auctions, in order to determine the

market clearing price for sugar beet production contracts in Denmark [31]. The scenario included

on the one hand Danisco, holding a monopoly on the sugar beet processing in the country and, on

2

1.2. OUTLINE OF THIS THESIS

the other hand, 1,229 farmers supplying the sugar beets to Danisco. Whereas auctions are easy

to solve when a trusted third party can be found to handle the bids and, in some cases as this one,

keeping them secret, no such entity could be agreed upon by all participants due to conflicting

interests. Back in January 2008, the nation-wide computation was carried out by three parties

and took around half an hour.

Other applications that have been either proposed or successfully carried out in real scenarios

include tax fraud detection [29], sociological and medical studies [30, 77] and network analysis [7].

An additional general application of MPC is that of distributing trust by decentralization. Storing

or processing information in the clear in a single place constitutes a single point of failure for

adversaries trying to break a system. Data breaches and ransomware are frequent in the news,

sometimes with terrible consequences. By substituting such single points of failure with a set of

multiple servers or entities running MPC, the resulting system becomes more robust: Attackers

require to take and hold control over different parties running MPC before being detected and

repelled.

There is something all the proposals above have in common: Few parties are assumed to be

involved in the computation, and a very low latency network connects them. Notably and for the

first deployment of MPC [31], even though the figure of a trusted auctioneer was removed, each

of the 1,229 bidders had to trust at least two of the three parties carrying out the computation to

be honest. Moreover, they still had to be confident that the parties they considered untrustworthy

would follow the protocol instructions. Finally, all of these assumptions had to be combined

with the fact that all computing parties were very closely located: They were, in fact, connected

through an Ethernet LAN [31].

A huge progress in protocol design has taken place since the first secure auction was run in

Denmark a decade ago. MPC can now run significantly faster even against active adversaries

(i.e., those who arbitrarily deviate from the protocol description) that can be assumed to control a

majority of the computing parties. Still, most of multi-party protocols do not scale so well with

respect to neither network latency nor the number of participants. For the former issue, the

primary cause is the round complexity of protocols, specially when the function to compute is

represented by deep circuits [25]. This thesis lays out the first steps in the long road towards

practical deployments of large-scale MPC, where many parties may be involved and they might

only be connected through a high-latency network such as the internet.

1.2 Outline of this Thesis

The rest of this dissertation will be structured as follows. In Chapter 2 we review some basic

notions related to Multi-Party Computation and cryptography more in general. Within those

pages, we also focus our attention on the more advanced notions of Universally Composable

security (UC) [35] and garbled circuits. The former concept, which has become the standard

3

CHAPTER 1. INTRODUCTION

framework for proving security in MPC, will be a very useful tool during the rest of the thesis.

The UC model not only provides strong security guarantees, but it also helps to simplify the

description of multi-party protocols by dividing them into more intuitive, smaller building blocks.

Such divisions will be needed when presenting the latter garbled circuits technique, which we

first describe in the simpler, two-party case. The subsequently introduced multi-party scenario,

following the work [18] of Beaver, Micali and Rogaway (BMR), is the most important concept for

the comprehension of Chapters 3 and 4, as well as an important part of Chapter 5.

Chapter 3 describes how to perform the garbling phase of BMR – one of the simpler building

blocks we can describe on the UC framework – using the notion of homomorphic encryption,

which became a significant improvement on the state of the art efficiency for this step over

previous works. The following Chapter 4 gives a general transformation from any MPC protocol

for boolean circuits to BMR, as well as a concrete, more efficient instantiation using the TinyOT

protocol. The contents presented there have become especially relevant not only in terms of

efficiency, but also conceptually, as several other works now use it in order to build and prove

their protocols secure.

While the two precedent chapters consider a setting where an adversary controls all but one

of the parties, Chapter 5 explores how efficiency can be improved when an arbitrary number

of parties are free from such control. Whereas previous works in MPC consider mostly very

particular thresholds of parties corrupted by the adversary (e.g. less or more than a half, or a

third), we parametrize protocols within the dishonest majority setting in the number of honest

parties. Such parametrization is specially relevant in scenarios where many parties (tens, or even

hundreds) are running MPC, as it is not too realistic to consider, for example, that nine hundred

ninety nine parties are colluding against a single honest party. We leverage this parametrization

to increase the efficiency of both secret-sharing based and garbled circuit-based protocols, in which

we shorten the length of honest parties’ symmetric keys below the usual computational security

parameter. Whereas looking at those keys individually would result in insecure protocols, security

in our case relies on the concatenation of all parties’ keys, hence leading to secure computation

on the whole.

We conclude in Chapter 6, where we synthesize the impact of our results in the areas described

above, as well as we point to interesting open questions and directions towards MPC for the

masses.

1.3 Contributions of the Author

The contents of this thesis are based on the following publications during my doctoral studies:

[96] Y. LINDELL, N. P. SMART, AND E. SORIA-VAZQUEZ, More efficient constant-round multi-

party computation from BMR and SHE, in TCC 2016-B, Part I, M. Hirt and A. D. Smith,

eds., vol. 9985 of LNCS, Springer, Heidelberg, Oct. / Nov. 2016, pp. 554–581.

4

1.3. CONTRIBUTIONS OF THE AUTHOR

[70] C. HAZAY, P. SCHOLL, AND E. SORIA-VAZQUEZ, Low cost constant round MPC combining

BMR and oblivious transfer, in ASIACRYPT 2017, Part I, T. Takagi and T. Peyrin, eds.,

vol. 10624 of LNCS, Springer, Heidelberg, Dec. 2017, pp. 598–628.

[69] , TinyKeys: A new approach to efficient multi-party computation, in CRYPTO 2018,

Part III, H. Shacham and A. Boldyreva, eds., vol. 10993 of LNCS, Springer, Aug. 2018,

pp. 3–33.

Unless otherwise specified in the relevant parts of the document, the results presented are

due to equal collaboration by all co-authors. During the same period, I have also published the

following works, not included here:

[79] M. KELLER, E. ORSINI, D. ROTARU, P. SCHOLL, E. SORIA-VAZQUEZ, AND S. VIVEK,

Faster secure multi-party computation of AES and DES using lookup tables, in ACNS 17,

D. Gollmann, A. Miyaji, and H. Kikuchi, eds., vol. 10355 of LNCS, Springer, Heidelberg,

July 2017, pp. 229–249.

[68] C. HAZAY, E. ORSINI, P. SCHOLL, AND E. SORIA-VAZQUEZ, Concretely efficient large-scale

MPC with active security (or, TinyKeys for TinyOT), in ASIACRYPT 2018, Part III, T. Peyrin

and S. D. Galbraith, eds., vol. 11274 of LNCS, Springer, Dec. 2018, pp. 86–117.

An obvious but understated truth is that ideas that do not succeed are also part of a PhD. As

everyone else, I have had my share of those, as well as having other unpublished works in the

making that hopefully will not fall into that category.

5

C
H

A
P

T
E

R

2
PRELIMINARIES

The goal of this chapter is to cover the technical background that will be needed for

the understanding of the following chapters. We start by refreshing some basic notions

and cryptographic primitives, after which we discuss the diverse goals of Multi-Party

Computation (MPC) protocols and the different ways of measuring their efficiency. Following

this presentation, we delve into the details of proving security of cryptographic primitives and

protocols according to the Universal Composability (UC) framework, which has become the

standard model of security in the area of MPC.

We conclude the chapter by giving more details about garbled circuits and their role in

both Two-Party and Multi-Party Computation. We start by focusing on the two-party case,

where garbled circuits constitute the most efficient solution at the moment. This serves as an

introduction to the more complex MPC scenario, for which we describe the protocol of [18] by

Beaver, Micali and Rogaway (BMR). Their seminal construction spurred a line of work which is

also the starting point for the contents of Chapters 3 and 4, as well as Section 5.4 in Chapter 5.

2.1 Prerequisites

Throughout this thesis, we assume familiarity with some basic linear algebra and probability

concepts. In this section we give a quick recap of some of them, as well as other essential

cryptographic notions. The first notion we want to refresh is that of negligibility:

Definition 2.1. A function f :N→R is negligible if for every positive polynomial p there exists

n0 ∈N such that for all n ≥ n0:

f (n)≤ 1
p(n)

7

CHAPTER 2. PRELIMINARIES

This puts us in a good position to define the different notions of indistinguishability between

distribution ensembles, i.e. countable sets of probability distributions. These rely on the concept

of a distinguisher D which, given a string, outputs ‘0’ if it believes it has been sampled according

to distribution X or, otherwise, it outputs ‘1’ believing it comes from distribution Y .

Informally, computationally indistinguishable constructions are secure against distinguishers

whose computation and storage resources are bounded – to, say, not exceeding the total amount

of those that are estimated to be available on Earth at the moment. Statistical security removes

that constraint from the distinguisher and reduces security to a negligible advantage in lucky

guessing, whereas perfect or unconditional security is the strongest notion, which means that the

random variables are identically distributed. More formally, we have the following definitions:

Definition 2.2. Let X = {X (a,κ)}a∈{0,1}∗,κ∈N and Y = {Y (a,κ)}a∈{0,1}∗,κ∈N be two distribution en-

sembles. We say that X and Y are computationally indistinguishable, denoted X
c≈ Y , if for

every probabilistic polynomial-time distinguisher D and every a ∈ {0,1}∗, there exists a negligible

function negl such that:

∣∣Prx←X (a,κ)
[
D(x,a,1κ)= 1

]−Pry←Y (a,κ)
[
D(y,a,1κ)= 1

]∣∣< negl(κ),

where κ is denoted the computational security parameter and D is given the unary input 1κ so it

can always run in time polynomial in κ.

Definition 2.3. Let X = {X (a, s)}a∈{0,1}∗,s∈N and Y = {Y (a, s)}a∈{0,1}∗,s∈N be two distribution en-

sembles. We say that X and Y are statistically indistinguishable, denoted X
s≈ Y , if for every

distinguisher D and every a ∈ {0,1}∗, there exists a negligible function negl such that:

∣∣Prx←X (a,s) [D(x,a)= 1]−Pry←Y (a,s) [D(y,a)= 1]
∣∣< negl(s),

where s is denoted the statistical security parameter.

Definition 2.4. Let X = {X (a)}a∈{0,1}∗ and Y = {Y (a)}a∈{0,1}∗ be two distribution ensembles. We

say that X and Y are perfectly or unconditionally indistinguishable, denoted X ≡Y , if for every

distinguisher D and every a ∈ {0,1}∗:

∣∣Prx←X (a) [D(x,a)= 1]−Pry←Y (a) [D(y,a)= 1]
∣∣= 0.

2.2 Primitives

We turn to describe several cryptographic primitives that will be useful across the different

chapters of this thesis.

8

2.2. PRIMITIVES

2.2.1 Secret Sharing

Secret sharing was introduced by Shamir in 1979 [122] as a way of securely dividing secret data X

within a set of mutually distrusting parties. The trusted dealer distributes pieces (called shares)

of the data in such a way that only authorised subsets of parties can reconstruct the original

secret, while the unauthorised subsets cannot learn anything about X . Imagine a situation where

someone wants to leave a will and testament without resorting to a public notary. That person

could then, for example, secret share the document between her loved ones in such a way that

the only way they could learn anything about what was written is by putting together all of their

shares.

In this thesis we are only concerned about secret sharing schemes for which the determining

factor about whether a subset of parties is authorised or not is its size. More concretely, a subset

of parties is authorised if it is consist of at least t of them, which in the previous example would

be t = n where n is the number of legatees.

Shamir’s construction [122] is probably the most famous scheme. First, the dealer chooses

a random degree t−1 polynomial in such a way that the constant term is equal to the secret

X . Afterwards, each party is privately distributed an evaluation of the polynomial on a publicly

known point in a finite field. Hence, X can be recovered if and only if any subset of at least t

parties pools together their evaluations of the original polynomial, so they can reconstruct it via

interpolation and learn the constant term.

Additive secret sharing has a fixed threshold of t = n and is the most efficient scheme for that

value. To share a secret X ∈ Zm, the dealer randomly samples xi ∈ Zm, i ∈ [n−1] uniformly at

random, and sets xn = X −∑n−1
i=1 xi. Security follows as up to any n−1 shares of X its value is

hidden by the missing, uniformly random share which acts as a one-time-pad.

2.2.2 Pseudorandom Functions

Pseudorandom functions (PRFs) are one of the most important objects in modern cryptography.

They efficiently and deterministically stretch finite-length keys into arbitrary length strings that

are computationally indistinguishable from uniform. Whereas generating actual random bits is a

difficult and costly process, the use of PRFs allows cryptographers to assume that parties have

access to an unlimited pool of random data, as that problem is reduced to that of sampling the

PRF key. We will make extensive use of PRFs in the following chapters, for which we provide the

precise definition below:

Definition 2.5. Let F : {0,1}n × {0,1}n 7→ {0,1}n be an efficient, length preserving, keyed function.

F is a pseudorandom function if for all probabilistic polynomial-time distinguishers D, there

exists a negligible function negl such that:

∣∣Pr[DFk(·)(1κ)= 1]−Pr[D f (·)(1κ)= 1]
∣∣≤ negl(κ),

9

CHAPTER 2. PRELIMINARIES

where the first probability is taken over the randomness of D and the key k ∈ {0,1}n and the

second one is over the choice of f from all functions mapping {0,1}n 7→ {0,1}n, as well as the

randomness of D.

2.2.3 Oblivious Transfer

Oblivious Transfer (OT) protocols were introduced by Rabin [113] and Wiesner [130] and run

between two mutually distrusting parties – sender and receiver. OT guarantees that the sender

can transmit part of their input while remaining oblivious to which one and in such a way that

the receiver learns no information on the rest of said input. In its most basic form, denoted

1-out-of-2 OT, the sender has inputs m0,m1, while the receiver has an input bit b. At the end

of the protocol the receiver learns mb, but nothing about m1−b, and the sender learns nothing

about b.

From a theoretical perspective, OT is known to be both necessary and sufficient to realize

general MPC [82]. On the practical side, although Oblivious Transfer requires the use of public-

key cryptography [73], it is possible to ‘extend’ a initial batch of OTs computed in such way to

produce many more OTs using just symmetric-key cryptography [10, 17, 51, 74]. This can be

interpreted as the OT equivalent of hybrid encryption, where parties encrypt a large amount

of data using symmetric cryptography and the symmetric key is encapsulated in a public-key

cryptosystem. These extension techniques lead to highly efficient MPC protocols as the ones we

will describe in Chapter 4 and Chapter 5.

2.3 Multi-Party Computation

Picture a set of parties P1, . . . ,Pn each of which has a secret input x1, . . . , xn. The parties want to

compute some function of their joint inputs y= f (x1, . . . , xn), however, they do not trust each other

and they want to keep their inputs private. If the parties could agree on some trusted third party

F , then they would just have to hand their data to F , who would compute the function on their

behalf and send them their prescribed part of the result y. A Multi-Party Computation (MPC)

protocol is said to securely compute f if running it achieves exactly the same guarantees this

ideal entity F would provide.

How should one then choose an MPC protocol amongst those providing the same set of

guarantees? The practical answer would be just picking the most efficient one, but the choice is

not as straightforward as it could first seem. The most important aspects to consider when making

this decision are what can be assumed about both the behaviour of the parties involved in the

computation, and the channels over which they communicate. For all the possible combinations

of the concepts we are about to enumerate, the protocol to pick would be a different one. A

non-exhaustive but more complete overview of these can be found in [109], as well as how these

assumptions relate to each other and the feasibility of MPC.

10

2.3. MULTI-PARTY COMPUTATION

All misbehaving parties are considered to be colluding and we treat them as a single entity

called the adversary. Passive adversaries (also referred to as semi-honest adversaries) follow

all the steps as prescribed by the MPC protocol, whereas active (or malicious) adversaries may

arbitrarily deviate from it in an attempt to breach security. The rest of the parties in the protocol

are referred to as honest. A static adversary chooses which parties to corrupt before the start of

the protocol, whereas an adaptive adversary can do so over the course of the execution, taking

advantage of the information obtained from already corrupted parties. Finally, the adversary

is also bound not to corrupt more parties than a given threshold, for example a minority of the

parties or all but one of them.

A majority of the MPC literature assumes that the communication network is synchronous,

i.e. that all messages sent during the protocol execution arrive timely and in an expected order.

When this cannot be assumed we say the protocol is secure in asynchronous networks that the

adversary can tamper with. In this thesis we focus on synchronous networks, within which there

are still relevant distinctions to be made in practice: Does the network have a high latency? What

is its bandwidth?

Modern, practical MPC protocols typically fall into two main categories: those based on

secret-sharing [28, 45, 47, 64, 76, 114], and those based on garbled circuits [18, 41, 86, 90–

92, 101, 132]. Secret-sharing based protocols tend to have lower communication requirements in

terms of bandwidth, but require a large number of rounds of communication, which increases

with the complexity of the function. In this approach the parties first secret-share their inputs and

then evaluate the circuit gate by gate while preserving privacy and correctness. In low-latency

networks, they can have an extremely fast online evaluation phase, but the round complexity

makes them much less suited to high-latency networks (e.g., when the participating parties are

on opposite sides of the world), where protocols with many rounds perform very poorly [25, 121].

Most of the research effort on making secure computation practically efficient has focused

on the case of two parties [104, 111, 131]. Protocols based on Yao’s garbled circuits [131] have

achieved extraordinary efficiency both against passive [10, 20] and active adversaries [71, 88,

90, 92, 94, 95, 123]. In contrast, secure computation protocols for an arbitrary number of parties

are way behind. When considering the secret-sharing based approach, variants of GMW can be

used against passive adversaries [39, 64], whereas active adversaries can be countered using the

protocols of SPDZ and TinyOT [44, 47, 87]. However, as mentioned above, these protocols have

inherent inefficiency based on the fact that the number of rounds in the protocol is linear in the

depth of the circuit that the parties compute.

In contrast to the impressive progress made in garbled circuits for two-party computation,

very little was achieved for their operation in the multi-party setting. We will review the basics of

Yao’s garbled circuits in Section 2.5, which will serve as a baseline to compare them with their

multi-party counterpart in Section 2.6. Before doing so, we next turn our attention to the details

of meaningfully defining security for the more advanced cryptographic constructions to come.

11

CHAPTER 2. PRELIMINARIES

2.4 Universally Composable Security

Throughout the thesis we will prove the security of our protocols following the Universal Compos-

ability (UC) framework [35] or, better said, a simplified variant thereof [36]. We do not attempt to

formally define the whole framework in all details, for which we refer the reader to the original

paper [35], but to give an overview of the main concepts, properties and definitions.

The core idea is that of comparing any execution of a given protocol π to an execution where

the task is performed instead by a third party F , called the functionality, which is trusted by

everyone. We call the former scenario the real world and the latter the ideal world, reflecting

that it represents what we wish for the protocol to achieve. The comparison duty is assigned to

the environment, Z , which epitomises everything else happening besides the protocol execution.

Finally, the original protocol is deemed secure if no environment – read, no situation under which

the protocol is run – can distinguish between both worlds.

Dealing as we are with security, the framework would not be complete without a real-world

adversary A attacking the protocol, or what is the same, trying to ease the environment’s job of

telling apart the real execution from the ideal functionality. Any such adversary has a counterpart

in the ideal world, which we call the simulator S .

More formally, all entities introduced above – parties, adversary, simulator, functionality

and environment – are modelled as Interactive Turing Machines (ITM) running in probabilistic,

polynomial time (PPT). Precise details on what it means for a Turing machine to be interactive

can be found in [35, 36], but the basic intuition is that two new types of tapes are added to

the machine: read-only incoming communication tapes, and write-only outgoing communication

tapes.

The real world is conformed by n ITMs P1, . . . ,Pn running the protocol π on behalf of the

parties. We denote by A the subset of them corrupted by the adversary, A . When a party Pi is

corrupted by a passive adversary, A gets to read the internal status of that party, including the

content on all its tapes. If the protocol is instead run in the presence of an active adversary, then

corruption means that A additionally takes over the execution of Pi.

The ideal world consists of the ideal functionality F , dummy parties P̃1, . . . , P̃n and the

simulator S . F is an ITM performing the desired task of the real world protocol π. When a party

has been corrupted, F may treat it differently from an honest one by sending it some additional

information. Dummy parties just relay inputs from the environment Z to the functionality F

and, conversely, outputs from F to Z . The simulator is an ITM interacting with F which tries

to produce a transcript of the communication between parties that matches up the real world

execution with the adversary A .

As it has been hinted before, the environment Z , also an ITM, is the fundamental component

of the UC framework. It has total control over the adversary, it can choose the inputs and read the

outputs of all parties, and it further sees everything sent between the parties in the real world.

Notably, all of this means that Z is an ‘interactive distinguisher’. This arises from the fact that

12

2.4. UNIVERSALLY COMPOSABLE SECURITY

Z can exchange information with the adversary at any point during the execution, in particular

after any message is sent. For this reason, the simulator’s task of generating a transcript of the

communications is specially hard, as it has to do so while interacting with the environment.

Finally, in order to argue about indistinguishability, let REALπ,A ,Z denote the distribution

ensemble representing the output of the environment Z when interacting with an adversary

A and parties P1, . . . ,Pn running protocol π. In a similar way, let IDEALF ,S ,Z represent the

output of Z when interacting with the simulator S and the ideal functionality F . Security of a

protocol in the UC framework is then defined as follows.

Definition 2.6 (UC security). A protocol π realizes an ideal functionality F with perfect, statis-

tical or computational security if for any adversary A , there exists a simulator S such that for

any environment Z , it holds that

REALπ,A ,Z ≈ IDEALF ,S ,Z ,

where ≈ represents the relevant notion between perfect, statistical and computational security

(see Section 2.1).

The most important feature of UC security, as its name states, is composability. Intuitively,

this means that if we have proved that protocol ρ securely realizes a functionality G , both can be

mutually interchanged for the purpose of building a protocol π realizing some more advanced

functionality F . When the protocol π is defined using functionality G , we say that we are in the

G -hybrid model. This hybrid is similar to the real world, except in addition to standard messages

amongst themselves, parties may also interact with any number of local copies of G throughout

the course of π.

Theorem 2.4.1 (Universal Composition Theorem [35]). Let ρ be a protocol securely realizing a

functionality G . Next, let π be a protocol securely realizing another functionality F in the G -hybrid

model. Then for every real world adversary A there exists a hybrid model adversary ˜A such that

for every environment Z

REALπρ ,A ,Z ≈HYBG
π, ˜A ,Z ,

where πρ is the protocol π modified so that calls to G are replaced with a subroutine call to protocol

ρ.

As it was mentioned earlier, we do not need the full power and flexibility of the UC framework

for the work exposed in this thesis. Common assumptions across all our protocols, which simplifies

their proofs, are the following. First, we only deal with static adversaries, which means that the

set A of corrupted parties is fixed at the start of execution. Second, all communication is done

over authenticated channels, meaning that the adversary cannot change the messages sent by

honest parties. Finally, we assume synchronous communication between all parties, which means

13

CHAPTER 2. PRELIMINARIES

The General MPC Functionality: FMPC

The functionality is parametrized by a function f (x1, . . . , xn), which is input as a binary circuit C f . It
consists of three externally exposed commands Initialize, InputData, and Output and one internal
subroutine Wait.

Initialize: On input (init, C f) from all parties, where C f is a Boolean circuit, the functionality
activates and stores C f .

Wait: The functionality waits on the adversary for a reply. If A returns ⊥ then the functionality
aborts, otherwise it continues.

InputData: On input (input, Pi, varid, xi) from Pi and (input, Pi, varid, ?) from all other parties, with
varid a fresh identifier, the functionality stores (varid, xi). The functionality then calls Wait.

Output: On input (output) from all parties, if (varid, xi) is stored for each Pi, the functionality
computes y= f (x1, . . . , xn) and outputs y to the adversary. The functionality then calls Wait. If
Wait does not result in an abort, the functionality outputs y to all parties.

Figure 2.1: The MPC Functionality: FMPC

that the protocol proceeds in rounds. During each round, every party may send one message to

each of the other parties, which will be delivered by the end of the round.

There have been different proposals about how to model synchronous networks in the UC

model. Canetti [35] advocates for the use of a FSyn functionality which acts as an ideal syn-

chronous delivery system. Using this method, parties explicitly send and receive all their (syn-

chronized) messages by command requests to FSyn. In [78] the authors found an error in the

original description of FSyn, later fixed again by Canetti as described in the current full version

of [35]. On the constructive side, [78] proposes to give parties access to a global clock functionality,

FClock, instead. This functionality can be queried any time by any party in order to learn which

is the present round. Assuming some predictability in the pattern of activation of parties (ITMs)

in the protocol, then FClock is enough for synchronous communication and parties can handle the

message delivery themselves, in contrast with FSyn.

Whether FSyn [35] or FClock [78] is used, both functionalities keep track of a round number.

This value is increased when, and only when, all honest parties indicate that they are done with

their corresponding actions in a given round. This captures the issue of rushing adversaries, who

wait to receive all honest messages in a given round before choosing, adaptively, what is going to

be sent by malicious parties in that same round. As this is a possible behaviour in the real world,

so it has to be in the ideal world.

Even though in the most strict formality we should use a functionality to model synchronous

networks, this detail is skipped in the proofs presented in this thesis. We do so mostly to simplify

their readability, as the intuitive notion of such communication model is not hard to grasp. We

firmly believe that this is positive in terms of easing the job of reviewing the work here included.

This is likely also the reason why an overwhelming majority of the MPC literature takes the

same approach.

14

2.5. GARBLED CIRCUITS: THE TWO-PARTY SETTING

Finally and in conclusion to the presentation of the UC model, we can state the goal of the

upcoming Chapters 3 and 4 to be that of securely realising the functionality FMPC given in

Figure 2.1. Chapter 5 has a very similar goal, the only difference with Figure 2.1 being that, as

the protocols are designed to deal only with passive adversaries, the Wait command should be

removed from it.

2.5 Garbled Circuits: The Two-Party Setting

Garbled circuits are the core behind all practical, constant round protocols for secure computation.

Intuitively, they are a suitably encrypted version of the circuit’s gates and wires that allows for its

evaluation on a concrete set of inputs. Garbled circuit-based protocols have recently become much

more efficient, and currently give the most practical approach for actively secure computation of

binary circuits [107, 118] in the two-party scenario.

In this section we will focus on describing a particular variant of Yao’s garbled circuits [132].

This will serve as an introduction to the more complex situation where more than two parties are

involved in the protocol, which we will describe in Section 2.6.

2.5.1 Garbling in the Two-Party Setting

In Yao’s protocol one party, the Garbler, constructs a garbled version of a mutually agreed Boolean

circuit C while the other party, the Evaluator, evaluates it on an ‘encrypted’ version of both parties’

inputs to get the final result. Stated more formally, the garbling process, which is computed

entirely by the Garbler, goes as follows:

1. For each wire w ∈ C, sample a random wire mask λw ∈ {0,1}. Wire masks are used to encrypt

the actual value xw on the wire. We will call the value Λw = xw ⊕λw either the colour bit or

the external or public value. We colour xw either in red or blue to represent its associated

colour bit Λw. More precisely, if λw = 0 then xw ∈ {0,1}, whereas if λw = 1 then xw ∈ {0,1}.

2. For each wire w ∈ C, two random keys kw,•, kw,• ∈ {0,1}κ are sampled.

3. Finally, let Enc be a Double Encryption scheme [91]. The garbled version g̃ of every g ∈ C

consists of the four following ciphertexts, which we call rows:

g̃Λu,Λv =Encku,Λu ,kv,Λv
(Λw||kw,Λw), (Λu,Λv) ∈ {•,•}2

where Λw = fg(λu ⊕Λu,λv ⊕Λv)⊕λw ∈ {•,•} and fg is the function computed by g, i.e.,

fg(x, y)= x · y if g is an AND gate, or fg(x, y)= x⊕ y if g is a XOR gate.

As mentioned before, this is just one possible way of implementing Yao’s garbled circuits,

following in particular the point-and-permute paradigm [18, 97]. A visual description of the

15

CHAPTER 2. PRELIMINARIES

u
0/1

v
0/1

w
0/1

Mask truth table−→

u v w
0 0 0
0 1 0
1 0 0
1 1 1

Point & Permute−→

Input Garbled row
(•,•) Encku,•,kv,•(•||kw,•)
(•,•) Encku,•,kv,•(•||kw,•)
(•,•) Encku,•,kv,•(•||kw,•)
(•,•) Encku,•,kv,•(•||kw,•)

Figure 2.2: Point-and-permute garbling for an AND gate. Wire masks: λu = 1,λv = 0,λw = 1.

garbling process for an AND gate can be found in Figure 2.2, which we describe in more detail

below.

Denote the left (resp. right) input wire u (resp. v) and let its wire mask be λu = 1 (resp. λv = 0).

Consider now the first entry of an AND’s gate truth table, i.e. 0∧0 = 0. By applying the wire

masks, we obtain corresponding external values (Λu,Λv)= (1,0) which in the colour notation are

(•,•) and thus match the third row of the garbled gate. As the wire mask on the output wire is

λw = 1, the plaintext to encrypt in that entry would then be •||kw,•. The remaining first, second

and fourth entries of the garbled gate can be derived by the Garbler in the same way.

One of the most celebrated optimizations in garbled circuits is the Free-XOR technique [86],

where the garbler samples a global random string ∆ ∈ {0,1}κ and the garbling algorithm is

modified so that all the wire keys sampled on Step 2 of the garbling algorithm above are

correlated:

kw,•⊕kw,• =∆, ∀w ∈ C

By introducing this correlation there is no more need to produce ciphertexts when garbling XOR

gates, which can further be evaluated ‘for free’ just by XORing the keys and the external values

of their input wires, i.e. Λw =Λu ⊕Λv and kw,Λw = ku,Λu ⊕kv,Λv .

2.5.2 Example Garbled Circuit

Before turning to the whole protocol description, we give an example garbled circuit in Figure 2.3.

The function to compute is f (w1,w2,w3,w4)= (w1∧w2)⊕ (w3∨w4), where in our case the Garbler

has inputs w1,w3 and the Evaluator has inputs w2,w4. In this example, the wire masks are:

λw1 =λw3 =λw4 =λw5 =λw7 = 1, λw2 =λw6 = 0

If we look at them, the wire masks related to the AND gate w1 ∧w2 = w5 are exactly the same

as those in Figure 2.2, for which a description of the garbling has already been provided. As

the same procedure applies for the rest of the gates in the circuit, we proceed to show how a

garbled circuit is evaluated. Assume that the Evaluator has obtained in some way the colour

bits associated with the actual inputs of the circuit, as well as the keys corresponding to those.

16

2.5. GARBLED CIRCUITS: THE TWO-PARTY SETTING

Input Garbled row

(•,•) Enckw3 ,• ,kw4 ,• (•||kw6 ,•)

(•,•) Enckw3 ,• ,kw4 ,• (•||kw6 ,•)

(•,•) Enckw3 ,• ,kw4 ,• (•||kw6 ,•)

(•,•) Enckw3 ,• ,kw4 ,• (•||kw6 ,•)

w6

1

w5

0

Input Garbled row

(•,•) Enckw1 ,• ,kw2 ,• (•||kw5 ,•)

(•,•) Enckw1 ,• ,kw2 ,• (•||kw5 ,•)

(•,•) Enckw1 ,• ,kw2 ,• (•||kw5 ,•)

(•,•) Enckw1 ,• ,kw2 ,• (•||kw5 ,•)

w3

1
w4

0

w1

0
w2

0

w7

1

Input Garbled row

(•,•) Enckw5 ,• ,kw6 ,• (•||kw7 ,•)

(•,•) Enckw5 ,• ,kw6 ,• (•||kw7 ,•)

(•,•) Enckw5 ,• ,kw6 ,• (•||kw7 ,•)

(•,•) Enckw5 ,• ,kw6 ,• (•||kw7 ,•)

Figure 2.3: Evaluation of a garbled circuit. We mark in bold the rows that are decrypted by the
parties when evaluating the circuit on the inputs displayed under the wires.

In Figure 2.3, for actual inputs xw1 = 0, xw3 = 1 from the Garbler, their corresponding colour

bits are respectively •,• and for inputs xw2 = 0, xw4 = 0 from the Evaluator, they translate to •,•.

Therefore, their associated keys are kw1,•,kw2,•,kw3,•,kw4,•. We recall that the Evaluator does not

know the value of the wire masks.

For the AND gate, the Evaluator has inputs (•,•), so he has to decrypt that row of the garbled

gate using keys kw1,•,kw2,•. By doing so, he learns that the colour bit on wire w5 is •, for which

the key kw5,• relates. Analogously, using the colour bits and keys he has for wires w3,w4, he

obtains colour bit • and key kw6,• for wire w6. Finally, using the newly obtained keys, he can

decrypt entry (•,•) of the XOR gate and learn that the output wire colour is •. Using the wire

mask λw7 = 1 from the Garbler, this can be translated to an actual value of 1, which as expected

corresponds to f (0,0,1,0).

If the Free-XOR technique had been applied to the garbling scheme, there would be no garbled

rows for the final XOR gate, so the table on the right of the picture should be ignored. From the

Evaluator’s perspective, the only difference would be that in order to compute w7 = w5 ⊕w6, he

would simply have to compute kw7,• = kw5,•⊕ kw6,•, where he could compute the output wire’s

colour bit by XORing those of w5 and w6 – blue for both of them, which encodes an external value

of one and so 1⊕1= 0= •.

2.5.3 The Two-Party Computation Protocol

We can finally fully describe how to perform passively secure two party computation using Yao’s

garbled circuits:

1. The Garbler and the Evaluator agree on the boolean circuit C(xG , xE)= y that they want to

17

CHAPTER 2. PRELIMINARIES

compute, where xG , xE are the Garbler’s and the Evaluator’s private inputs, respectively.

2. The Garbler transforms C into a garbled circuit C̃ as described above. She also garbles her

input xG using the masks of the wires where she provides input. The result is x̃G , consisting

of a colour bit and its associated key for each of those wires.

3. For every bit of his input xE, the Evaluator uses 1-out-of-2 OT to receive from the Garbler

its garbled version x̃E, suitable for evaluating C̃.

4. The Garbler sends the garbled input C̃ and her encoded input x̃G to the Evaluator, so he

can now evaluate C̃. She also sends him the wire masks λw for every output wire w of the

circuit, so he can decode the output of the computation.

5. The Evaluator computes C̃(x̃G , x̃E) and obtains the colour bits associated with all output

wires. Using the wire masks he received by the Garbler on the previous step, he computes

the actual output and sends it back to the Garbler.

The overall efficiency of the protocol – irrespective of the nature of the adversary – is mostly

related with the size of the garbled circuit, as the encoding of the inputs on Step 3 can be

efficiently computed using OT extension [74, 83]. This realization led to a series of works on

reducing the number of garbled rows in a gate [103, 111, 133] as well as variants of the previously

described Free-XOR technique [84, 86].

In the following section we describe how to extend garbled circuits to be used by an arbitrary

number of parties. As we will see, this requires the garbling step to be computed obliviously and,

hence, the metrics for efficiency become not so tied to the size of the circuit as in the 2PC setting.

Apart from the new difficulty when garbling, this different goal for optimization adds further

interest to the field of concretely efficient, constant-round multi-party computation.

2.6 Multi-Party Garbled Circuits: BMR

The main challenge for the use of garbled circuits in the multi-party setting, when compared to

Yao’s protocol (cf. Section 2.5), is that no single party can be trusted to garble the circuit. Thus,

this preprocessing step has to be performed jointly and obliviously using another MPC protocol. If

that was not the case and the Adversary knew all the randomness used to garble the circuit, then

the corrupted parties would be able to break security as long as one of them was also evaluating

the circuit. In more detail, this arises from the fact that the XOR of the wire masks (which would

be known by the Garbler) and the external values (known by the Evaluator) reveal the actual

values on every wire in the circuit, as we described in Section 2.5.1.

Facing such a situation, one could think of implementing garbled circuits in the multi-party

case by emulating the figure of the Garbler using an MPC protocol and then picking one party –

or all of them! – to be the Evaluator. This is, in fact, the main idea behind the garbling technique

18

2.6. MULTI-PARTY GARBLED CIRCUITS: BMR

of Beaver, Micali and Rogaway (BMR) introduced in 1990 [18]. While such a method may initially

sound as highly theoretical, which it was at the time, it has now become the core idea behind the

most practical protocols based on garbled circuits, even in the two party setting [128].

The other fundamental observation in BMR is that all gates can be garbled in parallel.

Hence, the depth of the circuit computing the garbling of a boolean circuit C equals that of

the deepest circuit required to garble any single gate of C, denote that number by d. Recall

that this ‘garbling circuit’ is the one we have to evaluate in order to obliviously distribute the

figure of the Garbler. As most practical MPC protocols have a round complexity that depends

linearly on the circuit depth, and this ‘gabling’ circuit has constant depth d, the garbling step

becomes constant-round. This, when put together with the fact that the garbled circuit can also

be evaluated in a constant number of rounds (as we will describe in Section 2.6.1) leads to the

conclusion that BMR is a constant-round MPC protocol. This was the main contribution of BMR

at a time where the only known mechanisms for constant-round MPC required an exponential

blow-up in communication [14, 18].

Let’s now look at the BMR construction in more detail. Similarly to Yao’s garbled circuits

(Section 2.5) denote by fg be the function computed by each gate g ∈ C. The garbled version g̃ of

that gate is defined in BMR as:

g̃Λu,Λv =Encku,Λu ,kv,Λv
(kw,Λw), (Λu,Λv) ∈ {0,1}2(2.1)

where Λw = fg(λu ⊕Λu,λv ⊕Λv)⊕λw and Encku,Λu ,kv,Λv
is a ‘vector double encryption’ scheme that

operates using two vectors of keys ku,Λu = (k1
u,Λu

, . . . ,kn
u,Λu

),kv,Λv = (k1
v,Λv

, . . . ,kn
v,Λv

) and can be

instantiated under different assumptions. In Chapter 3 we implement it using PRFs, in Chapter

4 we use circular 2-correlation robust PRFs to enable Free-XOR, and in Chapter 5 we rely on a

Syndrome Decoding problem in order for parties to use shorter encryption keys.

In the garbling phase, and for every wire u ∈ C, wire masks λu ∈ {0,1} are randomly chosen

and unknown to all parties. For wire keys, on the other hand and for each b ∈ {0,1}, every P j

knows a key k j
u,b from the vector of keys ku,b associated with that wire. Importantly, these two

statements imply that the vector of keys kw,Λw encrypted on any given row (Λu,Λv) is unknown

to all parties. This is due to the fact that MPC is used to compute Λw = fg(λu ⊕Λu,λv ⊕Λv)⊕λw

while keeping the wire masks secret, and Λw chooses between kw,0 and kw,1.

Whereas in Yao’s garbled circuits the size of the garbled circuit was the metric most represen-

tative of efficiency, that turns out to be secondary now that garbling has to be performed using

MPC. The dominant cost, hence, becomes the number of oblivious operations and their cost on

the underlying protocol used to implement them. This opens up an interesting area of research

for increasingly efficient constant-round MPC, where both the protocol used for garbling and the

multi-party ‘double encryption’ scheme Encku,Λu ,kv,Λv
that it has to evaluate have to be adapted to

each other. A time line for this area of work can be found in Section 2.6.2, but before that and for

completeness, we will now turn to describing the evaluation phase of BMR.

19

CHAPTER 2. PRELIMINARIES

Protocol Adversary Free-XOR Other Remarks

BMR [18] Active 7 Honest majority, error in the proof.
TX03 [126] Active 7 Honest majority, splitter gates.

FairplayMP [23] Passive 7 Implementation paper.
BMR-SPDZ [93] Active 7 -

BMR-SHE [96] (§3) Active 7 -
BLO16 [25] Passive 3 -

BMR-OT [70] (§4) Active 3 -
Authenticated Garbling [129] Active 3 -

BLO17 [26] Passive 7 Constant gate size.
Arithmetic Garbling [24] Passive (3) Honest majority, arithmetic circuits.

BO17 [27] Pass/Act 3 Honest majority.
TinyKeys [69] (§5) Passive 7 FleXOR, splitter gates.

Table 2.1: Comparison of efficient protocols based on garbled circuits which can support any
number of parties. Works are listed in chronological order.

2.6.1 Evaluating BMR Garbled Circuits

Given the description of the garbling phase above, the evaluation phase of BMR is almost identical

to the one described in Section 2.5. Only two more conditions are missing from the description of

the preprocessing protocol in the previous section:

1. Wire masks for the circuit output wires have been revealed to all parties.

2. For every input wire in the circuit, its corresponding wire mask has been revealed to the

party providing input on it, and only to that party.

Taking the previous points into account, another advantage of BMR is that each party can

now play the role of the Evaluator. This saves the last round in Yao, where the Evaluator

communicates the output to the Garbler. Evaluation goes as follows: First, parties broadcast

the colour bits associated with their respective actual inputs to the circuit. Once this is done,

everyone broadcasts their keys corresponding to those wires and colour bits. As parties hold

now the vectors of keys corresponding to input wires, they can decrypt the relevant row in each

garbled gate attached to them. Upon completion, the parties compute the actual output using the

output wire masks.

2.6.2 A Brief History of Efficient Multi-Party Garbled Circuits

The use of garbled circuits for secure computation between an arbitrary number of parties was

first introduced by Beaver, Micali and Rogaway in 1990 [18]. Their paper, whereas foundational,

presented an insecure construction. This flaw in their result was not discovered until 2003, when

20

2.6. MULTI-PARTY GARBLED CIRCUITS: BMR

Tate and Xu [126] remarked that the ‘vector double encryption’ used in [18] is not secure when

multiple gates share a common input wire. The error can be easily described: In order to garble

the gates, wire ‘keys’ were used as seeds for a pseudo-random generator, so encryption looked

like:

Encku,Λu ,kv,Λv
(kw,Λw)= kw,Λw +

n∑
i=1

PRG(ki
u,Λu

)+PRG(ki
v,Λv

)

Hence, when multiple plaintexts are ‘encrypted’ under one of the two key vectors, the resulting

‘ciphertext’ does not use independent pseudorandom masks. Such correlation is not only a

theoretical concern, as it can be exploited even by passive adversaries to break the security of

the protocol. A good example of the attack can be found in [126]. The solution proposed by Tate

and Xu was the introduction of splitter gates, which take as input one wire and output two new

ones, carrying the same value. By placing trees of splitter gates in the original circuit to garble,

the resulting one can be made such that no wire is ever input to two different gates. This, plus

a method for garbling splitter gates, fixes the issue in [18]. Even though their proposal works,

it is frequently not the most efficient solution, with notable exceptions [69]. Almost every other

protocol building on BMR solves the same problem by using pseudo-random functions instead of

pseudo-random generators. By adding a unique identifier to each gate which is then used as an

input to the PRF, independent pseudo-random masks can be produced.

While two-party computation based on Yao’s garbled circuits started booming [1, 57, 88, 111,

124] after its first full-fledged implementation in the 2004 Fairplay paper [97], BMR remained

almost forgotten, with two exceptions: The FairplayMP implementation in 2008 [23] and, seven

years after that, the BMR-SPDZ protocol by Lindell et al [93]. Apart from bringing the commu-

nity’s attention back to the problem, one of their biggest achievements was that of getting rid of

the zero-knowledge proofs required in [18] to ensure that parties provide the right evaluations of

PRGs/PRFs when garbling the gates. The efficiency of their approach was then improved in [96],

which constitutes Chapter 3 in this thesis.

Many techniques used in two-party garbled circuits do not translate well to BMR. Improve-

ments reducing the circuit size such as row reduction [103, 111, 133] turn out to be counter-

productive when all parties have to obliviously garble the circuit together. Nevertheless, the

highly celebrated Free-XOR technique [86] can also be easily applied to BMR, as it was first

noticed in [25]. Although the authors only provide a passively secure protocol, their paper also in-

cludes interesting experimental results where BMR is confirmed to be faster than secret-sharing

based protocols for deep circuits in slow networks.

Later on, Free-XOR was also extended to the active setting in concurrent works [70, 129].

Both show how to leverage information-theoretic MACs from the TinyOT protocol [58, 104] to act

as Free-XOR correlations, which makes TinyOT a natural choice for BMR garbling. Additionally,

[70] provides an efficient and general transformation for non-constant round protocols to Free-

21

CHAPTER 2. PRELIMINARIES

XOR-enabled BMR. More differences between both works exists, which are further described

during the presentation of [70] in Chapter 4.

A common feature of all the BMR constructions above is that garbled gates have a size of

around 4 ·n ·κ bits, where n is the number of parties and κ the security parameter. This is due to

the fact that each row in the garbled gate consists, basically, of one ciphertext per party. At the

time of writing, two works look at how to reduce this size, which can be particularly problematic

for large-scale scenarios. As it is not an easy task, they both deal with passive adversaries

only. The first one is [26], which uses key-homomorphic PRFs to add all the n ciphertexts in

a row together, obtaining garbled gates whose size does not depend in the number of parties.

TinyKeys [69], presented in Chapter 5, takes a different approach from the heavy public key

machinery of [26]. The solution we present involves making the individual keys for the ‘vector

double encryption’ of a small size `¿ κ and make security rely on the concatenation of all honest

parties’ short keys. This reduces not only communication, but also the computational cost of

evaluating each gate when compared with [25].

Finally, other works in the area include [27], which looks at efficiency improvements for BMR

in the honest majority setting and [24], which garbles arithmetic circuits rather than boolean

ones. A chronological synthesis of our overview can be found in Table 2.1.

2.7 A Note on Actively Secure Garbled Circuits

The exposition of both Yao’s and Beaver, Micali and Rogaway’s protocols in the previous sections

are limited to security against passive adversaries. Whereas this is a relevant setting and a good

starting point when figuring out the core ideas and limitations of MPC protocols, we ideally want

security to hold against active adversaries too. In this section we review some of the methods

used to achieve this more difficult goal

One of the most explored directions for enabling active security in Yao’s protocol is the cut-and-

choose technique. Simplifying, this consists in the Garbler constructing many garbled circuits for

the commonly agreed function and then sending all of them to the Evaluator. Next, the Evaluator

asks the Garbler to reveal the randomness used to produce e.g. half of the circuits, in order to

check that they were constructed correctly. If that is the case, the Evaluator can then evaluate

the other half and obtain the result. Otherwise, the Evaluator has detected malicious behaviour

from the Garbler and aborts.

More subtleties are part of cut-and-choose and the technique has evolved through a long line

of work that applies it either at the circuit level (as described in [1, 57, 88, 90, 92, 124]), the gate

level [105, 108, 134] or sub-circuits in between [85]. While such method notoriously improved the

efficiency of actively secure 2PC in the last decade, it has been implicitly proved as unattractive

for BMR so far. This is due to the fact that, as garbling has to be computed obliviously, there are

more efficient techniques for ensuring active security of the underlying MPC gadgets constructing

22

2.7. A NOTE ON ACTIVELY SECURE GARBLED CIRCUITS

the garbled circuit.

Another very efficient approach for active security in 2PC relies on the dual execution

paradigm [99, 100, 118]. In this framework, parties run two instances of Yao’s protocol, taking

a different role (amongst Garbler and Evaluator) in each one. Once they have done this, they

securely test for equality the (garbled) outputs received by the Evaluator in each instance, and

reveal them if the test passes. Intuitively, this then means that malicious party computed the

garbled circuit correctly. Nevertheless, the equality test step leaks information on the honest

parties’ input and in order to achieve full security, cut-and-choose techniques are required once

again. Dual execution could be interpreted to have been extended to the multi-party setting

in [66], but their solution only works for a very concrete scenario in terms of number of parties

and corruption threshold.

The conclusion to all the above is that obtaining efficient, actively secure protocols for BMR is

not an easy task and requires to think differently. An evolution of that process of thought can be

observed by reading the papers referenced in Section 2.6.2 or, more accessibly, by reading the two

following chapters 3 and 4, which are also presented in chronological order.

23

C
H

A
P

T
E

R

3
GARBLING USING SOMEWHAT HOMOMORPHIC ENCRYPTION

This chapter is based on joint work with Yehuda Lindell and Nigel Smart [96], which was

presented at TCC 2016-B.

In this chapter we introduce two similar constant round multi-party protocols secure against

an active adversary corrupting up to n−1 out of a total n parties. The work we present sits

philosophically between Gentry’s MPC protocol using Fully Homomorphic Encryption [60]

and the best previous protocol for generating BMR circuits against the same kind of adversary

[93], which we will dub BMR-SPDZ. Our protocols avoid various inefficiencies of those two results.

Compared to Gentry’s protocol we only require Somewhat Homomorphic Encryption (SHE) and

moreover we provide security against malicious adversaries, which [60] does not. In comparison to

BMR-SPDZ we require only a quadratic communication complexity in the number of players (as

opposed to cubic), we have fewer rounds and we require fewer proofs of correctness of ciphertexts.

Our two new protocols follow the BMR paradigm described in Section 2.6 and use homo-

morphic encryption in order to garble the boolean circuit describing the computation. The main

difference between both is how the circuit representing the garbling of the boolean gates is

described. The SHE scheme has to support plaintext spaces of Fp, where p > 2κ. Our first,

conceptually simpler protocol is described in Section 3.4, whereas the second one (given in Sec-

tion 3.5) allows to perform garbling with a lower depth arithmetic circuit and requires more

multiplications in both the garbling and evaluation phases of BMR.

3.1 Introduction

The work presented in this chapter focuses on the construction of concretely efficient MPC

protocols that run in a constant number of rounds. The approach we follow consists of constructing

25

CHAPTER 3. GARBLING USING SOMEWHAT HOMOMORPHIC ENCRYPTION

a two phase protocol. In the first phase the parties use a generic MPC protocol to construct a

garbled circuit for the function being computed. Then, in a constant round evaluation phase the

garbled function is evaluated. The first garbling phase works in a gate-by-gate manner, and so by

processing all gates in parallel we obtain a circuit of constant depth which can be evaluated in a

constant number of rounds via any MPC protocol.

In [93] an efficient variant of the BMR protocol is used which utilizes the SPDZ [47] generic

MPC protocol in the first garbling phase. In addition, the authors introduce other optimiza-

tions which make the entire protocol actively secure for very little additional overhead. The

SPDZ protocol itself uses a two phase approach, in the first phase, which utilizes Somewhat

Homomorphic Encryption, correlated randomness is produced. Then in the second phase this

correlated randomness is used to evaluate the desired functionality (which in this case is the

BMR garbling). Thus overall this protocol, which we dub BMR-SPDZ, consists of three phases:

A phase using SHE, a phase doing generic MPC via the SPDZ online phase, and the final BMR

circuit evaluation phase.

There is another approach to constant round MPC, which utilizes Fully Homomorphic Encryp-

tion (FHE) [61]. FHE is similar to the notion of public key encryption, with the added property

that given any set of FHE ciphertexts c1 =Enc(m1), . . . , ck =Enc(mk) it allows to compute without

interaction a ciphertext c such that Dec(c)= f (m1, . . . ,mk). The function f can be any circuit, and

the production of c is referred to as the homomorphic evaluation of f on the original ciphertexts.

If the circuits f that are allowed to be evaluated are restricted to a certain maximum depth

we obtain the notion of Somewhat Homomorphic Encryption (SHE), where much more efficient

constructions can be obtained.

In Gentry’s FHE-based MPC protocol [60], parties simply input their data using the encryption

of the underlying FHE scheme and then evaluate the function. Finally, in order to obtain the

result, they perform a distributed decryption (which requires ROut = 2 rounds of interaction with

current FHE schemes). This protocol is essentially optimal in terms of the number of rounds

of communication, but it suffers from a number of drawbacks. The major drawback is that it

requires FHE, which is itself a prohibitively expensive operation (and currently not practical). In

addition, it is not immediately clear how to make the protocol actively secure without incurring

significant additional costs. Here we outline how to address this latter problem, as a by-product

of the analysis of our main protocol.

3.1.1 Our Contributions

Returning to the BMR based approach we note that any MPC protocol could be used for the BMR

garbling phase, as long as it can be made actively secure within the specific context of the BMR

protocol. In particular we could utilize Gentry’s FHE-based MPC protocol (using only a SHE

scheme) to perform the first stage of the BMR protocol, a protocol idea which we shall denote by

BMR-SHE. The main observation as to why this is possible is that, as we have mentioned, the

26

3.1. INTRODUCTION

depth of the circuit computing the BMR garbled circuit is itself constant and equal to the depth

of the circuit required to compute a single garble gate. We therefore conclude that somewhat

homomorphic encryption suffices.

A number of problems arise with this idea, which we will address in the following. First,

can we make the resulting protocol actively secure for little additional cost? Second, is the

required depth of the SHE scheme sufficiently small to make the scheme somewhat practical?

Recall the BMR-SPDZ protocol only requires the underlying SHE scheme to support circuits of

multiplicative depth one, and increasing the depth increases the cost of the SHE itself. Third,

is the resulting round complexity of the scheme significantly less than that of the BMR-SPDZ

protocol? Note that we can only expect a constant factor improvement, but such constants matter

in practice. Fourth, can we save on any additional costs of the BMR-SPDZ protocol?

Since we use Gentry’s FHE-based protocol – more precisely, an SHE version of it – we now

outline two of its key challenges, which also apply to our protocol. When entering data we require

an actively secure protocol to encrypt the FHE data, in particular we need to guarantee to the

receiving parties that each encryption is well formed. The standard technique to do this is to

also transmit a zero-knowledge proof of the correctness of encryption. A method to do this can be

found in [44, Appendix F] or [15, Section 3.2]. This is costly, and in practice rather inefficient. We

call this protocol ID, and the associated round cost by RID. In addition if we need to make further

input dependent inputs, then this round cost will multiply. Thus we also need to introduce a

sub-protocol with round cost RInput+ = 1, which enables us to place all the zero-knowledge proofs

for proving correctness of input into a preprocessing phase.

The second problem with Gentry’s protocol is that we need to ensure, in a concretely efficient

way, that the distributed decryption is also actively secure. We present a sub-protocol Out+
performing this task, which has an associated round complexity of ROut+ = 2 rounds. To the

best of our knowledge such solution did not exist in the literature at the time of writing, but a

similar, less efficient solution based on algebraic manipulation detection codes was introduced

concurrently in [48].

By utilizing the actively secure input and output routines in Gentry’s protocol we obtain an

actively secure variant of Gentry’s FHE based protocol which we denote by Ga. This is in addition

to the original passively secure FHE based protocol of Gentry which we denote by Gp.

In summary, we actually obtain two distinct protocols that we describe below:

DEPTH 4 PROTOCOL ΠDepth−4 (SECTION 3.4). In some sense we can think of our basic BMR-

SHE protocol as the same as the BMR-SPDZ protocol of [93], but cutting out the need of

producing multiplication triples and the interaction needed to evaluate the garbling via the

online phase of SPDZ. Indeed almost all of our basic protocol is identical to that described

in [93]. However, naively applying SHE to the protocol from [93] results in a protocol that

is neither efficient nor secure. For example, naively applying Gentry’s MPC protocol to the

garbling stage would result in needing an SHE scheme which supports a depth logarithmic

27

CHAPTER 3. GARBLING USING SOMEWHAT HOMOMORPHIC ENCRYPTION

in the number of parties n, whereas we would rather utilize a SHE scheme with constant

depth. Thus we need to carefully design the FHE based MPC protocol to realise the BMR

garbled circuit.

DEPTH 3 VARIANT ΠDepth−3 (SECTION 3.5). We present a variant of our protocol which reduces

the depth of the required SHE scheme, at the expense of requiring each party to input a

larger amount of data. Interestingly, the main aim of the design in the BMR-SPDZ protocol

was to reduce the number of multiplications needed (since each multiplication required

generating a multiplication tuple for SPDZ, and this is its main cost). In contrast, when

using SHE directly, additional multiplications are not so expensive as long as they are

carried out in parallel. Stated differently, the main concern is the depth of the circuit

computing the BMR garbled circuit, and not necessarily its size. Of course, for concrete

efficiency, one must try to minimize both, as reducing one slightly while greatly increasing

the other would not be beneficial. In order to achieve this reduction in the depth of the

circuit computing the BMR circuit, we utilize an observation that when computing the

garbled circuit it suffices to obtain either the PRF key on the output wire or its additive

inverse. This is due to the fact that we can actually take the PRF key to be the square of

the value obtained in the garbled gate, which is the same whether k or −k is obtained1.

This allows us to combine the generation of the external values and their corresponding

vector of keys together. The additional flexibility of being able to output either the key or

its additive inverse allows us to reduce the required SHE depth from four to three.

3.1.2 Comparison

By way of comparison we outline in Table 3.1 the differences between our two protocol variants

and those of Gentry and BMR-SPDZ. We let n denote the number of parties, W and G denote

the number of wires and gates in the binary circuit respectively, and Win the number of input

wires. To ease counting of rounds we consider a secure broadcast to be a single round operation

(in the case of a dishonest majority, where parties may abort, a simple two-round echo-broadcast

protocol suffices in any case [65]). We will see later that ROut+ = 2, and RID = 3. In the table the

various functions T1,T2,T3 describing the number of executions of ID are

T1 = 16 ·G ·n3 + (8 ·G+4 ·W) ·n2 +9 ·W ·n+156 ·G ·n,

T2 = 4 ·G ·n2 + (3 ·W +1) ·n,

T3 = (4 ·G+2 ·W) ·n2 + (W +1) ·n.

If we compare the BMR-SPDZ protocol with our protocol variants ΠDepth−4 and ΠDepth−3 we

see that the major difference in computational cost is the number of invocations of the protocol ID.

1Note that the resulting PRF key has one bit of entropy less than k, which can be compensated by longer plaintext
spaces in the SHE scheme.

28

3.1. INTRODUCTION

Protocol Security Rounds of Depth of Number of
Interaction FHE/SHE ID Execs

Gp passive 3= 1+ROut Depth of f 0
Ga active 5= RID+ROut+ 1+Depth of f n+Win

BMR-SPDZ active 16= 13+RID 1 T1
ΠDepth−4 active 9= RID+4+ROut+ 4 T2
ΠDepth−3 active 9= RID+4+ROut+ 3 T3

Table 3.1: Comparison of Gentry’s, the BMR-SPDZ and our protocol.

The difference between BMR-SPDZ and ΠDepth−4 is equal to T1−T2 = 16 ·G ·n3+4 · (G+W) ·n2+
(6 ·W−1) ·n+156 ·G ·n invocations. To be very concrete, for 9 parties, a circuit of size 10,000 gates

and wires, the number of ID invocations equals 141,210,000 in BMR-SPDZ versus 3,510,009 in

BMR-SHE-ΠDepth−4 versus 4,950,009 in BMR-SHE-ΠDepth−3. Thus, ΠDepth−4 is one fortieth of the

cost of BMR-SPDZ, and ΠDepth−3 is one twenty-eighth of the cost of BMR-SPDZ. This gap widens

further as the number of parties grows, with the difference for 25 parties being a factor of 100 for

ΠDepth−4 and 70 for ΠDepth−3. We remark, however, that even for just 3 parties, protocols ΠDepth−4

and ΠDepth−3 are already one twenty-third and one eighteenth of the cost, respectively.

On the downside we require an SHE scheme which will support depth three or four circuits,

as opposed to the depth one circuits of the BMR-SPDZ protocol. The SHE scheme needs to support

message spaces of Fp, where p > 2κ. We use [42], which gives potential parameter sizes for various

SHE schemes supporting depth two and five, and run the experiments there to compare the

parameters required for our specific depths here (depth 1 for SPDZ, depth 4 for protocol ΠDepth−4

and depth 3 for protocol ΠDepth−3). Specifically, assuming ciphertexts live in a ring Rq, then the

dimension needs to go up by approximately a factor of 1.5 for depth-3 and a factor of 2 for depth-4,

and the modulus by a factor of 1.6 for depth-3 and a factor of 2 for depth-4. Assuming standard

DCRT representation of Rq elements, this equates to an increase in the ciphertext size by a factor

of approximately 2.4 for depth-3, and by approximately a factor of 4 for depth-4. Furthermore,

the performance penalty (cost of doing arithmetic) increases by a factor of approximately 3.6

for depth-3, and by a factor of 8 for depth-4. Factoring in this additional cost, we have that

when compared to BMR-SPDZ, the relative improvement in the computational cost in the above

example becomes a factor of 40/8= 5 for ΠDepth−4 and 28/3.6= 7.7 for ΠDepth−3 for 9 parties, and

a factor of 100/8 = 12.5 for ΠDepth−4 and 70/3.6 ≈ 19.4 for ΠDepth−3 for 25 parties. Thus, both

ΠDepth−4 and ΠDepth−3 significantly outperform BMR-SPDZ, and the depth reduction carried out

in ΠDepth−3 provides additional speedup (and reduction in bandwidth).

3.1.3 Additional Related Work

Our work should also be compared to [41] in which a constant round 3PC protocol is given,

based on Yao’s garbled circuits. However, active security in their case is provided by an expensive

29

CHAPTER 3. GARBLING USING SOMEWHAT HOMOMORPHIC ENCRYPTION

cut-and-choose protocol. In addition, their protocol is specifically designed for the three-party case,

whereas we consider multiparty computation for any number of parties. Another constant-round

multiparty protocol was constructed by [75]. However, although this protocol has good asymptotic

complexity, its concrete efficiency is very unclear and no concretely efficient instantiation has

been found. In [89] the authors propose a concrete instantiation of [75] for the two-party case,

but no analogous proposal exists for the multiparty case.

3.2 Preliminaries

As a warm up to our protocols, we first give an outline of Gentry’s FHE based protocol and to the

previous work by Lindel et all. [93], which uses SPDZ to produce BMR garbled circuits.

3.2.1 A Basic FHE Functionality With Distributed Decryption

We first describe in Figure 3.1 a basic FHE functionality which contains a distributed decryp-

tion functionality. Two points need to be noted about the functionality: Firstly, the distributed

decryption operation in Output can produce an incorrect result, but this is limited to an additive

error which is introduced by the adversary before revealing the output. Secondly, the InputData
routine is actively secure, and so a proof of correctness of its decryption is needed for each input

ciphertext. The need for such an actively secure input routines is because we need to ensure that

parties enter valid FHE/SHE encryptions, and that the simulator can extract the plaintext values.

Within the functionality we denote the depth of a varable x by D(x), and we describe how the

depth is altered with each operation which can affect the depth.

A method to perform the required InputData operation is given in [44, Appendix F], or [15,

Section 3.2]. The basic idea is to check a number of executions of InputData at the same time.

The protocol runs in two phases, in the first phase a set of reference ciphertexts are produced

and via cut-and-choose one subset is checked for correctness, while the other is permuted into

buckets; one bucket for each value entered via InputData. In the second phase the input

ciphertexts are checked for correctness by combining them homomorphically with the reference

ciphertexts and opening the result. We denote the round complexity of the protocol implementing

InputData by RID. An analysis of the protocol from [44] indicates that it requires RID = 3 rounds

of communication: In the first round of the proof one party broadcasts the reference ciphertexts,

in the next round the parties choose which ciphertexts to open, and in the third round the

ciphertexts are combined and opened.2 Thus, overall, three rounds suffice.

In the following, we fix the notation 〈varid〉 to represent the result stored in the variable

varid by the FFHE/FSHE functionalities. In particular, we will use the arithmetic shorthands

〈z〉 = 〈x〉+〈y〉 and 〈z〉 = 〈x〉·〈y〉 to represent the result of calling the Add and Multiply commands

2Choosing at random which ciphertexts to open cannot be carried out in a single round. However, it is possible for
all parties to commit to the randomness in previous rounds and only decrypt in this round.

30

3.2. PRELIMINARIES

The FHE Functionality: FFHE/FSHE

The functionality consists of externally exposed commands Initialize, InputData, Add, Multiply
and Output, and one internal subroutine Wait.

Initialize: On input (init,p) from all parties, the functionality activates and stores p. All additions
and multiplications below will be mod p.

Wait: The functionality waits on the adversary for a reply. If A returns ⊥ then the functionality
aborts, otherwise it continues.

InputData: On input (input,Pi,varid,x) from Pi and (input,Pi,varid,?) from all other parties, with
varid a fresh identifier, the functionality stores (varid,x). The functionality then calls Wait.

Add: On command (add, varid1, varid2, varid3) from all parties (if varid1, varid2 are present in memory
and varid3 is not), the functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x+y mod p).

Add-scalar: On command (add-scalar, a, varid1, varid2) from all parties (if varid1 is present in memory
and varid2 is not), the functionality retrieves (varid1, x) and stores (varid2,a+ x mod p).

Multiply: On command (multiply, varid1, varid2, varid3) from all parties (if varid1, varid2 are present in
memory and varid3 is not), the functionality retrieves (varid1,x), (varid2,y) and stores (varid3,x · y
mod p).

In the case of the FSHE version of this functionality only a limited depth of such commands can
be performed, which is specified for the functionality.
Depth Cost: D(varid3)=max(D(varid1),D(varid2))+1.

Multiply-scalar: On command (multiply-scalar, a, varid1, varid2) from all parties (if varid1 is present
in memory and varid2 is not), the functionality retrieves (varid1, x) and stores (varid2,a·x mod p).

Output: On input (output,varid, i) from all honest parties (if varid is present in memory), and a value
e ∈ Fp from the adversary, the functionality retrieves (varid, x), and if i = 0 it outputs (varid, x) to
the adversary. The functionality then calls Wait. If Wait does not result in an abort, then the
functionality outputs x+ e to all parties if i = 0, or it outputs x+ e only to party i if i 6= 0.

Figure 3.1: The FHE/SHE Functionality: FFHE/FSHE

in the FFHE/FSHE functionality, and we will slightly abuse those shorthands to denote subsequent

additions or multiplications.

The description of Output in the case of a passively secure functionality is identical to the

behaviour of the standard distributed decryption procedure for FHE schemes such as BGV, again

see [44] for how the distributed decryption is performed. The basic protocol is to commit to

the distributed decryption shares, and then open the shares. This gives a round complexity for

Output of ROut = 2. We shall provide a simple mechanism to provide active security for the

Output command in the next section, which comes at the expense of increasing the required

supported depth of the SHE scheme by one.

In the case of a passively secure variant of the FHE functionality, one would always have

e = 0 in the Output routine. Furthermore, we would not need a proof of correctness of the input

ciphertexts and so the number of rounds of interaction in the InputData routine would be

RID = 1.

31

CHAPTER 3. GARBLING USING SOMEWHAT HOMOMORPHIC ENCRYPTION

3.2.2 Gentry’s FHE-Based MPC Protcol

In [60] Gentry presents an MPC protocol which has optimal round complexity to implement

FMPC. In the FFHE-hybrid model the protocol can be trivially described as follows: The parties

enter their data using the InputData command of the FHE functionality, the required function is

evaluated using the Add and Multiply commands (i.e. each party locally evaluates the function

using the FHE operations). The Add-scalar and Multiply-scalar commands can be computed

by the parties locally encrypting the scalar with a mutually agreed randomness (so that all hold

the same ciphertext) and then using the regular FHE Add or Multiply command, respectively.

Finally, the output is obtained using the Output command of the FHE functionality. For

passively secure adversaries this gives us an ‘efficient’ MPC protocol, assuming the FHE scheme

can actually evaluate the function. For active adversaries we then have to impose complex zero-

knowledge proofs to ensure that the InputData command is performed correctly, and we need a

way of securing the Output command (which we will come to in Section 3.3).

3.2.3 The BMR-SPDZ Protocol

We shall now overview the BMR-SPDZ protocol from [93]. Much of the details we cover here

focus on the offline SHE-part of the SPDZ protocol and how it is used in the BMR-SPDZ protocol.

Recall the SPDZ protocol makes use of two phases: An offline phase which uses an SHE scheme

(which for our purposes we model via the functionality FSHE above restricted to functions of

multiplicative depth one) and an online phase using (essentially) only information theoretic

constructs. These two phases are used to create a shared garbled circuit which is then evaluated

in a third phase in the BMR-SPDZ protocol.

First Phase Costs

The first phase of the BMR-SPDZ protocol requires an upper bound on the total number of parties

n, internal wires W , and gates G of the circuit which will be evaluated. The phase then calls the

offline phase of the SPDZ engine to produce M = (4 ·n+5) ·G multiplication triples, B =W shared

random bits, R = 2 ·W ·n shared random values and I = 8 ·G ·n shared values for entering data

per party.

The main cost of the BMR-SPDZ protocol is actually in computing this initial data, yet the

paper [93] does not address this cost in much detail. Delving into the paper [44] we see that

each of these operations requires parties to encrypt random data under the SHE scheme and to

produce additive sharings of SHE encrypted data. This first operation is identical to our input

command on the functionality FSHE. We delve into the costs of the operations in more detail:

• Encrypting (Input) Data ID: When a party produces a ciphertext we need to ensure that

it has a valid form, so as to protect against active attackers. As remarked above this is done

using a zero-knowledge proof of correctness. Whilst the computational costs of this can be

32

3.2. PRELIMINARIES

amortized due to ‘packing’ in the SHE scheme, it is a non-trivial cost per encryption. We

shall denote the computational and round cost in what follows by CID and RID respectively,

i.e. the computational and round cost of the actively secure EncCommit operation from [44].

• Producing Random Resharings: Given a ciphertext encrypting a value m this procedure

results in an additive sharing of m amongst the n parties. The computational cost of this

procedure is dominated by the invocations of the ID protocol. Since each party needs to

encrypt a random value, the computational cost n ·CID and the round complexity is RID+1.

Again, the computational costs can be amortized due to the packing of the SHE scheme.

• Producing Multiplication Triples: To produce an unchecked triple this requires (per

party) the encryption of two random values (of ai and bi in the triple ([a], [b], [c])), plus

four resharings (three of which can be done in parallel, with the fourth only partially in

parallel). To produce a checked triple, this needs to be done twice (in parallel), followed by

a sacrificing step of one of the triples via a procedure (described in [44]) which requires

another two rounds of interaction. Thus the total computational cost is dominated by

12 ·n ·CID and the round complexity is RID+4.

• Producing Shared Random Bits: To produce an unchecked random bit we require (per

party) the encryption of one random value, one passively secure distributed decryption

(with only one round of interaction), plus two resharings (in parallel). To produce a checked

random bit, the above has to be combined with an unchecked multiplication triple in a

sacrificing step which requires two rounds of interaction. Thus the total computational cost

is dominated by 9 ·n ·CID and the round complexity is RID+4.

• Producing Shared Random Values: This requires (per party) the encryption of one ran-

dom value, and two resharings which can be done in parallel. Thus the total computational

cost is 2 ·n ·CID, and the round complexity is RID+1.

• Producing Input Data: Per data item which needs to be input for each player this

requires the encryption of one random value plus two resharings (which cannot be fully

parallelised), as well as one additional round of interaction. Thus the total computational

cost is dominated by CID+2 ·n ·CID, and the round complexity is RID+3.

A major bottleneck in the protocol, which is also one of the requisites for active security, is the

cost of encrypting the random data described above. If we combine the various formulae, we

obtain a dominant cost of T1 ·CID, where T1 is the number of calls to the ID protocol:

T1 ·CID = 12 ·n ·CID ·M+9 ·n ·CID ·B+2 ·n ·CID ·R+ (1+2 ·n) ·n ·CID · I
= (12 · (4 ·n+5) ·G+9 ·W +4 ·W ·n+ (1+2 ·n) ·n ·8 ·G) ·n ·CID

= (16 ·G ·n3 + (56 ·G+4 ·W) ·n2 +9 ·W ·n+60 ·G ·n) ·CID

33

CHAPTER 3. GARBLING USING SOMEWHAT HOMOMORPHIC ENCRYPTION

which is cubic in the number of players.

The total round complexity of the SPDZ offline phase is the maximum round complexity of

the various preprocessing operations in the SPDZ offline phase, namely RID+4. This holds since

the transmission of all random encrypted values can occur in one round at the beginning of this

phase. We stress that the depth of the SHE needed for SPDZ is just one, making it very efficient.

Second Phase Costs

A careful analysis of the rest of the garbling phase of BMR-SPDZ implies that it requires six

additional rounds of communication.3

Third Phase Costs

The online phase of the BMR-SPDZ protocol requires three rounds of interaction, one to open the

secret shared values and two to verify the associated MACs.

Summary

In summary, the round complexity of BMR-SPDZ is RID+10 in the offline phase, and 3 in the

online phase.

3.3 Extending the FFHE/FSHE Functionalities

3.3.1 The Extended Functionality Definition

The first step in describing our new offline protocol for constructing the BMR circuit is to extend

the functionalities FFHE/FSHE to new functionalities FFHE+ / FSHE+ . In Figure 3.2 we present

the FFHE+ functionality, from which the definition of the FSHE+ functionality is immediate.

These new functionalities mimic the output possibilities of the SPDZ offline phase, which

were exploited in [93] by allowing the functionality to produce encryptions of random data and

encryptions of random bits. In addition the functionalities provide a version of Output, denoted

by Output+, which does not allow the adversary to introduce an error value. There is also a new

version of InputData called InputData+ which will enable us to reduce the number of rounds

of interaction in our main protocol. Functionally this does nothing different from InputData but

it will be convenient to introduce a different name for a different implementation within our FHE

functionality.

3With reference to [93] this is one round in the preprocessing-I phase and the start of the preprocessing-II phase
due to the Output commands, and three to evaluate the required circuits in step 3 of preprocessing-II (since the
circuits are of depth three, and hence require three rounds of computation), plus two to verify all the associated MAC
values.

34

3.3. EXTENDING THE FFHE /FSHE FUNCTIONALITIES

The Extended Functionality FFHE+

This functionality runs the same Initialize, Wait, InputData, Add, Multiply, and Output com-
mands as FFHE of Figure 3.1. It additionally has the four following externally exposed commands:

Output+: On input (output+,varid, i) from all honest parties (if varid is present in memory), the func-
tionality retrieves (varid, x), and if i = 0 it outputs (varid, x) to the adversary. The functionality
then calls Wait, and only if Wait does not abort then outputs x to all parties if i = 0, or outputs
x only to party i if i 6= 0.

InputData+: On input (input+,Pi,varid,x) from Pi and (input+,Pi,varid,?) from all other parties, with
varid a fresh identifier, the functionality stores (varid,x). The functionality then calls Wait.

RandomElement: This command is executed on input (randomelement, varid) from all parties, with
varid a fresh identifier. The functionality then selects uniformly at random x ∈ Fp and stores
(varid,x).

RandomBit: This command is executed on input (randombit, varid) from all parties, with varid a
fresh identifier. The functionality then selects uniformly at random x ∈ {0,1} and stores (varid,x).

Figure 3.2: The Extended Functionality FFHE+

3.3.2 Securely Realising the Extended Functionality

In Figure 3.3 we give the protocol ΠFHE+ for realising the FFHE+ functionality in the FFHE-

hybrid model. Let us start by looking at the Output+ command in more detail (after first

reading Figure 3.3). Suppose the adversary tries to make player P j accept an incorrect value, by

introducing errors into the calls to the weakly secure Output command from FFHE. The honest

player P j will receive varid+ e1 instead of varid and authvarid j + e2 instead of authvarid j, for some

adversarially chosen values of e1 and e2. If player P j is not to abort then these quantities must

satisfy authvarid j + e2 = sk j · (varid+ e1). Now since we know that authvarid j = varid · sk j then this

implies that the adversary needs to select e1 and e2 such that e2 = sk j · e1, which it needs to do

without having any knowledge of sk j. Thus either the adversary needs to select e1 = e2 = 0, or he

needs to guess the correct value of sk j. This will happen with probability at most 1/p, which is

negligible.

We note that in the concurrent independent work of [48] a similar approach to our Output+
command is taken in order to attain active security. Nevertheless, they use a global MAC

key 〈sk〉 = 〈sk1〉+ · · ·+ 〈skn〉 that is revealed to all parties after decryption, which means that

sk needs to be renewed after each call to Output+. Thus, each call to their similar Output+
implementation requires n calls to the expensive InputData protocol, which does not pay off in

terms of concrete efficiency.

The protocol which implements InputData+ works by first running InputData with a

random value, and then later providing the difference between the random value input and the

real input. This enables parallel preprocessing of the InputData procedure, thereby reducing the

overall number of rounds.

The protocol which implements the RandomElement command generates an encrypted

35

CHAPTER 3. GARBLING USING SOMEWHAT HOMOMORPHIC ENCRYPTION

Protocol ΠFHE+

This protocol implements the functionality FFHE+ in the FFHE-hybrid model.

Initialize: This performs the initialisation routine just as in the FFHE functionality. However, in
addition, each party executes InputData to obtain an encryption 〈ski〉 of a random MAC value
ski known only to player Pi.

Output+: On input (output+, varid, i) from all honest parties, if varid is present in memory, the
following steps are executed.

1. If i 6= 0, party Pi computes authvaridi = 〈varid〉 · 〈ski〉, else, each party P j computes
authvarid j = 〈varid〉 · 〈sk j〉.

2. Parties call FFHE with the command (output, varid, i).

3. If i 6= 0, parties call FFHE with the command (output, authvaridi, i), else, they use command
(output, authvarid j, j) for every j ∈ [1, . . . ,n]. Any party P j aborts if authvarid j 6= varid · sk j.

Depth Needed: D(varid)+ 1. Round Cost: 2 (since the output calls in steps 2 and 3 can be
performed in parallel).

InputData+: The first step of this command does not depend on the input, and so can be run in a
preprocessing step if the number of values to be input per party are known in advance. Upon
input (input+,Pi,varid, x) with x ∈ Fp for Pi and (input+,Pi,varid,?) for all other parties:

1. Party Pi chooses a random r i ∈ Fp (in the same field as x) and sends (input,Pi,varid-1, r i)
to Functionality FFHE. All parties P j with j 6= i send (input,Pi,varid-1,?) to Functional-
ity FFHE.

2. Party Pi broadcasts ci = xi − r i (mod p) to all parties.

3. Parties send (add-scalar, ci,varid-1,varid) to Functionality FFHE.

Depth Needed: D(xi)= D(c)= 0. Round Cost: RID+1. Although all RID rounds can be performed
in parallel at the start of the protocol.

RandomElement:

1. For i = 1, . . . ,n, each Pi chooses a random xi ∈ Fp, and calls FFHE with the command
(input,Pi,xi) from party Pi and (input,Pi,?) for the others.

2. Call Add as many times as needed to compute 〈x〉 = 〈x1〉+ · · ·+〈xn〉.
Depth Needed: D(xi)=max{D(xi)}= 0. Round Cost: RID.

RandomBit: This command requires a more elaborate implementation:

1. For i = 1, . . . ,n, call FFHE with the command (input,Pi,xi) from party Pi and (input,Pi,?)
for the rest of the parties.

2. Call Add as many times as needed to compute 〈x〉 = 〈x1〉+ · · ·+〈xn〉.
3. Call Multiply to compute 〈s〉 = 〈x〉 · 〈x〉.
4. Call FFHE+ on input (output+, s, 0) so all parties obtain s. If s = 0 then restart the protocol.

5. Parties compute y=p
s (mod p). Between the two possible outputs, y is chosen according

to a previously agreed method (e.g. the biggest one when looked as an integer).

6. Call Add-scalar and Multiply-scalar to compute 〈varid〉 = (1+〈x〉/y)/2 .

Depth Needed: D(s)+1= 2. Note the output encrypted bit has depth zero. Round Cost: RID+2.

Figure 3.3: Protocol ΠFHE+ .

36

3.3. EXTENDING THE FFHE /FSHE FUNCTIONALITIES

random value 〈x〉, unknown to any party as long as one of the parties honestly chooses his

additional share xi randomly.

The protocol which implements the RandomBit command is more elaborate, and borrows

much from the equivalent operations in the SPDZ offline phase, see [44]. The basic idea is to gen-

erate an encrypted random value 〈x〉, unknown to any party. This value is then squared to obtain

〈s〉. The value of s is then publicly revealed and an arbitrary square root y is taken, according to

any previously agreed rule. As long as s 6= 0 (which happens with negligible probability due to the

size of p) we then have that 〈b〉 = 〈x〉/y is an encryption of a value chosen uniformly from {−1,1}.

Since p is prime, with probability 1/2 the square root taken will be equal to x and with probability

1/2 it will be equal to −x. This encryption of a value in {−1,1} is turned into an encryption of a

value in {0,1} by the final step, by computing (〈b〉+1)/2, which is a linear function and can be thus

computed by calling Add-Scalar and Multiply-Scalar. However, unlike in SPDZ no sacrificing

procedure is required as the Output+ command is actively secure.

Theorem 3.3.1. Protocol ΠFHE+ securely implements FFHE+ in the FFHE-hybrid model in the UC

framework, in the presence of static, active adversaries corrupting up to t ≤ n−1 parties.

Proof (sketch) By [36], it suffices to prove the security of Protocol ΠFHE+ in the SUC (simple

UC) framework. We will sketch the proof for each of the processes in the functionality separately.

In the FFHE-hybrid model the security follows in a straightforward way utilizing the security of

the commands in FFHE.

Output+: The security of Output+ relies on the security of the InputData, Multiply and

Output commands of FFHE. Namely, by the security of InputData we have that all sk j

values are secret, and by the security of Output the only change that A can make to

the output is an additive difference e (fixed before the output is given). Thus, A can only

change the output if it chooses additive differences e1, e2 with e1 6= 0 such that (x+e1)·sk j =
x · sk j + e2 (mod p), where x is the value output. This implies that e1 · sk j = e2 (mod p).

Since sk j is secret, the adversary can cause this equality to hold with probability at most p.

We remark that the MAC key sk j is only used for output values given to P j. Thus, it always

remains secret (even when used for many outputs).

The simulator for Output+ works simply by simulating the Output interaction with

FFHE for all honest Pi. Regarding a corrupt P j, the simulator receives the value x that

is supposed to be output. Furthermore, the simulator receives the value sk j from the

InputData instruction, as well as any errors that are introduced in the Output calls by

corrupted parties. Thus, the simulator can construct the exact value that A would receive

in a real execution.

InputData+: The only difference between InputData+ and InputData is that InputData+
can be run such that the actual input is only known to the party in the last round of

37

CHAPTER 3. GARBLING USING SOMEWHAT HOMOMORPHIC ENCRYPTION

the protocol. This is done in a straightforward way by using InputData to have a party

input a random string, and then using that result to mask the real data (at the end).

The simulator for this procedure therefore relies directly on the InputData procedure of

FFHE in a straightforward way. Namely, in the FFHE-hybrid model when the party Pi is

corrupted, the simulator receives the value r i that party Pi sends to InputData. Then,

upon receiving ci as broadcast by Pi, the simulator defines xi = ci + r i (mod p) and sends

(input+,Pi,varid, xi) to the ideal functionality as input. In the case that Pi is honest, the

simulator chooses a random ci ∈ Fp and simulates Pi broadcasting that value. Furthermore,

it simulates the (input, ...) and (add-scalar, ...) interaction with FFHE.

The view of the adversary is identical in the simulated and real executions. In addition,

since InputData is secure and ci is broadcast and therefore the same for all parties, the

protocol fully determines the input value xi = ci + r i (mod p), as required.

RandomElement: This is a straightforward coin tossing protocol. The security is derived from

the fact that FFHE provides a secure InputData protocol that reveals no information

about the input values. Thus, no party knows anything about the x-values input by the

others. Formally, a simulator just simulates the message interaction with FFHE for all of

the (input,Pi, xi) and (input,Pi,?) messages. As long as at least one party is honest, the

distribution over the value x defined is uniform, as required.

RandomBit: The first step of this protocol is to essentially run RandomElement in order to

define a random shared value x. Then, the value s = x2 (mod p) is output to all parties,

and each takes the same square-root y of s. Assume that the square root taken is the

one that is between 1 and (p−1)/2. Now, if 1 ≤ x ≤ p−1
2 , then y = x and so 〈b〉 = 〈1〉, and

we have that 〈varid〉 = 〈1+1
2 〉 = 〈1〉. Else, if p−1

2 < x ≤ p−1 then 〈b〉 = 〈−1〉 and we have

〈varid〉 = 〈−1+1
2 〉 = 〈0〉. The security relies on the fact that the result is fully determined

from the (input, ...) messages sent in the beginning. Relying on the security of InputData
and Add/Multiply in FFHE, and on the security of the Output+ procedure, the value x

is uniformly distributed and the value s that is output to all parties equals x2 and no

other value. All other steps are deterministic and thus this guarantees that the output is a

uniformly distributed bit, as required.

Regarding simulation, the simulator simulates the calls to InputData, Add and Multiply
as in the protocol. For the output, the simulator simply chooses a random s as the value

received from Output+. The view of the parties is clearly identical to in a real execution.

■

38

3.4. THE FIRST VARIANT OF THE BMR-SHE PROTOCOL, ΠDepth−4

3.4 The First Variant of the BMR-SHE Protocol, ΠDepth−4

In this section we outline our basic protocol, which follows much upon the lines of the BMR-

SPDZ protocol. The modifications needed for a variant using only depth three will be left to

Section 3.5. We divide our discussion into four subsections. In the first one we outline the offline

functionality FPreprocessing required for our specific garbling scheme. The next subsection discuss

how to implement the overall BMR-style protocol assuming said functionality. In the two last

subsections we discuss a protocol to implement FPreprocessing and analyse its efficiency.

3.4.1 Functionality FPreprocessing for the Offline Phase

We first present the offline functionality (see Figure 3.4) for our main MPC protocol. This is almost

identical to the offline functionality for the BMR-SPDZ protocol of [93]. The main difference is

that it is built on top of our FFHE+ functionality from the previous section, as opposed to the

SPDZ MPC protocol. In particular this means we have just a single preprocessing step as opposed

to the two phases in [93], which are in turn inherited from the two phases of the SPDZ protocol.

We recall from Section 2.6 that the functionality also has an additional task: Revealing the

output wire masks towards all parties and the input wire masks towards the relevant input party.

Everything else in the garbled circuit remains encrypted as in FFHE+ .

3.4.2 The BMR-SHE Protocol Specification ΠMPC,4

We can now give our protocol ΠMPC,4, described in Figure 3.5, which securely computes the

functionality FMPC described in Figure 2.1 in the FPreprocessing-hybrid model. The computational

and communication costs of ΠMPC,4 are mainly in the preprocessing step, with the online phase

adding only a depth of one to the SHE scheme and two more rounds of communication, all of

these costs coming from the need for an actively secure Output+. As the online phase follows

the style of the one in SPDZ-BMR [93] or, more broadly the one of BMR which was described in

Section 2.6.1, we do not discuss it in details here.

3.4.3 The ΠPreprocessing,4 Protocol

For completeness, we show how to calculate the output indicators for functions fg = AND and

fg = XOR in Figure 3.7 as shown in [93]. Note that we consume a multiplicative depth of two for

both operations.

• For fg = AND, we compute 〈t〉 = 〈λa〉 · 〈λb〉 and then 〈xA〉 = (〈t〉−〈λc〉)2, 〈xB〉 = (〈λa〉−〈t〉−
〈λc〉)2, 〈xC〉 = (〈λb〉−〈t〉−〈λc〉)2, 〈xD〉 = (1−〈λa〉−〈λb〉+〈t〉−〈λc〉)2.

• For fg = XOR, we first compute 〈t〉 = 〈λa〉 ⊕ 〈λb〉 = 〈λa〉 + 〈λb〉 − 2 · 〈λa〉 · 〈λ2〉, and then

〈xA〉 = (〈t〉−〈λc〉)2, 〈xB〉 = (1−〈λa〉−〈λb〉+2 · 〈t〉−〈λc〉)2, 〈xC〉 = 〈xB〉, 〈xD〉 = 〈xA〉.

39

CHAPTER 3. GARBLING USING SOMEWHAT HOMOMORPHIC ENCRYPTION

Functionality FPreprocessing

This functionality runs the same commands as FFHE+ . In addition it has the following command:

Preprocessing: On input (Garbling,C f) from all parties, where C f is a boolean circuit, denote by
W its set of wires and by G its set of AND gates. The functionality performs the following
operations:

• For all wires w ∈ [1, . . . ,W] :

– The functionality stores a random mask λw, where λw ∈ {0,1}.
– For every value β ∈ {0,1}, each party Pi chooses and stores a random key ki

w,β ∈ Fp.

• For all input wires w where a party Pi is meant to provide input, the functionality reveals
λw to that party by running Output+ as in FFHE+ .

• For all output wires w the functionality reveals λw to all parties by running Output+ as
in FFHE+ .

• For every gate g with input wires 1≤ a,b ≤W and output wire 1≤ c ≤W .

– Party Pi provides the following inputs for x ∈ {a,b}, g ∈ [1, . . . ,G] by running Input-
Data as in FFHE+ :

Fki
x,0

(0||1||g), . . . ,Fki
x,0

(0||n||g), Fki
x,0

(1||1||g), . . . ,Fki
x,0

(1||n||g)

Fki
x,1

(0||1||g), . . . ,Fki
x,1

(0||n||g), Fki
x,1

(1||1||g), . . . ,Fki
x,1

(1||n||g)

(In our protocols, the parties actually provide sums of pairs of these values, see
Figure 3.7. This reduces the number of values input from 8 per-party per-gate to only
4 per-party per-gate.)

– Define the selector variables

χ1 = (fg(λa,λb)−λc)2.

χ2 = (fg(λa, λ̄b)−λc)2.

χ3 = (fg(λ̄a,λb)−λc)2.

χ4 = (fg(λ̄a, λ̄b)−λc)2.

– Set Ag = (A1
g, . . . , An

g), Bg = (B1
g, . . . ,Bn

g), Cg = (C1
g, . . . ,Cn

g), Dg = (D1
g, . . . ,Dn

g) where for
1≤ j ≤ n:

A j
g =

(
n∑

i=1
Fki

a,0
(0|| j||g)+Fki

b,0
(0|| j||g)

)
+k j

c,χ1

B j
g =

(
n∑

i=1
Fki

a,0
(1|| j||g)+Fki

b,1
(0|| j||g)

)
+k j

c,χ2

C j
g =

(
n∑

i=1
Fki

a,1
(0|| j||g)+Fki

b,0
(1|| j||g)

)
+k j

c,χ3

D j
g =

(
n∑

i=1
Fki

a,1
(1|| j||g)+Fki

b,1
(1|| j||g)

)
+k j

c,χ4

– The functionality finally stores the values Ag, Bg, Cg, Dg for all g.

Figure 3.4: The Preprocessing Functionality FPreprocessing.

40

3.4. THE FIRST VARIANT OF THE BMR-SHE PROTOCOL, ΠDepth−4

The MPC Protocol - ΠMPC,4

On input a boolean circuit C f representing the function f , parties execute the following commands in
sequence:

Preprocessing: This sub-task is performed as follows.

• Call Initialize on FPreprocessing to initialize the FHE scheme.

• Call Preprocessing on FPreprocessing with input C f .

Online Computation: This sub-task is performed as follows.

• For all his input wires w, each party computes Λw = ρw ⊕λw, where λw was obtained in
the preprocessing stage, and ρw is his input on that wire. Λw is broadcast to all parties.

• Party Pi calls Output+ on FPreprocessing with all parties as receivers, in order to reveal
them his keys 〈ki

w,Λw
〉 associated to Λw, for all his input wires w.

• The parties call Output+ on FPreprocessing to decrypt Ag, Bg, Cg and Dg for every gate g.

• Passing through the circuit topologically, the parties can now locally compute the following
operations for each gate g. Let the gates input wires be labelled a and b, and the output
wire be labelled c.

– For j = 1, . . . ,n compute k j
c according to the following cases:

(Λa,Λb)= (0,0) : Set k j
c = A j

g −
(∑n

i=1 Fki
a
(0|| j||g)+Fki

b
(0|| j||g)

)
.

(Λa,Λb)= (0,1) : Set k j
c = B j

g −
(∑n

i=1 Fki
a
(1|| j||g)+Fki

b
(0|| j||g)

)
.

(Λa,Λb)= (1,0) : Set k j
c = C j

g −
(∑n

i=1 Fki
a
(0|| j||g)+Fki

b
(1|| j||g)

)
.

(Λa,Λb)= (1,1) : Set k j
c = D j

g −
(∑n

i=1 Fki
a
(1|| j||g)+Fki

b
(1|| j||g)

)
.

– If ki
c 6∈ {ki

c,0,ki
c,1}, then Pi outputs abort. Otherwise, it proceeds. If Pi aborts it

notifies all other parties with that information. If Pi is notified that another party
has aborted it aborts as well.

– If ki
c = ki

c,0 then Pi sets Λc = 0 otherwise if ki
c = ki

c,1 then Pi sets Λc = 1.

– The output of the gate is defined to be (k1
c , . . . ,kn

c) and Λc.

• Assuming party Pi does not abort it will obtain Λw for every circuit-output wire w. The
party can then recover the actual output value from ρw =Λw⊕λw, where λw was obtained
in the preprocessing stage.

Depth Needed: D(Output+ ({Ag}, {Bg}, {Cg}, {Dg}))= 3+1= 4.

Round Cost: The round cost of the online stage is that of the first three steps, which can be done
in parallel in two rounds.

Figure 3.5: The MPC Protocol - ΠMPC,4.

41

CHAPTER 3. GARBLING USING SOMEWHAT HOMOMORPHIC ENCRYPTION

The Offline Protocol – ΠPreprocessing,4

The protocol runs the commands Initialize, InputData, InputData+, Wait, and Output+ by calling
the equivalent commands on FFHE+ . Thus we only need to implement the additional Preprocessing
command of FPreprocessing as follows:

1. Call Initialize on the functionality FFHE+ with input a prime p > 2k.

2. Generate wire masks: For every circuit wire w we need to generate a random and hidden
masking-values λw. Thus for all wires w the parties execute RandomBit of FFHE+ , the output
is denoted by 〈λw〉.
Depth Needed: D(RandomBit)= 2
Round Cost: RID+2.

3. Generate keys: For every wire w, each party i ∈ [1, . . . ,n] and for β ∈ {0,1}, the parties execute
the command InputData of the functionality FFHE+ to obtain output 〈ki

w,β〉, where Pi learns

ki
w,β. We shall denote vector of keys

(
〈ki

w,β〉
)n

i=1
by 〈kw,β〉.

Depth Needed: D(ki
w,β)= 0.

Round Cost: RID.

4. Reveal masks for circuit-input-wires: For all input wires w where a party Pi is meant to
provide input, execute the command Output+ in FFHE+ to decrypt 〈λw〉 to that party.
Depth Needed: max(D(RandomBit),D(Output+ (λw)))=max(2,1)= 2.
Round Cost: 2.

5. Reveal masks for circuit-output-wires: In order to reveal the real values of the circuit-
output-wires it is required to reveal their masking values. That is, for every circuit-output-wire
w, the parties execute the command Output+ on the functionality FFHE+ for the stored value
〈λw〉.
Depth Needed: max(D(RandomBit),D(Output+ (λw)))=max(2,1)= 2.
Round Cost: 2.

6. Calculate garbled gates: See Figure 3.7 for the details of this step.

We note that steps two and three can be run in parallel, and that steps four and five also can be run
in parallel, but need to follow step two. We also note that the calls to InputData+ in the last step
(detailed in Figure 3.7) need to be executed after step three. Hence, we have:
Total Depth Needed: 3.
Total Round Cost: max(RID+3,RID+4)= RID+4.

Figure 3.6: The Preprocessing Protocol: ΠPreprocessing,4.

42

3.4. THE FIRST VARIANT OF THE BMR-SHE PROTOCOL, ΠDepth−4

Calculate Garbled Gates Step of ΠPreprocessing,4

This step is operated for each gate g in the circuit in parallel. Specifically, let g be a gate whose input
wires are a,b and output wire is c. Do as follows:

(a) Calculate external values: This step calculates the external values 〈xA〉,〈xB〉, 〈xC〉,〈xD〉
corresponding to each row of the garbled gate. Each of them is either 〈0〉 or 〈1〉 and is determined
according to some quadratic function fg on 〈λa〉,〈λb〉,〈λc〉, depending on the truth table of the
gate. See Section 3.4.3 for details.

〈xA〉 = (fg(〈λa〉,〈λb〉)−〈λc〉)2 〈xB〉 = (fg(〈λa〉, (1−〈λb〉))−〈λc〉)2
〈xC〉 = (fg((1−〈λa〉),〈λb〉)−〈λc〉)2 〈xD〉 = (fg((1−〈λa〉), (1−〈λb〉))−〈λc〉)2

Depth Needed: D(x∗)= D(λ∗)+2= 2.

(b) Assign the correct vector: The external values are used to choose, for every row of garbled
gate, either kc,0 or kc,1, for t = A,B,C,D,

〈vc,xt〉 = (1−〈xt〉) · 〈kc,0〉+〈xt〉 · 〈kc,1〉.

Depth Needed: D(vc,x∗)=max(D(x∗),D(kc,∗))+1= 3.

(c) Calculate garbled gate rows: Party i can now compute the 2 · n PRF values
Fki

w,β
(0||1||g), . . . ,Fki

w,β
(0||n||g) and Fki

w,β
(1||1||g), . . . ,Fki

w,β
(1||n||g), for each input wire w of gate

G, and β= 0,1.

F0
ki

w,β
(g)=

(
Fki

w,β
(0||1||g), . . . ,Fki

w,β
(0||n||g)

)
F1

ki
w,β

(g)=
(
Fki

w,β
(1||1||g), . . . ,Fki

w,β
(1||n||g)

)
.

Then, they call 4 ·n ·G times the command InputData+ on the functionality FFHE, so all the
parties obtain the output:

〈F0
ki

a,0
+F0

ki
b,0
〉, 〈F1

ki
a,0

+F0
ki

b,1
〉, 〈F0

ki
a,1

+F1
ki

b,0
〉, 〈F1

ki
a,1

+F1
ki

b,1
〉.

All the parties now compute the four rows 〈Ag〉,〈Bg〉,〈Cg〉,〈Dg〉 for every garbled gate g via

〈Ag〉 = 〈vc,xA 〉+
n∑

i=1
〈F0

ki
a,0

(g)+F0
ki

b,0
(g)〉 〈Bg〉 = 〈vc,xB 〉+

n∑
i=1

〈F1
ki

a,0
(g)+F0

ki
b,1

(g)〉

〈Cg〉 = 〈vc,xC 〉+
n∑

i=1
〈F0

ki
a,1

(g)+F1
ki

b,0
(g)〉 〈Dg〉 = 〈vc,xD 〉+

n∑
i=1

〈F1
ki

a,1
(g)+F1

ki
b,1

(g)〉

Round Cost: RID = RID +1, but the RID can be done in parallel before. Depth Needed: D(Ag)=
D(Bg)= D(Cg)= D(Dg)= D(vc,x∗)= 3.

Figure 3.7: Calculate Garbled Gates Step of ΠPreprocessing,4.

43

CHAPTER 3. GARBLING USING SOMEWHAT HOMOMORPHIC ENCRYPTION

Claim 3.4.1. ProtocolΠPreprocessing,4 securely implements FPreprocessing in the FFHE+ -hybrid model

in the UC framework, in the presence of static, active adversaries corrupting t ≤ n−1 parties.

Proof (sketch) We have modelled FPreprocessing in almost the same way as in [93]. The security

of our protocol follows from the proof of the security of the BMR-SPDZ protocol there: We use

our extension of Gentry’s MPC protocol as opposed to the SPDZ protocol, which is purely an

implementation change. ■

3.4.4 Analysis of Efficiency

Just as in our analysis of the BMR-SPDZ protocol in Section 3.2.3, we wish to estimate the cost of

the most expensive operations, which are the encryptions of (random or not) input data.

• Each party calls InputData once during the Initialize phase of the extended FHE func-

tionality.

• We perform W RandomBit operations, each of which consumes a CID per party.

• To create the encrypted PRF keys we require an additional 2 ·W invocations of CID per

party.

• Finally, in order to compute the rows of the garbled gate we require 4 ·n2 ·G invocations of

InputData, which correspond to 4 ·n ·G invocations of per party.

Thus, we conclude that the cost of encrypting the data for the depth-4 BMR-SHE protocol is given

by the expression
(
4 ·n2 ·G+ (3 ·W +1) ·n

)
·CID, which is quadratic in n as opposed to the cubic

complexity in the number of parties of the BMR-SPDZ protocol.

3.5 A Lower Depth Variant of the BMR-SHE Protocol, ΠDepth−3

In this section we give a description of the protocol ΠDepth−3 (see Figure 3.8 and Figure 3.9 for

the offline and online modifications respectively) which requires only a multiplicative depth of

three rather than four as in ΠDepth−4. This reduction on the depth of the SHE scheme comes

directly from the reduction of the depth of the circuit used for garbling the actual circuit to

evaluate. On the downside, we require additional 2 ·W ·n · (n−1) calls to InputData and some

more multiplications in the offline and online phases. The new protocol ΠDepth−3 is, in fact, just a

variant of ΠDepth−4. It remains to be empirically tested for which set of parameters one would be

preferred in practice one over the other.

44

3.5. A LOWER DEPTH VARIANT OF THE BMR-SHE PROTOCOL, ΠDepth−3

3.5.1 Protocol ΠDepth−3 Description

Our earlier protocol ΠDepth−4 securely computes the BMR garbled gates as follows: For every gate

the parties first compute the shares 〈xA〉,〈xB〉,〈xC〉,〈xD〉 and then use these shares to compute

the shares 〈vc,xA 〉,〈vc,xB〉,〈vc,xC 〉,〈vc,xD 〉 of the keys kc,0 or kc,1 on the output wire of the gate.

Finally, these are masked by the pseudorandom values provided by all parties, see Figure 3.7.

Observing how these equations are computed, we can verify that obtaining the 〈x∗〉 values

require two multiplications and computing 〈vc,x∗〉 requires an additional multiplication. The final

multiplication, making the overall protocol depth-4, is needed for computing Output+. The goal

of the variant here presented is to produce the 〈vc,x∗〉 values directly, with just two multiplications

instead of three.

In order to achieve this, we limit our considerations to AND and XOR gates, for which we

provide formulae computing directly 〈vc,x∗〉. The main idea is that it actually suffices to store in

that vector either the key kc,∗ or its opposite −kc,∗ modulo p. The reason that this suffices is that

the square of these values is the same. Thus, we have two versions of each key, which we denote

the basic-key and the squared-key. This introduces two main modifications in the offline protocol:

1. Parties call RandomElement in order to generate each basic-key. They jointly and obliv-

iously square the result, obtaining a squared-key which is revealed to the appropriate

party.

2. Afterwards, parties can compute 〈vc,x∗〉, which equals the basic-key (or its opposite) on wire

c. The result is masked with the outputs of the PRFs, which are keyed under the revealed

squared-keys.

Observe that then, in the online phase, the basic-key or its opposite is revealed when evaluat-

ing the garbled circuit. The parties then square it in order to get the square-key and compute

the PRF values enabling the decryption of the next garbled gate. Since the basic-key is random

and was never revealed, the parties have no idea of whether they received the basic-key or it’s

opposite. Otherwise this would leak information about the values on the wires, as the ‘sign choice’

in 〈vc,x∗〉 depends on the wire masks, which we show in the next paragraphs.

Note that these modifications add 2 ·W ·n · (n−1) calls to InputData, in order to generate the

basic-keys via calls to RandomElement.

3.5.1.1 The AND Gate

We now present the equations for computing an AND gate with input wires a,b and output wire

c. We denote the basic-keys (i.e not squared) on the output wire c by k̃c,0, k̃c,1.

In order to motivate these equations, we explain in details the first of them, Equation 3.1,

which computes 〈vc,xA 〉 and corresponds to the first ciphertext in the garbled gate. We know

45

CHAPTER 3. GARBLING USING SOMEWHAT HOMOMORPHIC ENCRYPTION

The Lower Depth Offline Protocol – ΠPreprocessing,3

This protocol is identical to the ΠPreprocessing,4 protocol given in Figure 3.6, except for the following
changes:

3 Generate keys in Figure 3.6 is changed as follows:

a) For every wire w, bit value β ∈ {0,1} and party i ∈ [1, . . . ,n], the parties execute the
command RandomElement of the functionality FFHE+ to obtain output 〈k̃i

w,β〉. We stress

that nobody learns k̃i
w,β. Let varid be the identifier of 〈k̃i

w,β〉. In the following, we shall

abuse the notation to denote 〈k̃w,β〉 =
(
〈k̃1

w,β〉, . . . ,〈k̃n
w,β〉

)
.

b) The parties call (multiply,varid,varid,varid2) where varid2 is a new identifier, in order to
share a ciphertext 〈ki

w,β〉 = 〈k̃i
w,β〉

2.

c) The parties call FFHE+ on input (output+,varid2, i) for party Pi to obtain ki
w,β.

Depth Needed: D(Output+ (ki
w,β))= 2.

Round Cost: RID+2.

4 Calculate garbled gates in Figure 3.7 is changed as follows:

a) The calculate external values and assign the correct vector phases are replaced by
the following functions, that choose, for every row in the garbled gate, either k̃c,0, −k̃c,0,
k̃c,1 or −k̃c,1.

• For an AND gate, the parties compute shares of the keys on the output wires according
to Equations (3.1)–(3.4).

• For a XOR gate, the parties compute shares of the keys on the output wires according
to Equations (3.5)–(3.7).

Depth Needed: D(vc,xA)= D(vc,xB)= D(vc,xC)= D(vc,xD)= 2.

Total Round Cost: max(RID+3,RID+4)= RID+4.
Total Depth Needed: 2.

Figure 3.8: The Modified Preprocessing Protocol ΠPreprocessing,3.

The modified MPC Protocol - ΠMPC,3

This protocol is identical to the ΠMPC,4 protocol described in Figure 3.5, except for the four cases of the
Online Computation sub-task, in which for j = 1, . . . ,n, the values k j

c are now computed as follows:

Case (Λa,Λb)= (0,0) : Compute k j
c =

(
A j

g − (
∑n

i=1 Fki
a
(0|| j||g)+Fki

b
(0|| j||g))

)2
.

Case (Λa,Λb)= (0,1) : Compute k j
c =

(
B j

g − (
∑n

i=1 Fki
a
(1|| j||g)+Fki

b
(0|| j||g))

)2
.

Case (Λa,Λb)= (1,0) : Compute k j
c =

(
C j

g − (
∑n

i=1 Fki
a
(0|| j||g)+Fki

b
(1|| j||g))

)2
.

Case (Λa,Λb)= (1,1) : Compute k j
c =

(
D j

g − (
∑n

i=1 Fki
a
(1|| j||g)+Fki

b
(1|| j||g))

)2
.

Depth Needed: DOut++D({Ag}, {Bg}, {Cg}, {Dg})= 2+1= 3.

Figure 3.9: The Modified Protocol ΠMPC,3.

46

3.5. A LOWER DEPTH VARIANT OF THE BMR-SHE PROTOCOL, ΠDepth−3

from Sections 2.5 and 2.6 that those correspond to external values (Λa,Λb)= (0,0). We break our

explanation in two cases below.

First, if the actual value on wire a equals 0, then 〈λa〉 =Λa +0= 0, and so 〈vc,xA 〉 is a function

of the first row of the equation. Knowing that the actual value on a is 0, then the actual output

equals 0 irrespective of b, since this is an AND gate. Thus, if the wire mask on c equals 0 then

the output has to be 〈k̃c,0〉 and otherwise it should be 〈k̃c,1〉, as the equation ensures.

In the opposite case, when the actual value on wire a equals 1, then the value of 〈vc,xA 〉
depends only on the second row of the equation (since 1−〈λa〉 = 0). More precisely, it depends

on the actual value on wire b (which equals λb, as Λb = 0) and the wire mask λc on the output

wire. If b = 1 and λc = 0 or if b = 0 and λc = 1 then it should be that 〈vc,xA 〉 =±〈k̃c,1〉 (since in the

first case a = b = 1 and the actual output is 1, whereas in the second case the actual output is 0

but λc = 1, so Λc = 1). We achieve this goal by multiplying 〈k̃c,1〉 by 〈λb〉−〈λc〉 which equals ±1 in

both of these cases (and 0 otherwise). We then multiply 〈k̃c,0〉 by 1−〈λb〉−〈λc〉, which equals 0

in both of these cases b = 0,λc = 1 and b = 1,λc = 0. In contrast, if b = λc = 0 or b = λc = 1 then

the output should be ±〈k̃c,0〉 (as above, because if b = λc = 0 then the actual output is 0, and if

b =λc = 1 then the actual output is 1 but the external value is 0). Finally we obtain next equation:

〈vc,xA 〉 = (1−〈λa〉) ·
(
〈λc〉 · 〈k̃c,1〉+ (1−〈λc〉) · 〈k̃c,0〉

)
(3.1)

+〈λa〉 ·
(
(〈λb〉−〈λc〉) · 〈k̃c,1〉+ (1−〈λb〉−〈λc〉) · 〈k̃c,0〉

)
.

The remaining three equations are computed similarly, as follows:

〈vc,xB〉 = (1−〈λa〉) ·
(
〈λc〉 · 〈k̃c,1〉+ (1−〈λc〉) · 〈k̃c,0〉

)
(3.2)

+〈λa〉 ·
(
(〈λb〉−〈λc〉) · 〈k̃c,0〉+ (1−〈λb〉−〈λc〉) · 〈k̃c,1〉

)
〈vc,xC 〉 = 〈λa〉 ·

(
〈λc〉 · 〈k̃c,1〉+ (1−〈λc〉) · 〈k̃c,0〉

)
(3.3)

+(1−〈λa〉) ·
(
(〈λb〉−〈λc〉) · 〈k̃c,1〉+ (1−〈λb〉−〈λc〉) · 〈k̃c,0〉

)
〈vc,xD 〉 = 〈λa〉 ·

(
〈λc〉 · 〈k̃c,1〉+ (1−〈λc〉) · 〈k̃c,0〉

)
(3.4)

+(1−〈λa〉) ·
(
(〈λb〉−〈λc〉) · 〈k̃c,0〉+ (1−〈λb〉−〈λc〉) · 〈k̃c,1〉

)
In order to prove correctness of these equations, we present the truth table of the outputs in

Figure 3.10. Observe that all values are correct, as we allow to obtain the negative value of a

basic-key.

3.5.1.2 The XOR Gate

We use a similar idea as above to compute the XOR gate. Intuitively, in a XOR gate, there

are two cases: λa = λb and λa 6= λb. Multiplying by λa −λb gives ±1 if λa 6= λb and 0 if λa = λb.

Furthermore, multiplying by 1−λa −λb gives the exact reverse case, it equals 0 if λa 6= λb

47

CHAPTER 3. GARBLING USING SOMEWHAT HOMOMORPHIC ENCRYPTION

λa λb λc 〈vc,xA 〉 〈vc,xB〉 〈vc,xC 〉 〈vc,xD 〉
0 0 0 〈k̃c,0〉 〈k̃c,0〉 〈k̃c,0〉 〈k̃c,1〉
0 0 1 〈k̃c,1〉 〈k̃c,1〉 〈−k̃c,1〉 〈−k̃c,0〉
0 1 0 〈k̃c,0〉 〈k̃c,0〉 〈k̃c,1〉 〈k̃c,0〉
0 1 1 〈k̃c,1〉 〈k̃c,1〉 〈−k̃c,0〉 〈−k̃c,1〉
1 0 0 〈k̃c,0〉 〈k̃c,1〉 〈k̃c,0〉 〈k̃c,0〉
1 0 1 〈−k̃c,1〉 〈−k̃c,0〉 〈k̃c,1〉 〈k̃c,1〉
1 1 0 〈k̃c,1〉 〈k̃c,0〉 〈k̃c,0〉 〈k̃c,0〉
1 1 1 〈−k̃c,0〉 〈−k̃c,1〉 〈k̃c,1〉 〈k̃c,1〉

Figure 3.10: The truth table of the vectors for an AND gate computed in Figure 3.8.

and equals ±1 if λa = λb. Observe that 〈vc,xC 〉 and 〈vc,xD 〉 need not be computed at all since

(1−a)⊕ b = a⊕ (1− b) and (1−a)⊕ (1− b)= a⊕ b. This yields the following equations, where as

above, we prove correctness via the truth table given in Figure 3.11.

〈vc,xA 〉 = 〈vc,xD 〉 = (〈λa〉−〈λb〉) ·
(〈λc〉 · 〈k̃c,0〉+ (1−〈λc〉) · 〈k̃c,1〉

)
(3.5)

+(1−〈λa〉−〈λb〉) ·
(〈λc〉 · 〈k̃c,1〉+ (1−〈λc〉) · 〈k̃c,0〉

)
〈vc,xB〉 = 〈vc,xC 〉 = (〈λa〉−〈λb〉) ·

(〈λc〉 · 〈k̃c,1〉+ (1−〈λc〉) · 〈k̃c,0〉
)

(3.6)

+(1−〈λa〉−〈λb〉) ·
(〈λc〉 · 〈k̃c,0〉+ (1−〈λc〉) · 〈k̃c,1〉

)
λa λb λc 〈vc,xA 〉 〈vc,xB〉 〈vc,xC 〉 〈vc,xD 〉
0 0 0 〈k̃c,0〉 〈k̃c,1〉 〈k̃c,1〉 〈k̃c,0〉
0 0 1 〈k̃c,1〉 〈k̃c,0〉 〈k̃c,0〉 〈k̃c,1〉
0 1 0 〈−k̃c,1〉 〈−k̃c,0〉 〈−k̃c,0〉 〈−k̃c,1〉
0 1 1 〈−k̃c,0〉 〈−k̃c,1〉 〈−k̃c,1〉 〈−k̃c,0〉
1 0 0 〈k̃c,1〉 〈k̃c,0〉 〈k̃c,0〉 〈k̃c,1〉
1 0 1 〈k̃c,0〉 〈k̃c,1〉 〈k̃c,1〉 〈k̃c,0〉
1 1 0 〈−k̃c,0〉 〈−k̃c,1〉 〈−k̃c,1〉 〈−k̃c,0〉
1 1 1 〈−k̃c,1〉 〈−k̃c,0〉 〈−k̃c,0〉 〈−k̃c,1〉

Figure 3.11: The truth table of the vectors for a XOR gate computed in Figure 3.8.

3.5.2 Security Of the Modified Protocol

Observe that the only difference in the garbled gates with respect to the depth-4 variant is that

the 〈vc,x∗〉 values contain the ‘tilde’ version of the keys. More formally, the 〈vc,x∗〉 ciphertexts

encrypt the square root of the keys, and not the keys themselves. Thus, in the online phase,

parties receive the square roots of the keys and need to square them before proceeding. The

only issue that needs to be explained here is that the specific square root provided reveals no

information. This needs to be justified because if an adversary could know whether −k̃ or k̃ is

48

3.5. A LOWER DEPTH VARIANT OF THE BMR-SHE PROTOCOL, ΠDepth−3

computed, then it would know some information about the masks λa,λb,λc. However, since the k̃

values are uniformly distributed in Fp, and the keys themselves revealed in the offline phase are

k = k̃2, it follows that each of the two square roots of k are equally probable. Stated differently,

given k, the distribution over k̃ and −k̃ is identical.

3.5.3 Analysis of Efficiency of the Modified Protocol

As we noted at the beginning of the chapter, the two main sources of overhead that concern the

MPC protocols presented are the number of rounds and the number of calls to the ID protocol.

The former is not changed by our ΠDepth−3 variant, but the latter does. To generate the keys in

ΠPreprocessing,3, we now perform 2 ·W ·n2 calls to InputData, via calls to RandomElement. In

ΠDepth−4 we performed 2 ·W ·n calls to generate the keys, so overall we add 2 ·W ·n · (n−1) calls

to InputData. To analyse the number of homomorphic multiplications we go through each step

of the protocol:

• Generate keys step: We perform 4 ·W ·n more multiplications (half of them to square the

keys, the other half to Output+ them).

• Calculate garbled gates step:

1. For every AND gate, we used 8 · n+5 multiplications in the first variant. Now, by

careful rewriting of the equations, we can do this in 12 ·n+8.

2. For every XOR gate, we used 6 ·n+3 multiplications in the first variant. Now we use

8 ·n+4.

3. So, on average, we pass from 7 ·n+4 to 10 ·n+6 multiplications per gate.

Thus, overall on average we perform 4 ·W ·n+ (3 ·n+2) ·G more homomorphic multiplications.

However, in practice each homomorphic multiplication will be more efficient since the overall

depth of the SHE scheme can now be three rather than four.

49

C
H

A
P

T
E

R

4
GARBLING USING OBLIVIOUS TRANSFER

This chapter is based on joint work with Carmit Hazay and Peter Scholl [70], which was presented

at ASIACRYPT 2017.

In this chapter, we present a practical, actively secure, constant round multi-party protocol

for generating BMR garbled circuits with Free-XOR in the presence of up to n−1 out of n

corruptions. As in prior constructions, our approach has two phases: a preprocessing phase

where the garbled circuit is mutually generated by all parties, and an online phase where the

parties obtain the output of the computation. While the online phase is efficient and incurs no

extra costs to achieve active security, the focus of this chapter, as well as that of the previous one

and other recent works is on optimizing the preprocessing complexity. There, the main bottleneck

is with respect to garbling AND gates. In this context, we present two new constant-round

protocols for securely generating the garbled circuit:

1. A generic approach using any secret-sharing based MPC protocol for binary circuits, and a

correlated oblivious transfer functionality (Section 4.3).

2. A specialized protocol which uses secret-sharing based MPC with information-theoretic

MACs, such as TinyOT [58, 104] (Section 4.4). This approach is less general, but requires

no additional correlated OTs to compute the garbled circuit.

In both approaches, the cost for garbling an AND gate is essentially one secure multiplication

on the underlying secret-sharing based protocol, which shows that the gap between constant and

non-constant round MPC for boolean circuits is very little in practice.

51

CHAPTER 4. GARBLING USING OBLIVIOUS TRANSFER

4.1 Introduction

At the time this work was published, most previous constructions (including the one given in

Chapter 3) expressed the garbling function as an arithmetic circuit over a large finite field.

For those protocols, garbling even a single AND gate requires computing O(n) multiplications

over a large field using Somewhat Homomorphic Encryption (SHE) or MPC. This means they

scale at least cubically in the number of parties. In constrast, our protocol only requires one F2

multiplication per AND gate, so scales with O(n2). Previous SHE-based protocols also require

zero-knowledge proofs of plaintext knowledge of SHE ciphertexts, which in practice are very

costly. The MASCOT protocol [80] for secure computation of arithmetic circuits could also be

used in [93] instead of SHE, but this still has very high communication costs. We denote by

MASCOT-BMR-FX an optimized variant of [93], modified to use Free-XOR as in our protocol, with

multiplications in F2κ done using MASCOT. Finally, a work by Katz et al. [129], concurrent to the

one this chapter is based on, relies on an optimized variant of TinyOT and achieves comparable

performance results. Table 4.1 shows how the communication complexity of our work compares

with other actively secure, constant-round protocols.

Whereas later on [129] also reported implementation results, at the time the work here

presented was submitted [70], none of the previous results did so. Our implementation of the

TinyOT-based protocol improves upon the best times that would be achievable with SPDZ-BMR

and MASCOT by up to sixty times. This is because our protocol has lower communication costs

than [93] (by at least two orders of magnitude) and the main computational costs are from

standard symmetric primitives, so far cheaper than using SHE.

Overall, our protocols significantly narrow the gap between the cost of constant-round and

many-round MPC protocols for binary circuits. More specifically, this implies that, with current

techniques, constant round MPC for binary circuits is not much more expensive than practical,

non-constant round protocols. Additionally, both of our protocols have potential for future im-

provement by optimizing existing non-constant round protocols: a practical implementation of

MiniMAC [49] would lead to a very efficient approach with our generic protocol, whilst any future

improvements to multi-party TinyOT would directly give a similar improvement to our second

protocol.

4.1.1 Our Contributions

Our constructions employ several very appealing features. For a start, we embed into the

modelling of the preprocessing functionality, which computes the garbled circuit, an additive

error introduced into the garbling by the adversary. Concretely, we extend the functionality from

[93] so that it obtains a vector of additive errors from the adversary to be applied to each garbled

gate, which captures the fact that the adversary may submit inconsistent keys and pseudorandom

function (PRF) values. We further strengthen this by allowing the adversary to pick the error

52

4.1. INTRODUCTION

Protocol Based on Free XOR Comms. per Garbled Gate

SPDZ-BMR [93] SHE + ZKPoPK 7 O(n4κ)
SHE-BMR §3 SHE (depth 4) + ZKPoPK 7 O(n3κ)

MASCOT-BMR-FX OT 3 O(n3κ2)
This work §4.3 OT + [75] 3 O(n2κ+poly(n))
This work §4.4 TinyOT 3 O(n2B2κ)

[129] (concurrent) Optimized TinyOT 3 O(n2Bκ)

Table 4.1: Comparison of actively secure, constant round MPC protocols. B = O(1+ s/ log |C|) is
a cut-and-choose parameter, which in practice is between 3–5. Our second protocol can also be
based upon optimized TinyOT to obtain the same complexity as [129].

adaptively after seeing the garbled circuit (in prior constructions this error is independent of the

garbling) and allowing corrupt parties to choose their own PRF keys, possibly not at random.

This requires a new analysis and proof of the online phase.

Secondly, we devise a new consistency check to enforce correctness of inputs to correlated OT,

which is based on very efficient linear operations similar to recent advances in homomorphic

commitments [37]. This check, combined with our improved error analysis for the online phase,

allows the garbled circuit to be created without authenticating any of the parties’ keys or PRF

values, which removes a significant cost from previous works (saving a factor of Ω(n)).

GENERIC CONSTRUCTION (SECTION 4.3). In the first, more general method, every pair of par-

ties needs to run one correlated OT per AND gate, which costs O(κ) communication for

security parameter κ. Combining this with the overhead induced by the correlated OTs in

our protocol, we obtain total complexity O(|C|κn2), assuming only symmetric primitives

and O(κ) seed OTs between every pair of parties. This gives an overall communication cost

of O(M+|C|κn2) to evaluate a circuit C, where M is the cost of evaluating |C| AND gates

in the secret-sharing based protocol, Π. To realize Π, we can define a functionality with

multiplication depth 1 that computes all the AND gates in parallel (these multiplications

can be computed in parallel as they are independent of the parties’ inputs). Furthermore,

the [75] compiler can be instantiated with semi-honest [64] as the inner protocol and [43] as

the outer protocol. By Theorem 2, Section 5 from [75], for some constant number of parties

m ≥ 2, the functionality can be computed with communication complexity O(|C|) plus low

order terms that depend on a statistical parameter s, the circuit’s depth and log |C|. As

in [75], this extends to the case of a non-constant number of parties n, in which case the

communication complexity grows by an additional factor of |C|poly(n).

Another candidate for instantiating Π would be to use an MPC protocol optimized for SIMD

binary circuits such as MiniMAC [49]. This is because in our construction, all the AND

gates can be computed in parallel. Currently, the only known preprocessing methods [58]

53

CHAPTER 4. GARBLING USING OBLIVIOUS TRANSFER

for MiniMAC are not practical, but this seems to be an interesting direction to explore.

TINYOT-BASED CONSTRUCTION (SECTION 4.4). TinyOT is currently the most practical ap-

proach to secret-sharing based MPC on binary circuits, so the second method leads to

a highly practical protocol for constant-round secure computation. The complexity is es-

sentially the same as TinyOT, as here we do not require any additional OTs. However, the

protocol is less general and has worse asymptotic communication complexity, since TinyOT

costs either O(|C|Bκn2) (with 2 parties or the recent protocol of [128]), or O(|C|B2κn2)

(with [58]), where B =O(1+ s/ log |C|) (and in practice is between 3–5), and s is the statisti-

cal security parameter.

The results of our work, particularly regarding our modelling of circuit-garbling, have already

proved to be useful for other authors as explicitly mentioned in [27, 67]. Remarkably, those works

had very different goals: Whereas [27] improves the efficiency of BMR-style protocols in the

honest majority setting, [67] provides the first round-optimal actively secure MPC protocol under

standard assumptions.

4.1.1.1 Implementation.

We demonstrate the practicality of our TinyOT-based protocol with an implementation, and

perform experiments with up to 9 parties securely computing the AES and SHA-256 circuits. In a

1Gbps LAN setting, we can securely compute the AES circuit with 9 parties in just 620ms. This

improves upon the best possible performance that would be attainable using [93] by around 60

times. The details of our implementation can be found in Section 4.6.

4.1.1.2 Concurrent work

Two works by Wang, Ranellucci and Katz, concurrent to the one described in this chapter,

introduced constant round two-party [128] and multi-party [129] protocols based on authenticated

garbling, in which the preprocessing phase is based on TinyOT. The less general part of our work

is conceptually quite similar, since both involve generating a garbled circuit in a distributed

manner using TinyOT. The main difference seems to be that our protocol is symmetric, since

all parties evaluate the same garbled circuit. With authenticated garbling, the garbled circuit

is only evaluated by one party. This makes the garbled circuit slightly smaller, since there

are n−1 sets of keys instead of n, but the online phase requires at least one more round of

interaction (if all parties learn the output). The works of Wang et al. also contain concrete and

asymptotic improvements to the two-party and multi-party TinyOT protocols, which improve

upon our protocol in Section 4.7 by a factor of O(s/ log |C|) where s is a statistical parameter. These

improvements can be directly plugged into our second garbling protocol. We remark that the two-

party protocol in [128] inspired our use of TinyOT MACs to perform the bit/string multiplications

in our protocol from Section 4.4. The rest of our work is independent. Another difference is that

54

4.1. INTRODUCTION

our protocol from Section 4.3 is more generic, since FBit×Bit can be implemented with any secret-

sharing based bit-MPC protocol, rather than just TinyOT. This can be instantiated with [75] to

obtain a constant-round protocol with complexity O(|C|(κn2 +poly(n))) in the OT-hybrid model.

The multi-party paper [129] does not have an analogous generic result.

4.1.2 Technical Overview

Our protocol is based on the recent Free-XOR variant of BMR garbling used for semi-honest MPC

in [25]. In that scheme, a garbling of the g-th AND gate with input wires u,v and output wire w,

consists of the 4n values (where n is the number of parties):

g̃ j
a,b =

(
n⊕

i=1
Fki

u,a,ki
v,b

(g‖ j)

)
⊕k j

w,0(4.1)

⊕
(
r j((λu ⊕a)(λv ⊕b)⊕λw)

)
, (a,b) ∈ {0,1}2, j ∈ [n]

Here, F is a double-key PRF1, r j ∈ {0,1}κ is a fixed correlation string for Free-XOR known to

party P j, and the keys k j
u,a,k j

v,b ∈ {0,1}κ are also known to P j. Furthermore, the wire masks

λu,λv,λw ∈ {0,1} are random, additively secret-shared bits known by no single party.

Let us give an overview of BMR, as described in Section 2.6, when the ‘vector double en-

cryption’ is instantiated using PRFs as in equation (4.1). The main idea behind BMR in this

case is to compute the garbling, except for the PRF values, with a general MPC protocol. The

analysis of [93] showed that it is not necessary to prove in zero-knowledge that every party inputs

the correct PRF values to the MPC protocol that computes the garbling. This is because when

evaluating the garbled circuit, each party P j can check that the decryption of the j-th entry in

every garbled gate gives one of the keys k j
w,0, k j

w,1 and this check would overwhelmingly fail if any

PRF value was incorrect. It further implies that the adversary cannot flip the value transmitted

through some wire as that would require from it to guess a key.

Our garbling protocol proceeds by computing a random, unauthenticated, additive secret

sharing of the garbled circuit. This differs from previous works which obtain authenticated shar-

ings of the entire garbled circuit (e.g. [93] uses MACs and Chapter 3 employs SHE ciphertexts).

Our protocol greatly reduces this complexity, since the PRF values and keys (on the first line

of equation (4.1)) do not need to be authenticated. The main challenge, therefore, is to compute

shares of the products on the second line of (4.1). Similarly to [25], an important observation that

improves efficiency is the fact that these multiplications are either between two secret-shared

bits, or a secret-shared bit and a fixed, secret string. Thus, we do not need the full power of an

1Actually, as enabling Free-XOR causes all the keys pairs for any wire to be correlated, we need a more advanced
notion which we present in Section 4.2.2.

55

CHAPTER 4. GARBLING USING OBLIVIOUS TRANSFER

MPC protocol for arithmetic circuit evaluation over F2κ or Fp (for large p), as used in previous

works.

To compute the bit product λu ·λv, we can use any actively secure GMW-style MPC protocol

for binary circuits. This protocol is only needed for computing one secure AND per garbled AND

gate, since all bit products in g̃ j
a,b can be computed as linear combinations of λu ·λv, λu and λv.

We then need to multiply the resulting secret-shared bits by the string r j, known to P j. We give

two variants for computing this product, the first one being more general and the second more

concretely efficient. In more details,

1. The first solution performs the multiplication by running actively secure correlated OT

between P j and every other party, where P j inputs r j as the fixed OT correlation. The

parties then run a consistency check by applying a universal linear hash function to the

outputs and sacrificing a few OTs, ensuring the correct inputs were provided to the OT.

This protocol is presented in Section 4.3.

2. The second method requires using a ‘TinyOT’-style protocol [34, 58] based on information-

theoretic MACs, and allows us to compute the bit/string products directly from the MACs,

provided each party’s MAC key is chosen to be the same string r j used in the garbling. This

saves interaction since we do not need any additional OTs. This protocol is presented in

Section 4.4.

After creating shares of all these products, the parties can compute shares of the whole

garbled circuit. These shares must then be rerandomized, before they can be broadcast. Opening

the garbled circuit in this way allows a corrupt party to introduce further errors into the garbling

by changing their share, even after learning the correct garbled circuit, since we may have a

rushing adversary. Nevertheless, we prove that the BMR online phase remains secure when this

type of error is allowed, as it would only lead to an abort. This significantly strengthens the

result from [93], which only allowed corrupt parties to provide incorrect PRF values, and is an

important factor that allows our preprocessing protocol to be so efficient.

4.2 Preliminaries

For vectors x= (x1, . . . , xn) ∈ Fn
2 and y ∈ Fm

2 , the tensor product (or outer product) x⊗ y is defined as

the n×m matrix over F2 where the i-th row is xi · y. We use the following property.

Fact 4.2.1. If x ∈ Fn
2 , y ∈ Fm

2 and M ∈ Fm×n
2 then

M · (x⊗ y)= (M · x)⊗ y.

56

4.2. PRELIMINARIES

4.2.1 Security and Communication Models

We prove security of our protocols in the Universal Composability framework (see Section 2.4).

The adversary model we consider is a static, active adversary who corrupts up to n−1 out of n

parties. We recall this means that the identities of the corrupted parties are fixed at the beginning

of the protocol, and they may deviate arbitrarily from the protocol.

We assume all parties are connected via authenticated communication channels, as well as

secure point-to-point channels and a broadcast channel. The default method of communication in

the protocols in this chapter is authenticated channels, unless otherwise specified. Note that in

practice, these can all be implemented with standard techniques (in particular, for broadcast a

simple 2-round protocol suffices, since we allow abort [65]).

4.2.2 Circular 2-Correlation Robust Pseudorandom Functions

The BMR garbling technique from [93] is proven secure based on a pseudorandom function (PRF)

with multiple keys. When the keys are independently chosen then security with multiple keys can

be derived from the standard PRF notion (defined in Section 2.2.2) by a simple hybrid argument.

However, since our scheme supports Free-XOR, we require a stronger assumption, discussed

next.

We adapt the definition of correlation robustness with circularity from [40] given for hash

functions to double-key PRFs. This definition captures the related key and circularity re-

quirements induced by supporting the Free-XOR technique. Formally, fix some function F :

{0,1}n×{0,1}κ×{0,1}κ 7→ {0,1}κ. Let b1,b2,b3 take values in {0,1}, and k1,k2,r in {0,1}κ. We define

an oracle Circr as follows:

• Circr(k1,k2, g, j,b1,b2,b3) outputs Fk1⊕b1r,k2⊕b2r(g‖ j)⊕b3r.

The outcome of oracle Circ is compared with the a random string of the same length computed by

an oracle Rand:

• Rand(k1,k2, g, j,b1,b2,b3): if this input was queried before then return the answer given

previously. Otherwise choose u ← {0,1}κ and return u.

Definition 4.1 (Circular 2-correlation robust PRF). A PRF F is circular 2-correlation robust if

for any non-uniform polynomial-time distinguisher D making legal queries to its oracle, there

exists a negligible function negl such that:

∣∣Pr[r ← {0,1}κ;DCircr(·)(1κ)= 1]−Pr[DRand(·)(1κ)= 1]
∣∣≤ negl(κ).

As in [40], some trivial queries must be ruled out. Specifically, the distinguisher is restricted

as follows: (1) it is not allowed to make any query of the form O (k1,k2, g, j,0,0,b3) (since it can

compute Fk1,k2 (g‖ j) on its own) and (2) it is not allowed to query both tuples O (k1,k2, g, j,b1,b2,0)

57

CHAPTER 4. GARBLING USING OBLIVIOUS TRANSFER

and O (k1,k2, g, j,b1,b2,1) for any values k1,k2, g, j,b1,b2 (since that would allow it to trivially

recover the global difference). We say that any distinguisher respecting these restrictions makes

legal queries.

4.2.3 Almost-1-Universal Linear Hashing

We use a family of almost-1-universal linear hash functions over F2, defined by:

Definition 4.2 (Almost-1-Universal Linear Hashing). We say that a family H of linear functions

Fm
2 → Fs

2 is ε-almost 1-universal, if it holds that for every non-zero x ∈ Fm
2 and for every y ∈ Fs

2:

Pr
H←H

[H(x)= y]≤ ε

where H is chosen uniformly at random from the family H . We will identify functions H ∈H

with their s×m transformation matrix, and write H(x)= H · x.

This definition is slightly stronger than a family of almost-universal linear hash functions

(where the above need only hold for y = 0, as in [37]). However, this is still much weaker than

2-universality (or pairwise independence), which a linear family of hash functions cannot achieve,

because H(0) = 0 always. The two main properties affecting the efficiency of a family of hash

functions are the seed size, which refers to the length of the description of a random function

H ← H , and the computational complexity of evaluating the function. The simplest family of

almost-1-universal hash functions is the set of all s×m matrices; however, this is not efficient as

the seed size and complexity are both O(m · s). Recently, in [37], it was shown how to construct a

family with seed size O(s) and complexity O(m), which is asymptotically optimal. A more practical

construction is a polynomial hash based on GMAC (used also in [107]), described as follows (here

we assume that s divides m, for simplicity):

• Sample a random seed α← F2s

• Define Hα to be the function:

Hα : Fm/s
2s → F2s , Hα(x1, . . . , xm/s)=α · x1 +α2 · x2 +·· ·+αm/s · xm/s

Note that by viewing elements of F2s as vectors in Fs
2, multiplication by a fixed field element

αi ∈ F2s is linear over F2. Therefore, Hα can be seen as an F2-linear map, represented by a

unique matrix in Fs×m
2 .

Here, the seed is short, but the computational complexity is O(m · s). However, in practice

when s = 128 the finite field multiplications can be performed very efficiently in hardware on

modern CPUs. Note that this gives a 1-universal family with ε= m
s ·2−s. This can be improved to

2−s (i.e. perfect), at the cost of a larger seed, by using m/s distinct elements αi, instead of powers

of α.

58

4.2. PRELIMINARIES

4.2.4 Commitment Functionality

We use a commitment functionality FCommit (Figure 4.1). This can be implemented in the random

oracle model by defining Commit(x,Pi)=H(x, i, r), where H is a random oracle and r ← {0,1}κ.

Functionality FCommit

Commit: On input (Commit, x, i,τx) from Pi, store (x, i,τx) and output (i,τx) to all parties.

Open: On input (Open, i,τx) by Pi, output (x, i,τx) to all parties.

If instead (NoOpen, i,τx) is given by the adversary, and Pi is corrupt, the functionality outputs
(⊥, i,τx) to all parties.

Figure 4.1: Commitments functionality.

4.2.5 Coin-Tossing Functionality

We also require a standard coin-tossing functionality, FRand (Figure 4.2), which can be imple-

mented using commitments (FCommit above) to random values.

Functionality FRand

Upon receiving (rand,S) from all parties, where S is any efficiently sampleable set, sample r ← S,
send r to A and wait for its input. If A inputs OK then output r to all parties, otherwise output ⊥.

Figure 4.2: Coin-tossing functionality.

4.2.6 Correlated Oblivious Transfer

In this work we use an actively secure protocol for oblivious transfer (OT) on correlated pairs

of strings of the form (ai,ai ⊕∆), where ∆ is fixed for every OT. The TinyOT protocol [104] for

secure two-party computation constructs such a protocol, and a significantly optimized version of

this is given in [107]. The communication cost is roughly κ+ s bits per OT. The ideal functionality

is shown in Figure 4.3.

Fixed Correlation OT Functionality F∆-ROT

Initialize: Upon receiving (init,∆), where ∆ ∈ {0,1}κ from PS and (init) from PR , store ∆. Ignore
any subsequent initcommands.

Extend: Upon receiving (extend, x1, . . . , xm) from PR , where xi ∈ {0,1}, and (extend) from PS , do the
following:

• Sample ti ∈ {0,1}κ, for i ∈ [m]. If PR is corrupted then wait for A to input ti.

• Compute qi = ti + xi ·∆, for i ∈ [m].

• If PS is corrupted then wait for A to input qi ∈ {0,1}κ and recompute ti = qi + xi ·∆.

• Output ti to PR and qi to PS , for i ∈ [m].

Figure 4.3: Fixed correlation oblivious transfer functionality.

59

CHAPTER 4. GARBLING USING OBLIVIOUS TRANSFER

The Bit MPC Functionality - FBit×Bit

The functionality runs with parties P1, . . . ,Pn and an adversary A . The functionality maintains a
dictionary, Val← {}, to keep track of values in F2.

Input: On receiving (Input,id1, . . . ,id`, x1, . . . , x`,P j) from party P j and (Input,id1, . . . ,id`,P j) from
all other parties, where xi ∈ F2, store Val[idi]← xi for i ∈ [`].

Add: On input (Add,id,id1, . . . ,id`) from all parties, where (id1, . . . ,id`) are keys in Val, set
Val[id]←∑`

i=1Val[idi].

Multiply: On input (multiply,id,id1,id2) from all parties, where (id1,id2) are keys in Val, com-
pute y ← Val[id1] ·Val[id2]. Receive shares yi ∈ F2 from A , for i ∈ I, then sample random
honest parties’ shares y j ∈ F2, for j ∉ I, such that

∑n
i=1 yi = y. Send yi to party Pi, for i ∈ [n], and

store the value Val[id]← y.

Open: On input (Open,id) from all parties, where id is a key in Val, send x ← Val[id] to A . Wait for
an input from A . If it inputs OK then output x to all parties, otherwise output ⊥ and terminate.

Figure 4.4: Functionality for GMW-style MPC for binary circuits.

4.2.7 Functionality for Secret-Sharing-Based MPC

We make use of a general, actively secure protocol for secret-sharing-based MPC for binary

circuits, which is modeled by the functionality FBit×Bit in Figure 4.4. This functionality allows

parties to provide private inputs, which are then stored and can be added or multiplied internally

by FBit×Bit, and revealed if desired. Note that we also need the Multiply command to output a

random additive secret-sharing of the product to all parties, which is the main difference with

the generic MPC functionality given in Figure 2.1 and essentially assumes that the underlying

protocol is based on secret-sharing.

We use the notation 〈x〉 to represent a secret-shared value x that is stored internally by

FBit×Bit, and define xi to be party Pi ’s additive share of x (if it is known). We also define the +
and · operators on two shared values 〈x〉,〈y〉 to call the Add and Multiply commands of FBit×Bit,

respectively, and return the identifier associated with the result.

4.3 Generic Protocol for Multi-Party Garbling

We now describe our generic method for creating the garbled circuit using any secret-sharing

based MPC protocol (modeled by FBit×Bit) and the correlated OT functionality F∆-ROT. We first

describe the functionality in Section 4.3.1 and the protocol in Section 4.3.2, and then analyse its

security in Sections 4.3.4–4.3.5.

4.3.1 The Preprocessing Functionality

The preprocessing functionality, formalized in Figure 4.5, captures the generation of the garbled

circuit as well as an error introduced by the adversary. The adversary is allowed to submit

60

4.3. GENERIC PROTOCOL FOR MULTI-PARTY GARBLING

an additive error, chosen adaptively after seeing the garbled circuit, which is added by the

functionality to each entry when the garbled circuit is opened.

4.3.2 Protocol Overview

The garbling protocol, shown in Figure 4.6, proceeds in three main stages. Firstly, the parties

locally sample all of their keys and shares of wire masks for the garbled circuit. Secondly, the

parties compute shares of the products of the wire masks and each party’s global difference string;

these are then used by each party to locally obtain a share of the entire garbled circuit. Finally,

the bit masks for the output wires are opened to all parties. The opening of the garbled circuit is

shown in Figure 4.7.

Concretely, each party Pi starts by sampling a global difference string r i ← {0,1}κ, and for

each wire w which is an output wire of an AND gate, or an input wire, Pi also samples the keys

ki
w,0, ki

w,1 = ki
w,0 ⊕ r i and an additive share of the wire mask, λi

w ← F2. As in [25], we let Pi input

the actual wire mask (instead of a share) for every input wire associated with Pi ’s input.

In step 4.3.2, the parties compute additive shares of the bit products λuv = λu ·λv ∈ F2, and

then, for each j ∈ [n], shares of:

(4.2) λu · r j, λv · r j, λuvw · r j ∈ Fκ2

where λuvw :=λuv ⊕λw, and u,v and w are the input and output wires of AND gate g. We note

that (as observed in [25]) only one bit/bit product and 3n bit/string products are necessary, even

though each gate has 4n entries, due to correlations between the entries, as can be seen below.

We compute the bit multiplications using the FBit×Bit functionality on the bits that are

already stored by FBit×Bit. To compute the bit/string multiplications in equation (4.2), we use

correlated OT, followed by a consistency check to verify that the parties provided the correct

shares of λw and correlation r i to each F∆-ROT instance; see Section 4.3.3 for details.

Using shares of the bit/string products, the parties can locally compute an unauthenticated

additive share of the entire garbled circuit (steps 3d–4). First, for each of the four values (a,b) ∈
{0,1}2, each party Pi, i 6= j computes the share

ρ i
j,a,b =

a · (λv · r j)i ⊕b · (λu · r j)i ⊕ (λuvw ·R j)i if i 6= j

a · (λv · r j)i ⊕b · (λu · r j)i ⊕ (λuvw ·R j)i ⊕a ·b · r j if i = j

These define additive shares of the values

ρ j,a,b = R j · (a ·λv ⊕b ·λu ⊕λuvw ⊕a ·b)

= r j · ((λu ⊕a) · (λv ⊕b)⊕λw)

Each party’s share of the garbled circuit is then obtained by adding the appropriate PRF

values and keys to the shares of each ρ j,a,b. To conclude the Garbling stage, the parties reveal

61

CHAPTER 4. GARBLING USING OBLIVIOUS TRANSFER

Functionality FPreprocessing

Let F be a circular 2-correlation robust PRF. The functionality runs with parties P1, . . . ,Pn and an
adversary A , who corrupts a subset I ⊂ [n] of parties.

Garbling: On input (Garbling,C f) from all parties, where C f is a boolean circuit, denote by W its
set of wires and by G its set of AND gates. The functionality is defined as follows:

• Sample a global difference r j ← {0,1}κ, for each j ∉ I, and receive corrupt parties’ strings
r i ∈ {0,1}κ from A , for i ∈ I.

• Passing topologically through all the wires w ∈W of the circuit:

– If w is an input wire:
1. Sample λw ← {0,1}. If P j, the party who provides input on that wire in the online

phase, is corrupt, instead receive λw from A .
2. Sample a key k j

w,0 ← {0,1}κ, for each j ∉ I, and receive corrupt parties’ keys ki
w,0

from A , for i ∈ I. Define ki
w,1 = ki

w,0 ⊕ r i for all i ∈ [n].
– If w is the output of an AND gate:

1. Sample λw ← {0,1}.
2. Sample a key k j

w,0 ← {0,1}κ, for each j ∉ I, and receive corrupt parties’ keys ki
w,0

from A , for i ∈ I. Set ki
w,1 = ki

w,0 ⊕ r i, for i ∈ [n].
– If w is the output of a XOR gate, and u and v its input wires:

1. Compute and store λw =λu ⊕λv.
2. For i ∈ [n], set ki

w,0 = ki
u,0 ⊕ki

v,0 and ki
w,1 = ki

w,0 ⊕ r i.

• For every AND gate g ∈G, the functionality computes the 4n entries of the garbled version
of g as:

g̃ j
a,b =

(
n⊕

i=1
Fki

u,a,ki
v,b

(g‖ j)

)
⊕k j

w,0

⊕
(
r j · ((λu ⊕a) · (λv ⊕b)⊕λw)

)
, (a,b) ∈ {0,1}2, j ∈ [n].

Set g̃a,b = g̃1
a,b ◦ . . .◦ g̃n

a,b (a,b) ∈ {0,1}2. The functionality stores the values g̃a,b.

• Wait for an input from A . If it inputs OK then output λw to all parties for each circuit-
output wire w, and output to each Pi all the keys {ki

w,0}w∈W , and r i. Otherwise, output ⊥
and terminate.

Open Garbling: On receiving (OpenGarbling) from all parties, when the Garbling command has
already run successfully, the functionality sends to A the values g̃a,b for all g ∈G and waits for
a reply.

• If A returns ⊥ then the functionality aborts.

• Otherwise, the functionality receives OK and an additive error e = {ea,b
g }a,b∈{0,1},g∈G chosen

by A . Afterwards, it sends to all parties the garbled circuit g̃a,b ⊕ ea,b
g for all g ∈G and

a,b ∈ {0,1}.

Figure 4.5: The Preprocessing Functionality FPreprocessing.

62

4.3. GENERIC PROTOCOL FOR MULTI-PARTY GARBLING

The Preprocessing Protocol – ΠPreprocessing

Given a gate g, we denote by u (resp. v) its left (resp. right) input wire, and by w its output wire. 〈·〉i

denotes the i-th share of an authenticated bit and (·)i the i-th share of a string. Let F : {0,1}2κ× [|G|]×
[n]→ {0,1}κ be a circular 2-correlation robust PRF, and G : {0,1}κ→ {0,1}4nκ|G| be a PRG.

Garbling: 1. Each party Pi samples a random key offset r i ← Fκ2 .

2. Generate wire masks and keys: Passing through the wires of the circuit topologically:

• If w is a circuit-input wire, and P j is the party whose input is associated with it:
a) P j calls Input on FBit×Bit with a randomly sampled λw ∈ {0,1} to obtain 〈λw〉. P j

defines the share λ j
w =λw, every other Pi sets λi

w = 0.
b) Every Pi samples a key ki

w,0 ← {0,1}κ and sets ki
w,1 = ki

w,0 ⊕ r i.
• If the wire w is the output of an AND gate:

a) Each Pi calls Input on FBit×Bit with a randomly sampled λi
w ← {0,1}. The parties

then compute the secret-shared wire mask as 〈λw〉 =∑
i∈[n]〈λi

w〉.
b) Every Pi samples a key ki

w,0 ← {0,1}κ and sets ki
w,1 = ki

w,0 ⊕ r i.
• If the wire w is the output of a XOR gate:

a) The parties compute the mask on the output wire as 〈λw〉 = 〈λu〉+〈λv〉.
b) Every Pi sets ki

w,0 = ki
u,0 ⊕ki

v,0 and ki
w,1 = ki

w,0 ⊕ r i.

3. Secure product computations:

a) For each AND gate g ∈G, the parties compute 〈λuv〉 = 〈λu〉 · 〈λv〉 by calling Multiply
on FBit×Bit.

b) Each Pi calls Input on FBit×Bit with randomly sampled bits x̂i
1, . . . , x̂i

s. For ` ∈ [s], the
parties compute secret-shared mask 〈x̂`〉 =∑

i∈[n]〈x̂i
`
〉.

c) For every j ∈ [n], the parties run the subprotocol ΠBit×String, where P j inputs r j and
everyone inputs the 3|G|+ s shared bits:

(〈λu〉,〈λv〉,〈λuv〉+〈λw〉)(u,v,w) and (〈x̂1〉, . . . ,〈x̂s〉).
where the (u,v,w) indices are taken over the input/output wires of each AND gate
g ∈G.

d) For each AND gate g ∈G, party Pi obtains from ΠBit×String an additive share of the
3n values (each defined as one row of the matrix Z j in this subprotocol):

λu · r j, λv · r j, λuvw · r j, for j ∈ [n]

where λuvw :=λuv +λw. Each Pi then uses these to compute a share of

ρ j,a,b =λuvw · r j ⊕a ·λv · r j ⊕b ·λu · r j ⊕a ·b · r j

4. Garble gates: For each AND gate g ∈ G, each j ∈ [n], and the four combinations of
a,b ∈ {0,1}2, the parties compute shares of the j-th entry of the garbled gate g̃a,b:

• P j sets (g̃ j
a,b) j = ρ

j
j,a,b ⊕Fk j

u,a,k j
v,b

(g‖ j)⊕k j
w,0.

• For every i 6= j, Pi sets (g̃ j
a,b)i = ρ i

j,a,b ⊕Fki
u,a,ki

v,b
(g‖ j).

5. Reveal masks for output wires: For every circuit-output-wire w, the parties call Open
on FBit×Bit to reveal λw to all the parties.

Figure 4.6: The preprocessing protocol that realizes FPreprocessing in the
{F∆-ROT,FBit×Bit,FRand FCommit}-hybrid model.

63

CHAPTER 4. GARBLING USING OBLIVIOUS TRANSFER

The Preprocessing Protocol ΠPreprocessing – Open Garbling Stage

Open Garbling: Let C̃ i = ((g̃ j
a,b)i) j,a,b,g ∈ {0,1}4nκ|G| be Pi ’s share of the whole garbled circuit.

1. Each party Pi samples random seeds si
j ← {0,1}κ, j 6= i. Pi sends si

j to P j over a private
channel.

2. Pi computes the shares S i
i =

⊕
i 6= j G (si

j), and S j
i =G (s j

i), for j 6= i.a

3. Each Pi, for i = 2, . . . ,n, sends C̃ i ⊕⊕n
j=1 S j

i to P1.

4. P1 reconstructs the garbled circuit, C̃, and broadcasts this.

aSteps 1 to 2 are independent of C̃ i , so can be merged with previous rounds in the Garbling stage.

Figure 4.7: Open Garbling stage of the preprocessing protocol.

the masks for all output wires using FBit×Bit, so that the outputs can be obtained in the online

phase.

Before opening the garbled circuit, the parties must rerandomize their shares by distributing

a fresh, random secret-sharing of each share to the other parties, via private channels. This

is needed so that the shares do not leak any information on the PRF values, so we can prove

security. This may seem unnecessary, since the inclusion of the PRF values in the shares should

randomize them sufficiently. However, we cannot prove this intuition: the same PRF values are

used to compute the garbled circuit that is output by the protocol, so they cannot also be used as

a one-time pad.2 In steps 1 to 2 of Figure 4.7, we show how to perform this extra rerandomization

step with O(n2 ·κ) communication.

Finally, to reconstruct the garbled circuit, the parties sum up and broadcast the rerandomized

shares and add them together to get g̃ j
a,b.

4.3.3 Bit/String Multiplications

Our method for this is in the subrotocol ΠBit×String (Figure 4.8). It proceeds in two stages: first

the Multiply step creates the shared products, then the Consistency Check verifies that the

correct inputs were used to create the products.

Recall that the task is for the parties to obtain an additive sharing of the products, for each

j ∈ [n] and (a,b) ∈ {0,1}2:

(4.3) r j · ((λu ⊕a) · (λv ⊕b)⊕λw)

where the string r j is known only to P j, and fixed for every gate. Denote by x one of the additively

shared λ(·) bits used in a single bit/string product and stored by FBit×Bit. We obtain shares of

x · r j using actively secure correlated OT (see Figure 4.3), as follows:
2Furthermore, the environment sees all of the PRF keys of the honest parties, since these are outputs of the

protocol, which seems to rule out any kind of computational reduction in the security proof.

64

4.3. GENERIC PROTOCOL FOR MULTI-PARTY GARBLING

1. For each i 6= j, parties Pi and P j run a correlated OT, with choice bit xi and correlation r j.

Pi obtains Ti, j and P j obtains Q i, j such that:

Ti, j =Q i, j + xi · r j.

2. Each Pi, for i 6= j, defines the share Z i = Ti, j, and P j defines Z j =∑
i 6= j Q i, j + x j ·r j. Now we

have:

n∑
i=1

Z i = ∑
i 6= j

Ti, j +
∑
i 6= j

Q i, j + x j · r j = ∑
i 6= j

(Ti, j +Q i, j)+ x j · r j = x · r j

as required.

The above method is performed 3|G| times and for each P j, to produce the shared bit/string

products x · r j, for x ∈ {λu,λv,λuv}.

4.3.4 Consistency Check

We now show how the parties verify that the correct shares of x and correlations r j were used in

the correlated OTs, and analyse the security of this check. The parties first create m+ s bit/string

products, where m is the number of products needed and s is a statistical security parameter,

and then open random linear combinations (over F2) of all the products and check correctness of

the opened results. This is possible because the products are just a linear function of the fixed

string r j. In more detail, the parties first sample a random ε-almost 1-universal hash function

H ← Fm×s
2 , and then open

cx = H · x+ x̂

using FBit×Bit. Here, x is the vector of all m wire masks to be multiplied, whilst x̂ ∈ Fs
2 are

the additional, random masking bits, used as a one-time pad to ensure that cx does not leak

information on x.

To verify that a single shared matrix Z j is equal to x⊗R j (as in Figure 4.8), each party Pi,

for i 6= j, then commits to H ·Z i
j, whilst P j commits to H ·Z j

j + cx ⊗ r j. The parties then open

all commitments and check that these sum to zero, which should happen if the products were

correct.

The intuition behind the check is that any errors present in the original bit/string products

will remain when multiplied by H, except with probability ε, by the almost-1-universal property

(Definition 4.2). Furthermore, it turns out that cancelling out any non-zero errors in the check

requires either guessing an honest party’s global difference r j, or guessing the secret masking

bits x̂. We formalize this, by first considering the exact deviations that are possible by a corrupt

P j in ΠBit×String. These are:

65

CHAPTER 4. GARBLING USING OBLIVIOUS TRANSFER

Bit/string multiplication subprotocol – ΠBit×String

Inputs: Each P j inputs the private global difference string r j ∈ Fκ2 , which was generated in the main
protocol. All parties input 3|G| authenticated, additively shared bits, 〈x1〉, . . . ,〈x3|G|〉, and s additional,
random shared bits, 〈x̂1〉, . . . ,〈x̂s〉, to be used as masking values and discarded.

I: Init: Every ordered pair of parties (Pi,P j) calls Initialize on F∆-ROT, where P j, the sender, inputs
the global difference string R j.

II: Multiply: For each j ∈ [n], the parties do as follows:

1. For every i 6= j, parties Pi and P j call Extend on the F∆-ROT instance where P j is sender,
and Pi inputs the choice bits xi = (xi

1, . . . , xi
3|G|, x̂i

1, . . . , x̂i
s).

For each OT between (Pi,P j), P j receives q ∈ {0,1}κ and Pi receives t ∈ {0,1}κ. Pi stores
their 3|G|+ s strings from this instance into the rows of a matrix T i, j, and P j stores the
corresponding outputs in Q i, j. These satisfy

T i, j =Q i, j + xi ⊗ r j ∈ F(3|G|+s)×κ
2 .

2. Each Pi, for i 6= j, defines the matrix Z i
j = T i, j, and P j defines Z j

j =
∑

i 6= j Q i, j + x j ⊗ r j.

Now, it should hold that
∑n

i=1 Z i
j = x⊗ r j, for each j ∈ [n].

III: Consistency Check: The parties check correctness of the above as follows:

1. Each Pi removes the last s rows from Z i
j (for j ∈ [n]) and places these ‘dummy’ masking

values in a matrix Ẑ i
j ∈ Fs×κ

2 . Similarly, redefine xi = (xi
1, . . . , xi

3|G|) and let x̂i = (x̂1
i, . . . , x̂s

i).

2. The parties call FRand (Figure 4.2) to sample a seed for a uniformly random, ε-almost
1-universal linear hash function, H ∈ Fs×3|G|

2 .

3. All parties compute the vector:

〈cx〉 = H · 〈x〉 +〈x̂〉 ∈ Fs
2

and open cx using the Open command of FBit×Bit. If FBit×Bit aborts, the parties abort.

4. Each party Pi calls Commit on FCommit (Figure 4.1) with input the n matrices:

C i
j = H ·Z i

j + Ẑ i
j, for j 6= i, and C i

i = H ·Z i
i + Ẑ i

i + cx ⊗ r i.

5. All parties open their commitments and check that, for each j ∈ [n]

n∑
i=1

C i
j = 0.

If the check fails, the parties abort.

6. Each party Pi stores the matrices Z i
1, . . . , Z i

n.

Figure 4.8: Subprotocol for bit/string multiplication and checking consistency.

66

4.3. GENERIC PROTOCOL FOR MULTI-PARTY GARBLING

1. Provide inconsistent inputs r j when acting as sender in the Initialize command of the

F∆-ROT instances with two different honest parties.

2. Input an incorrect share x j when acting as receiver in the Extend command of F∆-ROT.

Note that in both of these cases, we are only concerned when the other party in the F∆-ROT

execution is honest, as if both parties are corrupt then F∆-ROT does not need to be simulated in

the security proof.

We model these two attacks by defining r j,i and x j,i to be the actual inputs used by a corrupt

P j in the above two cases, and then define the errors (for j ∈ I and i ∉ I):

∆ j,i = r j,i + r j

δ
j,i
`

= x j,i
`

+ x j
`
, ` ∈ [3|G|].

Note that ∆ j,i is fixed in the initialization of F∆-ROT, whilst δ j,i
`

may be different for every OT.

Whenever Pi and P j are both corrupt, or both honest, for convenience we define ∆ j,i = 0 and

δ j,i = 0. This means the outputs of F∆-ROT with (Pi,P j) then satisfy (omitting ` subscripts)

ti, j = qi, j + xi · r j +δi, j · r j +∆ j,i · xi,

where δi, j 6= 0 if Pi cheated, and ∆ j,i 6= 0 if P j cheated.

Now, as in step 1 of the first stage of ΠBit×String, we can put the F∆-ROT outputs for each party

into the rows of a matrix, and express the above as:

T i, j =Q i, j + xi ⊗ r j +δi, j ⊗ r j + xi ⊗∆ j,i

where δ j,i = (δ j,i
1 , . . . ,δ j,i

3|G|), and the tensor product notation is defined in Section 4.2.

Accounting for these errors in the outputs of the Multiply step in ΠBit×String, we get:

(4.4) Z j =
n∑

i=1
Z i

j = x⊗ r j +∑
i∈I

δi, j

︸ ︷︷ ︸
=δ j

⊗r j +∑
i∉I

xi ⊗∆ j,i.

The following lemma demonstrates that if a party cheated, then to pass the check they must

either guess all of the shares x̂i ∈ Fs
2 for some honest Pi, or guess Pi ’s global difference R i (except

with negligible probability over the choice of the ε-almost 1-universal hash function, H).

Lemma 4.3.1. If the check in ΠBit×String passes, then except with probability max(2−s,ε+2−κ), all

of the errors δ j,∆i, j are zero.

Proof. From (4.4), we have, for each j ∈ [n]:

Z j =
n∑

i=1
Z i

j = x⊗ r j +δ j ⊗ r j +∑
i∉I

xi ⊗∆ j,i.

67

CHAPTER 4. GARBLING USING OBLIVIOUS TRANSFER

Notice that steps 4–5 of the check in Figure 4.8 perform n individual checks on the matrices

Z1, . . . , Zn in parallel. Fix j, and first consider the check for a single matrix Z j. From here, we

omit the subscript j to simplify notation.

Let (C∗)i, for i ∈ I, be the values committed to by corrupt parties in step 4, and define

C̃ i =
H ·Z i + Ẑ i, if i 6= j

H ·Z i + Ẑ i + cx ⊗ r i, if i = j

to be the value which a corrupt Pi should have committed to.

Denote the difference between what a corrupt Pi actually committed to, and what they should

have committed to, by:

D i = (C∗)i + C̃ i ∈ Fs×κ
2 .

Also, define the sum of the differences D I =∑
i∈I D i. To pass the consistency check, it must hold

that 0=∑
i∉I C i +∑

i∈I C̃ i +D I or, equivalently:

D I =
∑
i∉I

C i +∑
i∈I

C̃ i

= H(
n∑

i=1
Z i)+

n∑
i=1

Ẑ i + cx ⊗ r j

= H(x⊗ r j +δ j ⊗ r j +∑
i∉I

xi ⊗∆ j,i)+ Ẑ+H(x)⊗ r j + x̂⊗ r j(4.5)

= H(δ j ⊗ r j +∑
i∉I

xi ⊗∆ j,i)+ Ẑ+ x̂⊗ r j(4.6)

where (4.5) holds because cx = H(x)+ x̂, and (4.6) due to the linearity of H and Fact 4.2.1.

Now, taking into account the fact that Ẑ is constructed the same way as Z, and considering

(4.4), there exist some adversarially chosen errors δ̂ j ∈ Fs
2 such that:

Ẑ = x̂⊗ r j + δ̂ j ⊗ r j +∑
i∉I

x̂i ⊗∆ j,i.

Plugging this into equation (4.6), the check passes if and only if:

D I = H(δ j ⊗ r j +∑
i∉I

xi ⊗∆ j,i)+ δ̂ j ⊗ r j +∑
i∉I

x̂i ⊗∆ j,i

= (H(δ j)+ δ̂ j)⊗ r j +∑
i∉I

(H(xi)+ x̂i)⊗∆ j,i.(4.7)

We now show that the probability of this holding is negligible, if any errors are non-zero.

First consider the left-hand summation in (4.7), supposing that at least one of δ j, δ̂ j is non-

zero. Recall that δ j and δ̂ j are fixed by the adversary’s inputs to F∆-ROT, so are independent of

68

4.3. GENERIC PROTOCOL FOR MULTI-PARTY GARBLING

the random choice of the hash function H. Therefore, by the ε-almost 1-universal property of the

family of linear hash functions (Definition 4.2), it holds that

Pr
H

[H(δ j)+ δ̂ j = 0]≤ ε.

So except with probability ε, A will have to guess r j to construct D I to pass the check, since r j

is independent of the right-hand summation. By a union bound, therefore, if at least one of δ j or

δ̂
j is non-zero then the check passes with probability at most ε+2−κ.

Now suppose that δ j = δ̂ j = 0, so A only needs to guess the right-hand summation of (4.7)

to pass the check. If the error ∆ j,i 6= 0 for some i ∉ I then the adversary must successfully guess

H(xi)+ x̂i to be able to pass the check. Since x̂i is uniformly random in the view of the adversary,

this can only occur with probability 2−s.

In conclusion, the probability of passing the j-th check when any of the errors δ j, δ̂ j or ∆ j,i

are non-zero, is no more than max(2−s,ε+2−κ). Since the adversary must pass all n checks to

prevent an abort, this also gives an upper bound for the overall success probability. ■

4.3.5 Security Proof

We now give some intuition behind the security of the whole protocol. In the proof, the strategy

of the simulator is to run an internal copy of the protocol, using dummy, random values for the

honest parties’ keys and wire mask shares. All communication with the adversary is simulated

by computing the correct messages according to the protocol and the dummy honest shares, until

the final output stage. In the output stage, we switch to fresh, random honest parties’ shares,

consistent with the garbled circuit received from FPreprocessing and the corrupt parties’ shares.

Firstly, by Lemma 4.3.1, it holds that in the real execution, if the adversary introduced any

non-zero errors then the consistency check fails with overwhelming probability. The same is true

in the ideal execution; note that the errors are still well-defined in this case because the simulator

can compute them by comparing all inputs received to F∆-ROT with the inputs the adversary

should have used, based on its random tape. This implies that the probability of passing the

check is the same in both worlds. Also, if the check fails then both executions abort, and it is

straightforward to see that the two views are indistinguishable because no outputs are sent to

honest parties (hence, also the environment).

It remains to show that the two views are indistinguishable when the consistency check

passes, and the environment sees the outputs of all honest parties, as well as the view of the

adversary during the protocol. The main point of interest here is the output stage. We observe

that, without the final rerandomization step, the honest parties’ shares of the garbled circuit

would not be uniformly random. Specifically, consider an honest Pi ’s share, (g̃ j
a,b)i, where P j is

corrupt. This is computed by adding some PRF value, v, to the F∆-ROT outputs where Pi was

receiver and P j was sender (step 2 of ΠBit×String). Since P j knows both strings in each OT, there

are only two possibilities for Pi ’s output (depending on the choice bit), so this is not uniformly

69

CHAPTER 4. GARBLING USING OBLIVIOUS TRANSFER

random. It might be tempting to argue that v is a random PRF output, so serves as a one-time

pad, but this proof attempt fails because v is also used to compute the final garbled circuit. In

fact, it seems difficult to rely on any reduction to the PRF, since all the PRF keys are included in

the output to the environment.

To avoid this issue, we need the rerandomization step using a PRG, and the additional

assumption of secure point-to-point channels. Note that this is missing from the protocol of [25],

which does not currently have a security proof. Rerandomization ensures that the honest shares

can be simulated with random values which, together with the corrupt shares, sum up to the

correct garbled circuit. We proceed with the complete proof.

Theorem 4.3.1. Protocol ΠPreprocessing from Figure 4.6 UC-securely computes FPreprocessing from

Figure 4.5 in the presence of a static, active adversary corrupting up to n− 1 parties in the

{F∆-ROT,FBit×Bit,FRand,FCommit}-hybrid model.

Proof. Let A denote a PPT adversary corrupting a strict subset I of parties. As part of the proof,

we will construct a simulator S that plays the roles of the honest parties on arbitrary inputs,

as well as the roles of functionalities {F∆-ROT,FBit×Bit,FRand,FCommit} and interacts with A . We

assume w.l.o.g. that A is a deterministic adversary, which receives as additional input a random

tape that determines its internal coin tosses. Nevertheless, since A is active, it may still ignore

the random tape, and use its own (possibly biased) random values instead.

The simulator begins by initializing A with the inputs from the environment, Z , and a

uniform string r as its random tape. During the simulation, we will use r to compute values that

A should (but might not) use during the protocol. We can now define the rest of S as follows:

Garbling: 1. The simulator emulates F∆-ROT.Initialize as follows:

• For a honest party Pi, i ∉ I, S samples r i ∈ {0,1}κ.

• For a corrupted party P j, j ∈ I, S computes r j from that party’s random tape.

Additionally, for each pair of parties involving that party, (P j,Pi) where i ∉ I, S

receives by A values r j,i ∈ {0,1}κ and stores ∆ j,i = r j,i +r j. If ∀i ∉ I,∆ j,i = d, then

S modifies its stored values by setting r j ← r j +d and ∆ j,i ← 0,∀i ∉ I.

2. GENERATE WIRE MASKS AND KEYS: Passing through each wire w of the circuit

topologically, the simulator S proceeds as follows.

• It emulates FBit×Bit and defines the wire masks:

– If w is a circuit-input wire, Pi is the party whose input is associated with it

and i ∈ I, then S receives λw by A . If i 6∈ I, then S chooses λw.

– If w is the output of an AND gate, S samples λw ← F2 and receives from the

adversary λi
w for every i ∈ I. Then, S samples random λ

j
w, j 6∈ I, such that

λw =∑
`∈[n]λ

`
w.

70

4.3. GENERIC PROTOCOL FOR MULTI-PARTY GARBLING

– If w is the output of a XOR gate, S , it sets λw =λu +λv.

• It defines the PRF keys:

– If w is not the output of a XOR gate, S computes ki
w,0 ∈ {0,1}κ for i ∈ [n]. For

corrupted parties i ∈ I, S reads this off Pi ’s random tape, whereas for honest

parties it samples a random key.

– If w is the output of a XOR gate, for i ∈ [n], it sets ki
w,0 = ki

u,0 ⊕ ki
v,0 and

ki
w,1 = ki

w,0 ⊕ r i for i ∈ [n].

• Finally, it sends to FPreprocessing the global difference R i and the keys ki
w,0, for

each i ∈ I and each w that is an output wire of an AND gate, as well as the wire

masks λw (for each w that is an input wire of a corrupt party).

3. SECURE PRODUCT COMPUTATIONS: The simulator S emulates FBit×Bit.Input receiv-

ing x̂i = (x̂i
1, . . . , x̂i

s) for every i ∈ I, and also samples honest parties’ shares x̂ j, for j ∉ I.

For each AND gate g ∈ G, it emulates FBit×Bit.Multiply by receiving shares (λuv)i

from A for i ∈ I and setting random (λuv) j for j 6∈ I such that
∑
`∈[n](λuv)` =λu ·λv. For

the ΠBit×String subprotocol:

• Multiply: S emulates F∆-ROT.Extend between each pair of parties Pi and P j.

If both parties are honest, or if both are corrupted, the simulation is trivial.

Hereafter, we focus on the cases where exactly one party of each pair is corrupted:

– When Pi is a corrupted sender, S receives a (possibly) different qi ∈ {0,1}κ

from A for each of the 3|G|+ s calls.

– When Pi is a corrupted receiver, S receives values x̂i
1 +δ

i, j
x̂1

, . . . , x̂i
s +δi, j

x̂s
and,

for each AND gate,
(
λi

u +δi, j
λu

,λi
v +δi, j

λv
,λi

uv +λi
w +δi, j

λuv+λw

)
(u,v,w)

. For each of

the 3|G|+ s previous inputs, it also receives a (possibly) different ti ∈ {0,1}κ

from A .

Note that the errors δi, j and the ti, qi values received from A are stored by S ,

whilst the λ values and shares were fixed in the previous stage.

• Consistency Check:

2. S emulates FRand and sends a seed for a uniformly random ε-almost 1-

universal linear hash function H ∈ Fs×3|G|
2 to A .

3. S emulates FBit×Bit.Open and sends cx = H · x+ x̂ ∈ Fs
2 to A , where x is

the vector of 3|G| values (λu,λv,λuvw)(u,v,w) from the previous stage, and

x̂=∑
i∈[n] x̂i, received just before the Multiply step. If A does not send back

OK to S , then S sends ⊥ to FPreprocessing and aborts.

4-5. Emulating FCommit, S receives C i
`

from A for all ` ∈ [n] and i ∈ I. It then

computes C j
`

for j ∉ I, as each honest party would, and completes the emula-

tion of FCommit by sending these to A . If
∑

i∈I C i
`
+∑

j∉I C j
`
6= 0, for any ` ∈ [n],

S sends ⊥ to FPreprocessing and terminates.

71

CHAPTER 4. GARBLING USING OBLIVIOUS TRANSFER

4. GARBLE GATES: For every AND gate g ∈ G, the simulator S computes and stores

corrupt parties’ shares of the garbled circuit, C̃ i, for i ∈ I, as the adversary should

do according to the protocol. Note that S has all the necessary values to do so from

the messages it previously received and the knowledge of A ’s random tape. Namely,

the simulator knows the PRF keys, the global differences, and the ti and qi values

received in the F∆-ROT calls.

5. REVEAL MASKS FOR OUTPUT WIRES: S emulates FBit×Bit.Open and for every circuit-

output wire w, it calls FPreprocessing to get the wire mask λw and forward it to A . If A

does not send back OK to S , then S sends ⊥ to FPreprocessing and terminates.

Open Garbling:

6. For each i ∈ I, S samples random shares {S i
j} j∉I and sends these to A .

7. S then calls FPreprocessing to receive the garbled circuit C̃. Using the corrupted parties’

shares C̃ i, i ∈ I, received previously, S generates random honest parties’ shares C̃ j,

j ∉ I, subject to the constraint that
∑
`∈[n] C̃` = C̃. Once this is done, S forwards the

honest shares of the garbled circuit to A . If A does not respond with OK then S sends

⊥ to FPreprocessing and terminates. Otherwise, it receives from the adversary OK and

shares Ĉ i for i ∈ I. Finally, S computes the error E =∑
i∈I (C̃ i + Ĉ i) and sends this to

FPreprocessing.

INDISTINGUISHABILITY: We will first show that, during the Garbling phase, the environment

Z cannot distinguish between an interaction with S and FPreprocessing and an interaction with

the real adversary A and ΠPreprocessing. We then argue that the garbled circuit, and the honest

parties’ shares of it, are also identically distributed in both worlds.

Garbling phase indistinguishability: Let’s look at the Garbling command. In both worlds

and for every AND gate, the honest parties’s shares for the masks λw, and for the products λuv

are uniformly random additive shares, whereas the corrupted parties shares’ are chosen by A .

Every other step up to the execution of the ΠBit×String subprotocol provides no output to the

parties, and hence Z has exactly the same view in both worlds up to that point.

In the Multiply step of ΠBit×String, S only receives values from A , so no further information

is added to his view here. Note that since the corrupted parties’ inputs to F∆-ROT are received by

S , all the errors ∆i, j,δ j =∑
i∈I δ

i, j are well-defined in the simulation.

Next, consider the Consistency Check step. If any of the errors are non-zero, then from

Lemma 4.3.1, we know that in both worlds the check fails with overwhelming probability. In

this case, no outputs are sent to the honest parties, and (recalling that there are no inputs from

honest parties) indistinguishability is trivial since the simulator just behaved as honest parties

would until this point.

We now assume that all of the errors ∆i, j,δ j = ∑
i∈I δ

i, j are zero, and so the check passes.

The values H and cx = Hx+ x̂ seen by A are uniformly random in both worlds, since the

72

4.4. MORE EFFICIENT GARBLING WITH MULTI-PARTY TINYOT

masking values x̂ are uniformly random and never seen by the environment. The distribution

of the committed and opened values, C i
j, is more subtle, however. First, consider the case when

there is exactly one honest party. In this case, in both worlds the values C j
i , for honest Pi,

are a deterministic function of the adversary’s behaviour, since they should satisfy
∑n

i=1 C i
j = 0.

Therefore, these values are identically distributed in both worlds.

Now, suppose there is more than one honest party. The values C i
i are computed based on

the Z i
i values, which are the sum of outputs from F∆-ROT with every other party. This means

for every honest Pi, C i
i is uniformly random, since it includes an F∆-ROT output with one other

honest party. On the other hand, the values C i
j, where j ∈ I and i ∉ I, only come from a single

F∆-ROT instance between Pi and P j, and Pi ’s output from F∆-ROT in this case is not random in

the view of A . It actually should satisfy:

C i
j = H ·Z i

j + Ẑ i
j = H ·Q i, j +Q̂ i, j + (H · xi + x̂i)⊗ r j

where Q i, j,Q̂ i, j are the F∆-ROT outputs of corrupt P j, and r j is also known to P j. This means

for each row of C i
j, in the view of A there are only two possibilities, depending on one bit from

(H · xi + x̂i). Since the shares x̂i are uniformly random and never seen by the environment,

H · xi + x̂i is also uniformly random in both worlds, subject to the constraint that these sum to cx

(which was opened previously). We conclude that the C j
i values are identically distributed.

After ΠBit×String, Z remains unable to distinguish in the garbling phase. First, the Garble
Gates step of ΠPreprocessing requires no communication. Finally, regarding Reveal masks for
output wires, the revealed wire masks are random bits in both worlds.

Open Garbling phase indistinguishability: The seeds sent in the first step of the Open Gar-
bling stage are uniformly random in both executions. We claim that the rerandomized shares of

the garbled circuit in the real execution are computationally indistinguishable from the simulated

random shares. This holds because, (1) The simulated shares seen by the adversary are uniformly

random, subject to the constraint that all shares sum up to the same garbled circuit, and (2) In

the real world, every pair of honest parties masks their shares with outputs from the PRG G ,

using a unique seed that is not seen by the environment. By a standard hybrid argument, we

can therefore reduce indistinguishability of the shares to security of the PRG, by successively

replacing each PRG output sent between two honest parties with a random string. ■

4.4 More Efficient Garbling with Multi-Party TinyOT

We now describe a less general, but concretely more efficient, variant of the protocol in the

previous section. We replace the generic FBit×Bit functionality with a more specialized one based

on ‘TinyOT’-style information-theoretic MACs. This is asymptotically worse, but more practical,

than using [75] for FBit×Bit. It also allows us to completely remove the bit/string multiplications

and consistency checks in ΠBit×String, since we show that these can be obtained directly from the

TinyOT MACs. This means the only cost in the protocol, apart from opening and evaluating the

73

CHAPTER 4. GARBLING USING OBLIVIOUS TRANSFER

garbled circuit, is the single bit multiplication per AND gate in the underlying TinyOT-based

protocol.

For completeness, we present a complete description of a suitable TinyOT-based protocol in

Section 4.7. This is done by combining the multiplication triple generation protocol (over F2)

from [58] with a consistency check to enforce correct shared random bits, which is similar to the

more general check from the previous section.

4.4.1 Secret-Shared MAC Representation

For x ∈ {0,1} held by Pi, define the following two-party MAC representation, as used in 2-party

TinyOT [104]:

[x]i, j = (x, M i
j,K

j
i), M i

j = K j
i + x ·R j

where Pi holds x and a MAC M i
j, and P j holds a local MAC key K j

i , as well as the fixed, global

MAC key R j. Similarly, we define the n-party representation of an additively shared value

x = x1 +·· ·+ xn:

[x]= (xi, {M i
j,K

i
j} j 6=i)i∈[n], M i

j = K j
i + xi ·R j

where each party Pi holds the n−1 MACs M i
j on xi, as well as the keys K i

j on each x j, for j 6= i,

and a global key R i. Note that this is equivalent to every pair (Pi,P j) holding a representation

[xi]i, j.

The key observation for this section, is that a sharing [x] can be used to directly compute

shares of all the products x ·R j, as in the following claim.

Claim 4.4.1. Given a representation [x], the parties can locally compute additive shares of x ·R j,

for each j ∈ [n].

Proof. Write [x]= (xi, {M i
j,K

i
j} j 6=i)i∈[n]. Each party Pi defines the n shares

Z i
i = xi ·R i +∑

j 6=i
K i

j and Z i
j = M i

j, for each j 6= i.

We then have, for each j ∈ [n]:

n∑
i=1

Z i
j = Z j

j +
∑
i 6= j

Z i
j = (x j ·R j +∑

i 6= j
K j

i)+∑
i 6= j

M i
j =

= x j ·R j +∑
i 6= j

(M i
j +K j

i)= x j ·R j +∑
i 6= j

(xi ·R j)= x ·R j.

■

We define addition of two shared values [x], [y], to be straightforward addition of the compo-

nents. We define addition of [x] with a public constant c ∈ F2 by:

74

4.4. MORE EFFICIENT GARBLING WITH MULTI-PARTY TINYOT

Functionality Fn-TinyOT

Initialize: On receiving (init) from all parties, the functionality receives R i ∈ {0,1}κ, for i ∈ I, from
the adversary, and then samples R i ← {0,1}κ, for i ∉ I, and sends R i to party Pi.

Prep: On receiving (Prep,m, M) from all parties, generate m random bits as follows:

1. Receive corrupted parties’ shares bi
`
∈ F2 from A , for i ∈ I.

2. Sample honest parties’ shares, bi
`
← F2, for i ∉ A and ` ∈ [m].

3. Run n-Bracket(b1
`
, . . . ,bn

`
), for every ` ∈ [m], so each party obtains the shares bi

`
, as well as

n−1 MACs on bi
`

and a key on each b j
`
, for j 6= i.

And M multiplication triples as follows:

1. Sample a`,b`← F2 and compute c` = a` ·b`, for ` ∈ [M].

2. For each x ∈ {a`,b`, c`}`∈[M], authenticate x as follows:

a) Receive corrupted parties’ shares xi ∈ F2, for i ∈ I, from A .
b) Sample honest parties’ shares xi ← F2, for i ∉ I subject to

∑n
i=1 xi = x.

c) Run n-Bracket(x1, . . . , xn), so the parties obtain [x].

Key queries: On receiving (i,R′) from A , where i ∈ [n], output 1 to A if R i = R′. Otherwise, output
0 to A .

Figure 4.9: Functionality for secure multi-party computation based on TinyOT

• P1 stores: (x1 + c, {M1
j ,K1

j } j 6=1)

• Pi stores: (xi, (M i
1,K i

1 + c ·R i), {M i
j,K

i
j} j∈[n]\{1,i})), for i 6= 1

This results in a correct sharing of [x+ c].

We can create a sharing of the product of two shared values using a random multiplication

triple ([x], [y], [z]) such that z = x · y with Beaver’s technique [16], shown in Figure 4.18.

4.4.2 MAC-Based MPC Functionality

The functionality Fn-TinyOT, which we use in place of FBit×Bit for the optimized preprocessing, is

shown in Figure 4.9. It produces authenticated sharings of random bits and multiplication triples.

For both of these, Fn-TinyOT first receives corrupted parties’ shares, MAC values and keys from

the adversary, and then randomly samples consistent sharings and MACs for the honest parties.

Another important aspect of the functionality is the Key Queries command, which allows

the adversary to try to guess the MAC key R i of any party, and will be informed if the guess is

correct. This is needed to allow the security proof to go through; we explain this in more detail in

Section 4.7. In that section we also present a complete description of a variant on the multi-party

TinyOT protocol, which can be used to implement this functionality.

75

CHAPTER 4. GARBLING USING OBLIVIOUS TRANSFER

Macro n-Bracket

This subroutine of Fn-TinyOT uses the global MAC keys R1, . . . ,Rn stored by the functionality.

On input (x1, . . . , xn), authenticate the share xi ∈ {0,1}, for each i ∈ [n], as follows:

If Pi is corrupt: receive a MAC M i
j ∈ Fκ2 from A and compute the key K j

i = M i
j + xi ·R j, for each j 6= i.

Otherwise:

1. Sample honest parties’ keys K j
i ← Fκ2 , for j ∈ [n]\ (I ∪ {i}).

2. Receive keys K j
i ∈ Fκ2 , for each j ∈ I, from A .

3. Compute the MACs M i
j = K j

i + xi ·R j, for j ∈ I.

Finally, output (xi, {M i
j,K

i
j} j 6=i) to party Pi, for i ∈ [n].

Figure 4.10: Macro used by Fn-TinyOT to authenticate bits

4.4.3 Garbling with Fn-TinyOT

Following from the observation in Claim 4.4.1, if each party P j chooses the global difference

string in ΠPreprocessing to be the same R j as in the MAC representation, then given [λ], additive

shares of the products λ·R j can be obtained at no extra cost. Moreover, the shares are guaranteed

to be correct, and the honest party’s shares will be random (subject to the constraint that they

sum to the correct value), since they come directly from the Fn-TinyOT functionality. This means

there is no need to perform the consistency check, which greatly simplifies the protocol.

The rest of the protocol is mostly the same as ΠPreprocessing in Figure 4.6, using Fn-TinyOT

with [·]-sharings instead of FBit×Bit with 〈·〉-sharings. One other small difference is that because

Fn-TinyOT does not have a private input command, we instead sample [λw] shares for input wires

using random bits, and later use a private output protocol to open the relevant input wire masks

to Pi. This change is not strictly necessary, but simplifies the protocol for implementing Fn-TinyOT

– if Fn-TinyOT also had an Input command for sharing private inputs based on n-Bracket, it would

be much more complex to implement with the correct distribution of shares and MACs.

In more detail, the Garbling phase proceeds as follows.

1. Each party obtains a random key offset r i by calling the Initialize command of Fn-TinyOT.

2. For every wire w which is an input wire, or the output wire of an AND gate, the parties

obtain a shared mask [λw] using the Bit command of Fn-TinyOT.

3. All the wire keys ki
w,0,ki

w,1 = ki
w,0 ⊕R i are defined by Pi the same way as in ΠPreprocessing.

4. For XOR gates, the output wire mask is computed as [λw]= [λu]+ [λv].

5. For each AND gate, the parties compute [λuv] = [λu ·λv] using the subprotocol ΠMult in

Figure 4.18.

76

4.5. THE ONLINE PHASE

6. The parties then obtain shares of the garbled circuit as follows:

• For each AND gate g ∈ G with wires (u,v,w), the parties use Claim 4.4.1 with the

shared values [λu], [λv], [λuv +λw], to define, for each j ∈ [n], shares of the bit/string

products:

λu ·R j, λv ·R j, (λuv +λw) ·R j

• These are then used to define shares of ρ j,a,b and the garbled circuit, as in the original

protocol.

7. For every circuit-output-wire w, the parties run ΠOpen to reveal λw to all the parties.

8. For every circuit input wire w corresponding to party Pi ’s input, the parties run Πi
Open

(Figure 4.15) to open λw to Pi.

The only interaction introduced in the new protocol is in the multiply and opening protocols,

which were abstracted away by FBit×Bit in the previous protocol. Simulating and proving security

of these techniques is straightforward, due to the correctness and randomness of the multiplica-

tion triples and MACs produced by Fn-TinyOT. One important detail is the Key Queries command

of the Fn-TinyOT functionality, which allows the adversary to try to guess an honest party’s global

MAC key share, R i, and learn if the guess is correct. To allow the proof to go through, we modify

FPreprocessing to also have a Key Queries command, so that the simulator can use this to respond

to any key queries from the adversary. We denote this modified functionality by F
KQ
Preprocessing.

The following theorem can be proven, similarly to the proof of Theorem 4.3.1 where we modify

the preprocessing functionality to support key queries, and adjust the simulation as described

above.

Theorem 4.4.1. The modified protocol described above UC-securely computes F
KQ
Preprocessing from

Figure 4.5 in the presence of a static, active adversary corrupting up to n− 1 parties in the

Fn-TinyOT-hybrid model.

Finally, in Section 4.5.1 we discuss how to extend the proof of the online phase, showing that

allowing key queries in the preprocessing functionality does not affect security.

4.5 The Online Phase

Our final protocol, presented in Figure 4.11, implements the online phase where the parties

reveal the garbled circuit’s shares and evaluate it. Our protocol is presented in the FPreprocessing-

hybrid model. Upon reconstructing the garbled circuit and obtaining all input keys, the process of

evaluation follows what was described in Section 2.6.1. Decrypting the ‘double encrypted’ garbled

rows here requires each party to compute compute n2 PRF values per gate. We recall that during

77

CHAPTER 4. GARBLING USING OBLIVIOUS TRANSFER

The MPC Protocol - ΠBMR

On input a circuit C f representing the function f and ρ = (ρ1, . . . ,ρn) where ρ i is party Pi ’s input, the
parties execute the following commands in sequence.

Preprocessing: This sub-task is performed as follows.

• Call Garbling on FPreprocessing with input C f .

• Each party Pi obtains the λw wire masks for every output wire and every wire associated
with their input, and all the keys {ki

w,0}w∈W and r i.

Online Computation: This sub-task is performed as follows.

• For all input wires w with input from Pi, party Pi computes Λw = ρw ⊕λw, where ρw is
Pi ’s input to C f , and λw was obtained in the preprocessing stage. Then, Pi broadcasts the
public value Λw to all parties.

• For all input wires w, each party Pi broadcasts the key ki
w associated to Λw.

• The parties call Open Garbling on FPreprocessing to reconstruct g̃ j
a,b for every gate g and

values a,b.

• Passing through the circuit topologically, the parties can now locally compute the following
operations for each gate g. Let the gates input wires be labelled u and v, and the output
wire be labelled w. Let a and b be the respective external values on the input wires.

1. If g is a XOR gate, set the public value on the output wire to be c = a⊕b. In addition,
for every j ∈ [n], each party computes k j

w,c = k j
u,a ⊕k j

v,b.
2. If g is an AND gate , then each party computes, for all j ∈ [n]:

k j
w,c = g̃ j

a,b ⊕
(

n⊕
i=1

Fki
u,a,ki

v,b
(g‖ j)

)
3. If ki

w,c 6∈ {ki
w,0,ki

w,1 = ki
w,0 ⊕ r i}, then Pi outputs abort. Otherwise, it proceeds. If Pi

aborts it notifies all other parties with that information. If Pi is notified that another
party has aborted it aborts as well.

4. If ki
w,c = ki

w,0 then Pi sets c = 0; if ki
w,c = ki

w,1 then Pi sets c = 1.

5. The output of the gate is defined to be (k1
w,c, . . . ,kn

w,c) and the public value c.

• Assuming no party aborts, everyone will obtain a public value cw for every circuit-output
wire w. The party can then recover the actual output value from ρw = cw ⊕λw, where λw
was obtained in the preprocessing stage.

Figure 4.11: The MPC Protocol - ΠBMR.

the evaluation parties only see the randomly masked wire values and cannot determine the

actual wire values. Upon completion, the parties compute the actual output using the output

wire masks revealed from FPreprocessing. We conclude with the following theorem.

Theorem 4.5.1. Let f be an n-party functionality {0,1}nκ 7→ {0,1}κ and assume that F is a circular

2-correlation robust PRF. Then Protocol ΠBMR, from Figure 4.11, UC-securely computes f in the

presence of a static, active adversary corrupting up to n−1 parties in the FPreprocessing-hybrid.

Our proof follows by first demonstrating that the adversary’s view is computationally indis-

78

4.5. THE ONLINE PHASE

tinguishable in both real and simulated executions. To be concrete, we consider an event for

which the adversary successfully causes the bit transferred through some wire to be flipped and

prove that this event can only occur with negligible probability (our proof is different to the proof

in [93] as in our case the adversary may choose its additive error as a function of the garbled

circuit). Then, conditioned on the event flip not occurring, we prove that the two executions

are computationally indistinguishable via a reduction to the correlation robust PRF, inducing a

garbled circuit that is indistinguishable. The complete proof is found below.

Proof. Let A be a PPT adversary corrupting a subset of parties I ⊂ [n]. We prove that there

exists a PPT simulator S with access to an ideal functionality F that implements f , that

simulates the adversary’s view. Denoting the set of honest parties by Ī, our simulator S is

defined below.

DESCRIPTION OF THE SIMULATION.

1. INITIALIZATION. Upon receiving the adversary’s input (1κ, I,~xI), S incorporates A and

internally emulates an execution of the honest parties running ΠBMR with the adversary

A .

2. PROCESSING. S emulates the preprocessing phase of functionality FPreprocessing, obtaining

the adversary input (init, C f) where C f is a Boolean circuit that computes f with a set of

wires W and a set G of AND gates.

3. GARBLING. Let W ′ denote the set of input wires that are associated with the adversary’s

input. Then upon receiving the input (Garbling,C f) from the adversary the simulator

emulates the garbling phase as follows.

• Upon receiving the global differences {r i}i∈I from the adversary the simulator records

this set.

• For every input wire w ∈W ′ that is associated to the adversary’s input, the simulator

obtains from the adversary a random masking value λw ∈ {0,1} and an input key

ki
w,0 ∈ {0,1}κ.

• For every wire w ∈ W that is the output of an AND gate and i ∈ I, the simulator

chooses a random λw ∈ {0,1} and records it. Moreover, the simulator obtains from the

adversary a key ki
w,0 and records the pair (ki

w,0,ki
w,1 = ki

w,0 ⊕ r i).

• Upon receiving an OK command from the adversary, the simulator forwards it a random

masking value λw ∈ {0,1}, for every output wire w ∈W .

4. ONLINE COMPUTATION. In the online computation the simulator honestly generates the

external values {Λw}w∈W ′′ and the input keys {ki
w,Λw

}i∈Ī,w∈W ′′ that are associated with the

honest parties’ input wire set W ′′, and broadcasts these to the adversary.

79

CHAPTER 4. GARBLING USING OBLIVIOUS TRANSFER

It then obtains the adversary’s external values {Λw}w∈W ′ as well as its input keys {k̂i
w}i∈I,w∈W ′

(which may be different to the keys received in the garbling phase), and defines the adver-

sary’s input as follows.

• INPUT EXTRACTION. For each input wire w ∈W ′, the simulator computes ρw =Λw⊕λw

and fixes the adversary’s input {~xI } to be the concatenation of these bits. S sends

this input to the trusted party computing f , receiving the output y= (y1, . . . , ym). Note

that A may still provide inconsistent input keys with ρ which we view as providing

incorrect PRF values for these wires.

5. SIMULATED GARBLED CIRCUIT GENERATION. Upon receiving the adversary’s (OpenGarbling)

message on FPreprocessing the simulator completes the generation of the garbled circuit as

follows.

• It first generates the honest parties’ keys {ki
w,Λw

}i∈Ī,w∈W associated with every internal

wire w ∈ W that is an output of an AND gate. Note that for the honest parties the

simulator generates a single key per wire.

• Next, the simulator chooses a random Λw ← {0,1} for the public value on every internal

wire w ∈W that is an output of an AND gate, except for the circuit output wires. For

the t-th output wire, S defines Λw = λw ⊕ yt (recall that the masking values for the

output wires are already fixed at this point, so the external values must be consistent

with the output y= y1, . . . ym).

• For every XOR gate with input wires u and v and output wire w, S sets ki
w,0 =

ki
u,0 ⊕ki

v,0 and ki
w,1 = ki

w,0 ⊕ r i for all i ∈ [n], and Λw =Λu ⊕Λv.

• ACTIVE PATH GENERATION. In the next step the simulator computes an active path

of the garbled circuit which corresponds to the sequence of keys that will be observed

by the adversary. More formally, for every AND gate g that is not an output gate, S

honestly generates the entry in row (Λu,Λv), where Λu (resp. Λv) is the public value

associated to the left (resp. right) input wire to g. Namely, the simulator computes

g̃ j
Λu,Λv

=
(

n⊕
i=1

Fki
u,Λu

,ki
v,Λv

(g‖ j)

)
⊕k j

w,Λw

fixing g̃Λu,Λv = g̃1
Λu,Λv

◦ . . .◦ g̃n
Λu,Λv

. The remaining three rows are sampled uniformly

at random from {0,1}nκ. Importantly, S never uses the inactive keys ki
u,Λ̄u

,ki
v,Λ̄v

and

ki
w,Λ̄w

in order to generate the garbled circuit.

6. The simulator hands the adversary the complete garbled circuit. In case the adversary

aborts, the simulator sends ⊥ to the trusted party and aborts. Otherwise, the simulator

obtains an additive error e = {ea,b
g }a,b∈{0,1},g∈G and computes the modified garbled circuit as

g̃Λu,Λv + eΛu,Λv
g .

80

4.5. THE ONLINE PHASE

Next, the simulator evaluates the modified circuit using the input wire keys {k̂i
w,Λw

}w∈W ′,i∈I

and {k j
w,Λw

}w∈W ′′, j∈I and checks whether the honest parties would have aborted. Namely,

for each gate, whether the evaluation reveals the honest parties’ keys associated with Λw

for w the output wire of some AND gate. If there exists a gate for which the evaluation does

not yield the key associated with Λw then the simulator outputs fail and aborts.

This concludes the description of the simulation. Note that the difference between the simu-

lated and the real executions is the way the garbled circuit is generated. More concretely, the

simulated garbled circuit is only generated after the simulator extracts the adversary’s input.

Moreover, the simulated garbled gates include a single row that is properly produced, whereas

the remaining three rows are picked at random. Let HYB
FPreprocessing
ΠBMR,A ,Z (1κ, z) denote the output

distribution of the adversary A and honest parties in a real execution using ΠBMR with adversary

A . Moreover, let IDEALF ,S ,Z (1κ, z) denote the output distribution of S and the honest parties

in an ideal execution.

We next define Flip to be the event that there exists an AND gate g and an honest party

P j, who, when evaluating the modified garbled circuit, (1) Does not abort; and (2) Obtains the

incorrect key k j
w,Λ̄w

for the output wire w of g. Note that this event implies that the adversary

causes P j to compute an incorrect value, as the bit value being transferred within the output

wire w is now flipped with respect to P j.

To prove that this event occurs with negligible probability, we consider an execution ãIDEAL
where a simulator S̃ produces a view that is identical to the view produced by S in IDEAL.

Namely, the adversary’s view is simulated exactly as in IDEAL by a simulator S̃ with the

exception that S̃ further picks the global differences {r j} j∈Ī and computes inactive keys k j
w,Λ̄w

=
k j

w,Λw
⊕ r j for j ∈ Ī,w ∈ W (which are never defined by S). Moreover, the event for which the

simulator outputs fail and aborts is modified as follows. Namely, the simulator aborts if there

exists a gate for which the evaluation does not yield the key associated with Λw or with Λ̄w. Note

that this event is well-defined since all the wire keys are chosen in this game. Then the difference

between IDEAL and ãIDEAL is the event that S aborts whereas S̃ does not abort. Note that

this event occurs when the adversary successfully flipped a wire value. Specifically, this will

yield a valid evaluation in ãIDEAL but not in IDEAL. We next show that this event occurs with

negligible probability.

Fix the additive error e = {ea,b
g }a,b∈{0,1},g∈G that is added to the simulated garbled circuit, and

let g̃a,b + ea,b
g for all g ∈G and a,b ∈ {0,1} denote the garbled circuit with the additive error. We

prove that Flip only occurs with negligible probability in ãIDEAL which implies that the statement

also holds in IDEAL. Intuitively, this is due to the fact that the adversary can only succeed in

this attack by guessing correctly the global difference r j of a honest party.

Lemma 4.5.1. The probability that Flip occurs in ãIDEAL is no more than 2−κ.

81

CHAPTER 4. GARBLING USING OBLIVIOUS TRANSFER

Proof: Recall first that the simulated garbling in IDEAL involves only generating a single key

k j
w per wire and per honest party, which either corresponds to k j

w,0 or k j
w,1. Consequently, the

simulator does not even need to choose a global difference r i in order to complete the garbling.

Furthermore, the simulator in ãIDEAL does generate these extra values, but never uses them;

this means that the simulated garbled circuit given to A is completely independent of the honest

parties’ global differences.

Now, suppose Flip occurs with respect to party P j, and let g be the first flipped AND gate (in

some topological order), with input wires u,v and output wire w. Then, because P j did not abort,

the keys on wires u and v obtained by P j must contain k j
u,Λu

,k j
v,Λv

. Note that it is possible that

the corrupt parties’ keys for these wires may be incorrect, so we denote these by k̂i
u, k̂i

w, for i ∈ I.

Since gate g was flipped, the j-th entry of the active row of the garbled gate is

ĝ j
Λu,Λv

=
n⊕

i∈Ī

(
Fki

u,Λu
,ki

v,Λv
(g‖ j)

)
⊕

n⊕
i∈I

(
Fk̂i

u,k̂i
v
(g‖ j)

)
⊕k j

w,Λ̄w
.

To cause this to happen, the adversary needs to introduce an error into this entry of the original

garbled gate g̃, given by:

∆g := ĝ j
Λu,Λv

⊕ g̃ j
Λu,Λv

=
n⊕

i∈I

(
Fk̂i

u,k̂i
v
(g‖ j)⊕Fki

u,Λu
,ki

v,Λv
(g‖ j)

)
⊕ r j

This boils down to correctly guessing r j for the honest party P j, which is bounded by 2−κ as r j is

picked truly at random and independently of all other items in the execution. �

In the next step we prove that the ideal and real executions are indistinguishable, conditioned

on the event Flip not occurring.

Lemma 4.5.2. Conditioned on the event Flip, the following two distributions are computationally

indistinguishable:

• {HYB
FPreprocessing
ΠBMR,A ,Z (1κ, z)}κ∈N,z∈{0,1}∗

• {IDEALF ,S ,Z (1κ, z)}κ∈N,z∈{0,1}∗

Proof: We begin by defining a slightly modified real execution �HYB, where the creation of the

garbled circuit is moved from the preprocessing stage to the online computation stage, after the

parties have broadcast their masked inputs. Moreover, the generation of the garbled circuit is

modified so that upon receiving the honest parties’ inputs {ρ i}i∈Ī and extracting the corrupted

parties’ inputs {ρ i}i∈I , the simulator S̃ first evaluates the circuit C f , computing the actual bit

`w to be transferred through each w ∈ W, where W is the set of wires of C f . It then chooses

two keys ki
w,0,ki

w,1 and a random bit λi
w for all i ∈ Ī and w ∈W, and fixes the active key for this

wire to be (k1
w,`w⊕λw

, . . . ,kn
w,`w⊕λw

). The rest of this hybrid is identical to the real execution. Note

82

4.5. THE ONLINE PHASE

that the garbled circuit is still computed according to FPreprocessing, and the rest of the protocol

is identical to HYB, which induces the same view for the adversary. This hybrid execution is

needed in order to construct a distinguisher for the correlation robustness assumption. Let�HYB
FPreprocessing
ΠBMR,A ,Z (1κ, z) denote the output distribution of the adversary A and honest parties in

this game.

Our proof of the lemma follows by a reduction to the correlation robustness of the PRF F (cf.

Definition 4.1). Assume by contradiction the existence of an environment Z , an adversary A and

a non-negligible function p(·) such that

∣∣Pr[Z (�HYB
FPreprocessing
ΠBMR,A ,Z (1κ, z))= 1]−Pr[Z (IDEALF ,S ,Z (1κ, z))= 1]

∣∣≥ 1
p(κ)

for infinitely many κ’s. We construct a distinguisher D′ with access to an oracle O (that implements

either Circ or Rand) that breaks the security of the correlation robustness assumption. Namely,

we show that ∣∣Pr[r ← {0,1}n;A Circr(·)(1κ)= 1]−Pr[A Rand(·)(1κ)= 1]
∣∣≥ 1

p(κ)
.

Distinguisher D′ receives the environment’s input z and internally invokes Z and simulator S ,

playing the role of functionality f . In more details,

• D′ internally invokes Z that fixes the honest parties’ inputs ρ.

• D′ emulates the communication with the adversary (controlled by Z) in the initialization,

preprocessing and garbling steps as in the simulation with S .

• For each wire u, let `u ∈ {0,1} be the actual value on wire u. Note that these values, as well

as the output of the computation y, can be determined since D′ knows the actual input of

all parties to the circuit (where the adversary’s input is extracted as in the simulation with

S).

• It next constructs the garbled circuit as follows. For each wire w in the circuit that is an

output wire of an AND gate and i ∈ Ī, it samples a key ki
w and a public value Λw. Using the

internal values `w, we can also compute the masks λw = `w ⊕Λw.

• For each wire that is the output of an XOR gate with input wires u and v and output wire

w, the distinguisher sets ki
w = ki

u ⊕ki
v for all i ∈ [n], and Λw =Λu ⊕Λv.

• The distinguisher picks an honest party, say Pi0 , and samples global differences r i for

i ∈ I \ {i0}. For every i ∈ I \ {i0} and w ∈ W, D′ now has both keys ki
w,Λw

= ki
w and ki

w,Λw
=

ki
w ⊕ r i.

• Finally, for each wire that is the output of an AND gate g with input wires u and v and

output wire w, the distinguisher computes four ciphertexts c00, c01, c10 and c11 as the

garbled gate, that are generated as follows,

83

CHAPTER 4. GARBLING USING OBLIVIOUS TRANSFER

– First, the j-th entry in the (Λu,Λv)-th row is computed as(
n⊕

i=1
Fki

u,Λu
,ki

v,Λv
(g‖ j)

)
⊕k j

w,Λw
.

– Next, for all (a,b) ∈ {0,1}2 such that (a,b) 6= (Λu,Λv) the distinguisher sets `a,b = 0 if

g(a⊕λu,b⊕λv)= `w, and sets `a,b = 1 otherwise. It then queries h j
a,b =O (ki0

u,Λu
,ki0

v,Λv
, g, j,

a⊕λu,b⊕λv,`a,b), and sets the j-th entry of row (a,b) in the garbled gate to be

(⊕
i 6=i0

Fki
u,a,ki

v,b
(g‖ j)

)
⊕h j

a,b ⊕k j
w,Λw

.

– For the output wires the distinguisher sets the external values as in the simulation.

• D′ hands the adversary the complete description of the garbled circuit and concludes the

execution as in the simulation with S .

• D′ outputs whatever Z does.

Note first that D′ only makes legal queries to its oracle. Furthermore, if O =Circ then the view

of A is identically distributed to its view in the real execution of the protocol on the given

inputs, whereas if O =Rand then A ’s view is distributed identically to the output of the simulator

described previously since the oracle’s response is truly random in this case. This completes the

proof. �

Finally, we demonstrate that the probability Flip occurs in HYB is negligible as well due

to indistinguishability of executions. This concludes the proof as it demonstrates that with

overwhelming probability the adversary is getting caught whenever cheating in the computation

of the PRF values.

Lemma 4.5.3. The probability that Flip occurs in HYB is bounded by 2−κ +negl(κ) for some

negligible function negl(·).

Proof: Intuitively speaking, we prove that if Flip occurs in the real execution with a non-

negligible probability, then we can leverage this distinguishing gap in order to break the correla-

tion robustness assumption. Namely, if this event occurs then it is possible to extract r i and all

pairs of inputs keys associated with every wire with respect to an honest party. Given all keys it

is possible to recompute the garbled circuit and verify whether it was generated honestly or as in

the simulation. More formally, assume by contradiction that

Pr[Flip occurs in HYB]≥ 1
q(κ)

for some non-negligible function q(·) and infinitely many κ’s. We construct a distinguisher D that

breaks the security of the underlying correlation robust PRF with non-negligible probability as

follows.

84

4.5. THE ONLINE PHASE

1. Distinguisher D is identically defined as the distinguisher in the proof of Lemma 4.5.2,

externally communicating with an oracle Q that either realizes the function Circ or Rand,

while internally invoking A . The only difference is that D chooses i0 at random. This is

due to the fact that the event Flip holds with respect to (at least) one honest party, whose

identity is unknown.

2. Upon receiving the modified garbled circuit from A , D evaluates the circuit on the parties’

inputs and compares every active key k̃i
w that is revealed during the execution with the

actual active key ki
w that was created by D in the garbling phase. For every gate g for

which there exists a difference ∆i
g = k̃i

w ⊕ki
w for all i ∈ Ī, D sets r i

g =∆i
g.

3. For every gate g for which D recorded a global difference r i0
g for party i0, it defines the

inactive key for the output wire w ∈W of this gate by ki0

w,Λ̄w
= ki0

w,Λw
⊕ r i0

g . Next, for some

gate g′ for which wire w is an input wire (say associated with left input wire to g′ w.l.o.g., D

queries its oracle on (ki0

w,Λ̄w
,ki0

v , g, j, ā⊕λw,b⊕λv,`a,b) where ki0
v is the active key associated

with the other input wire of Pi0 . D compares this outcome with the values it obtained from

its oracle for the query (ki0
w,Λw

,ki0
v , g, j,a⊕λw,b⊕λv,`a,b). If equality holds, then D outputs

Circ.

4. Upon concluding the execution so that D did not output Circ, it returns Rand.

Clearly, whenever Flip occurs with respect to i0 then D can identify this event by extracting some

inactive key and querying its oracle in this key. Therefore D outputs Circ with probability 1
q(κ)·n .

On the other hand, due to the claim made in Lemma 4.5.2, Flip rarely occurs in IDEAL and thus

D outputs Rand on the event of Flip only with negligible probability. This implies a non-negligible

gap with respect to the event occurring in the two executions and concludes the proof. � ■

4.5.1 The Online Phase with F
KQ
Preprocessing

In this section we now prove the following theorem, for the online protocol based on FPreprocessing

with key queries, denoted by F
KQ
Preprocessing and formally defined in Section 4.4.3.

Theorem 4.5.2. Let f be an n-party functionality {0,1}nκ 7→ {0,1}κ and assume that F is a circular

2-correlation robust PRF. Then Protocol ΠBMR, from Figure 4.11, UC-securely computes f in the

presence of a static, active adversary corrupting up to n−1 parties in the F
KQ
Preprocessing-hybrid

model.

In what follows, we discuss how to adapt the proof of Theorem 4.5.1 to support key queries.

Proof Sketch: We first modify the simulator specified in that proof. Namely, upon receiving the

adversary’s queries (i,R′), the simulator outputs 0. Intuitively, we claim that with overwhelming

probability the adversary only sees zero responses to its key queries as it can only guess a global

key with negligible probability. In the following, we formalize this intuition and discuss how

85

CHAPTER 4. GARBLING USING OBLIVIOUS TRANSFER

to modify the proof of Theorem 4.5.1 by re-proving Lemma 4.5.1. Namely, we need to take into

account the fact that the probability that the event Flip occurs also depends on the leakage

obtained by the key queries made to the functionality.

We define a new hybrid game H where the simulator SH is defined identically to simulator S

with the exception that SH knows the honest parties’ inputs and further generates the inactive

keys by picking global differences for the honest parties. Furthermore, for every key query (i,R′)
made by A , SH verifies first whether R′ = R i and aborts in case equality holds. Otherwise, it

replies with 0. Nevertheless, SH garbles the circuit the same way S does. Let Guess denote the

event in H for which the adversary makes a key query R i (meaning, it guesses the correct R i

value). We prove the following.

Lemma 4.5.4. The probability that Flip occurs in H is no more than (q+1)/2κ, where q is the

number of key queries.

Proof: We analyze the probability that the event Flip occurs.

Pr(Flip)=Pr(Flip|Guess) ·Pr(Guess)+Pr(Flip|Guess) ·Pr(Guess)

≤Pr(Guess)+Pr(Flip|Guess)≤ q/2κ+2−κ.

�

This implies that the distributions induced within IDEAL and H are statistically close since

the only difference is whenever event Guess occurs. We next claim that the proof of Lemma 4.5.2

holds with respect to H and HYB.

Lemma 4.5.5. Conditioned on the event Flip, the following two distributions are computationally

indistinguishable:

• {HYB
F

KQ
Preprocessing

ΠBMR,A (1κ, z)}κ∈N,z∈{0,1}∗

• {H
F

KQ
Preprocessing

ΠBMR,SH
(1κ, z)}κ∈N,z∈{0,1}∗

Proof: This proof will have to incorporate the key queries as well. Namely, distinguisher D′ first

picks the identity of party i0 at random. Then, whenever a key query (i0,R i0) is made by A , D′

uses it to calculate the inactive keys of party Pi0 and checks whether this yields the garbling it

obtained from its oracle. In case it does, D outputs Circ. Otherwise, it outputs Rand. Otherwise, if

at the end of the execution no queries have resulted in a correct garbling, output Rand. �

Finally, we reprove Lemma 4.5.3 by demonstrating that if the success probability of Flip is

non-negligibly higher in HYB, then we can distinguish the two executions HYB and H.

Lemma 4.5.6. The probability that Flip occurs in HYB is bounded by 2−κ +negl(κ) for some

negligible function negl(·).

86

4.6. PERFORMANCE

Proof: This proof follows similarly to the proof of Lemma 4.5.3 in the sense that the reduction

additionally needs to reply the adversary’s key queries. Namely, for each query (i,R i) such that

i 6= i0, D can answer this query as it picked the global difference for that party. Moreover, for each

query (i0,R i0), D uses this query to fix a set of inactive keys for party i0 and verifies whether this

guess is correct by recomputing the garbled circuit and comparing it with the original garbled

circuit. If equality holds then D responses with 1 to this query. The rest of the proof follows

identically. �

4.6 Performance

In this section we present implementation results for our protocol from Section 4.4 for up to 9

parties. We also analyse the concrete communication complexity of the protocol and compare this

with previous, state-of-the-art protocols in a similar setting.

We have made a couple of tweaks to our protocol to simplify the implementation. We moved

the Open Garbling stage to the preprocessing phase, instead of the online phase. This optimizes

the online phase so that the amount of communication is independent of the size of the circuit.

This change means that our standard model security proof would no longer apply, but we could

prove it secure using a random oracle instead of the circular 2-correlation robust PRF, similarly

to [21, 95]. Secondly, when not working in a modular fashion with a separate preprocessing

functionality, the share rerandomization step in the output stage is not necessary to prove

security of the entire protocol, so we omit this.

4.6.1 Implementation

Note: The following implementation work was not carried out by the author, but by Assi Barak,

Moriya Farbstein and Lior Koskas from the software team at Bar-Ilan University. It appears here

for completeness and a better understanding of the previous results in this chapter.

We implemented our variant of the multi-party TinyOT protocol (Section 4.7) using the

libOTe library [117] for the fixed-correlation OTs, and tested it for between 3 and 9 parties. We

benchmarked the protocol over a 1Gbps LAN on 5 servers with 2.3GHz Intel Xeon CPUs with

20 cores. For the experiments with more than 5 parties, we had to run more than one party per

machine; this should not make much difference in a LAN, as the number of threads being used

was still fewer than the number of cores. As benchmarks, we measured the time for securely

computing the circuits for AES (6800 AND gates) and SHA-256 (90825 AND gates).

For the TinyOT bit and triple generation, every pair of parties needs two correlated OT

instances running between them (one in each direction). We ran each OT instance in a separate

thread with libOTe, so that each party uses 2(n−1) OT threads. This gave a small improvement

(≈ 6%) compared with running n−1 threads. We also considered a multiple execution setting,

where many (possibly different) secure computations are evaluated. Provided the total number of

87

CHAPTER 4. GARBLING USING OBLIVIOUS TRANSFER

AES AES SHA-256 SHA-256
(B = 5) (B = 3) (B = 5) (B = 3)

Prep. 1329 586.9 10443 6652
Online 35.34 33.30 260.58 252.8

Table 4.2: Runtimes in ms for AES and SHA-256 evalution with 9 parties.

3 5 7 9

0

200

400

600

Number of parties

T
im

e
(m

s)

Figure 4.12: AES performance (6800
AND gates).

3 5 7 9

0

2,000

4,000

6,000

Number of parties

T
im

e
(m

s)

Online
Preprocessing

Figure 4.13: SHA-256 performance
(90825 AND gates).

AND gates in the circuits being evaluated is at least 220, this allows us to generate the TinyOT

triples for all executions at once using a bucket size of B = 3, compared with B = 5 for one

execution of AES or B = 4 for one execution of SHA-256. Since the protocol in Section 4.7 scales

with B2, this has a big impact on performance. The results for 9 parties, for the different choices

of B, are shown in Table 4.2.

Figures 4.12–4.13 show how the performance of AES and SHA-256 scales with different

numbers of parties, in the amortized setting. Although the asymptotic complexity is quadratic,

the runtimes grow relatively slowly as the number of parties increases. This is because in the

preprocessing phase, the amount of data sent per party is actually linear. However, the super-

linear trend is probably due to the limitations of the total network capacity, and the computational

costs.

4.6.1.1 Comparison with other works.

We calculated the cost of computing the SPDZ-BMR protocol [93] using [80] to derive estimates for

creating the SPDZ triples (the main cost). Using MASCOT over F2κ with Free-XOR, SPDZ-BMR

requires 3n+1 multiplications per garbled AND gate. This gives an estimated cost of at least 14

seconds to evaluate AES, which is over 20x slower than our protocol.

At the time of writing this thesis, the only other implementation of actively secure, constant-

round, dishonest majority MPC is the work of [129], which presents implementation figures for

88

4.6. PERFORMANCE

up to 256 parties running on Amazon servers. Their runtimes with 9 parties in a LAN setting

are around 200ms for AES and 2200ms for SHA-256, which is around 3 times faster than our

results. However, their LAN setup has 10Gbps bandwidth, whereas we only tested on machines

with 1Gbps bandwidth. Since the bottleneck in our implementation is mostly communication, it

seems that our implementation could perform similar to or even faster than theirs in the same

environment, despite our higher communication costs. However, it is not possible to make an

accurate comparison without testing both implementations in the same environment.

Our implementation does not scale well to a WAN environment in the cloud because we have

not fully exploited the low round complexity of the protocol. However, the LAN results in our

work serve to demonstrate the practicality of the protocol and its low round complexity means

that it will still be practical in a WAN setting, even more with some refactoring.

Compared with protocols based solely on secret-sharing, such as SPDZ and TinyOT, the

advantage of our protocol is the low round complexity. We have not yet managed to benchmark

our protocol in a WAN setting, but since our total round complexity is less than 20, it should

perform reasonably well. With secret-sharing, using e.g. TinyOT, evaluating the AES circuit

requires at least 40 rounds in just the online phase (it can be done with 10 rounds [46], but

this uses a special representation of the AES function, rather than a general circuit), whilst

computing the SHA-256 circuit requires 4000 rounds. In a network with 100ms delay between

parties, the AES online time alone would be at least 4 seconds, whilst SHA-256 would take over

10 minutes to securely compute in that setting. If our protocol is run in this setting, we should be

able to compute both AES and SHA-256 in just a few seconds (assuming that latency rather than

bandwidth is the bottleneck).

4.6.2 Communication Complexity Analysis

We now focus on analysing the concrete communication complexity of the optimized variant of

our protocol and compare it with the state of the art in constant-round two-party and multi-

party computation protocols. We have not implemented our protocol, but since the underlying

computational primitives are very simple, the communication cost will be the overall bottleneck.

As a benchmark, we estimate the cost of securely computing the AES circuit (6800 AND gates,

25124 XOR gates), where we assume that one party provides a 128-bit plaintext or ciphertext

and the rest of them have an XOR sharing of a 128-bit AES key. This implies we have 128 ·n
input wires and an additional layer of XOR gates in the circuit to add the key shares together. We

consider a single set of 128 output wires, containing the final encrypted or decrypted message.

4.6.2.1 Complexity of Our TinyOT-Based Protocol

We now measure the exact communication cost of our optimized protocol based on TinyOT (in the

random oracle model), in terms of number of bits sent over the network per party (multiply this

by n for the overall complexity). We exclude one-time costs such as checking MACs, which can be

89

CHAPTER 4. GARBLING USING OBLIVIOUS TRANSFER

done in a batch at the end, and initializing the base OTs. Consider a circuit with G AND gates, I

input wires (in total) and O output wires. The costs of the different stages are as follows, with

computational security parameter κ= 128 and statistical security parameter s = 40.

TINYOT PREPROCESSING: One triple and one random bit per AND gate, plus one random

bit per input wire. From the analysis in Section 4.7 this gives

(504B2 +168)(n−1)G+168(n−1)I.

GARBLING: Two bit openings for each AND gate (for the bit multiplication), one bit opening

for every output wire and one private opening for every input wire, gives

2(n−1)G+ (n−1)O+ (n−1)I.

OPEN GARBLING: The rerandomization step costs κ(n−1) bits per party. Opening the garbled

circuit can be done efficiently by each party sending their share to P1, who broadcasts the result;

this costs 4nκG bits per party, giving a total of

4nκG+κ(n−1).

ONLINE: If party Pi has I i input bits then the cost for Pi is I i + I · (n−1) ·κ bits.

Note that for a single execution of AES we have G = 6800, I = 128n and O = 128, which means

for multi-party TinyOT we can choose B = 4, following the combinatorial analysis of [59].

4.6.2.2 Two Parties

In Table 4.3 we compare the cost of our protocol in the two-party case, with state-of-the-art secure

two-party computation protocols. We instantiate our TinyOT-based preprocessing method with

the optimized, two-party TinyOT protocol from [128], lowering the previous costs further. For

consistency with the other two-party protocols, we divide the protocol costs into three phases:

function-independent preprocessing, which only depends on the size of the circuit; function-

dependent preprocessing, which depends on the exact structure of the circuit; and the online

phase, which depends on the parties’ inputs. As with the implementation, we move the garbled

circuit opening to the function-dependent preprocessing, to simplify the online phase.

The online phase of the modified protocol is just two rounds of interaction, and has the lowest

online cost of any actively secure two-party protocol.3 The main cost of the function-dependent

preprocessing is opening the garbled circuit, which requires each party to send 8κ bits per AND

gate. This is slightly larger than the best Yao-based protocols, due to the need for a set of keys for

every party in BMR.

3If counting the total amount of data sent, in both directions, our online cost would be larger than [128], which is
highly asymmetric. In practice, however, the latency depends on the largest amount of communication from any one
party, which is why we measure in this way.

90

4.6. PERFORMANCE

Protocol # Executions Function-indep.
prep.

Function-dep.
prep.

Online

[118]
32 – 3.75 MB 25.76 kB
128 – 2.5 MB 21.31 kB

1024 – 1.56 MB 16.95 kB

[107]

1 14.94 MB 227 kB 16.13 kB
32 8.74 MB 227 kB 16.13 kB
128 7.22 MB 227 kB 16.13 kB

1024 6.42 MB 227 kB 16.13 kB

[128]

1 2.86 MB 570 kB 4.86 kB
32 2.64 MB 570 kB 4.86 kB
128 2.0 MB 570 kB 4.86 kB

1024 2.0 MB 570 kB 4.86 kB

Ours + [128]

1 2.86 MB 872 kB 4.22 kB
32 2.64 MB 872 kB 4.22 kB
128 2.0 MB 872 kB 4.22 kB

1024 2.0 MB 872 kB 4.22 kB

Table 4.3: Communication estimates for secure AES evaluation with our protocol and previous
works in the two-party setting. Cost is the maximum amount of data sent by any one party, per
execution.

In the batch setting, where many executions of the same circuit are needed, protocols such

as [118] clearly still perform the best. However, if many circuits are required, but they may be

different, or not known in advance, then our multi-party protocol is highly competitive with

two-party protocols.

4.6.2.3 Comparison with Multi-Party Protocols

In Table 4.4 we compare our work with previous constant-round protocols suitable for any

number of parties, again for evaluating the AES circuit. We do not present the communication

complexity of the online phase as we expect it to be very similar in all of the protocols. We denote

by MASCOT-BMR-FX an optimized variant of [93], modified to use Free-XOR as in our protocol,

with multiplications done using the OT-based MASCOT protocol [80].

As in the previous section, we move the cost of opening the garbled circuit to the preprocessing

phase for all of the presented protocols (again relying on random oracles). By applying this

technique the online phase of our work is just two rounds, and has exactly the same complexity

as the current most efficient semi-honest constant-round MPC protocol for any number of parties

[25], except we achieve active security. We see that with respect to other actively secure protocols,

we improve the communication cost of the preprocessing by around 2–4 orders of magnitude.

Moreover, our protocol scales much better with n, since the complexity is O(n2) instead of O(n3).

91

CHAPTER 4. GARBLING USING OBLIVIOUS TRANSFER

Protocol Security Function-indep. prep. Function-dep. prep.

n = 3 n = 10 n = 3 n = 10

SPDZ-BMR active 25.77 GB 328.94 GB 61.57 MB 846.73 MB
SPDZ-BMR covert, pr. 1

5 7.91 GB 100.98 GB 61.57 MB 846.73 MB
MASCOT-
BMR-FX

active 3.83 GB 54.37 GB 12.19 MB 178.25 MB

[129] active 4.8 MB 20.4 MB 1.3 MB 4.4 MB
Ours active 14.01 MB 63.22 MB 1.31 MB 4.37 MB

Table 4.4: Comparison of the cost of our protocol with previous constant-round MPC protocols in
a range of security models, for secure AES evaluation. Costs are the amount of data sent over the
network per party.

The concurrent work of Katz et al. [129] requires around 3 times less communication than our

protocol, which is due to their optimized version of the multi-party TinyOT protocol.

4.7 A Multi-Party TinyOT-Style Protocol

Here we describe the full protocol for realizing the Fn-TinyOT functionality. It essentially consists

of the bit triple generation protocol from [58], with some minor modifications, and a method for

producing random shared bits with a consistency check that is similar to the bit/string check

from Section 4.3.3.

We first recall the two-party and n-party MAC representations from Section 4.4:

[xi]i, j = (xi, M i
j,K

j
i)

[x]= (xi, {M i
j,K

i
j} j 6=i))i∈[n], M i

j = K j
i + xi ·R j

where in the two-party sharing [xi]i, j, Pi holds the share xi and MAC M i
j, whilst P j holds the

local key K j
i and a fixed, global key R j. In the n-party sharing, each party Pi holds n−1 MACs on

xi, as well as a key on x j, for each j 6= i, and a global key R i. Note that if Pi holds xi and P j holds

the key R j, a sharing [xi]i, j can easily be created using one call to the correlated OT functionality

(Figure 4.3), in which the correlation R j is fixed by P j in the initialization stage.

As required in the modified preprocessing protocol from Section 4.4, we need a method

for opening [x]-shared values, both to all parties, and privately to a single party. These are

straightforward, shown in Figure 4.14–4.15.

The main protocol, shown in Figure 4.16, consists of two main parts, for creating shared

random bits, and for multiplication (AND) triples. Creating shared bits is straightforward, by

92

4.7. A MULTI-PARTY TINYOT-STYLE PROTOCOL

Subprotocol ΠOpen

To open a shared value [x] to all parties:

1. Each party Pi broadcasts its share xi, and sends the MAC M i
j to P j, for j 6= i.

2. All parties compute x = x1 +·· ·+ xn.

3. Each Pi has received MACs M j
i , for j 6= i, and checks that

M j
i = K i

j + x j ·R i.

If any check fails, broadcast ⊥ and abort.

Figure 4.14: Subprotocol for opening and checking MACs on n-party authenticated secret shares.

Subprotocol Π j
Open

To open a shared value [x] to only P j:

1. Each party Pi, for i 6= j, privately sends its share xi and MAC M i
j to P j.

2. P j computes x = x1 +·· ·+ xn, and checks that, for each i 6= j

M i
j = K j

i + xi ·R j.

If any check fails, broadcast ⊥ and abort.

Figure 4.15: Subprotocol for private opening to one party.

using F∆-ROT to MAC random bits, then opening a random linear combination of the MACs to

ensure consistency.

To create shares of a random multiplication triple (x, y, z), each party first locally samples

shares xi, yi, and then uses F∆-ROT to authenticate these shares. The MAC on a share xi is

used to obtain a sharing of the product of xi with a random bit (ui, j
`

+ vi, j
`

) known to P j (using

a hash function), and then P j converts this to a share of xi · y j by sending a correction bit in

step 3a. This opens up an avenue for cheating, as P j may send an incorrect correction value to

some Pi. This could result in the triple being correct, or, if xi = 0 the triple would still be correct

but P j would learn the bit xi. These issues are addressed by the bucket-based cut-and-choose

procedure in Figure 4.17, which first checks correctness by sacrificing triples, and then removes

any potential leakage on the x values by combining several triples together. Note that the complex

bucketing procedure is necessary for these steps, as opposed to simple pairwise checks, because

with triples over F2, one pairwise check (or leakage combiner) can only guarantee correctness (or

remove leakage) if at least one of the two triples is correct (or leakage-free). So, the cut-and-choose

and bucketing procedure are done so that each bucket contains at least one good triple, with

overwhelming probability.

93

CHAPTER 4. GARBLING USING OBLIVIOUS TRANSFER

Protocol Πn-TinyOT

Let H : {0,1}κ→ {0,1} be a single-bit output hash function, modeled as a random oracle.

Initialize: 1. Each party Pi samples R i ← {0,1}κ.

2. Every ordered pair (Pi,P j) calls F∆-ROT, where Pi sends (init,R i) and P j sends (init).

Prep: To create m random shared bits [b1], . . . , [bm] do:

1. Each party Pi samples m+κ random bits bi
1, . . . ,bi

m, ri
1, . . . , ri

κ← {0,1}.

2. Every ordered pair (Pi,P j) calls F∆-ROT, where Pi is receiver and inputs
(extend,bi

1, . . . ,bi
m, ri

1, . . . , ri
κ). Using the output, define sharings [b1], . . . , [bm], [r1], . . . , [rκ].

3. Check consistency of the F∆-ROT inputs as follows:

a) Call FRand to obtain random field elements χ1, . . . ,χm ∈ F2κ

b) The parties locally compute (with arithmetic over F2κ)

[C]=
m∑
`=1

χ` · [b`]+
κ∑

h=1
X h−1 · [rh]

c) Each Pi now has a share C i ∈ F2κ , and the MACs and keys (M i
j,K

i
j) j 6=i from [C].

d) Each Pi rerandomizes C i by privately distributing fresh shares, and sums up the
shares they receive to obtain a new share C̄ i.

e) Broadcast C̄ i and reconstruct c = C̄1 +·· ·+ C̄n.
f) Each party Pi defines and commits to the n+1 values:

C i, Z i
j = M i

j (for j 6= i), Z i
i =

∑
j 6=i

K i
j + (C+C i) ·R i.

g) All parties open their commitments and check that, for each j ∈ [n],
∑n

i=1 Z i
j = 0.

Additionally, each Pi checks that Z j
i = K i

j +C j ·R i . If any check fails, abort.

To create M AND triples, first create m′ = B2M+ c triples as follows:

1. Each party Pi samples xi
`
, yi

`
← F2 for ` ∈ [m′]

2. Every ordered pair (Pi,P j) calls F∆-ROT, where Pi is receiver and inputs
(extend, xi

1, . . . , xi
m′). Pi and P j obtain their respective value of [xi

`
]i, j = (M i, j

`
,K j,i

`
), such

that M i, j
`

= K j,i
`

+ xi
`
·R j ∈ Fκ2 .

3. For each ` ∈ [m′] and each pair of parties (Pi,P j):

a) P j computes u j,i
`

=H(K j,i
`

), v j,i
`

=H(K j,i
`

+R j), and sends d = u j,i
`

+v j,i
`

+ y j
`

to Pi

b) Pi computes wi, j
`

=H(M i, j
`

)+ xi
`
·d = u j,i

`
+ xi

`
· y j

`

4. Each party Pi defines shares

zi
` =

∑
j 6=i

(ui, j
`

+wi, j
`

)+ xi
` · yi

`

5. Every ordered pair (Pi,P j) calls F∆-ROT, where Pi is receiver and inputs
(extend, {yi

`
, zi
`
}`∈[m′]).

6. Use the above, and the previously obtained MACs on xi
`
, to create sharings [x`], [y`], [z`].

Finally, run ΠTripleBucketing on ([x`], [y`], z`])`∈[m′], to output M correct and secure triples.

Figure 4.16: Protocol for TinyOT-style Multi-Party Computation of binary circuits.

94

4.7. A MULTI-PARTY TINYOT-STYLE PROTOCOL

Subprotocol ΠTripleBucketing

The protocol takes as input m′ = B2m+ c triples, which may be incorrect and/or have leakage on the x
component, and produces m triples which are guaranteed to be correct and leakage-free.
B determines the bucket size, whilst c determines the amount of cut-and-choose to be performed.

Input: Start with the shared triples {[xi], [yi], [zi]}i∈[m′].

I: Cut-and-choose: Using FRand, the parties select at random c triples, which are opened with
ΠOpen and checked for correctness. If any triple is incorrect, abort.

II: Check correctness: The parties now have B2m unopened triples.

1. Use FRand to sample a random permutation on {1, . . . ,B2m}, and randomly assign the
triples into mB buckets of size B, accordingly.

2. For each bucket, check correctness of the first triple in the bucket, say [T]= ([x], [y], [z]),
by performing a pairwise sacrifice between [T] and every other triple in the bucket.
Concretely, to check correctness of [T] by sacrificing [T ′]= ([x′], [y′], [z′]):

a) Open d = x+ x′ and e = y+ y′ using ΠOpen.
b) Compute [f]= [z]+ [z′]+d · [y]+ e · [x]+d · e.
c) Open [f] using ΠOpen and check that f = 0.

III: Remove leakage: Taking the first triple in each bucket from the previous step, the parties are
left with Bm triples. They remove any potential leakage on the [x] bits of these as follows:

1. Place the triples into m buckets of size B.

2. For each bucket, combine all B triples into a single triple. Specifically, combine the first
triple ([x], [y], [z]) with [T ′]= ([x′], [y′], [z′]), for every other triple T ′ in the bucket:

a) Open d = y+ y′ using ΠOpen.
b) Compute [z′′]= d · [x′]+ [z]+ [z′] and [x′′]= [x]+ [x′].
c) Output the triple [x′′], [y], [z′′].

If all the checks and MAC checks passed, output the first triple from each of the m buckets in
the final stage.

Figure 4.17: Checking correctness and removing leakage from triples with cut-and-choose.

Subprotocol ΠMult

Given a multiplication triple [a], [b], [c] and two shared values [x], [y], the parties compute a sharing
of x · y as follows:

1. Each party broadcasts d i = ai + xi and ei = bi + yi.

2. Compute d =∑
i d i, e =∑

i ei, and run ΠOpen to check the MACs on [d] and [e].

3. Output
[z]= [c]+d · [b]+ e · [a]+d · e = [x · y].

Figure 4.18: Subprotocol for multiplying secret shared values using a triple.

95

CHAPTER 4. GARBLING USING OBLIVIOUS TRANSFER

4.7.1 Why the Need for Key Queries?

For completeness, we briefly explain why these are needed in Fn-TinyOT, when using this protocol.

After the protocol execution the environment learns the honest parties’ outputs, which include

MAC keys K i and R. On the other hand, during the protocol the adversary sees values of the

form (simplifying things slightly)

U =H(K i)+H(K i +R)

where H is modeled as a random oracle. In the security proof, U is simulated as a uniformly

random value U, since the simulator, S , does not know K i or K i +R. This means that if the

environment later queries both K i and (K i +R) to the random oracle then they could distinguish,

as S would not be able to detect this, so the response would be inconsistent with the simulated U .

However, with a Key Query command in the functionality, the simulator can detect this (based

on the technique from [104]):

• For each query Q, S looks up all previous queries Q i, and sends (Q+Q i) to the Key Query
of the functionality.

• If Key Query is successful then S knows that Q+Q i = R, so can program the response

H(Q) such that H(Q)+H(Q i)=U , as required.

4.7.2 Security

In this section we formalize the security of the implementation of the Prep command of Fn-TinyOT

in our Πn-TinyOT protocol. More concretely, we focus on the consistency check in the production

of m random bits. This guarantees that the MAC keys are consistent, after which the triple

generation protocol can be proven secure similarly to [58]. The exact deviations that are possible

by a corrupt P j in the bit generation are:

1. Provide inconsistent inputs r j when acting as sender in the Initialize command of the

F∆-ROT instances with two different honest parties.

2. Input inconsistent shares b j
`
,` ∈ [m] or r j

h,h ∈ [κ] when acting as receiver in the Extend
command of F∆-ROT with two different honest parties.

Note that in both of these cases, we are only concerned when the other party in the F∆-ROT

execution is honest, as if both parties are corrupt then F∆-ROT does not need to be simulated in

the security proof. We should also remark that preventing the first attack in the production of

the random bits extends to preventing it everywhere else in the protocol, as the r j values are

fixed in the Initialize phase.

These two attacks are modelled by defining r j,i,b j,i
`

and r j,i
h to be the actual inputs used by

a corrupt P j in the above two cases. Without loss of generality, we pick a honest party Pi0 and

96

4.7. A MULTI-PARTY TINYOT-STYLE PROTOCOL

fix b j
`
= b j,i0

`
, r j

h = r j,i
h ,r j = r j,i0 to be the inputs by P j that should be consistent with every other

honest party. Let I be the set of corrupted parties. For each j ∈ I, we can resume the previous

statements by defining the values:

∆ j,i0 = 0, ∆ j,i = r j,i + r j, i ∉ (I ∪ i0)

δ
j,i0
`

= 0, δ
j,i
`

= b j,i
`

+b j
`
, ` ∈ [m], i ∉ (I ∪ i0)

δ̂
j,i0
`

= 0, δ̂
j,i
h = r j,i

h + r j
h, h ∈ [κ], i ∉ (I ∪ i0).

Note that ∆ j,i is fixed in the initialization of F∆-ROT, whilst δ j,i
`

may be different for every OT.

Whenever Pi and P j are both corrupt, or both honest, for convenience we define ∆ j,i = 0 and

δ j,i = 0. The above means that the outputs of F∆-ROT with (Pi,P j) then satisfy

M j
i (b j,i

`
)= K i

j(b
j,i
`

)+b j,i
`

· r i, j,

or, equivalently,

M j
i (b j

`
+δ j,i

`
)= K i

j(b
j
`
+δ j,i

`
)+ (b j

`
+δ j,i

`
) · (r i +∆i, j),

where δ j,i 6= 0 if P j (the receiver) cheated, and ∆i, j 6= 0 if Pi (the sender) cheated. Recall from

Section 4.4.1 that M j
i (b j

`
+δ j,i

`
) represents the receiver’s MAC on the value b j

`
+δ j,i

`
and K i

j(b
j
`
+δ j,i

`
)

and represents the sender’s MAC key on that same value.

We start by assuming that the corrupted party in the couple (Pi,P j) running F∆-ROT is the

sender P j, trying to have inconsistent correlations R j,i with different honest parties Pi, i ∉ I. We

prove the inconsistency impossible in the next claim:

Claim 4.7.1. If the Prep step of Πn-TinyOT succeeds then all the global keys R j are consistent and

well-defined, i.e. ∆ j,i = 0 for every i, j ∈ [n].

Proof. We enumerate the possible deviations by the Adversary affecting the check
∑n

i=1 Z i
j = 0 in

Step 3g with which we want to catch inconsistent R j,i values to different honest parties. These

possible disruptions are the following two:

In Step 3e, the parties broadcast C̄ i values, every corrupted P`,` ∈ I can send instead some

adversarial value Ĉ` such that
∑n

j=1 Ĉ j = C+ e, where e is some additive error of the Adversary’s

choice. Alternatively, a similar active deviation is to commit to Ẑ`
j values, ` ∈ I, in such a way

that
∑
`∈I Ẑ`

j =
∑
`∈I Z`

j +E j.

An active P j trying to cheat has to pass the aforementioned mentioned check, which becomes:

0=
n∑

i=1
Ẑ i

j = E j +Z j
j +

∑
i 6= j

Z i
j = E j +

(∑
i 6= j

K j
i (C i)+ (C+ e+C j) ·R j

)
+∑

i 6= j
M i

j(C
i)=

E j + (C+ e+C j) ·R j +∑
i 6= j

(K j
i (C i)+M i

j(C
i))= E j + (C+ e+C j) ·R j +∑

i 6= j
C i ·R j,i =

E j + (C+ e+C j +∑
i 6= j

C i) ·R j +∑
i 6= j

C i ·∆ j,i = E j + e ·R j +∑
i 6= j

C i ·∆ j,i

97

CHAPTER 4. GARBLING USING OBLIVIOUS TRANSFER

As having inconsistent keys requires that there exists i0, i1 ∉ I such that ∆ j,i0 6=∆ j,i1 6= 0, the

attack would require the adversary to set E j + e ·R j = C i0 ·∆ j,i0 +C i1 ·∆ j,i1 . But this is negligible

in κ, as the only information the adversary has about C i0 ,C i1 ∈ F2κ at the time of committing to

the values Ẑ`
j ,` ∈ I is that they are two uniform additive shares of C, due to the rerandomization

in Step 3d. ■

Finally, we prove that a corrupted receiver P j cannot input inconsistent values b j,i
`

to different

honest parties.

Claim 4.7.2. If the Prep step of Πn-TinyOT succeeds, every ordered pair (Pi,P j) holds a secret

sharing of b j
`
·R i for every ` ∈ [m]. In other words, δ j,i

`
= 0 for every i, j,`.

Proof. For every ordered pair (Pi,P j) we can define P j ’s MAC on [C j] j,i as

M j
i (C j)=

m∑
`=1

χ` ·M j
i (b j,i

`
)+

κ∑
h=1

X h−1 ·M j
i (r j,i

h)

and Pi ’s key on the same value as:

K i
j(C

j)=
m∑
`=1

χ` ·K i
j(b

j,i
`

)+
κ∑

h=1
X h−1 ·K i

j(r
j,i
h)

In Step 3f of Bits, an adversarial P j can also commit to incorrect MACs Ẑ j
i (c j)= M j

i (c j)+E j
i

and Ĉ j = C j + e j. Nevertheless, in order to succeed an attack, the check Ẑ j
i = K i

j(C
j)+ Ĉ j ·R i from

Step 3g would have to hold. This check implies the following:

M j
i (C j)+E j

i = K i
j(C

j)+ (C j + e j) ·R i

⇔ E j
i + (C j + e j) ·R i = M j

i (C j)+K i
j(C

j)= (
m∑
`=1

χ` ·b j,i
`

+
κ∑

h=1
X h−1 · r j,i

h) ·R i

⇔ E j
i =

(
C j + e j +

m∑
`=1

χ` · (b j
`
+δ j,i

`
)+

κ∑
h=1

X h−1 · (r j
h + δ̂

j,i
h)

)
·R i

= (e j +
m∑
`=1

χ` ·δ j,i
`

+
κ∑

h=1
X h−1 · δ̂ j,i

h) ·R i

An active P j has then just two options to cheat Pi, both with only probability 2−κ to succeed:

1. Setting E j
i = (e j +∑m

`=1χ` ·δ
j,i
`

+∑κ
h=1 X h−1 · δ̂ j,i

h) ·R i 6= 0, which requires guessing the string

R i ∈ F2κ kept secret by the honest party Pi.

2. Setting E j
i = 0 and e j =∑m

`=1χ` ·δ
j,i
`

+∑κ
h=1 X h−1 · δ̂ j,i

h for every i ∉ I. As δ j,i0
`

= δ̂
j,i0
h = 0, this

implies that e j = 0. Thus, for every i ∉ (I ∪ i0) it needs to hold that

0=
m∑
`=1

χ` ·δ j,i
`

+
κ∑

h=1
X h−1 · δ̂ j,i

h =
κ∑

h=1
X h−1 · (δ̂ j,i

h +
m∑
`=1

δ
j,i
`

·χ`,h),

98

4.7. A MULTI-PARTY TINYOT-STYLE PROTOCOL

where the χ`,h values are defined in such a way that χ` =∑κ
h=1 X h−1 ·χ`,h. This would need

that, for every h ∈ [κ]:

δ̂
j,i
h =

m∑
`=1

δ
j,i
`

·χ`,h ∈ F2,

which can only happen with probability 1/2 for each of them, as χ`,h ∈ F2 are uniformly

random sampled field elements after the deviations δ̂ j,i
h ,δ j,i

`
have been defined.

■

4.7.3 Parameters

Based on the analysis from previous works [58, 59, 128], if roughly 1 million triples are created

at once then the buckets in the cut-and-choose stages can be of size B = 3, to guarantee security

except with probability 2−40. The additional cut-and-choose parameter c can be as low as 3, so is

insignificant as we initially need m′ = B2m+ c triples to produce m final triples.

4.7.4 Communication Complexity

Here we analyse the communication complexity of Πn-TinyOT. The cost of creating one shared

random bit is the same as one invocation of the extend command in F∆-ROT between all pairs of

parties, giving n(n−1)(κ+ s) bits (we ignore the consistency check, since this cost amortizes away

when creating many bits).

The cost of one triple (not counting the bucketing stage), is 3 calls to F∆-ROT between every

pair of parties for authenticating shares of (x, y, z), plus sending one correction bit between every

pair of parties, giving n(n−1)(3(κ+ s)+1) bits. This is then multiplied by approximately B2 to

account for the bucketing. When creating a batch of at least a million triples (with s = 40), we can

set B = 3, so the overall cost per party is around (n−1)27 · (κ+ s) bits.

We remark that when checking a large number of MACs using ΠOpen or Πi
Open, the checks can

be batched together, by first computing a random linear combination of all MACs, and checking

the MAC on this, as in e.g. [44, 80]. This means that the cost of checking many MACs is roughly

the cost of checking one, which is why we did not factor the MAC checks into the cost of the

bucketing stage.

4.7.5 Round Complexity

Initializing the correlated OTs can be done with any 2-round OT protocol. Extending the corre-

lated OTs using [107] and [11] takes 3 rounds. Note that when authenticating random bits, the s

additional bits in the consistency check can be created in parallel with the original m bits, giving

an overall cost of 5 rounds for random bits.

The triple generation consists of one set of correlated OTs (2 + 3 rounds), plus 1 round, plus

another round of correlated OTs (3 rounds). Then there are 2 rounds for FRand in the bucketing

99

CHAPTER 4. GARBLING USING OBLIVIOUS TRANSFER

Protocol Πn-TinyOT Input

1. Create a shared random bit [b].

2. Open b to Pi using Πi
Open.

3. Pi broadcasts d = x−b.

4. All parties compute [x]= [b]+d.

Figure 4.19: Input protocol for TinyOT-style Multi-Party Computation

(which can all be done in parallel), one round for the openings in step 2a and one round for step 2c.

The openings in step 2a can be merged with the previous round. This gives a total of 13 rounds.

4.7.6 Realizing General Secure Computation

The previous protocol can easily be used to implement a general secure computation functionality

such as FBit×Bit. The main feature missing is the ability for parties to provide inputs, since we

only need to create random bits and triples for our application to garbled circuits. However, this

is easy to do with a standard technique: if Pi wishes to secret-share an input x, the parties do as

in Πn-TinyOT Input, described in Figure 4.19.

100

C
H

A
P

T
E

R

5
MULTI-PARTY COMPUTATION WITH SHORT KEYS

This chapter is based on joint work with Carmit Hazay, Emmanuela Orsini and Peter Scholl [69],

which was presented at CRYPTO 2018.

In this chapter we investigate designing MPC protocols where an arbitrary threshold t for

the number of corrupted parties can be chosen, which are practical both when n is very

large, and also for small to medium sizes of n. Specifically, we ask the question:

Can we design concretely efficient MPC protocols where the performance improves

gracefully as the number of honest parties increases?

In the semi-honest case most protocols either require t < n/2, in which case unconditionally

secure protocols [28, 38] based on Shamir secret-sharing can be used, or support any choice of t up

to n−1, as in computationally secure protocols based on oblivious transfer [62, 64]. Interestingly,

within these two ranges, the efficiency of most practical semi-honest protocols does not depend on

t. For instance, the GMW [64] protocol (and its many variants) is full-threshold, so supports any

t < n corruptions. However, we do not know of any practical protocols with threshold, say, t = 2
3 n,

or even t = n/2+1, that are more efficient than full-threshold GMW-style protocols.

One exception to this is when the number of parties becomes very large, in which case

protocols based on committees can be used. In this approach, introduced by Bracha [33], first

a random committee of size n′ ¿ n is chosen. Then every party secret-shares its input to the

parties in the committee, which runs a protocol secure against t < n′ corrupted parties to obtain

the result. The committee size n′ must be chosen to ensure (with high probability) that not the

whole committee is corrupted, so clearly a lower threshold t allows for smaller committees, giving

101

CHAPTER 5. MULTI-PARTY COMPUTATION WITH SHORT KEYS

significant efficiency savings. However, this technique is only really useful when n is very large,

at least in the hundreds or thousands.

Note that the performance of an MPC protocol can be measured both in terms of commu-

nication overhead and computational overhead. Using fully homomorphic encryption [61], it is

possible to achieve very low communication overhead that is independent of the circuit size [9]

even in the malicious setting, but for reasonably complex functions FHE is impractical due to

very high computational costs. On the other hand, practical MPC protocols typically communicate

for every AND gate in the circuit, and use oblivious transfer (OT) to carry out the computation.

Fast OT extension techniques allow a large number of secret-shared bit multiplications1 to be

performed using only symmetric primitives and an amortized communication complexity of

O(κ) [74] or O(κ/ logκ) [51, 83] bits, where κ is a computational security parameter. This leads

to an overall communication complexity which grows with O(n2κ/ logκ) bits per AND gate in

protocols based on secret-sharing following the GMW [64] style, and O(n2κ) in those based on

garbled circuits in the style of BMR [18, 25, 132].

5.1 Introduction

Our main idea towards achieving the above goal is to build a secure multi-party protocol with h

honest parties, by distributing secret key material so that each party only holds a small part of

the key. Instead of basing security on secret keys held by each party individually, we then base

security on the concatenation of all honest parties’ keys.

As a toy example, consider the following simple distributed encryption of a message m under

n keys:

Ek(m)=
n⊕

i=1
H(i,ki)⊕m

where H is a suitable hash function and each key ki ∈ {0,1}` belongs to party Pi. In the full-

threshold setting with up to n−1 corruptions, to hide the message we need each party’s key to

be of length `= 128 to achieve 128-bit computational security. However, if only t < n−1 parties

are corrupted, it seems that, intuitively, an adversary needs to guess all h := n− t honest parties’

keys to recover the message, and potentially each key ki can be much less than 128 bits long

when h is large enough. This is because the ‘obvious’ way to try to guess m would be to brute

force all h keys until decrypting ‘successfully’.

In fact, recovering m when there are h unknown keys corresponds to solving an instance of

the regular syndrome decoding problem [12], which is related to the well-known learning parity

with noise (LPN) problem, and believed to be hard for suitable choices of parameters.

1Note that OT is equivalent to secret-shared bit multiplication, and when constructing MPC it is more convenient
to use the latter definition.

102

5.1. INTRODUCTION

5.1.1 Our Contributions

In this work we use the above idea of short secret keys to design new MPC protocols in both the

constant round and non-constant round settings, which improve in efficiency as the number of

honest parties increases. Our contributions are captured by the following:

GMW-STYLE MPC WITH SHORT KEYS (SECTION 5.3). We present a GMW-style MPC protocol

for binary circuits, where multiplications are done with OT extension using short symmet-

ric keys. This reduces the communication complexity of OT extension-based GMW from

O(n2κ/ logκ) [83] to O(nt`), where the key length ` decreases as the number of honest

parties, h = n− t, increases. When h is large enough, we can even have ` as small as 1.

To construct this protocol, we first analyse the security of the IKNP OT extension proto-

col [74] when using short keys, and formalise the leakage obtained by a corrupt receiver in

this case. We then show how to use this version of ‘leaky OT’ to generate multiplication

triples using a modified version of the GMW method, where pairs of parties use OT to

multiply their shares of random values. We also optimize our protocol by reducing the

number of communication channels using two different-sized committees, improving upon

the standard approach of choosing one committee to do all the work.

MULTI-PARTY GARBLED CIRCUITS WITH SHORT KEYS (SECTION 5.4). Our second contribution

is the design of a constant round, BMR-style (see Section 2.6) protocol based on garbled

circuits with short keys. Our offline phase uses the multiplication protocol from the previous

result in order to generate the garbled circuit, using secret-shared bit and bit/string

multiplications as done in previous works [25, 70], with the exception that the keys are

shorter. In the online phase, we then use the LPN-style assumption to show that the

combination of all honest parties’ `-bit keys suffices to obtain a secure garbling protocol.

This allows us to save on the key length as a function of the number of honest parties.

As well as reducing communication with a smaller garbled circuit, we also reduce com-

putation when evaluating the circuit, since each garbled gate can be evaluated with only

O(n2`/κ) block cipher calls (assuming the ideal cipher model), instead of O(n2) when using

κ-bit keys. For this protocol, ` can be as small as 5 when n is large enough, giving a

significant saving over 128-bit keys used previously.

It is worth mentioning that the techniques presented here were later successfully extended to

the malicious setting by the same authors [68]. We achieved so by efficiently constructing short

message authentication codes and carefully using them to produce secret-shared bit multiplica-

tions.

103

CHAPTER 5. MULTI-PARTY COMPUTATION WITH SHORT KEYS

5.1.1.1 Concrete Efficiency Improvements.

The efficiency of our protocols depends on the total number of parties, n, and the number of honest

parties, h, so there is a large range of parameters to explore when comparing with other works.

We discuss this in more detail in Section 5.5. Our protocols seem most significant in the dishonest

majority setting, since when there is an honest majority there are unconditionally secure protocols

with O(n logn) communication overhead and reasonable computational complexity e.g. [45], whilst

our protocols have Ω(nt) communication overhead.

Our GMW-style protocol starts to improve upon previous protocols when we reach n = 20

parties and t = 14 corruptions: here, our triple generation method requires less than half the

communication cost of the fastest GMW-style protocol based on OT extension [51] tolerating up

to n−1 corruptions. When the number of honest parties is large enough, we can use 1-bit keys,

giving a 25-fold reduction in communication over previous protocols when n = 400 and t = 280. In

addition, we describe a simple threshold-t variant of GMW-style protocols, which our protocol

still outperforms by 1.1x and 13x, respectively, in these two scenarios.

For our constant round protocol, with n = 20, t = 10 we can use 32-bit keys, so the size of each

garbled AND gate is 1/4 the size of [25]. As n increases the improvements become greater, with a

16-fold reduction in garbled AND gate size for n = 400, t = 280. We also reduce the communication

cost of creating the garbled circuit. Here, the improvement starts at around 50 parties, and goes

up to a 7 times reduction in communication when n = 400, t = 280. Note that our protocol does

incur a slight additional overhead, since we need to use extra ‘splitter gates’ [126], but this cost

is relatively small.

To demonstrate the practicality of our approach, we also present an implementation of the

online evaluation phase of our constant-round protocol for key lengths ranging between 1−4

bytes, and with an overall number of parties ranging from 15−1000; more details can be found

in Section 5.5.

5.1.1.2 Applications.

Our techniques seem most useful for large-scale MPC with around 70% corruptions, where we

obtain the greatest concrete efficiency improvements. An important motivation for this setting is

privacy-preserving statistical analysis of data collected from a large network with potentially

thousands of nodes. In scenarios where the nodes are not always online and connected, our

protocols can also be used with the ‘random committee’ approach discussed earlier, so only a

small subset of, say, a hundred nodes need to be online and interacting during the protocol.

An interesting example is safely measuring the Tor network [53] which is amongst the

most popular tools for digital privacy, consisting of more than 6000 relays that can opt-in for

providing statistics about the use of the network. Nowadays and due to privacy risks, the statistics

collected over Tor are generally poor: There is a reduced list of computed functions and only a

minority of the relays provide data, which has to be obfuscated before publishing [53]. Hence, the

104

5.1. INTRODUCTION

statistics provide an incomplete picture which is affected by a noise that scales with the number

of relays. Running MPC in this setting would enable for more complex, accurate and private data

processing, for example through anomaly detection and more sophisticated censorship detection.

Moreover, our protocols are particularly well-suited to this setting since all relays in the network

must be connected to one another already, by design.

Another possible application is for securely computing the interdomain routing within the

Border Gateway Protocol (BGP), which is performed at a large scale of thousands of nodes. A

recent solution in the dishonest majority setting [8] centralizes BGP so that two parties run this

computation for all Autonomous Systems. Our techniques allow scaling to a large number of

systems computing the interdomain routing themselves using MPC, hence further reducing the

trust requirements.

5.1.1.3 Decisional Regular Syndrome Decoding problem.

The security of our protocols relies on the Decisional Regular Syndrome Decoding (DRSD)

problem, which, given a random binary matrix H, is to distinguish between the syndrome

obtained by multiplying H with an error vector e = (e1‖· · ·‖eh) where each ei ∈ {0,1}2
`

has

Hamming weight one, and the uniform distribution. This can equivalently be described as

distinguishing
⊕h

i=1H(i,ki) from the uniform distribution, where H is a random function and

each ki is a random `-bit key (as in the toy example described earlier).

We remark that when h is large enough, the problem is unconditionally hard even for `= 1,

which means for certain parameter choices in our GMW-based protocol we can use 1-bit keys

without introducing any additional assumptions. This introduces a significant saving in our triple

generation protocol.

Overall, our approach demonstrates a new application of LPN-type assumptions to efficient

MPC without introducing asymmetric operations. Our techniques may also be useful in other

distributed applications where only a small fraction of nodes are honest.

5.1.1.4 Additional related work

Another work which applies a similar assumption to secure computation is that of Applebaum [3],

who built garbled circuits with the free-XOR technique in the standard model under the LPN

assumption. Conceptually, our work differs from Applebaum’s since our focus is to improve the

efficiency of multi-party protocols with fewer corruptions, whereas in [3], LPN is used in a more

modular way in order to achieve encryption with stronger properties and under a more standard

assumption.

In a recent work [106], Nielsen and Ranellucci designed a protocol in the dishonest majority

setting with malicious, adaptive security in the presence of t < cn corruption for t ∈ [0,1). Their

protocol is aimed to work with a large number of parties and uses committees to obtain a protocol

105

CHAPTER 5. MULTI-PARTY COMPUTATION WITH SHORT KEYS

with poly-logarithmic overhead. This protocol introduces high constants and is not useful for

practical applications.

Finally, Ben-Efraim and Omri [27] also explore how to optimize garbled circuits in the

presence of non-full-threshold adversaries. By using deterministic committees they achieve AND

gates of size 4(t+1)κ, where κ is the computational security parameter. By using the same

technique we achieve a size of 4(t+h)`, where `¿ κ depends on h, a parameter for the minimum

number of honest parties in the committee. The rest of their results apply only to the honest

majority setting.

5.1.2 Technical Overview

In what follows we introduce the technical side of our results in more detail.

5.1.2.1 Leaky oblivious transfer (OT).

We first present a two-party secret-shared bit multiplication protocol, based on a variant of the

IKNP OT extension protocol [74] with short keys. Our protocol performs a batch of r multiplica-

tions at once. Namely, the parties create r correlated OTs on `-bit strings using the OT extension

technique of [74], by transposing a matrix of ` OTs on r-bit strings and swapping the roles of

sender and receiver. In contrast to the IKNP OT extension and followups, that use κ ‘base’ OTs

for computational security parameter κ, we use `=O(logκ) base OTs.

This protocol leaks some information on the global secret ∆← {0,1}` picked by the receiver, as

well as the inputs of the receiver. Roughly speaking, the leakage is of the form H(i,∆)+ xi, where

xi ∈ {0,1} is an input of the receiver and H is a hash function with 1-bit output. Clearly, when `

is short this is not secure to use on its own, since all of the receiver’s inputs only have ` bits of

min-entropy (based on the choice of ∆).

5.1.2.2 MPC from leaky OT.

We then show how to apply this leaky two-party protocol to the multi-party setting, whilst

preventing any leakage on the parties shares. The main observation is that, when using additive

secret-sharing, we only need to ensure that the sum of all honest parties’ shares is unpredictable; if

the adversary learns just a few shares, they can easily be rerandomized by adding pseudorandom

shares of zero, which can be done non-interactively using a PRF. However, we still have a problem,

which is that in the standard GMW approach, each party Pi uses OT to multiply their share xi

with every other party P j ’s share y j. Now, there is leakage on the same share xi from each of the

OT instances between all other parties, which seems much harder to prevent than leakage from

just a single OT instance.

To work around this problem, we have the parties add shares of zero to their xi inputs before

multiplying them. So, every pair (Pi,P j) will use leaky OT to multiply xi ⊕ si, j with y j, where

106

5.1. INTRODUCTION

si, j is a random share of zero satisfying
⊕n

i=1 si, j = 0. This preserves correctness of the protocol,

because the parties end up computing an additive sharing of:

n⊕
i=1

n⊕
j=1

(xi ⊕ si, j)y j =
n⊕

j=1
y j

n⊕
i=1

(xi ⊕ si, j)= xy.

This also effectively removes leakage on the individual shares, so we only need to be concerned

with the sum of the leakage on all honest parties’ shares: This turns out to be of the form⊕n
i=1(H(i,∆i)+ xi), which is pseudorandom under the decisional regular syndrome decoding

assumption.

We realize our protocol using a hash function with a polynomial-sized domain, so that is can

be implemented using a CRS which simply outputs a random lookup-table. This means that,

unlike when using the IKNP protocol, we do not need to rely on a random oracle or a correlation

robustness assumption.

When the number of parties is large enough, we can improve our triple generation protocol

using random committees. In this case the amortized communication cost is ≤ nhn1(`+`κ/r+1)

bits per multiplication where we need to choose two committees of sizes nh and n1 which have at

least h and 1 honest parties, respectively.

5.1.2.3 Garbled circuits with short keys.

We next revisit the multi-party garbled circuits technique by Beaver, Micali and Rogaway,

described in Section 2.6 and known as BMR, where essentially all the parties jointly garble using

one set of keys each. This method was recently improved in a sequence of works [25, 70, 93, 96],

within which [25, 70] further support the Free-XOR property.

Our garbling method uses an expansion function H : [n]× {0,1}× {0,1}`→ {0,1}n`+1, where ` is

the length of each parties’ keys used as wire labels in the garbled circuit. To garble a gate, the

hash values of the input wire keys ki
u,b and ki

v,b are XORed over i and used to mask the output

wire keys.

Specifically, for an AND gate g with input wires u,v and output wire w, the 4 garbled rows

g̃a,b, for each (a,b) ∈ {0,1}2, are computed as

g̃a,b =
(

n⊕
i=1

H(i,b,ki
u,a)⊕H(i,a,ki

v,b)

)
⊕ (c,k1

w,c, . . . ,kn
w,c).

Security then relies on the DRSD assumption, which implies that the sum of h hash values on

short keys is pseudorandom, which suffices to construct a secure garbling method with h honest

parties.

Using this assumption instead of a PRF (as in recent works) comes with difficulties, as we can

no longer garble gates with arbitrary fan-out, or use the Free-XOR technique, without degrading

the DRSD parameters. To allow for arbitrary fan-out circuits with our protocol we use splitter

gates, which take as input one wire w and provide two outputs wires u,v, representing the same

107

CHAPTER 5. MULTI-PARTY COMPUTATION WITH SHORT KEYS

Functionality F r
Zero(P)

On receiving (zero) from all parties in P = {P1, . . . ,Pn}:

1. Sample random shares s2, . . . ,sn ← {0,1}r and let s1 = s2 ⊕·· ·⊕ sn

2. Send si to party Pi

Figure 5.1: Random zero sharing functionality.

wire value. Splitter gates were previously introduced in [126] as a fix for an error in the original

BMR paper. We stress that transforming a general circuit description into a circuit with only

fan-out-1 gates requires adding at most a single splitter gate per AND or XOR gate.

The restriction to fan-out-1 gates and the use of splitter gates additionally allows us to garble

XOR gates for free in BMR without relying on circular security assumptions or correlation-robust

hash functions, based on the FlexOR technique [84] where each XOR gate uses a unique offset.

Furthermore, the overhead of splitter gates is very low, since garbling a splitter gate does not

use the underlying MPC protocol: shares of the garbled gate can be generated non-interactively.

We note that this observation also applies to Yao’s garbled circuits, but the overhead of adding

splitter gates there is more significant; this is because in most 2-party protocols, the size of the

garbled circuit is the dominant cost factor, whereas in multi-party protocols the main cost is

creating the garbled circuit in a distributed manner.

5.2 Preliminaries

5.2.1 Security and Communication Models

We prove security of our protocols in the universal composability (UC) framework [35]. See

Section 2.4 for a summary of this. We assume all parties are connected via secure, authenticated

point-to-point channels, which is the default method of communication in our protocols. The

adversary model we consider is a static, honest-but-curious adversary who corrupts a subset

A ⊂ [n] of parties at the beginning of the protocol. We denote by Ā the subset of honest parties,

and define h = |Ā| = n− t.

5.2.2 Random Zero-Sharing

Our protocols require the parties to generate random additive sharings of zero, as in the FZero

functionality in Figure 5.1. This can be done efficiently using a PRF F, with interaction only

during a setup phase, as in [6]. We do this by asking each party Pi to send a random PRF key

ki, j to every other party P j. Next, Pi defines its share by
⊕

j 6=i(Fki, j (τ)⊕Fk j,i (τ)) where τ is an

index that identifies the generated share. It is simple to verify that all the shares XOR to zero

since each PRF value is used exactly twice. Moreover, privacy holds in the presence of any subset

of n−2 corrupted parties because the respective values Fkl,l′ and Fkl′ ,l of honest parties Pl and

108

5.2. PRELIMINARIES

Pl′ are pseudorandom, which implies that their zero shares are also pseudorandom. Finally,

the communication complexity of the setup phase amounts to sending O(n2) PRF keys, whilst

creating the shares requires 2(n−1) PRF evaluations to produce κ bits.

5.2.3 Syndrome Decoding and Learning Parity with Noise

For completeness, we describe the Learning Parity with Noise (LPN) and Syndrome Decoding

(SD) search problems, as well as how they relate to each other.

Definition 5.1 (Learning Parity with Noise (LPN)). Let `, q ∈ N and let χ be a distribution

defined over Fq
2 . Sample A ← F

q×`
2 uniformly random and e ∈ Fq

2 according to χ. Given (A, A ·s+e),

the LPNq,`,χ problem is to recover s ∈ F`2 with noticeable probability.

Most commonly, the LPN problem is presented for χ consisting of q independent, identi-

cally distributed (i.i.d.) Bernoulli distributions with parameter τ ∈ (0,0.5). In other words, if

e = (e1, . . . , eq), then each e i is set to 1 with probability τ. Unlike most assumptions used in

cryptography, the LPN problem is not known to be broken in the presence of a quantum adversary.

As we will show below, the search LPN problem can also be presented as the problem of decoding

random linear codes.

A binary [m,k,d]2 linear code C is a k-dimensional subspace of Fm
2 , where m is the length of

the code, k is its dimension as a vector subspace and d is its distance, i.e. the minimal non-zero

Hamming distance between any two elements of C. We say G ∈ Fk×m
2 is a generator matrix of a

linear code C if G’s rows are a basis of C. Given any message s ∈ Fm
2 , we can encode it using C by

computing G · s= x. We call any such x ∈ C a codeword.

Equivalently, C can be defined as the kernel of a full-rank matrix H ∈ F(m−k)×m
2 , called a

parity-check matrix of C. Given a vector z = x+ e ∈ Fm
2 , where x ∈ C is a codeword and e an error

vector, the syndrome corresponding to z is the vector y= H · z = H ·x+H · e = H · e ∈ Fm−k
2 . Hence,

the syndrome does not depend on the codeword, but only on the error vector. When the Hamming

weight wt(e) of e is smaller than the error correction capability of C, that is wt(e)≤ b d−1
2 c, y is

called a correctable syndrome and z can be uniquely decoded to x. More formally, we can define a

mapping

Syn : Fm
2 −→ Fr

2 (r = m−k)

e 7−→ H · e(= y).

When the domain of Syn is restricted to vectors of upper bounded Hamming weight, inverting Syn

is strictly related to the problem of decoding the [m,k,d]2 linear code with parity-check matrix

H, and this problem is equivalent to the average-case hardness of the following computational

search problem.

109

CHAPTER 5. MULTI-PARTY COMPUTATION WITH SHORT KEYS

Definition 5.2 (Syndrome Decoding (SD)). Let r,h,m ∈N. Sample a parity check matrix H ←
Fr×m

2 and e ← Fm
2 such that wt(e)= h. Given (H,H · e), the SDr,m,h problem is to recover e with

noticeable probability.

Let G be C’s generator matrix and s a message prior to its encoding. As described above,

the SDr,m,h problem is then equivalent to recovering the message s from the noisy codeword

z =Gs+ e. If we define χ̃ to be the uniformly random distribution over the elements of Fm
2 with

Hamming weight h, then this is exactly LPNm−r,m,χ̃. Actually, it turns out that defining LPN

with such distribution is at least as hard as its more common presentation, where χ is made out

of i.i.d. Bernoulli distributions [54, Lemma 3.6.]. Intuitively, this is due to the fact that if e is

sampled according to i.i.d. Bernoulli distributions, then with noticeable probability e will also be

a sample of χ̃.

The extension of LPN from the binary field F2 to a prime field Fp is known as Learning with

Errors [116], which has become a major assumption in lattice-based cryptography for realizing

complex primitives such as homomorphic encryption. In this chapter, though, we are interested

in a variant of the SD problem in which some further structure is added to the error vector e.

5.2.4 Regular Syndrome Decoding Problem

We introduce the Regular Syndrome Decoding (RSD) problem and some of its properties.

Definition 5.3. A vector e ∈ Fm
2 is (m,h)-regular if e = (e1‖· · ·‖eh) where each ei ∈ {0,1}m/h has

Hamming weight one. We denote by Rm,h the set of all the (m,h)-regular vectors in Fm
2 .

Definition 5.4 (Regular Syndrome Decoding (RSD)). Let r,h,` ∈N with m = h ·2`, H ← Fr×m
2

and e ← Rm,h. Given (H,He), the RSDr,h,` problem is to recover e with noticeable probability.

The decisional version of the problem, given below, is to distinguish the syndrome He from

uniform.

Definition 5.5 (Decisional Regular Syndrome Decoding (DRSD)). Let H ← Fr×m
2 and e ← Rm,h,

and let Ur be the uniform distribution on r bits. The DRSDr,h,` problem is to distinguish between

(H,He) and (H,Ur) with noticeable advantage.

5.2.4.1 Hash function formulation.

The DRSD problem can be equivalently described as distinguishing from uniform
⊕h

i=1H(i,ki)

where H : [h]× {0,1}`→ {0,1}r is a random hash function, and each ki ← {0,1}`. With this formula-

tion, it is easier to see how the DRSD problem arises when using our protocols with short keys,

since this appears when summing up a hash function applied to h honest parties’ secret keys.

To see the equivalence, we can define a matrix H ∈ Fr×h·2`
2 , where for each i ∈ {0, . . . ,h−1} and

k ∈ [2`], column i ·2`+k of H contains H(i,k). Then, multiplying H with a random (m,h)-regular

vector e is equivalent to taking the sum of H over h random inputs, as above.

110

5.2. PRELIMINARIES

5.2.4.2 Statistical hardness of DRSD.

We next observe that for certain parameters where the output size of H is sufficiently smaller than

the min-entropy of the error vector e, the distribution in the decisional problem is statistically

close to uniform.

Lemma 5.2.1. If ` = 1 and h ≥ r+ s then DRSDr,h,` is statistically hard, with distinguishing

probability 2−s.

Proof. Suppose `= 1 and h ≥ r+ s, so m = 2h. For a vector e = (e1‖· · ·‖eh) ∈ Rm,h, we can write

each of the weight-1 vectors ei ∈ {0,1}2 as (e′i,1− e′i). An RSD sample H, y= He therefore defines

a system of r linear equations in the h variables {e′i}i, and it can be shown that this simplifies to

the form y = H′e′+ c, where e′ = (e′1, . . . , e′h), by defining the j-th column of H′ ∈ Fr×h
2 to be the

sum of columns 2 j−1 and 2 j from H, and c to be the sum of all even-indexed columns in H. Note

that H′ is uniformly random because H is, and it is easy to show (e.g. [110, Lemma 1]) that the

probability that H′ ← Fr×h
2 is not full rank is no more than 2−s when h ≥ r+ s. Assuming that H′

has full rank and h ≥ r, y= H′e′+ c must be uniformly random because e′ is. ■

For the general case of `-bit keys, we use the following form of the leftover hash lemma.

Lemma 5.2.2 (Leftover Hash Lemma [72]). Let H ← Fr×m
2 and e ← χ, where χ is a distribution

over Fm
2 with min-entropy at least k. If r ≤ k−2s then

∆SD((H,He), (H,u))≤ 2−s

where u ← Fr
2 and ∆SD is the statistical distance.

Note that if e ← Rm,h then we have H∞(e)= h`. Applying Lemma 5.2.2 with k = h`, we obtain

the following.

Corollary 5.2.1. If h ≥ (r+2s)/` then DRSDr,h,` is statistically hard, with distinguishing proba-

bility 2−s.

5.2.4.3 Search-to-decision reduction.

For all parameter choices of DRSD, there is a simple reduction to the search version of the regular

syndrome decoding problem with the same parameters.

Lemma 5.2.3. Any efficient distinguisher for the DRSDr,h,` problem can be used to efficiently

solve RSDr,h,`.

The proof (inspired by a similar result for LPN [4]) is a simplified version of previous reduc-

tions for syndrome decoding. We first recall the Goldreich-Levin hardcore-bit theorem.

111

CHAPTER 5. MULTI-PARTY COMPUTATION WITH SHORT KEYS

Theorem 5.2.2 ([63]). Let f be a one-way function. Then, given (r, f (x)) for uniformly random r

and x, the inner product 〈x, r〉 over F2 is unpredictable.

Proof. (of Lemma 5.2.3) Suppose A distinguishes between (H,He) and (H,Ur) with noticeable

advantage δ. We construct an adversary A ′ that breaks the Goldreich-Levin hardcore bit of

f (e)= (H,He) by guessing the inner product 〈e,s〉 for some vector s ∈ Fm
2 . On input (H, y= He,s),

algorithm A ′ proceeds as follows:

1. Sample t← {0,1}r

2. Compute H′ = H− t · s>

3. Run A on input (H′, y)

4. Output the same as A

First notice that because H is uniformly random, H′ is also. Secondly, y= He = (H′+ t · s>)e =
H′e+t·〈s, e〉. So, if 〈s, e〉 = 0 then the input to A is a correct sample (H′,H′e), whereas if 〈s, e〉 = 1

then the input is uniformly random. Therefore, it holds that:

Pr[A ′(H,He,r)= 〈e,r〉]=Pr[A ′(H,He,r)= 0|〈e,r〉 = 0] ·Pr[〈e,r〉 = 0] +
+ Pr[A ′(H,He,r)= 1|〈e,r〉 = 1] ·Pr[〈e,r〉 = 1]

= 1
2
· (Pr[A (H′,H′e)= 0]+ (1−Pr[A (H′,Ur)= 0]))

≥ 1
2
+ δ

2
.

■

5.2.4.4 Multi-Secret RSD.

We now consider a variant of DRSD with multiple sets of secrets, where the matrix H is fixed

for each sample. We then reduce this to the standard DRSD problem with the same parameters,

with a security loss of the number of secrets.

Definition 5.6 (Multi-Secret DRSD). Let H ← Fr×m
2 and e1, . . . , eq ← Rm,h (as in Definition 5.4).

The q-DRSDr,h,` problem is to distinguish between a tuple (H,He1, . . . ,Heq) and (H,U q
r) with

noticeable advantage.

Lemma 5.2.4. q-DRSDr,h,` is reducible to DRSDr,h,`, where the reduction loses a tightness factor

of q.

Proof. The proof is based on a standard hybrid argument with a sequence of q + 1 hybrid

distributions, where each pair of neighbouring hybrids is indistinguishable based on DRSD.

112

5.2. PRELIMINARIES

The first hybrid, H0, outputs (H,u1, . . . ,uq), where H ← Fr×m
2 and ui ← {0,1}r, which is exactly

the uniform distribution used in q-DRSD. In hybrid Hi, for i = 1, . . . , q, we sample regular

secrets e1, . . . , ei and output (H,He1, . . . ,Hei,ui+1, . . . ,uq). Note that Hq is the same as the real

distribution in the q-DRSD problem. Any adversary A who distinguishes between Hi and Hi+1

can be used to break DRSDr,h,`, as follows. The distinguisher D receives a DRSD challenge (H, y),

then samples e1, . . . , ei from the error distribution and random strings ui+2, . . . ,uq ← {0,1}r. It

then outputs A (H,He1, . . . ,Hei, y,ui+2, . . . ,uq). The advantage of D against the DRSD problem

is identical to that of A . A standard argument then implies that any adversary who distinguishes

H0 and Hq with advantage δ can solve DRSDr,h,` with advantage at least δ/q. ■

5.2.4.5 Extended Double-Key RSD.

In our final variant of RSD – used in the security proof of our BMR-style online phase – we

consider multiple sets of secrets, and also give the adversary two challenges for each secret which

captures the double use of each key in the garbling procedure. This means we cannot preserve

the RSD parameters, and must reduce to 2-DRSD2r,h,`. We also make a conceptual change, and

specify the problem using a random hash function H with small domain (which can be modelled

as a random oracle, or a random lookup table generated in a trusted setup phase which can be

modelled as a common random string) instead of matrices and vectors. We switch to this notation

in order to capture the computation made by the honest parties when garbling a gate.

Definition 5.7 (Extended Double-Key DRSD). The extended double-key DRSD problem states

that, for every fixed subset S ⊂ [n] of size h, it holds that

(
H,

⊕
i∈S

H(i,0,ki),
⊕
i∈S

H(i,0,k′
i),

⊕
i∈S

H(i,1,ki),
⊕
i∈S

H(i,1,k′
i)

)
c≈ (H,U4r) ,

where H : [n]× {0,1}× {0,1}`→ {0,1}r is a randomly sampled function, and ki,k′
i ← {0,1}` for i ∈ S.

Lemma 5.2.5. The extended double-key DRSD problem with parameters (r,h,`) is reducible to

2-DRSD(2r,h,`).

Proof. Suppose there exists a set S ⊂ [n] for which an adversary A distinguishes the above

two distributions with noticeable advantage. We use A to construct a distinguisher D for the

2-DRSD(2r,h,`) problem. D receives a challenge (H, y0, y1), where H ∈ F2r×m
2 , m = h ·2` and

y0, y1 ∈ F2r
2 . Write H =

(
H0
H1

)
and y j =

(z j
z′

j

)
. Define the hash function H : [n]× {0,1}× {0,1}`→ {0,1}r

so that H(si,b,k) is equal to column 2` i+k (viewing k also as an integer in [2`]) of the matrix Hb,

for each si ∈ S and b ∈ {0,1}. For i ∈ [n]\ S, let the output of H(i, ·, ·) be uniformly random. The

distinguisher then runs A with input

(
H, z0, z′

0, z1, z′
1
)
,

113

CHAPTER 5. MULTI-PARTY COMPUTATION WITH SHORT KEYS

Functionality F
r,`
∆-ROT

After receiving ∆ ∈ {0,1}` from PS and (x1, . . . , xr) ∈ {0,1}r from PR , do the following:

1. Sample qi ← {0,1}`, for i ∈ [r], and let ti = qi ⊕ xi ·∆.

2. Output qi to PS and ti to PR , for i ∈ [r].

Figure 5.2: Functionality for oblivious transfer on random, correlated strings.

and outputs the same as A . Notice that if the DRSD challenge is random then the input to A is

random, whereas if the challenge is computed as y j = He j for some regular error e j and j ∈ {0,1},

then we have z j = H0e j and z′
j = H1e j, and by the definition of H, these values are equal to the

sum of hash function outputs under some secret keys corresponding to e j. It follows that the

distinguishing advantage of D is the same as that of A . ■

5.3 GMW-Style MPC with Short Keys

In this section we design a protocol for generating multiplication triples over F2 using short

secret keys, with reduced communication complexity as the number of honest parties increases.

More concretely, we first design a leaky protocol for secret-shared two-party bit multiplication,

based on correlated OT and OT extension techniques with short keys. This protocol is not fully

secure and we precisely define the leakage obtained by the receiver. We next show how to use

the leaky protocol to produce multiplication triples, removing the leakage by rerandomizing the

parties’ shares with shares of zero, and using the DRSD assumption. Finally, this protocol can be

used with Beaver’s multiplication triple technique [16] to obtain MPC for binary circuits with an

amortized communication complexity of O(nt`) bits per triple, where t is the threshold and ` is

the secret key length. When the number of honest parties is large enough we can even use `= 1

and avoid relying on DRSD.

5.3.1 Leaky Two-Party Secret-Shared Multiplication

We first present our protocol for two-party secret-shared bit multiplication, based on a variant

of the [74] OT extension protocol, modified to use short keys. With short keys we cannot hope

for computational security based on standard symmetric primitives, because an adversary can

search every possible key in polynomial time. Our goal, therefore, is to define the precise leakage

that occurs when using short keys, in order to remove this leakage at a later stage.

5.3.1.1 OT extension and correlated OT

Recall that the main observation of the IKNP protocol for extending oblivious transfer [74] is

that correlated OT is symmetric, so that κ correlated OTs on r-bit strings can be locally converted

114

5.3. GMW-STYLE MPC WITH SHORT KEYS

into r correlated OTs on κ-bit strings. Secondly, a κ-bit correlated OT can be used to obtain an

OT on chosen strings with computational security. The first stage of this process is abstracted

away by the functionality F∆-ROT in Figure 5.2.

Using IKNP to multiply an input bit xk from the sender, PA, with an input bit yk from PB,

the receiver, PB sends yk as its choice bit to F∆-ROT and learns tk = qk ⊕ yk ·∆. The sender PA

obtains qk, and then sends

dk =H(qk)⊕H(qk ⊕∆)⊕ xk,

where H is a 1-bit output hash function. This allows the parties to compute an additive sharing of

xk · yk as follows: PA defines the share H(qk), and PB computes H(tk)⊕ yk ·dk. This can be repeated

many times with the same ∆ to perform a large batch of poly(κ) secret-shared multiplications,

because the randomness in ∆ serves to computationally mask each x with the hash values (under

a suitable correlation robustness assumption for H). The downside of this is that for ∆ ∈ {0,1}κ,

the communication cost is O(κ) bits per two-party bit multiplication, to perform the correlated

OTs.

5.3.1.2 Variant with short keys

We adapt this protocol to use short keys by performing the correlated OTs on `-bit strings, instead

of κ-bit, for some small key length `=O(logκ) (we could have ` as small as 1). This allows F∆-ROT

to be implemented with only O(`) bits of communication per OT instead of O(κ).

Our protocol, shown in Figure 5.4, performs a batch of r multiplications at once. First the

parties create r correlated OTs on `-bit strings using F∆-ROT. Next, the parties hash the output

strings of the correlated OTs, and PA sends over the correction values dk, which are used by PB

to convert the random OTs into a secret-shared bit multiplication. Finally, we require the parties

to add a random value (from FZero, shown in Figure 5.1) to their outputs, which ensures that

they have a uniform distribution.

Note that if ` ∈O(logκ) then the hash function HAB has a polynomial-sized domain, so can be

described as a lookup table provided as a common input to the protocol by both parties. At this

stage we do not make any assumptions about HAB; this means that the leakage in the protocol

will depend on the hash function, so its description is also passed to the functionality FLeaky-2-Mult

(Figure 5.3). We require HAB to take as additional input an index k ∈ [r] and a bit in {0,1}, to

provide independence between different uses, and our later protocols require the function to be

different in protocol instances between different pairs of parties (we use the notation HAB to

emphasize this).

5.3.1.3 Leakage

We now analyse the exact security of the protocol in Figure 5.4 when using short keys, and

explain how this is specified in the functionality FLeaky-2-Mult (Figure 5.3). Since a random share

115

CHAPTER 5. MULTI-PARTY COMPUTATION WITH SHORT KEYS

Functionality F
r,`
Leaky-2-Mult

INPUT: (x1, . . . , xr) ∈ Fr
2 from PA and (y1, . . . , yr) ∈ Fr

2 from PB.
COMMON INPUT: A hash function HAB : [r]× {0,1}× {0,1}`→ {0,1}.

1. Sample zA , zB ← Fr
2 such that zA + zB = x∗ y (where ∗ denotes component-wise product).

2. Output zA to PA and zB to PB.

Leakage: If PB is corrupt:

1. Let H ∈ Fr×2`
2 be defined so that entry (k,k′) of H is HAB(k,1⊕ yk, tk ⊕k′), where tk ← {0,1}`.

2. Sample a random unit vector e ∈ F2`
2 and send (H,u = He+ x) to A .

Figure 5.3: Ideal functionality for leaky secret-shared two-party bit multiplication.

of zero is added to the outputs, note that the output distribution is uniformly random. Also, like

IKNP, the protocol is perfectly secure against a corrupt PA (or sender), so we only need to be

concerned with leakage to a corrupt PB who also sees the intermediate values of the protocol.

The leakage is different for each k, depending on whether yk = 0 or yk = 1, so we consider the

two cases separately. Within each case, there are two potential sources of leakage: firstly, the

corrupt PB ’s knowledge of tk and ρk may cause leakage (where ρk is a random share of zero),

since these values are used to define PA ’s output. Secondly, the dk values seen by PB, which

equal

(5.1) dk =HAB(k, yk, tk)⊕HAB(k,1⊕ yk, tk ⊕∆)⊕ xk,

may leak information on PA ’s inputs xk.

Case 1 (yk = 1):

In this case there is only leakage from the values tk and ρk, which are used to define PA ’s

output. Since zA
k =HAB(k,0, tk ⊕∆)⊕ρk, all of PA ’s outputs (and hence, also inputs) where yk = 1

effectively have only ` bits of min-entropy in the view of PB, corresponding to the random

choice of ∆. In this case PB ’s output is zB
k = zA

k ⊕ xk =HAB(k,0, tk ⊕∆)⊕ρk ⊕ xk. To ensure that

PB ’s view is simulable the functionality needs to sample a random string ∆← {0,1}` and leak

HAB(k,0, tk ⊕∆)⊕ xk to a corrupt PB.

Concerning the dk values, notice that when yk = 1 PB can compute HAB(k,1, tk) and use (5.1)

to recover HAB(k,0, qk)+ xk, which equals zA
k +ρk+ xk. However, this is not a problem, because in

this case we have zB
k = zA

k + xk, so dk can be simulated given PB ’s output.

Case 2 (yk = 0):

Here the dk values seen by PB causes leakage on PA ’s inputs, because ∆ is short. Looking at (5.1),

dk leaks information on xk because ∆← {0,1}` is the only unknown in the equation, and is fixed

116

5.3. GMW-STYLE MPC WITH SHORT KEYS

Protocol Πr,`
Leaky-2-Mult

PARAMETERS: r, number of multiplications; `, key length.
INPUT: x= (x1, . . . , xr) ∈ Fr

2 from PA and y= (y1, . . . , yr) ∈ Fr
2 from PB.

COMMON INPUT: A hash function HAB : [r]× {0,1}× {0,1}`→ {0,1}.

1. PA and PB invoke F
r,`
∆-ROT where PA is sender with a random input∆← {0,1}`, and PB is receiver

with inputs (y1, . . . , yr). PA receives random strings qk ∈ {0,1}` and PB receives tk = qk ⊕ yk ·∆,
for k ∈ [r].

2. Call F r
Zero so that PA and PB obtain the same random ρk ∈ {0,1} for every k ∈ [r].

3. For each k ∈ [r], PA privately sends to PB:

dk =HAB(k,0, qk)+HAB(k,1, qk +∆)+ xk.

4. PB outputs
zB

k =HAB(k, yk, tk)+ yk ·dk +ρk, for k ∈ [r].

5. PA outputs
zA

k =HAB(k,0, qk)+ρk, for k ∈ [r].

Figure 5.4: Leaky secret-shared two-party bit multiplication protocol.

for every k. Similarly to the previous case, this means that all of PA ’s inputs where yk = 0 have

only ` bits of min-entropy in the view of an adversary who corrupts PB. We can again handle this

leakage, by defining FLeaky-2-Mult to leak HAB(k,1, tk ⊕∆)+ xk to a corrupt PB.

Note that there is no leakage from the tk values when yk = 0, because then tk = qk, so these

messages are independent of ∆ and the inputs of PA.

In the functionality FLeaky-2-Mult, we actually modify the above slightly so that the leakage is

defined in terms of linear algebra, instead of the hash function HAB, to simplify the translation to

the DRSD problem later on. Therefore, FLeaky-2-Mult defines a matrix H ∈ Fr×2`
2 , which contains

the 2` values {HAB(k,1⊕ yk, tk ⊕∆)}∆∈{0,1}` in row k, where each tk is uniformly random. Given

H, the leakage from the protocol can then be described by sampling a random unit vector e ∈ F2`
2

(which corresponds to ∆ ∈ {0,1}` in the protocol) and leaking u = He+ x to a corrupt PB.

5.3.1.4 Communication complexity and security

The cost of computing r secret-shared products is that of ` random, correlated OTs on r-bit

strings, and a further r bits of communication. Using OT extension [10, 74] to implement the

correlated OTs the amortized cost is `(r+κ) bits, for computational security κ. This gives a total

cost of `(r+κ)+ r bits.

Theorem 5.3.1. Protocol Πr,`
Leaky-2-Mult securely implements the functionality F

r,`
Leaky-2-Mult with

perfect security in the (F∆-ROT,FZero)-hybrid model in the presence of static honest-but-curious

adversaries.

117

CHAPTER 5. MULTI-PARTY COMPUTATION WITH SHORT KEYS

Proof. The main challenge in the proof consists of showing that the leakage to PB in the

functionality can be translated directly to the leakage introduced in the protocol in the view of

PB. More formally, for the two cases of a corrupt PA , and a corrupt PB, we define a simulator who

obtains the corrupted party’s inputs and the output of FLeaky-2-Mult, and simulates the view of

the corrupted party during a protocol execution.

NO CORRUPTIONS: Here, no simulation is necessary because all communication is over

private channels, so we just need to show that the outputs of an honest execution are distributed

identically to the functionality. By inspection, the protocol is correct. Observe that the outputs of

PA are uniformly random, because ρk is uniformly random. Since PB ’s outputs are fixed by the

inputs and PA ’s outputs, we are done.

CORRUPT PA : This is the simpler of the remaining two cases. The simulator SA receives

PA ’s inputs x1, . . . , xr ∈ F2, as well as the outputs zA
1 , . . . , zA

r from FLeaky-2-Mult. It completes

the view of PA by sampling the q1, . . . , qr ← {0,1}` PA receives from F∆-ROT, and then sends

ρk = zA
k −HAB(k,0, qk) to simulate PA ’s outputs from FZero.

It is easy to see that the views in the two executions are identically distributed, since no

messages are sent to PA during the protocol, and the definition of ρk in the simulation ensures

that ρk is uniformly random (because zA
k is) and also consistent with PA ’s output and the hash

function, as in the protocol.

CORRUPT PB : We define a simulator SB, who receives the inputs y1, . . . , yr ∈ {0,1}, and then

obtains the values zB
1 , . . . , zB

r ,H,u = (u1, . . . ,ur) from the functionality.

Let SB sample values t1, . . . , tr ∈ {0,1}` at random, subject to the constraint that for every

k ∈ [r] and k′ ∈ {0,1}`, HAB(k,1⊕ yk, tk ⊕ k′) is equal to entry (k,k′) of H (viewing k′ also as an

integer in [2`]). Note that because of the way H is defined in FLeaky-2-Mult, such a tk is guaranteed

to exist and can be found by searching all 22` = poly(κ) possibilities of k′ and tk. This also ensures

it will be identically distributed to the tk sampled by the functionality. SB sends these values tk

as the outputs of F∆-ROT to PB.

For all k ∈ [r], SB then emulates the output of FZero to PB as follows:

1. If yk = 0, send ρk = zB
k +HAB(k,0, tk).

2. If yk = 1, send ρk = zB
k +uk.

Finally, for k ∈ [r], SB sends dk = uk +HAB(k, yk, tk) to PB. This completes the simulation of PB ’s

view.

Regarding indistinguishability, first note that, as observed above, the tk values are identically

distributed in both executions. Now considering the case when yk = 0, we have:

zB
k +HAB(k,0, tk)+ρk = 0,

from the definition of ρk. Since in both worlds zB
k , tk and ρk are all uniformly random, subject to

the above, this means that these values are identically distributed in both worlds. Also, it is easy

118

5.3. GMW-STYLE MPC WITH SHORT KEYS

to see that the simulated dk values are computed exactly as in the protocol, because of the way

FLeaky-2-Mult computes uk.

When yk = 1, we have:

zB
k +HAB(k,1, tk)+dk +ρk = 0 ⇐⇒ (ρk +uk)+HAB(k,1, tk)+ρk = dk

⇐⇒HAB(k,0, tk ⊕ ∆̃)+HAB(k,1, tk)+ xk = dk,

where ∆̃ ∈ [2`] denotes the position of the 1 in e sampled by FLeaky-2-Mult to compute u, so is

identically distributed to ∆ ∈ {0,1}` in the real protocol. Therefore, the last equation above holds,

which implies that zB
k , ρk and dk are all distributed identically to the values in the real protocol.

■

5.3.2 MPC for Binary Circuits From Leaky OT

We now show how to use the leaky OT protocol to compute multiplication triples over F2, using a

GMW-style protocol [62, 64] optimized for the case of at least h honest parties. This can then be

used to obtain a general MPC protocol for binary circuits using Beaver’s method [16].

5.3.2.1 Triple generation

We implement the triple generation functionality over F2, shown in Figure 5.5. Recall that to

create a triple using the GMW method, first each party locally samples shares xi, yi ← F2. Next,

the parties compute shares of the product based on the fact that

(
n∑

i=1
xi) · (

n∑
i=1

yi)=
n∑

i=1
xi yi +

n∑
i=1

∑
j 6=i

xi y j,

where xi denotes Pi ’s share of x =∑
i xi.

Since each party can compute xi yi on its own, in order to obtain additive shares of z = xy it

suffices for the parties to obtain additive shares of xi y j for every pair i 6= j. This is done using

oblivious transfer between Pi and P j, since a 1-out-of-2 OT implies two-party secret-shared bit

multiplication. Due to efficiency considerations we realize a slight variation of this functionality

where two (possibly overlapping) subsets P (h),P (1) such that P (h) has at least h honest parties

and P (1) has at least one honest party, choose the respective shares of x and y.

If we use the leaky two-party batch multiplication protocol from the previous section, this

approach fails to give a secure protocol because the leakage in FLeaky-2-Mult allows a corrupt PB

to guess PA ’s inputs with probability 2−`. When using this naively, PA carries out a secret-shared

multiplication using the same input shares with every other party, which allows every corrupt

party to attempt to guess PA ’s shares, increasing the success probability further. If the number of

corrupted parties is not too small then this gives the adversary a significant chance of successfully

guessing the shares of every honest party, completely breaking security.

119

CHAPTER 5. MULTI-PARTY COMPUTATION WITH SHORT KEYS

Functionality F r
Triple

1. Sample (xi
j, yi

j, zi
j)← F3

2, for i ∈ [n] and j ∈ [r], subject to the constraint that∑
i

zi
j =

(∑
i

xi
j
) · (∑

i
yi

j
)

2. Output (xi
j, yi

j, zi
j) to party Pi, for j ∈ [r].

Figure 5.5: Multiplication triple generation functionality.

To avoid this issue, we require PA to randomize the shares used as input to FLeaky-2-Mult, in

such a way that we still preserve correctness of the protocol. To do this, the parties will use FZero

to generate random zero shares si, j ∈ F2 (held by Pi), satisfying
∑

i si, j = 0 for all j ∈ [n], and then

Pi and P j will multiply xi + si, j and y j. This means that all parties end up computing shares of

n∑
i=1

n∑
j=1

(xi + si, j)y j =
n∑

j=1
y j

n∑
i=1

(xi + si, j)= xy,

so still obtain a correct triple.

Finally, to ensure that the output shares are uniformly random, fresh shares of zero will be

added to each party’s share of xy. Note that masking each xi input to FLeaky-2-Mult means that

it doesn’t matter if the individual shares are leaked to the adversary, as long as it is still hard

to guess the sum of all shares. This means that we only need to be concerned with the sum of

the leakage from FLeaky-2-Mult. Recall that each individual instance leaks the input of an honest

party Pi masked by H i ei, where H i is a random matrix and ei ∈ F2`
2 is a random unit vector.

Summing up all the leakage from h honest parties, we get

h∑
i=1

H i ei = (H1‖· · ·‖Hh)

e1
...

eh

This is exactly an instance of the DRSDr,h,` problem, so is pseudorandom for an appropriate

choice of parameters.

We remark that the number of triples generated, r, affects the hardness of DRSD. However,

we can create an arbitrary number of triples without changing the assumption by repeating the

protocol for a fixed r.

5.3.2.2 Reducing the number of OT channels

The above approach reduces communication of GMW by a factor κ/`, for `-bit keys, but still

requires a complete network of n(n−1) OT and communication channels between the parties.

We can reduce this further by again taking advantage of the fact that there are at least h

honest parties. We observe that when using our two-party secret-shared multiplication protocol

120

5.3. GMW-STYLE MPC WITH SHORT KEYS

Protocol Πr
Triple

The protocol runs between a set of parties P = {P1, . . . ,Pn}, containing two (possibly overlapping)
subsets P (h),P (1), such that P (h) has at least h honest parties and P (1) has at least one honest party.
We denote nh = |P (h)|, n1 = |P (1)|.

CRS: Random hash functions Hi : [r]× {0,1}× {0,1}`→ {0,1}, for i ∈ [nh].

1. Each party Pi ∈P (h) samples xi
k ← F2, and each P j ∈P (1) samples y j

k ← F2, for k ∈ [r].

2. Call FZero so that each Pτ ∈ P (h) ∪P (1) obtains shares (ρτ1, . . . ,ρτr) and each Pi ∈ P (h) obtains
shares (si, j

1 , . . . , si, j
r) j∈P (1) , such that

⊕
τ∈P (h)∪P (1) ρ

τ
k = 0 and

⊕
i∈P (h) si, j

k = 0.

3. Every pair (Pi,P j) ∈P (h)×P (1) runs F
r,`
Leaky-2-Mult(Hi) on input {xi

k+si, j
k }k∈[r] from Pi and {y j

k}k∈[r]

from P j. For k ∈ [r], Pi receives ai, j
k and P j receives b j,i

k such that ai, j
k +b j,i

k = (xi
k + si, j

k) · y j
k.

4. Each Pi ∈P (h) ∪P (1) computes, for k ∈ [r]:

zi
k = (xi

k + si,i
k) · yi

k +
∑
j 6=i

(ai, j
k +bi, j

k)+ρ i
k

where if any value xi
k, yi

k,ai, j
k ,bi, j

k , si,i
k has not been defined by Pi, it is set to zero.

5. Pi outputs the shares (xi
k, yi

k, zi
k)k∈[r].

Figure 5.6: Secret-shared triple generation using leaky two-party multiplication.

to generate triples, information is only leaked on the xi shares, and not the yi shares of each

triple. This means that h−1 parties can choose their shares of y to be zero, and y will still be

uniformly random to an adversary who corrupts up to t = n−h parties. This reduces the number

of OT channels needed from n(n−1) to (t+1)(n−1).

When the number of parties is large enough, we can do even better using random committees.

We randomly choose two committees, P (h) and P (1), such that except with negligible probability,

P (h) has at least h honest parties and P (1) has at least one honest party. Only the parties in P (h)

choose non-zero shares of x, and parties in P (1) choose non-zero shares of y; all other parties do

not take part in any OT instances, and just output random sharings of zero. We remark that

it can be useful to choose the parameter h lower than the actual number of honest parties, to

enable a smaller committee size (at the cost of potentially larger keys). When the total number of

parties, n, is large enough, this means the number of interacting parties can be independent of n.

The complete protocol, described for two fixed committees satisfying our requirements, is shown

in Figure 5.6.

5.3.2.3 Communication complexity and security

Recall from the analysis in Section 5.3.1 that when using protocol ΠLeaky-2-Mult with ΠTriple, the

cost of computing r secret-shared triples is that of ` random, correlated OTs on r-bit strings,

and a further r bits of communication between every pair of parties. This gives a total cost of

121

CHAPTER 5. MULTI-PARTY COMPUTATION WITH SHORT KEYS

`(r+κ)+ r bits between every pair of parties who has an OT channel (ignoring FZero and the seed

OTs for OT extension, since their communication cost is independent of the number of triples). If

the two committees P (h),P (1) have sizes nh ≤ n and n1 ≤ t+1 then we have the following theorem.

Theorem 5.3.2. Protocol ΠTriple securely realizes F r
Triple in the (F r,`

Leaky-2-Mult,F
(n+1)r
Zero)-hybrid

model, based on the DRSDr,h,` assumption, where h is the number of honest parties in P (h). The

amortized communication cost is ≤ nhn1(`+`κ/r+1) bits per triple.

Proof. The claimed communication complexity follows from the previous analysis. Security relies

on the fact that Pi ∈ P (h)’s input to FLeaky-2-Mult is always of the form xi + si, j, where si, j is a

fresh, random sharing of zero. This means that any leakage on Pi ’s input from FLeaky-2-Mult is

perfectly masked by si, j, and we only need to consider the sum of the leakage from all honest

parties in P (h).

Recall that we have two committees P (h) and P (1) of sizes nh and n1, with at least h and 1

honest parties, respectively. Let A be an adversary corrupting a set of parties A. Throughout the

proof we will write x1, . . . , xr to denote the components of a vector x ∈ Fr
2.

We construct a simulator, S , which interacts with A as follows:

1. Simulate the CRS with nh randomly sampled functions Hi : [r]× {0,1}× {0,1}`→ {0,1}.

2. Call FTriple to receive the corrupted parties’ outputs, (xi
k, yi

k, zi
k)i∈A∩(P (h)∪P (1)),k∈[r].

3. For each i ∈P (h)∩A, sample si, j ← Fr
2, for j ∈ [n1], and send these to A as the shares output

by FZero.

4. Let Pi ∈P (h),P j ∈P (1). Compute the messages that would be sent by FLeaky-2-Mult to the

adversary as follows:

a) Pi,P j ∈ A: Using both parties’ inputs, generate their random output shares as FLeaky-2-Mult

would do and send these to A . Explicitly, the simulator samples shares ai, j,b j,i that

sum to (xi+si, j)∗ y j, and the leakage (H i, j,ui, j) on xi+si, j (just as FLeaky-2-Mult would

do).

b) Pi ∈ A,P j ∉ A: Emulate the corrupt Pi ’s view honestly, by sampling ai, j ← Fr
2.

c) Pi ∉ A,P j ∈ A: Sample uniform values b j,i,ui, j ← Fr
2, and sample H i, j ∈ Fm×2`

2 exactly

as FLeaky-2-Mult would do, using knowledge of Hi and y j.

5. For i ∈ A∩ (P (h) ∪P (1)), compute ρ i = zi + (xi + si,i)∗ yi +∑
j 6=i(ai, j +bi, j) and send this as

the ρ i
k share from FZero.

6. Send to A the values {ai, j}i∈P (h)∩A, j∈P (1) ∪ {b j,i,H i, j,ui, j}i∈P (h), j∈P (1)∩A as defined above, to

simulate the outputs of FLeaky-2-Mult.

We first consider the distribution of the parties’ outputs.

122

5.3. GMW-STYLE MPC WITH SHORT KEYS

Claim 5.3.1. The outputs of the protocol are distributed identically to outputs of the functionality.

Proof. We need to to show that, in the real protocol, {zi
k}i,k are uniformly random subject to∑

i zi
k =

∑
i xi

k ·
∑

i yi
k. Firstly, the correctness constraint holds because

n∑
i=1

zi
k =

n∑
i=1

(
(xi

k + si,i
k) · yi

k +
∑
j 6=i

(ai, j
k +bi, j

k)+ρ i
k

)

=
n∑

i=1
xi

k · yi
k +

n∑
i=1

(
yi

k · si,i
k +∑

j 6=i
(ai, j

k +b j,i
k)

)

=
n∑

i=1
xi

k · yi
k +

n∑
i=1

(
yi

k · si,i
k +∑

j 6=i
yi

k · (x j
k + s j,i

k)

)

= xk · yk +
n∑

i=1
yi

k ·
n∑

j=1
s j,i

k

= xk · yk

where the second line above holds because
∑

i ρ
i
k = 0, and the final line uses

∑
j s j,i

k = 0.

Now, to see that (zi
k)i are uniformly random, subject to the above, notice that the masks

(ρ i
k)n−1

i=1 are uniformly random in the protocol, so the same is true of (zi
k)n−1

i=1 . This completes the

claim. �

We next consider the entire view of the environment Z , which is the joint distribution of all

parties’ inputs and outputs, and the messages received by the adversary during the protocol.

Using vector notation, this is:

(xi, y j, zi, z j)i∈P (h), j∈P (1) , (ρ
i,si, j,ai, j)i∈A∩P (h), j∈P (1) , (ρ

j,b j,i,ui, j,H i, j)i∈P (h), j∈P (1)∩A.

First note that the ρτ,τ ∈P (h)∪P (1) and si, j shares, for i ∈P (h)∩A, j ∈P (1) \ A, are uniformly

random in both executions, since the environment never sees the honest parties’ shares. Secondly,

recall that in the simulation, ai, j for corrupt Pi and honest P j and b j,i (for corrupt P j and honest

Pi) are computed uniformly at random, and this is identically distributed to the values in the

protocol sampled by FLeaky-2-Mult, because the outputs of the honest party in that instance are not

seen by Z . Also, notice that when P j is corrupt S computes H i, j exactly as in the real protocol,

because S knows P j ’s input y j.

This leaves the {ui, j}i∈P (h)\A, j∈P (1)∩A values, which are the main challenge, because the simu-

lation computes these with random values, whilst the real execution uses the honest Pi ’s inputs,

computing ui, j = H i, j ei, j + xi + si, j for a random unit vector ei, j. Let Pi1 , . . . ,Pih be the honest

parties in P (h). Because the si, j values are random shares of zero, it holds that the partial

views containing the entire transcript except for (ui1, j) j∈P (1)∩A are identically distributed. This is

because for P j ∈P (1) ∩ A, the masks si2, j, . . . ,sih, j in the protocol are random and independent of

the view of Z , which makes the corresponding ui2, j, . . . ,sih, j values distributed the same as in

the simulation.

123

CHAPTER 5. MULTI-PARTY COMPUTATION WITH SHORT KEYS

Once we include ui1, j, however, these values are no longer independent because
∑n

i∈P (h)
si, j = 0.

We therefore look at the distribution of
∑h

k=1 uik, j, for some fixed j ∈P (1) ∩ A. In the protocol, we

have

∑
i∈P (h)\A

ui, j = ∑
i∈P (h)\A

(xi + si, j +H i, j ei, j)

for some random, weight-1 vector ei, j. In the simulation, all of the ui, j ’s are uniformly random.

Since Z can compute
∑

i∈P (h)\A(xi + si, j) with the information it already has, it follows that

distinguishing the two executions requires distinguishing

H i ei := (
H i1, j‖H i2, j‖· · ·‖H ih, j)

ei1, j

ei2, j

...

eih, j

and the uniform distribution on r bits (given H i).

We claim that this corresponds exactly to solving the DRSDr,h,` problem, because H i is

uniformly distributed in Fr×2`h
2 and ei is a uniformly random, 1-regular error vector of weight h.

Lemma 5.3.2. Any environment distinguishing the real and ideal executions with advantage δ

can be used to break DRSDr,h,` with advantage at least δ/t (where t = |P (1) ∩ A|).

Proof. Assume w.l.o.g. that the corrupted parties in P (1) are indexed P1, . . . ,Pt. We construct a

sequence of hybrid executions, HYB0, . . . ,HYBt, where hybrid HYB0 is identical to the simulation.

In hybrid HYB j′ , instead of the simulator sampling ui, j (for j ≤ j′, i ∈ P (h) \ A) at random, we

replace this with the real ui, j generated using Pi ’s inputs as in the protocol. The final hybrid

HYBt is therefore identically distributed to the real execution.

Let A be an adversary for which the environment Z distinguishes between HYB j′ and

HYB j′+1 with advantage δ, for some index j′ < t. We construct a distinguisher D for DRSDr,h,` as

follows. D receives a DRSD challenge H j′ ∈ Fr×h2`
2 , c j′ ∈ Fr

2. Write H j′ = (H i1, j′‖H i2, j′‖· · ·‖H ih, j′),

where each H ik, j′ ∈ Fr×2`
2 . Now D simulates an execution of ΠTriple with A as S would, with the

following differences.

• D samples a set of honest parties’ shares, (xi, yi, zi)i∉A which, together with the corrupt

parties’ shares known to D, form correct triples.

• Instead of sampling the function Hi in the CRS at random, sample it such that for every

k ∈ [h], the matrix H ik, j′ , sent later to the corrupt P j′ , is equal to the challenge matrix

H ik, j′ . (The remainder of the CRS is sampled at random.)

• Instead of sampling the leakage terms uik, j′ (for k ∈ [h]) uniformly and independently,

sample them at random such that
∑

i∈P (h)(u
i, j′ + xi)= c j′ .

124

5.4. MULTI-PARTY GARBLED CIRCUITS WITH SHORT KEYS

• For each j < j′, instead of sampling uik, j′ uniformly, compute them as in the real protocol

using the honest parties’ shares and shares of zero.

To conclude, D sends all the output shares to Z and outputs the same as Z .

If the challenge (H j′ , c j′) comes from the DRSD distribution then the uik, j′ values are dis-

tributed as in a real execution, so we are in hybrid HYB j′+1. On the other hand, if c j′ is uniformly

random then so are the uik, j′ , so we are in HYB j′ . Therefore, the advantage of D is δ, the same

as that of Z . A standard hybrid argument then shows that there exists a distinguisher for HYB0

and HYBt, which has advantage at least δ/t. �

This concludes the proof of Theorem 5.3.2. ■

5.3.2.4 Parameters for unconditional security

Recall from Lemma 5.2.1 and Corollary 5.2.1 that if `= 1 and h ≥ r+ s, or if h ≥ (r+2s)/` for any

`, then DRSDr,h,` is statistically hard, with statistical security 2−s. This means when h is large

enough we can use 1-bit keys, and every pair of parties who communicates only needs to send

2+κ/r bits over the network.2

5.3.2.5 MPC using multiplication triples

Our protocol for multiplication triples can be used to construct a semi-honest MPC protocol for

binary circuits using Beaver’s approach [16]. The parties first secret-share their inputs between

all other parties. Then, XOR gates can be evaluated locally on the shares, whilst an AND gate

requires consuming a multiplication triple, and two openings with Beaver’s method. Each opening

can be done with 2(n−1) bits of communication as follows: all parties send their shares to P1,

who sums the shares together and sends the result back to every other party.

In the 1-bit key case mentioned above, using two (deterministic) committees of sizes n and

t+1 and setting, for instance, r = κ implies the following corollary. Note that the number of

communication channels is (t+1)(n−1) and not (t+1)n, because in the deterministic case P (1) is

contained in P (h), so t+1 sets of the shared cross-products can be computed locally.

Corollary 5.3.3. Assuming OT and OWF, there is a semi-honest MPC protocol for binary circuits

with an amortized communication complexity of no more than 3(t+1)(n−1)+4(n−1) bits per

AND gate, if there are at least κ+ s honest parties.

5.4 Multi-Party Garbled Circuits with Short Keys

In this section we present our second contribution: a constant-round MPC protocol based on

garbled circuits with short keys. The protocol has two phases, a preprocessing phase independent
2Note that we still need computational assumptions for OT and zero sharing in order to implement FLeaky-2-Mult

and FZero.

125

CHAPTER 5. MULTI-PARTY COMPUTATION WITH SHORT KEYS

of the parties’ actual inputs where the garbled circuit is mutually generated by all parties, and an

online phase where the computation is performed. We first abstractly discuss the details of our

garbling method, and then turn to the two protocols for generating and evaluating the garbled

circuit.

5.4.1 The Multi-Party Garbling Scheme

Our garbling method is defined by the functionality FPreprocessing (Figure 5.7), which creates a gar-

bled circuit that is given to all the parties. It can be seen as a variant of the multi-party garbling

technique by Beaver, Micali and Rogaway [18], known as BMR and described in Section 2.6.

We recall that the main ideas behind most protocols instantiating the paradigm in Section 2.6.

First, every party Pi contributes a pair of keys ki
w,0,ki

w,1 ∈ {0,1}κ and a share of a wire mask

λi
w ∈ {0,1} for each wire w in the circuit. To garble a gate, the corresponding output wire key from

every party is ‘double encrypted’ under the combination of all parties’ input wire keys, using a

PRF or PRG, so that no single party knows all the keys for a gate. In addition, the Free-XOR

property can be supported by having each party choose their keys such that ki
w,0 ⊕ ki

w,1 = ∆i,

where ∆i is a global fixed random string known to Pi.

The main difference between our work and the ones previously discussed in Section 2.6, Chap-

ter 3 and Chapter 4 is that we use short keys of length `BMR instead of κ, and then garble gates

using a random, expanding function H : [n]× {0,1}× {0,1}`BMR → {0,1}n`BMR+1. Instead of basing

security on a PRF or PRG, we then reduce the security of the protocol to the pseudorandomness

of the sum of H when applied to each of the honest parties’ keys, which is implied by the DRSD

problem from Section 5.2.4. We also use H′ to denote H with the least significant output bit

dropped, which we use for garbling splitter gates.

To garble an AND gate g with input wires u,v and output wire w, each of the 4 garbled rows

g̃a,b, for (a,b) ∈ {0,1}2, is computed as

g̃a,b =
(

n⊕
i=1

H(i,b,ki
u,a)⊕H(i,a,ki

v,b)

)
⊕ (c,k1

w,c, . . . ,kn
w,c),(5.2)

where c = (a⊕λu) · (b⊕λv)⊕λw and λu,λv,λw are the secret-shared wire masks. Each row can be

seen as an encryption of the correct n output wire keys under the corresponding input wire keys

of all parties. Note that, for each wire, Pi holds the keys ki
u,0,ki

u,1 and an additive share λi
u of the

wire mask. The extra bit value that H takes as input is added to securely increase the stretch of

H when using the same input key twice, preventing a ‘mix-and-match’ attack on the rows of a

garbled gate. The output of H is also extended by an extra bit, to allow encryption of the output

wire mask c.3

3This only becomes necessary when using short keys – in BMR with full-length keys the parties can recover the
wire mask by comparing the output with their own two keys, but this does not work if collisions are possible.

126

5.4. MULTI-PARTY GARBLED CIRCUITS WITH SHORT KEYS

Functionality FPreprocessing

COMMON INPUT: A function H : [n]× {0,1}× {0,1}`BMR → {0,1}n`BMR+1. Let H′ denote the same function
excluding the least significant bit of the output.

Let C f be a boolean circuit with fan-out-one gates. Denote by AND,XOR and SPLIT its sets of AND,
XOR and Splitter gates, respectively. Given a gate, let I and O be the set of its input and output wires,
respectively. If g ∈ SPLIT, then I = {w} and O = {u,v}, otherwise O = {w}.
The functionality proceeds as follows ∀i ∈ [n]:

1. ∀g ∈XOR, sample ∆i
g ← {0,1}`BMR .

2. For each circuit-input wire u, sample λu ← {0,1} and ki
u,0 ← {0,1}`BMR . If u is input to a XOR

gate g, set ki
u,1 = ki

u,0 ⊕∆i
g, otherwise ki

u,1 ← {0,1}`BMR .

3. Passing topologically through all the gates g ∈ {AND∪XOR∪SPLIT} of the circuit:

• If g ∈XOR:

– Set λw =⊕
x∈I λx

– Set ki
w,0 =

⊕
x∈I ki

x,0 and ki
w,1 = ki

w,0 ⊕∆i
g

• If g ∈AND:

– Sample λw ← {0,1}.
– ki

w,0 ← {0,1}`BMR . If w is input to a XOR gate g′ set ki
w,1 = ki

w,0 ⊕∆i
g′ , else ki

w,1 ←
{0,1}`BMR .

– For a,b ∈ {0,1}, representing the external values of wires u and v, let c = (a⊕λu) · (b⊕
λv)⊕λw. Store the four entries of the garbled version of g as:

g̃a,b =
(

n⊕
i=1

H(i,b,ki
u,a)⊕H(i,a,ki

v,b)

)
⊕ (c,k1

w,c, . . . ,kn
w,c), (a,b) ∈ {0,1}2.

• If g ∈ SPLIT:

– Set λx =λw for every x ∈O.
– ∀x ∈O, sample ki

x,0 ← {0,1}`BMR . If x ∈O is input to a XOR gate g′, set ki
x,1 = ki

x,0⊕∆i
g′ ,

otherwise ki
x,1 ← {0,1}`BMR .

– For c ∈ {0,1}, the external value on w, store the two entries of the garbled version of
g as:

g̃c =
(

n⊕
i=1

H′(i,0,ki
w,c),

n⊕
i=1

H′(i,1,ki
w,c)

)
⊕ (k1

u,c, . . . ,kn
u,c,k1

v,c, . . . ,kn
v,c), c ∈ {0,1}

4. Output: For each circuit-input wire u, send λu to the party providing inputs to C f on u. For
every circuit wire v and i ∈ [n], send ki

v,0,ki
v,1 to Pi. Finally, send to all parties g̃ for each

g ∈AND∪SPLIT and λw for each circuit-output wire w.

Figure 5.7: Multi-party garbling functionality.

127

CHAPTER 5. MULTI-PARTY COMPUTATION WITH SHORT KEYS

5.4.1.1 Splitter gates

When relying on the DRSD problem, the reuse of a key in multiple gates degrades parameters

and makes the problem easier (as the parameter r grows, the key length must be increased), so

we cannot handle circuits with arbitrary fan-out. For this reason, we restrict our exposition of

the garbling to fan-out-one circuits with so-called splitter gates. This type of gate takes as input

a single wire w and provides two output wires u,v, each of them with fresh, independent keys

representing the same value carried by the input wire. Converting an arbitrary circuit to use

splitter gates incurs a cost of roughly a factor of two in the circuit size (see below).

Splitter gates were previously introduced in [126] as a fix for a similar issue in the original

BMR paper [18], where the wire ‘keys’ were used as seeds for a PRG in order to garble the gates,

so that when a wire was used as input to multiple gates, their garbled versions did not use

independent pseudorandom masks. Other recent BMR-style papers avoid this issue by applying

the PRF over the gate identifier as well, which produces distinct, independent PRF evaluations

for each gate.

5.4.1.2 Enabling Free-XOR

The Free-XOR [86] optimization results in an improvement in both computation and communica-

tion for XOR gates where a global fixed random ∆i is chosen by each party Pi and the input keys

are locally XORed, yielding the output key of this gate. We cannot use the standard Free-XOR

technique [25, 86] for the same reason discussed above: reusing a single offset across multiple

gates would make the DRSD problem easier and not be secure. Inspired by FleXOR [84] we

therefore introduce a new Free-XOR technique which, combined with our use of splitter gates,

allows garbling XOR gates for free without additional assumptions. For each arbitrary fan-in

XOR gate g, each party chooses a different offset ∆i
g, allowing for a Free-XOR computation for

wires using keys with that offset. For general circuits, this would normally introduce the problem

that the input wires may not have the correct offset, requiring some ‘translation’ to ∆g. However,

because we restrict to gates with fan-out-one and splitter gates, we know that each input wire to

g is not an input wire to any other gate, so we can always ensure the keys use the correct offset

without any further changes.

5.4.1.3 Compiling to fan-out-1 circuits with splitter gates

Let C f be an arbitrary fan-out circuit, with A AND gates and X XOR gates, both with fan-in-two.

Let IC f and OC f be the number of circuit-input and circuit-output wires, respectively. We will

now compute the number S of splitter gates that the compiled circuit needs. First, note that each

time a wire w is used as input to another gate or as a circuit-output wire, w’s fan-out is increased

by one. Each of the AND, XOR gates in the pre-compiled circuit provides a fresh output wire to

be used in C f , while using for its inputs two pre-existing wires in the circuit. Output wires also

128

5.4. MULTI-PARTY GARBLED CIRCUITS WITH SHORT KEYS

Functionality FBit×Bit

After receiving (xi, yi) ∈ F2
2 from each party Pi, sample zi ← F2 such that

∑
i zi = (

∑
i xi) · (∑i yi), and

send zi to party Pi.

Figure 5.8: Secret-shared bit multiplication functionality.

Functionality F
`BMR
Bit×String(P j)

After receiving (xi, yi) ∈ F2
2 from each party Pi, as well as ∆ ∈ F`BMR

2 from P j, sample Zi ← F2 such that∑
i Z i = (

∑
i xi) ·∆, and send Z i to party Pi.

Figure 5.9: Secret-shared bit/string multiplication functionality.

use one pre-existing wire each, while input wires use no pre-existing wires. This means that, to

compile C f to be a fan-out-one circuit, we need to add up to (2·X +2·A+OC f)−(A+X + IC f) wires.

Each of these missing wires, however, can be created by using a splitter gate in the compiled

circuit, since each of these gates uses one wire to generate two fresh new wires. So, putting all

the pieces together, the compiled circuit requires S ≤ X + A+OC f − IC f splitter gates. This gives

a close upper bound, as if w is a circuit output wire and an input wire of another gate then it is

being counted twice rather than once in the formula.

5.4.2 Protocol and Functionalities for Bit and Bit/String Multiplication

Even though we could implement both FBit×Bit and F
`BMR
Bit×String(P j) using FTriple, there are more

efficient ways to implement the latter: One by building directly from FLeaky-2-Mult, and another

using [10].

• FLeaky-2-Mult-hybrid implementation (Figure 5.11): As the length-`BMR string R j
g is not

secret-shared and just known to one party, we only need to perform n−1 invocations of

FLeaky-2-Mult in order to multiply it with a secret-shared bit x = x1 +·· ·+ xn. The protocol

uses random shares of zero to mask the inputs and outputs of FLeaky-2-Mult, similarly to the

ΠTriple protocol.

Note that this does not directly implement the functionality shown in Figure 5.9, because

Π
r,`BMR
Bit×String performs a batch of r independent multiplications in parallel. However, in

the protocol Π`BMR
Preprocessing all the gates can be garbled in parallel, so a batch version of

the functionality (as described in Figure 5.10) suffices. The amortized communication

complexity obtained is `BMR(1+`OT +`OTκ/r) bits.

• Asharov et al. [10] implementation: The amortized communication complexity is κ+`BMR

bits.

129

CHAPTER 5. MULTI-PARTY COMPUTATION WITH SHORT KEYS

Functionality F
r,`BMR
Bit×String

After receiving input (P j, xi
1, . . . , xi

m) from every party Pi, and additional inputs ∆1, . . . ,∆r from P j,
where each xi

k ∈ {0,1} and ∆k ∈ {0,1}`BMR :

1. Sample Z i
k ← {0,1}`BMR , for i ∈ [n] and k ∈ [r], subject to the constraint that⊕

i
Z i

k =∆k ·
⊕

i
xi

k, for k ∈ [r]

2. Output Z i
1, . . . , Z i

r to party Pi

Figure 5.10: Batch secret-shared bit/string multiplication between P j and all parties.

Protocol Πr,`BMR
Bit×String, n-party Bit/String-Mult

To multiply the strings ∆1, . . . ,∆r ∈ {0,1}`BMR held by P j with secret-shared bits (xi
1, . . . , xi

r)i∈[n]:

1. Denote the v-th bit of ∆k by ∆k,v. For v ∈ [`BMR]:

a) Call F 2r
Zero so that each Pi obtains fresh shares (ρ i

1,v, . . . ,ρ i
m,v,σi

1,v, . . . ,σi
m,v), such that⊕

i ρ
i
k,v = 0 and

⊕
iσ

i
k,v = 0

b) For each i 6= j, Pi and P j run F
r,`OT
Leaky-2-Mult on input (xi

k ⊕σi
k,v)k∈[r] from Pi and (∆k[v])k∈[r]

from P j. Pi receives ai
k,v and P j receives bi

k,v such that ai
k,v ⊕bi

k,v =∆k[v] · (xi
k ⊕σi

k).

2. Each Pi, for i 6= j, outputs the `BMR-bit strings Z i
k := (ai

k,1 ⊕ρ i
k,1, . . . ,ai

k,`BMR
⊕ρ i

k,`BMR
), for k ∈ [r].

3. P j outputs the `BMR-bit strings Z j
k :=⊕

i 6= j(bi
k,1, . . . ,bi

k,`BMR
)⊕ (ρ j

k,1, . . . ,ρ j
k,`BMR

), for k ∈ [r].

Figure 5.11: n-party secret-shared bit/string multiplication using leaky 2-party multiplication.

5.4.2.1 Communication complexity and security

The communication complexity ofΠr,`BMR
Bit×String is exactly that of (n−1)`BMR instances of F

r,`OT
Leaky-2-Mult,

where `OT is the leakage parameter used in the protocol Πr,`OT
Leaky-2-Mult. Note that `OT is independent

of `BMR used in the bit/string protocol, but affects the security and cost of realising FLeaky-2-Mult.

The total complexity is then (n−1)`BMR(`OT(r+κ)+ r) bits, or an amortized cost of (n−1)`BMR(`OT+
`OTκ/r+1) bits per multiplication.

Theorem 5.4.1. Protocol Πr,`BMR
Bit×String UC-securely realizes F

r,`BMR
Bit×String in the F 2r

Zero-hybrid in the

presence of static honest-but-curious adversaries, under the DRSDr,h,`OT assumption.

The proof is a direct extension of the proof of Theorem 5.3.2.

5.4.3 The Preprocessing Protocol

Our protocol for generating the garbled circuit is shown in Figure 5.12. We use two functionalities

FBit×Bit (Figure 5.8) and FBit×String(P j) (Figure 5.9) for multiplying two additively shared bits,

and multiplying an additively shared bit with a string held by P j, respectively. FBit×Bit can be

130

5.4. MULTI-PARTY GARBLED CIRCUITS WITH SHORT KEYS

easily implemented using a multiplication triple from FTriple in the previous section, whilst

FBit×String uses a variant of the ΠTriple protocol optimized for this task.

The Preprocessing Protocol – Π`BMR
Preprocessing

COMMON INPUT: H : [n]× {0,1}× {0,1}`BMR → {0,1}n`BMR+1, a uniformly random sampled function and
H′ defined from H excluding the least significant bit of the output. A boolean circuit C f with fan-out 1.
Let AND,XOR and SPLIT be the sets of AND, XOR and splitter gates, respectively. Given a gate, let I
and O be the set of its input and output wires, respectively. If g ∈ SPLIT, then I = {w} and O = {u,v},
otherwise O = {w}.
For each i ∈ [n], the protocol proceeds as follows:

1. Free-XOR offsets: For every g ∈XOR, Pi samples a random value ∆i
g ← {0,1}`BMR

2. Circuit-input wires’ masks and keys: If w is a circuit-input wire:

a) Pi samples a key ki
w,0 ← {0,1}`BMR and a wire mask share λi

w ← {0,1}.

b) If w is input to a XOR gate g′, Pi sets ki
w,1 = ki

w,0 ⊕∆i
g′ , otherwise ki

w,1 ← {0,1}`BMR .

3. Intermediate wires’ masks and keys: Passing topologically through all the gates g ∈ G =
{AND∪XOR∪SPLIT} of the circuit:

a) If g ∈XOR, Pi computes:

• λi
w =⊕

x∈I λ
i
x.

• ki
w,0 =

⊕
x∈I ki

x,0 and ki
w,1 = ki

w,0 ⊕∆i
g.

b) If g ∉XOR, Pi does as follows:

• If g ∈AND, λi
w ← {0,1}. Else if g ∈ SPLIT, sets λi

x =λi
w for every x ∈O.

• For every x ∈O, ki
x,0 ← {0,1}`BMR . If x ∈O is input to a XOR gate g′, set ki

x,1 = ki
x,0⊕∆i

g′ ,

otherwise sample ki
x,1 ← {0,1}`BMR .

4. Garble gates: For each gate g ∈ {AND∪SPLIT}, the parties run the subprotocol Π`BMR
GateGarbling,

obtaining back shares g̃i of each garbled gate.

5. Reveal input/output wires’ masks: For every circuit-output wire w, Pi broadcasts λi
w. For

every circuit-input wire w, Pi sends λi
w to the party P j who provides input on it. Each party

reconstructs the wire masks from her received values as λw =⊕n
i=1λ

i
w.

6. Open Garbling For each g ∈ {AND∪SPLIT}, Pi sends g̃i to P1. P1 reconstructs every garbled
gate, g̃ =⊕n

i=1 g̃i, and broadcasts it.

Figure 5.12: The preprocessing protocol that realizes FPreprocessing.

Most of the preprocessing protocol is similar to previous works [25, 70], where first each party

samples their sets of wire keys and shares of wire masks, and then the parties interact to obtain

shares of the garbled gates. It is the second stage where our protocol differs, so we focus here on

the details of the gate garbling procedures.

131

CHAPTER 5. MULTI-PARTY COMPUTATION WITH SHORT KEYS

The Gate Garbling sub-protocol – Π`BMR
GateGarbling

COMMON INPUT: a function H : [n]× {0,1}× {0,1}`BMR → {0,1}n`BMR+1; H′ defined as H excluding the
least significant output bit; the gate g to be garbled.
PRIVATE INPUT: Each Pi, i ∈ [n], holds λi

v and ki
v,0,ki

v,1, for each wire v.

1. If g ∈AND with input wires {u,v} and output wire w:

a) Each party Pi defines R i
g = ki

w,0 ⊕ki
w,1, for each i ∈ [n]

b) Call FBit×Bit to compute shares of λu ·λv, and use these to locally obtain shares of

χg,a,b = (a⊕λu) · (b⊕λv)⊕λw, for (a,b) ∈ {0,1}2

c) Call F
`BMR
Bit×String(Pi) to get shares of χg,a,b ·R i

g, for each i ∈ [n] and (a,b) ∈ {0,1}2. Pi then

sets ρ i
i,a,b = ki

w,0 ⊕ (χg,a,b ·R i
g)i, and ∀ j 6= i, P j sets ρ j

i,a,b = (χg,a,b ·R i
g) j.

d) Each Pi sets g̃i
a,b =H(i,b,ki

u,a)⊕H(i,a,ki
v,b)⊕ (χi

g,a,b,ρ i
1,a,b, . . . ,ρ i

n,a,b), for a,b ∈ {0,1}.

2. If g ∈ SPLIT with input wire w and output wires {u,v}:

a) Call F
2n`BMR
Zero twice, so that each Pi receives shares si

0, si
1 ∈ {0,1}2n`BMR .

b) Pi sets ρ i
c = si

c ⊕ (0, . . . ,ki
u,c,0, . . . ,ki

v,c, . . . ,0) for c ∈ {0,1}.

c) Set g̃i
c =

(
H′(i,0,ki

w,c),H′(i,1,ki
w,c)

)⊕ρ i
c, for c ∈ {0,1}.

Figure 5.13: The gate garbling sub-protocol.

5.4.3.1 The Gate Garbling Protocol

We describe the details of the sub-protocol Π`BMR
GateGarbling (Figure 5.13), implementing the gate

garbling phase of FPreprocessing. Creating garbled AND gates is done similarly to the OT-based

protocol [25], with the exception that we use short wire keys of length `BMR instead of κ. We also

show how to create sharings of garbled splitter gates without any interaction, so these are much

cheaper than AND gates.

Suppose that for an AND gate g, each Pi holds the wire mask share λi
v and keys ki

v,0,ki
v,1 ←

{0,1}`BMR . Pi defines R i
g = ki

w,0 ⊕ki
w,1. After that all parties call FBit×Bit once to compute additive

shares of λuv =λu ·λv ∈ {0,1}, which are then used to locally compute shares of χg,a,b = (a⊕λu)·(b⊕
λv)⊕λw, for each (a,b) ∈ {0,1}2. Each Pi obtains χi

g,a,b such that χg,a,b =⊕i∈[n]χ
i
g,a,b. To compute

shares of the products χg,a,b ·R i
g, the parties call F

`BMR
Bit×String(Pi) three times, for each i ∈ [n], to

multiply R i
g with each of the bits λu,λv, (λuv ⊕λw). These can then be used for each P j to locally

obtain the shares (χg,a,b ·R i
g) j, for all (a,b) ∈ {0,1}2 (just as in [25]).

After computing the bit/string products, P j then computes for each (a,b) ∈ {0,1}2:

ρ
j
i,a,b =

(χg,a,b ·R i
g) j j 6= i

ki
w,0 ⊕ (χg,a,b ·R i

g)i j = i.

These values define shares of χg,a,b ·R i
g ⊕ ki

w,0. Finally, each party’s share of the garbled AND

132

5.4. MULTI-PARTY GARBLED CIRCUITS WITH SHORT KEYS

gate is obtained as:

g̃i
a,b =H(i,b,ki

u,a)⊕H(i,a,ki
v,b)⊕ (χi

g,a,b,ρ i
1,a,b, . . . ,ρ i

n,a,b), a,b ∈ {0,1}

Summing up these values we obtain:

⊕
i

g̃i
a,b =

⊕
i
H(i,b,ki

u,a)⊕H(i,a,ki
v,b)⊕ (χi

g,a,b,ρ i
1,a,b, . . . ,ρ i

n,a,b)

=
n⊕

i=1
(H(i,b,ki

u,a)⊕H(i,a,ki
v,b))⊕ (c,k1

w,c, . . . ,kn
w,c),

where c = χg,a,b, as required.

To garble a splitter gate, we observe that here there is no need for any secure multiplications

within MPC, and the parties can produce shares of the garbled gate without any interaction. This

is because the two output wire values are the same as the input wire value, so to obtain a share

of the encryption of the two output keys on wires u,v with input wire w, party Pi just computes:

(H′(i,0,ki
w,c),H′(i,1,ki

w,c))⊕ (0, . . . ,ki
u,c,0, . . . ,ki

v,c,0, . . . ,0)

for c ∈ {0,1}, where the right-hand vector contains Pi ’s keys in positions i and n+ i. The parties

then re-randomize this sharing with a share of zero from FZero, so that opening the shares does

not leak information on the individual keys.4

5.4.4 Complexity and Security

The above approach reduces size of the garbled circuit by a factor κ/`BMR, for `BMR-bit keys, but still

requires n keys for every row in the garbled gates. Similarly to Section 5.3, when n is large we

can reduce this by using a (random) committee P (h) of size nh that has at least h honest parties.

Π`BMR
Preprocessing and Π`BMR

BMR are then run as if called only by the parties in P (h). For circuit-input

wires w where parties in P \P (h) provide input, they are sent the masks λw in Π`BMR
Preprocessing, so

in Π`BMR
BMR (Figure 5.14) they can then broadcast Λw = ρ i

w ⊕λw in the same way as parties in P (h).

This reduces the size of the garbled circuit by an additional factor of n/nh. Finally, the same

committee P (h) can be combined with a (random) committee P (1) with a single honest party in

order to optimize the bit multiplications needed to compute the χg,a,b values, as was described in

Section 5.3.

In Section 5.5, we give some examples of committee sizes and key lengths that ensure security,

and compare this with the naive approach of running the preprocessing phase of BMR in P (1)

only.

4For AND gates, the shares output by F
`BMR
Bit×String are uniformly random, so do not need re-randomizing with

sharings of zero.

133

CHAPTER 5. MULTI-PARTY COMPUTATION WITH SHORT KEYS

Theorem 5.4.2. ProtocolΠ`BMR
Preprocessing UC-securely realizes functionality FPreprocessing (Figure 5.7)

with perfect security in the (FBit×Bit,F
`BMR
Bit×String,F 2n`BMR

Zero)-hybrid model in the presence of static

honest-but-curious adversaries.

Proof. Let A denote a PPT adversary corrupting a subset of parties A ⊂ [n], then we prove that

there exists a PPT simulator S that simulates the adversary’s view. In the following, we denote

by Ā the set of honest parties. When we say that the simulator is given some value, we mean

that it receives it from FPreprocessing.

DESCRIPTION OF THE SIMULATION: Denote by W and OC f , respectively, the set of wires

and the set of circuit-output wires of a boolean circuit C f . Denote by IC f ,S the set of circuit-

input wires of a circuit where a subset of parties S ⊂ [n] provides input to the circuit. We

assume w.l.o.g. that A is a deterministic adversary, which receives as additional input a random

tape that determines its internal coin tosses. Upon receiving A ’s input (1κ, A,C f) and output

({λw}w∈OC f
, {ki

v,0,ki
v,1}v∈W , {λu}u∈IC f ,A), S incorporates A and internally emulates an execution of

the honest parties running Π`BMR
Preprocessing with the adversary A .

1. CIRCUIT-INPUT WIRES’ MASKS AND KEYS: For every circuit-input wire u and for j ∈ A, S

samples from P j ’s random tape the wire mask shares λ j
u and the keys k j

u,0,k j
u,1 that party

is meant to obtain from FPreprocessing. If a corrupted P j provides input to the circuit on a

given wire u, S samples {λi
u}i∉A such that

⊕
i∉Aλ

i
u =λu⊕⊕

j∈Aλ
j
u, where the value λu was

received from FPreprocessing. If it is a honest party providing input on u, S samples {λi
u}i∉A

uniformly at random.

2. INTERMEDIATE WIRES’ MASKS AND KEYS: Passing topologically through the gates g of the

circuit:

• For j ∈ A: If g ∈AND, S samples λ j
w ∈ {0,1} from P j ’s random tape. If g ∈ SPLIT, it

sets λ j
x =λ

j
w for both output wires x = u,v. If g ∈XOR, it sets λ j

w =⊕
x∈I λ

j
x.

• For i ∉ A: If g ∈ AND, S samples λi
w. If g ∈ SPLIT, it sets λi

x = λi
w for both output

wires x = u,v. If g ∈XOR, it sets λi
w =⊕

x∈I λ
i
x.

• If x is a circuit-output wire, the simulator adjusts the value λx ∈ {0,1} that FPreprocessing

sends to the parties to be λx =⊕
i∉Aλ

i
x ⊕

⊕
j∈Aλ

j
x.

3. GARBLE GATES: For each g ∈AND∪SPLIT:

• If g ∈AND, let ug,vg be its input wires and wg its output wire. S emulates FBit×Bit by

sampling shares z j
g from P j ’s random tape, for j ∈ A, and setting random zi

g for i ∉ A

such that
∑

i∈[n] zi
g =λug ·λvg , where λug ,λvg were obtained from FPreprocessing. S has

now all the values to compute shares of χg,a,b as χi
g,a,b = a ·b⊕b ·λi

ug
⊕a ·λi

vg
⊕ zi

g⊕λi
wg

for i ∈ [n].

134

5.4. MULTI-PARTY GARBLED CIRCUITS WITH SHORT KEYS

For j ∈ [n], S emulates three calls to F
`BMR
Bit×String(P j) with inputs {χi

g,0,0,χi
g,0,1,χi

g,1,0}

from every Pi and additional input R j
g from P j, where R j

g = k j
wg,0 ⊕ k j

wg,1. In each of

these emulated calls and for i ∈ A, it computes the corrupted parties’ output shares

from Pi ’s random tape, while for i ∉ A it samples random shares that sum to each of

the values R j
g ·χg,0,0, R j

g ·χg,0,1 and R j
g ·χg,1,0 as required.

• If g ∈ SPLIT, S emulates twice F
2n`BMR
Zero by computing shares si

0, si
1 from Pi ’s random

tape for i ∈ A and setting s j
0, s j

1 for j ∉ A such that
⊕

i∈[n] si
c = 0 for c ∈ {0,1}.

Setting the ρ and g̃ values is local computation.

4. REVEAL INPUT/OUTPUT WIRES’ MASKS: For every circuit-output wire w, S adds values

λi
w, i ∉ A (previously computed in Step 2) to the view of each P j, j ∈ A. For every circuit-

input wire u on which a P j, j ∈ A, provides input, S adds the {λi
u}i∉A values it previously

computed in Step 1 to P j ’s view.

5. OPEN GARBLING: Using the adversary’s output { g̃}g∈AND∪SPLIT, S proceeds as follows: If

1 ∈ A, it plays the role of each P j, for j ∉ A, and sends to P1 the shares { g̃ j}g∈AND∪SPLIT
that it previously computed. Otherwise, the simulator plays the role of P1 by sending

{ g̃}g∈AND∪SPLIT to each Pi, i ∈ A.

INDISTINGUISHABILITY: The wire keys and the (circuit-input and circuit-output) wire masks

output by the functionality FPreprocessing are i.i.d. uniformly random variables in the real world

too. In both worlds and for the additional simulated values, the corrupted parties’ shares for

the wire masks, the bit products (FBit×Bit functionality) and bit/string products (F `BMR
Bit×String

functionality) needed to garble AND gates are fixed by A ’s random tape, while the honest parties’

shares of the same values are uniformly random additive shares. In particular, this implies that

shares g̃i
a,b of garbled AND gates are uniformly random additive shares in both executions. The

same applies to shares of garbled splitter gates, due to the use of the F
2n`BMR
Zero functionality in

the real world. Regarding the OPEN GARBLING step, if 1 ∉ A the reconstructed garbled circuit is

identically distributed in both worlds. Else, if 1 ∈ A, the adversary gets additive shares of the

garbled circuit both in the real and simulated executions, as we argued.

Finally, the distribution of the variables corresponding to additive shares, on the one hand,

and that of the i.i.d. variables, on the other hand, guarantees that the joint output of all par-

ties, together with the simulated/real view of corrupted parties, are identically distributed in

both worlds. More formally, let outputπ(x,κ) (resp. f (x)) be the output of Π`BMR
Preprocessing (resp.

FPreprocessing) on input x ∈ {0,1}∗ from all parties and security parameter κ. Let viewπA(x,κ) (resp.

fA(x)) be the restriction of these outputs to the set of corrupted parties A. We just proved that:

{(S (1κ, x, fA(x)), f (x))}x,κ,A ≈ {(viewπA(x,κ),outputπ(x,κ))}x,κ,A.

■

135

CHAPTER 5. MULTI-PARTY COMPUTATION WITH SHORT KEYS

Protocol Π`BMR
BMR

COMMON INPUT: A boolean circuit C f with fan-out-one gates representing the function f . Let
AND,XOR and SPLIT be the sets of AND, XOR and splitter gates, respectively. For a gate g ∈ SPLIT,
let the input wire be {w} and the output wires be {u,v}. Otherwise let {u,v} be the input wires and {w}
the output wire.
CRS: H : [n]× {0,1}× {0,1}`BMR → {0,1}n`BMR+1, a uniformly random function, and H′ defined from H by
excluding the least significant bit of the output.

The parties execute the following commands in sequence:

Preprocessing:

1. Call FPreprocessing with input C f . Each party Pi obtains the garbled version g̃ of every
gate g ∈ SPLIT∪AND, the wire masks λw for every output wire and every wire associated
with their input, and all their keys {ki

w,0,ki
w,1} for every wire w of the circuit.

Online Computation:

1. For all input wires w with input from Pi, party Pi computes Λw = ρ i
w ⊕λw, where ρ i

w is
Pi ’s input to C f on wire w, and λw was obtained from FPreprocessing. Then, Pi broadcasts
the external value Λw to all parties.

2. For all input wires w, each party Pi broadcasts the key ki
w,Λw

associated to Λw.

3. Passing through the circuit topologically, the parties can now locally compute the following
operations for each gate g.

a) If g ∈ SPLIT, set Λx =Λw for x ∈ {u,v} and then compute:

(k1
u,Λu

, . . . ,kn
u,Λu

,k1
v,Λv

, . . . ,kn
v,Λv

)= g̃Λw⊕(
n⊕

i=1
H′(i,0,ki

w,Λw
),

n⊕
i=1

H′(i,1,ki
w,Λw

)

)
b) If g ∈AND, the parties compute:

(Λw,k1
w,Λw

, · · · ,kn
w,Λw

)= g̃Λu ,Λv ⊕
n⊕

i=1

(
H(i,Λv,ki

u,Λu
)⊕H(i,Λu,ki

v,Λv
)
)

c) If g ∈XOR, the parties compute Λw =⊕
x∈IΛx and ki

w,Λw
=⊕

x∈I ki
x,Λx

for i ∈ [n].

4. Eventually, all parties will obtain an external value Λw for every circuit-output wire w.
Each party can then recover the actual output value from ρw =Λw ⊕λw, where λw was
obtained in the preprocessing stage.

Figure 5.14: Online phase of the constant-round MPC protocol.

5.4.5 The Online Phase

We present the online phase of our protocol for multi-party garbled circuits with short keys

in Figure 5.14. Given the previous description of the garbling phase, the online phase is quite

straightforward, where upon reconstructing the garbled circuit and obtaining all input keys,

the evaluation process is similar to that of [18], described in Section 2.6. As in that work, all

parties run the evaluation algorithm, which in our case involves each party computing just

136

5.4. MULTI-PARTY GARBLED CIRCUITS WITH SHORT KEYS

2n hash evaluations per gate. As usual, during the evaluation parties obtain external values

corresponding to a random mask of the actual values being computed. Upon completion, the

parties obtain the actual output using the output wire masks revealed from FPreprocessing. The

security of the protocol reduces to the DRSDr,h,`BMR problem, where `BMR is the key length, h is

the number of honest parties, and r is twice the output length of the function H (sampled by the

CRS).

We remark that in practice, we may want to implement the random function H in the CRS

using fixed-key AES in the ideal cipher model, as is common for garbling schemes based on

Free-XOR. In Section 5.5.2, we show that this reduces the number of AES calls from O(n2) in

previous BMR protocols to O(n2`BMR/κ).

We conclude with the following theorem

Theorem 5.4.3. Let f be an n-party functionality {0,1}nκ 7→ {0,1}κ and assume that the DRSD2r,h,`BMR

assumption (see Definition 5.5) holds, where r = n`BMR +1. Then Protocol Π`BMR
BMR from Figure 5.14

UC-securely computes f in the presence of a static honest-but-curious adversary corrupting t = n−h

parties in the FPreprocessing-hybrid model.

Proof. We reduce security of the protocol to the extended double-key decisional-RSD problem

(Definition 5.7) with parameters (r,h,`), where r := n`BMR +1. By Lemma 5.2.5, this is reducible

to DRSD2r,h,`.

Let A be a PPT adversary corrupting a subset of parties A ⊂ [n] such that |A| = n− h.

We prove that there exists a PPT simulator S , with access to an ideal functionality F that

implements f , which simulates the adversary’s view. The simulator fixes the CRS as a random

2n ·2`BMR ×2n`BMR+1 matrix. A key kw for wire w is denoted as an active key if it is observed by

the adversary upon evaluating the garbled circuit. The remaining hidden key is denoted as an

inactive key. An active path is the set of all active keys that are observed throughout the garbled

circuit evaluation.

Denoting the set of honest parties by Ā, our simulator S is defined below.

THE DESCRIPTION OF THE SIMULATION:

1. INITIALIZATION. Upon receiving the adversary’s input (1κ, A, xA) and output y, S samples

a i.i.d uniformly random tapes r i for each i ∈ A, incorporates A and internally emulates an

execution of the honest parties running Π`BMR
BMR with the adversary A . When we say that

S chooses a value for some corrupted party, we mean that it samples the value from that

party’s random tape r i.

2. PREPROCESSING. S obtains the adversary’s input C f which is a Boolean circuit that

computes f with a set of wires W and a set of G gates, and emulates FPreprocessing, as

follows:

• For every XOR gate g and i ∈ A the simulator samples ∆i
g ∈ {0,1}`BMR .

137

CHAPTER 5. MULTI-PARTY COMPUTATION WITH SHORT KEYS

• For every input wire u the simulator chooses a random bit Λu ∈ {0,1} and, for every

i ∈ Ā, an active key ki
u,Λu

∈ {0,1}`BMR . Additionally, it chooses a key ki
u,0 ∈ {0,1}`BMR

for every i ∈ A. Finally, and also for i ∈ A, if u is input to a XOR gate g′ it sets

ki
u,1 = ki

u,0 ⊕∆i
g′ , otherwise it samples ki

u,1 ∈ {0,1}`BMR .

The simulator continues the emulation of the garbling phase by computing an active path

of the garbled circuit that corresponds to the sequence of keys which will be observed by

the adversary. Importantly, S never samples the inactive keys ki
u,Λ̄u

,ki
v,Λ̄v

and ki
w,Λ̄w

for

i ∈ Ā in order to generate the garbled circuit.

• ACTIVE PATH GENERATION OF XOR GATES. For every XOR gate g with input a set of

wires I and an output wire w,

– S sets Λw =⊕
x∈IΛx.

– Next, for i ∈ A it sets ki
w,0 =

⊕
x∈I ki

x,0 and ki
w,1 = ki

w,0 ⊕∆i
g.

– Finally, for i ∈ Ā the simulator sets ki
w,Λw

=⊕
x∈I ki

x,Λx
.

• ACTIVE PATH GENERATION OF AND GATES. For every AND gate g with input wires

I = {u,v} and an output wire w, S samples a randomΛw ∈ {0,1} and honestly generates

the entry in row (Λu,Λv), where Λu (resp. Λv) is the external value associated to the

left (resp. right) input wire to g. Namely, the simulator computes

g̃Λu,Λv =
(

n⊕
i=1

H(i,Λv,ki
u,Λu

)⊕H(i,Λu,ki
v,Λv

)

)
⊕ (Λw,k1

w,Λw
, . . . ,kn

w,Λw
).

The remaining three rows are sampled uniformly at random from {0,1}n`BMR+1.

• ACTIVE PATH GENERATION OF SPLITTER GATES. For every splitter gate g with an

input wire I = {w} and output wires O = {u,v}, S sets Λx =Λw for every x ∈ O and

honestly generates the entry in row Λw, where Λw is the external value associated to

the input wire to g. Namely, the simulator computes

g̃Λw =
(

n⊕
i=1

H′(i,0,ki
w,Λw

),
n⊕

i=1
H′(i,1,ki

w,Λw
)

)
⊕ (k1

u,Λu
, . . . ,kn

u,Λu
,k1

v,Λv
, . . . ,kn

v,Λv
).

The remaining row is sampled uniformly at random from {0,1}2n`BMR .

• SETTING THE TRANSLATION TABLE. For every output wire w ∈W returning the ith

bit of y, the simulator sets λw =Λw⊕ yi. For all input wires w ∈W ′′ that are associated

with the ith bit of xA (the adversary’s input), the simulator sets λw =Λw ⊕ xA,i. The

simulator forwards the adversary the λw value for every output wire w ∈ W and

every circuit-input wire w ∈W ′′ associated with a corrupted party. It completes the

emulation of FPreprocessing by adding the complete garbled circuit to the view of each

corrupted party.

138

5.4. MULTI-PARTY GARBLED CIRCUITS WITH SHORT KEYS

3. ONLINE COMPUTATION. In the online computation the simulator adds to the view of every

corrupted party the external values {Λw}w∈W ′ that are associated with the honest parties’

input wires W ′. The simulator adds the honest parties’ input keys {ki
w,Λw

}i∈Ā,w∈W ′ to the

view of each corrupted party.

This concludes the description of the simulation. Note that the difference between the sim-

ulated and the real executions is regarding the way the garbled circuit is generated. More

concretely, the simulated garbled gates include a single row that is properly produced, whereas

the remaining three rows are picked at random. Let HYB
FPreprocessing

Π
`BMR
BMR,A ,Z

(1κ, z) denote the output

distribution of the adversary A and honest parties in a real execution using Π`BMR
BMR with adversary

A . Moreover, let IDEALF ,S ,Z (1κ, z) denote the output distribution of S and the honest parties

in an ideal execution.

We prove that the ideal and real executions are indistinguishable.

Lemma 5.4.1. The following two distributions are computationally indistinguishable:

• {HYB
FPreprocessing

Π
`BMR
BMR,A ,Z

(1κ, z)}κ∈N,z∈{0,1}∗

• {IDEALF ,S ,Z (1κ, z)}κ∈N,z∈{0,1}∗

Proof: We begin by defining a slightly modified simulated execution �HYB, where the generation

of the garbled circuit is modified so that upon receiving the parties’ inputs {ρ i}i∈[n] the simulator

S̃ first evaluates the circuit C f , computing the actual bit ρw to be transferred via wire w for

all w ∈ W, where W is the set of wires of C f . It then chooses wire mask shares and wire keys

as in the description of functionality FPreprocessing from Figure 5.7. Finally, S̃ fixes the active

key for each wire w ∈W to be (k1
w,ρw⊕λw

, . . . ,kn
w,ρw⊕λw

). The rest of this hybrid is identical to the

simulation. This hybrid execution is needed in order to construct a distinguisher for the Extended

Double-Key RSD assumption.

Let �HYB
FPreprocessing

Π
`BMR
BMR,A

(1κ, z) denote the output distribution of the adversary A and honest parties

in this game. It is simple to verify that the adversary’s views in �HYB and IDEAL are identical,

as in both cases the garbling of each gate includes just a single row that is correctly garbled and

the external value associated with each wire w is independent of `BMRw.

Our proof of the lemma follows by a reduction to the Extended Double-Key RSD hardness

assumption (cf. Definition 5.7). Assume by contradiction the existence of an environment Z , an

adversary A and a non-negligible function p(·) such that

∣∣Pr[Z (HYB
FPreprocessing

Π
`BMR
BMR,A ,Z

(1κ, z))= 1]−Pr[Z (�HYB
Π
`BMR
BMR,A ,Z

(1κ, z))= 1]
∣∣≥ 1

p(κ)

for infinitely many κ’s where the probability is taken over the randomness of Z as well as the

randomness for choosing the Λ values and the keys. Then we construct a PPT distinguisher D for

139

CHAPTER 5. MULTI-PARTY COMPUTATION WITH SHORT KEYS

the Extended Double-Key RSD assumption that distinguishes between an instance of the form(
H,

⊕
i∈Ā

H(i,0,ki),
⊕
i∈Ā

H(i,0,k′
i),

⊕
i∈Ā

H(i,1,ki),
⊕
i∈Ā

H(i,1,k′
i)

)

and five random elements, for some subset Ā of [n] of size h (that corresponds to the set of honest

parties) with probability at least 1
p(κ)·|C| via a sequence of hybrid games {HYBi}i∈[|C|], where

C = SPLIT∪AND. In more details, we define hybrid HYBi as a hybrid execution with a simulator

S i that garbles the circuit as follows. The first i gates in the topological order are garbled as in

the simulation whereas the remaining |C|− i gates are garbled as in the real execution. Note

that HYB0 is distributed as hybrid HYB and that HYB|C| is distributed as �HYB. Therefore, if

HYB and �HYB are distinguishable with probability 1
p(κ) then there exists τ ∈ [|C|] such that

hybrids HYBτ−1 and HYBτ are distinguishable with probability at least 1
p(κ)·|C| . Next, we formally

describe our reduction to the Extended Double-Key RSD hardness assumption. Upon receiving

a tuple (H,H̃0,H̃′
0,H̃1,H̃′

1) that is distributed according to the first or the second distribution, a

subset Ā of [n] that denotes the set of honest parties, an index τ and the environment’s input z,

distinguisher D internally invokes Z and simulator S . In more detail:

• D internally invokes Z that fixes the honest parties’ inputs ρ.

• D emulates the communication with the adversary (controlled by Z) in the initialization,

preprocessing and garbling steps as in the simulation with S .

• For each wire u, let ρu ∈ {0,1} be the actual value on wire u. Note that these values, as well

as the output of the computation y, can be determined since D knows the actual input of

all parties to the circuit.

• For each wire u in the circuit and i ∈ A, D chooses a pair of keys ki
u,0,ki

u,1 ∈ {0,1}`BMR ,

whereas for all i ∈ Ā it samples a random key ki
u,Λu

∈ {0,1}`BMR . D further fixes the external

value Λu =λu ⊕ρu.

• D then garbles the circuit as follows.

– For every g j ∈ AND with input wires u and v and output wire w, D continues as

follows.

If j < τ then D garbles g j exactly as in the simulation with S̃ .

If j = τ then D first honestly computes the (Λu,Λv)-th row by fixing

g̃Λu,Λv =
(

n⊕
i=1

H(i,Λv,ki
u,Λu

)⊕H(i,Λu,ki
v,Λv

)

)
⊕ (c,k1

w,Λw
, . . . ,kn

w,Λw
)

where c =Λw.

Next, D samples an inactive key ki
w,Λ̄w

for all i ∈ Ā and fixes the remaining three rows

as follows.

140

5.4. MULTI-PARTY GARBLED CIRCUITS WITH SHORT KEYS

g̃Λu,Λ̄v
=

(
n⊕

i=1
H(i,Λ̄v,ki

u,Λu
)⊕

(⊕
i∈A

H(i,Λu,ki
v,Λ̄v

)
)
⊕ H̃′

Λu

)
⊕ (c,k1

w,c, . . . ,kn
w,c), where c =Λu · Λ̄v ⊕Λw ⊕ρw

g̃Λ̄u,Λv
=

(⊕
i∈A

H(i,Λv,ki
u,Λ̄u

)⊕ H̃Λv ⊕
(n⊕

i=1
H(i,Λ̄u,ki

v,Λv
)
))

⊕ (c,k1
w,c, . . . ,kn

w,c), where c = Λ̄u ·Λv ⊕Λw ⊕ρw

g̃Λ̄u,Λ̄v
=

(⊕
i∈A

H(i,Λ̄v,ki
u,Λ̄u

)⊕ H̃Λ̄v
⊕

(⊕
i∈A

H(i,Λ̄u,ki
v,Λ̄v

)
)
⊕ H̃′

Λ̄u

)
⊕ (c,k1

w,c, . . . ,kn
w,c), where c = Λ̄u · Λ̄v ⊕Λw ⊕ρw.

Finally, if j > τ then D garbles g j exactly as in hybrid HYB. For that, D needs to know

both active and inactive keys. It therefore chooses the inactive keys that are associated

with the input and output wires of this gate for i ∈ Ā, in order to be able to complete

the garbling. Recall that the circuit is with fan-out 1. Therefore the distinguisher can

choose the inactive key for the input wire of this gate (as it was not used as an input

wire to gate gτ).

– For every g j ∈ SPLIT with input wire w and output wires u,v, D completes the garbling

as follows.

If j < τ then D garbles g j exactly as in the simulation with S̃ .

If j = τ then D first honestly computes the Λwth row by fixing

g̃Λw =
(

n⊕
i=1

H(i,0,ki
w,Λw

)⊕H(i,1,ki
w,Λw

)

)
⊕ (k1

u,Λu
, . . . ,kn

v,Λv
).

Next, it samples inactive keys ki
u,Λ̄u

,ki
v,Λ̄v

for all i ∈ Ā and fixes the remaining row as

follows.

g̃Λ̄w
=

(⊕
i∈A

H(i,0,ki
w,Λ̄w

)⊕ H̃0 ⊕
⊕
i∈A

H(i,1,ki
w,Λ̄w

)⊕ H̃1

)
⊕ (k1

u,Λ̄u
, . . . ,kn

v,Λ̄v
).

If j > τ then D garbles g j as in hybrid HYB using a similar process as for the case of

an AND gate.

• This concludes the description of the reduction. Note that the set XOR need not be part of

these hybrids since we do not send any garbling information for this set of gates. D hands

the adversary the complete description of the garbled circuit and concludes the execution

as in the simulation with S̃ .

• D outputs whatever Z does.

141

CHAPTER 5. MULTI-PARTY COMPUTATION WITH SHORT KEYS

Note first that if (H̃0,H̃′
0,H̃1,H̃′

1) are truly uniform then the view generated by D is distributed as

in HYBτ. This is because only the active path is created as in the real execution, whereas the

remaining rows are sampled uniformly at random from the appropriate domain. On the other

hand, if this tuple is generated according to the following distribution(
H,

⊕
i∈A

H(i,0,ki),
⊕
i∈A

H(i,0,k′
i),

⊕
i∈A

H(i,1,ki),
⊕
i∈A

H(i,1,k′
i)

)

then this emulates game HYBτ−1, since each tuple element emulates an evaluation of the hash

values for the honest parties on the secret keys.

�

This concludes the proof of Theorem 5.4.3. ■

5.5 Complexity Analysis and Implementation Results

We now compare the complexity of the most relevant aspects of our approach to the state-of-

the-art prior results in semi-honest MPC protocols with dishonest majority. To demonstrate the

practicality of our approach, we also present implementation results for the online evaluation

phase of our BMR-based protocol.

5.5.1 Threshold Variants of Full-Threshold Protocols

Since the standard GMW and BMR-based protocols allow for up to n−1 corruptions, we also

show how to modify previous protocols to support some threshold t, and compare our protocols

with these variants. The method is very simple (and similar to the use of committees in our

protocols), but does not seem to have been explicitly mentioned in previous literature. To evaluate

a circuit C, all parties first secret-share their inputs to an arbitrarily chosen committee P ′, of

size t+1. Committee P ′ runs the full-threshold protocol for a modified circuit C′, which takes all

the shares as input, and first XORs them together so that it computes the same function as C.

The committee P ′ then sends the output to all parties in P . The complexity of the threshold-t

variant of a full-threshold protocol, Π, is then essentially the same as running Π between t+1

parties instead of n.

5.5.2 Instantiating the CRS

Our protocols require a CRS, which is a randomly sampled function, H. One way of implementing

this would be generate the function in a setup phase (e.g. with coin-tossing) and store it as

a lookup table. However, when the table grows large this will have a prohibitive impact on

performance, as there will likely be many cache misses when reading from H at random locations.

A more efficient alternative is to implement H using fixed-key AES, which offers fast performance

142

5.5. COMPLEXITY ANALYSIS AND IMPLEMENTATION RESULTS

on modern CPUs with AES hardware instructions. This gives security in the ideal cipher model,

where fixed-key AES is modelled as a random permutation.5

Depending on which of our two protocols is used, this method works as follows:

• For GMW, H is a 1-bit output hash function, so we can simply truncate the AES output.

• For our BMR-style protocol, we need to expand the input to n·`+1 bits. Let B = d(n·`+1)/128e
be the number of AES blocks needed to generate one hash output. The parties first fix a

random key s ← {0,1}128 and then define:

H(i,b,k)= (AESs(i‖b‖k‖0), . . . ,AESs(i‖b‖k‖B−1)),

where the last block is truncated so that the total output length is n ·`BMR +1 bits.

The cost of a single call to H is that of B AES operations.

5.5.3 Concrete Hardness of RSD and Our Choice of Parameters

In this section we give an overview of how we select the key length ` in our protocols according to

n,h, r, so that the corresponding RSDr,h,` instance is hard enough. For a more detailed survey of

known attacks and the techniques involved, check the full version [69] of the paper this chapter

is based on. As discussed in Section 5.2.4, RSD is similar to the (standard) syndrome decoding

problem, where each component of the error vector is 0 or 1 with some constant probability, which

is equivalent to the problem of learning parity with noise (LPN).

The most efficient attacks on RSD are Information Set Decoding (ISD), introduced by Prange

in 1962 [112], Wagner’s Generalised Birthday Attack (GBA) [127], and the Linearization Attack

(LA) by Bellare et al. [22] and Saarinen [120]. We stress that the goal of our analysis is to find

a reasonable estimation of the complexity of these attacks; giving a complete description of all

possible decoding techniques and a precise evaluation of their cost is out of the scope of this

thesis. In our analysis we intentionally underestimate the complexity of all the attacks, resulting

in a conservative estimate of the security of our protocols.

When considering the hardness of RSD instances we need to distinguish the case where the

solution to the problem is unique and the case of multiple solutions. In the first case, which always

occurs for our BMR-style protocols, GBA essentially reduces to the classical birthday attack and

the most efficient attack is ISD. Classical information set decoding algorithms do not take into

account the possibility that the solution is regular. In practice, when we estimate the cost of this

attack, we consider the cost of both a tailored regular variant of ISD, augmented with the Stern

[125] and Finiasz and Sendrier [56] techniques, and the more recent non-regular variant due to

5This actually only provides security up to the birthday bound, i.e. as long as the adversary makes no more than
264 queries to AESs. In practice, however, since ` is small there will typically be far fewer than 264 possible inputs, so
we do not need to be concerned with the birthday bound.

143

CHAPTER 5. MULTI-PARTY COMPUTATION WITH SHORT KEYS

n 20 50 80 100 200 400
h 10 11 16 10 20 25 40 16 24 32 56 20 30 40 60 60 100 80 120

` Pra 19 18 13 21 13 11 8 32 12 10 8 14 11 9 8 8 8 8 8
` 32 29 18 > 32 27 16 8 > 32 30 17 8 > 32 25 15 8 14 8 11 8

Table 5.1: Min key-length for BMR-style MPC with 128 bits of security for different n and h when
r = 2`n+2

h 15 20 30 40 50 80

r 300 1500 300 3000 300 2000 400 3000 450 1000 420 2500
` 14 26 11 32 8 16 7 15 6 8 4 8

Table 5.2: Min key-length for GMW-style MPC with 128 bits of security for different n and h

parties n (honest) 20 (6) 50 (15) 60 (20) 80 (30) 150 (40) 200 (50) 400 (120)
(`OT, r) (31,300) (14,300) (11,300) (8,300) (7,400) (6,450) (1,80)

GMW (t = n−1) 25.46 164.15 237.18 423.44 1497.5 2666.6 10693.2
GMW (t = n−h) 14.07 84.42 109.88 170.85 818.07 1517.55 5271.56

Ours 12.89 37 40.38 50.01 169.36 261.6 403.63

Table 5.3: Amortized communication cost (in kbit) of producing a single triple in GMW. We
consider [51] for 1-out-of-4 OT extension in the GMW protocols, and the protocol from Section 5.3
in our work.

Becker et al. [19], and then we take the minimum of the two. We have also analysed more recent

variants of ISD [32, 98], see [69] for more details.

In Table 5.1, we provide an estimation of the minimal key-length ` for our BMR-style protocols

to achieve more than 128 bits of security for different values of n,h and r = 2`n+2. Note that we

only consider 8≤ `≤ 32, so when in the table we have that ` should be larger than 32, it means

that ISD cost less than 2128 for that set of parameters. We also give an estimation of minimal

key-length respect to the plain ISD attack to RSD by Prange.

When an RSD instance has more than one solution – this is sometimes the case for our

GMW-style protocol – we need to consider also GBA and LA. Notice that since there are many

solutions, attacking regular SD with classical ISD is more difficult than attacking non-regular

SD and an adversary needs to run the attack repeatedly until the output is regular, increasing

the cost of the attack. To estimate the complexity of GBA and LA we take the same conservative

approach we use for ISD. Since LA is particularly effective for larger h, especially when h > r/4,

we always set up r > 2h+1.

In Table 5.2 we propose a set of of parameters for our GMW-style protocols for different values

of h (and irrespective to the total number of parties n), such that the estimated complexity of the

most efficient decoding algorithms is larger than 2128.

144

5.5. COMPLEXITY ANALYSIS AND IMPLEMENTATION RESULTS

5 10 15 20 25 30 35 40
0

50

100

150

Number of honest parties

C
om

m
un

ic
at

io
n

co
m

pl
ex

it
y

(k
bi

t)

n= 50

GMW, t = n−h
Ours

10 20 30 40 50 60 70 80

0

200

400

600

Number of honest parties

n= 100

GMW, t = n−h
Ours

10 30 50 70 90 110 130 150

0

500

1,000

1,500

2,000

2,500

Number of honest parties

C
om

m
un

ic
at

io
n

co
m

pl
ex

it
y

(k
bi

t)

n= 200

GMW, t = n−h
Ours

10 50 100 150 200 250 300

0

0.5

1

1.5

·104

Number of honest parties

n= 500

GMW, t = n−h
Ours

Figure 5.15: Amortized communication cost (in kbit) for producing triples in GMW for n =
50,100,200,500 and deterministic committees.

145

CHAPTER 5. MULTI-PARTY COMPUTATION WITH SHORT KEYS

5.5.4 GMW-Style Protocol

We now compare the communication cost of our triple generation protocol with the best-known

instantiation of GMW, namely a variant based on 1-out-of-4 OT to generate triples, recently

optimized by [51] in the 2-party setting. This easily extends to the multi-party case with com-

munication complexity O(n2κ/ logκ) bits per AND gate, so we consider both full-threshold and

threshold-t (Section 5.5.1) variants. Note that our protocol from Section 5.3 has complexity O(nt`)

when using deterministic committees, with ` as in Table 5.1.

As can be seen in Table 5.3 and Figure 5.15, for a fixed number of honest parties h, the

improvement of our protocol over GMW (threshold t) becomes greater as the total number

of parties increases. Our protocol starts to beat the best-known GMW protocol for producing

multiplication triples when there are just 6 honest parties. For example, with 20 parties and 14

corruptions, the communication cost of our protocol is roughly 10% lower than threshold-14 GMW,

and only 2 times lower than the cost of standard, full threshold GMW. As the number of parties

(and honest parties) grows, our improvements become even greater, and when the number of

honest parties is more than 80, we can use 1-bit keys and improve upon the threshold variant of

GMW by more than 13 times.

In Section 5.3 we mentioned the possibility, when n and h are large enough, of using random

committees P (h) and P (1), such that except with negligible probability P (h) has at least h′ ≤ h

honest parties and P (1) has at least one honest party. In order to estimate the communication

complexity of our protocol, we consider the probability p(1) of P (1) not having a single honest

party and the probability p(h) of P (h) of having less than h′ honest parties. Let n1 = |P (1)| and

nh = |P (h)|, we have that

p(1) =
(n−h

n1

)(n
n1

) and p(h) =
∑min(h′,h′−v)

j=1

(n−h
nh−h′+ j

) · (h
h′− j

)(n
nh

) ,

where v = nh − (n− h) < h′. We fix the parameters n,h,h′, and compute the minimum values

nh,n1 such that p(h) and p(1) are less than 2−s. Table 5.4 compares our protocol with random

committees and GMW with a single random committee of size n1, i.e. having at least one honest

party with overwhelming probability, when s = 40. Even if the communication complexity reduces

in both protocols, our approach is always at least 50% more efficient compared to GMW.

(n,h,h′) (100, 40, 30) (200, 70, 50) (500, 200, 120) (800, 300, 120) (1000, 200, 120) (5000,1200,120) (10000, 3000, 120)
(`OT, r) (8, 300) (6, 450) (1, 80) (1, 80) (1, 80) (1, 80) (1, 80)
(nh′ ,n1) (90, 39) (180, 54) (382, 51) (447, 57) (790, 117) (811, 100) (654, 78)

GMW 99.3 191.75 170.85 213.9 909.32 663.3 402.40
Ours 43.6 84.62 70.13 91.72 337.75 291 183.64

Table 5.4: Amortized communication cost (in kbit) of producing a single triple in GMW using
random committees.

146

5.5. COMPLEXITY ANALYSIS AND IMPLEMENTATION RESULTS

parties (honest) 20 (10) 50 (20) 80 (32) 100 (40) 200 (60) 400 (120) 1000 (160)
(`BMR,`OT, r) (32,23,530) (27,13,450) (17,8,380) (15,7,400) (8,5,370) (8,1,80) (8,1,120)
[25] (Gb P) 341.24 2200.1 5675.36 8890 35740 143320.8 897102

[25] (Gb P (1)) 98.78 835.14 2112.1 3286.7 17726.45 70654.7 634383.12
Ours (Garbling) 111.7 747.63 1750.48 2678.74 5448.36 10114.99 64474.1

[25] (|GC| P) 10.24A 25.6A 40.96A 51.2A 102.4A 204.8A 512A
[25] (|GC| P (1)) 5.632A 15.88A 25.1A 31.23A 72.19A 143.9A 430.6A

[26] (|GC|) 12.29(A+ X) 12.29(A+ X) 12.29(A+ X) 12.29(A+ X) 12.29(A+ X) 12.29(A+ X) 12.29(A+ X)
Ours (|GC|) 2.56(A+S) 5.4(A+S) 5.45(A+S) 6(A+S) 6.4(A+S) 12.8(A+S) 32(A+S)

Table 5.5: Communication complexity for garbling, and size of garbled gates, in BMR-style
protocols in kbit. A = #AND gates, S = #Splitter gates, X = #XOR gates.

5.5.5 BMR-Style Protocol

5.5.5.1 Communication Complexity

To show the efficiency of our constant-round garbling protocol from Section 5.4.5, we provide

Table 5.5, which has two parts. First, it compares the amortized communication complexity

incurred for garbling an AND gate with [25]. We recall that this is the dominating cost for

BMR-style protocols using Free-XOR, and that we incur no communication for creating shares of

garbled splitter gates. Note that in the first setting of n = 20, t = 10, although our communication

costs are around 3 times lower than [25], we do not improve upon the threshold-t variant of that

protocol, described earlier. Once we get to 50 parties, though, we start to improve upon [25], with

a reduction in communication going up to 7x for 400 parties and 10x for 1000 parties.

The second half of the table shows the size of the garbled circuit in terms of the total number

of AND, XOR and splitter gates. Garbled circuit size only has a slight impact on communication

complexity, when opening the garbled circuit, which is much lower than the communication in the

rest of the garbling phase. However, if an implementation needs to store the entire garbled circuit

in memory (either for evaluation, or storage for later use) then it is also important to optimize

its size. Here we also compare with [26], which recently showed how to construct a compact

multi-party garbled circuit based on key-homomorphic PRFs. The size of their garbled circuit is

constant and grows with O(κ) per gate, with security proven in the presence of n−1 corrupted

parties. On the other hand, their construction requires much more expensive operations based

on the Decisional Diffie-Hellman (DDH) or Ring-LWE assumptions, and these also lead to fairly

large keys – with a 3072-bit discrete log prime (equivalent to 128-bit security) the size of a garbled

AND gate only beats our protocol at around 400 parties. Additionally, their construction does not

support Free-XOR, and the concrete efficiency of the offline garbling phase is not clear: garbling

an AND gate requires O(n) secret-shared field multiplications, which seems likely to be much

higher than the offline cost of our protocol or [25], but their paper does not give concrete numbers.

In Figure 5.16 we show the communication complexity of garbling when n = 100,500 and for

different number of honest parties.

CONCRETE COST FORMULAS: Here we explicit how to obtain the communication complexity

147

CHAPTER 5. MULTI-PARTY COMPUTATION WITH SHORT KEYS

20 40 60 80

0

2,000

4,000

6,000

Number of honest parties

C
om

m
un

ic
at

io
n

co
m

pl
ex

it
y

(k
bi

t)

n= 100

BLO16
Ours

50 100 150 200 250 300

0

0.5

1

1.5

2

·105

Number of honest parties

n= 500

BLO16
Ours

Figure 5.16: Communication complexity cost (in kbit) for garbling when n = 100 and n = 500.

results in Table 5.5 and Figure 5.16, which compare our work with the best previous passively

secure BMR protocol, namely [25]. To simplify the comparison, we exclude the communication

related to input and output wires. Given a circuit C f with X XOR gates and A AND gates, each

of them with fan-in-two and arbitrary fan-out, [25] has the following communication costs:

1. One bit multiplication and 3n bit-string multiplications per AND gate, where the strings

have length κ. A bit multiplication requires n(n−1) bit-OTs, each of which involves sending

128+2 bits if instantiated with [74] or 84 bits if instantiated with [83]. Each of the bit-string

multiplication can be computed using n−1 correlated OTs, at a cost of 128+128 bits each.

2. Each AND gate has size 4nκ bits, and each party has a share of it. If the circuit is

reconstructed by every party sending her share to P1, and then P1 broadcasting the

addition of every share, the cost of putting an AND gate together is 8n(n−1)κ bits.

This gives a total cost of (130+768+8κ) ·n · (n−1) · A = 1922 ·n · (n−1) · A bits for the [74]

instantiation and (67+768+8κ) ·n · (n−1) · A = 1876 ·n · (n−1) · A when using [51] instead. In our

work, the costs are:

1. One bit multiplication and 3n bit/string multiplications per AND gate, where the strings

have length `. When implemented with our improved GMW protocol with deterministic

committees, these cost (n−h+1)(n−1)(`OT+`OTκ/r+1) bits and n(n−1)`BMR(`OT+`OTκ/r+1)

bits, respectively.

2. Each AND gate has size 4 · (n`+1) bits. Each Splitter gate has size 4n` bits.

148

5.5. COMPLEXITY ANALYSIS AND IMPLEMENTATION RESULTS

50 100 150 200 250 300

0

1,000

2,000

3,000

4,000

5,000

Number of parties

T
im

e
(m

s)

AES

BLO16
Ours

50 100 150 200 250 300

0

2

4

·104

Number of parties

T
im

e
(m

s)

SHA-256

BLO16
Ours

50 100 150 200 250 300

0

2

4

6

·104

Number of parties

T
im

e
(m

s)

Random circuit

BLO16
Ours

50 100 150 200 250 300

0

1,000

2,000

3,000

Number of parties

T
im

e
(m

s)

Mult-32

BLO16
Ours

Figure 5.17: Online time for evaluating various circuits with n = 30,50,100,300. The corre-
sponding numbers of honest parties are h = 14,21,38,105, respectively. Times for [25] are for a
full-threshold implementation.

5.5.5.2 Garbling Implementation

Note: The following implementation work was not carried out by the author, but by Assi Barak,

Moriya Farbstein and Lior Koskas from the software team at Bar-Ilan University. It appears here

for completeness and a better understanding of the previous results in this chapter.

In Figure 5.17, we present running times for evaluating the garbled circuit in our protocol

and compare with times for [25] running on the same machine.

The implementation runs on a single machine,6 to allow testing just the local computation

in the online phase (note that there is very little interaction in the online phase). We took as

benchmarks the AES circuit (6800 AND gates, 31796 Splitters), the SHA-256 circuit (90825

AND gates, 132586 Splitters), a binary multiplier for 32-bit numbers (5926 AND gates, 6994

Splitters) and a randomly generated circuit with 100000 AND gates and 99510 Splitters (as used

6Intel Xeon E5-2650 v3 2.3GHz / 25M Cache, 10 Cores, 64GB RAM.

149

CHAPTER 5. MULTI-PARTY COMPUTATION WITH SHORT KEYS

in [26], for comparison). The CRS H was implemented with fixed-key AES in counter mode using

AES-NI instructions, which is a random function under the assumption that AES behaves like

a random permutation (see Section 5.5.2). We also tried precomputing every output of H and

storing this as a lookup-table, but in practice this did not perform well as the table size was

usually much larger than the CPU cache. Recall that the standard BMR online phase requires

each party to perform O(n2) AES operations per AND gate, whereas our online phase reduces

this to O(n2`BMR/κ), with some extra cost for evaluating splitter gates. The results show that for

the random circuit our protocol starts to pay off from around 50 parties, when the corruption

threshold is between 20–40%, reaching a 3.3x improvement for n = 300,h = 105. On the other

hand, for AES, which has a relatively large proportion of splitter gates, the crossover point is

closer to 150 parties, and the greatest improvement factor is 1.3x over [25] for n = 300,h = 105.

This shows that the performance improvements of our garbled circuit-based protocol very much

depend on the specific circuit being evaluated, but further improvements may be possible by

modifying secure computation compilers to produce circuits more suitable for our protocol. It

also seems likely that implementing our GMW-based protocol would show much more significant

gains, based on the communication costs presented earlier.

150

C
H

A
P

T
E

R

6
CONCLUSIONS AND FUTURE WORK

After several real-world deployments and proposals of Multi-Party Computation [29–31], this

research area is now ready to scale up and explore scenarios where networks are slower or more

parties take part in the computation. Whereas those might seem as differentiated directions,

most probably if tens, hundreds or even thousands of parties are to perform MPC in the real

world, they will have to do so through a WAN and network latency will then be an issue.

With few exceptions [26, 33], concrete efficiency for large numbers of parties does not seem

to have attracted a lot of interest by the community yet. This is likely to change due to both

the latest improvements and a growing number of scenarios which inherently involve data from

many sources [7, 31]. With regards to these scenarios, in work not included in this thesis [68]

we extended the recent TinyKeys technique presented in Chapter 5 to provide active security.

This new result builds on the TinyOT family of protocols (see [58, 104, 129] or Section 4.7), for

which we improve the communication complexity by producing shorter message-authentication

codes. For future works based in TinyKeys, several interesting questions remain open. Perhaps

most remarkably, it has to be shown how to efficiently extend BMR-style protocols with short

keys, as the one described in Section 5.4, to be secure against active adversaries. Other areas

of interest include adaptive adversaries and further cryptanalysis of the Regular Syndrome

Decoding problem in order to improve the currently conservative parameters.

Regarding MPC over slow networks without necessarily as many parties, constant-round

protocols provide a promising solution. Specially for deep boolean circuits, it has been empirically

verified in the passive multi-party setting (for BMR-style protocols [25]) and in the active, two-

party one [128] that garbled circuits outperform other approaches. Nevertheless, as progress on

BMR-style protocols goes along, more experiments in different scenarios will be necessary in

order to keep comparing with the presently more active line of research in secret-sharing based

151

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

MPC. At the moment, we know that secret-sharing based protocols win for lower-depth circuits

and more than two parties when the adversary is passive [25]. Running these kind of comparisons

might highlight different strengths and lead to the discovery of new, unexpected bottlenecks

which are clearer in the two-party setting. Knowledge of strong and weak points might at the

same time lead to hybrid secret-sharing/garbled circuits solutions where different parts of the

computation are obtained using either one tool or the other. Whereas these techniques have

been explored in more depth in the two-party setting [50], there is currently only one work [81]

exploiting the different strengths of each approach in the multi-party setting.

On more theoretical grounds, an important step for BMR-style protocols during the length of

this PhD was finding the right way to define the garbling functionality, as it can be noticed by

the difference between the ones appearing in Chapters 3 and 4. Finding abstractions which both

simplify the community’s work when writing proofs and are general enough to cover present and

future works is always an interesting task. The functionalities provided in Chapter 4 have already

proved useful to other authors as explicitly mentioned in [27, 67]. Notably, those two works are

of a very different nature: [27] deals with concrete efficiency improvements for BMR, while [67]

constructs the first round-optimal actively secure MPC protocol under standard assumptions.

In the same vein, future BMR-based works could use help from a rigorous definition of the

‘vector double encryption’ concept, introduced in Chapter 2 informally and for the first time in the

literature. A similar notion exists in the two party setting [91], but its extension to more parties

is not straightforward even within already existing results. Such formalization would lead to a

more general garbling functionality than the one provided in Chapter 4, together with a proof

reducing to any ’vector double encryption’ scheme instead of circular 2-correlation robust PRFs.

152

BIBLIOGRAPHY

[1] A. AFSHAR, P. MOHASSEL, B. PINKAS, AND B. RIVA, Non-interactive secure computation

based on cut-and-choose, in EUROCRYPT 2014, P. Q. Nguyen and E. Oswald, eds.,

vol. 8441 of LNCS, Springer, Heidelberg, May 2014, pp. 387–404.

[2] G. A. AKERLOF, The market for “lemons”: Quality uncertainty and the market mechanism,

Quarterly journal of economics, 84 (1970), pp. 488–500.

[3] B. APPLEBAUM, Garbling XOR gates“for free” in the standard model, Journal of Cryptology,

29 (2016), pp. 552–576.

[4] B. APPLEBAUM, Y. ISHAI, AND E. KUSHILEVITZ, Cryptography with constant input locality,

Journal of Cryptology, 22 (2009), pp. 429–469.

[5] T. AQUINAS, Summa theologiae, circa 1265-1274.

[6] T. ARAKI, J. FURUKAWA, Y. LINDELL, A. NOF, AND K. OHARA, High-throughput semi-

honest secure three-party computation with an honest majority, in ACM CCS 16, E. R.

Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi, eds., ACM Press, Oct.

2016, pp. 805–817.

[7] G. ASHAROV, D. DEMMLER, M. SCHAPIRA, T. SCHNEIDER, G. SEGEV, S. SHENKER, AND

M. ZOHNER, Privacy-preserving interdomain routing at internet scale, PoPETs, 2017

(2017), p. 147.

[8] , Privacy-preserving interdomain routing at internet scale, PoPETs, 2017 (2017), p. 147.

[9] G. ASHAROV, A. JAIN, A. LÓPEZ-ALT, E. TROMER, V. VAIKUNTANATHAN, AND D. WICHS,

Multiparty computation with low communication, computation and interaction via

threshold FHE, in EUROCRYPT 2012, D. Pointcheval and T. Johansson, eds., vol. 7237

of LNCS, Springer, Heidelberg, Apr. 2012, pp. 483–501.

[10] G. ASHAROV, Y. LINDELL, T. SCHNEIDER, AND M. ZOHNER, More efficient oblivious

transfer and extensions for faster secure computation, in ACM CCS 13, A.-R. Sadeghi,

V. D. Gligor, and M. Yung, eds., ACM Press, Nov. 2013, pp. 535–548.

153

BIBLIOGRAPHY

[11] , More efficient oblivious transfer extensions with security for malicious adversaries,

in EUROCRYPT 2015, Part I, E. Oswald and M. Fischlin, eds., vol. 9056 of LNCS,

Springer, Heidelberg, Apr. 2015, pp. 673–701.

[12] D. AUGOT, M. FINIASZ, AND N. SENDRIER, A fast provably secure cryptographic hash

function, IACR Cryptology ePrint Archive, 2003 (2003), p. 230.

[13] F. BACON, Novum organum, 1620.

[14] J. BAR-ILAN AND D. BEAVER, Non-cryptographic fault-tolerant computing in constant

number of rounds of interaction, in 8th ACM PODC, P. Rudnicki, ed., ACM, Aug. 1989,

pp. 201–209.

[15] C. BAUM, I. DAMGÅRD, T. TOFT, AND R. W. ZAKARIAS, Better preprocessing for secure

multiparty computation, in ACNS 16, M. Manulis, A.-R. Sadeghi, and S. Schneider, eds.,

vol. 9696 of LNCS, Springer, Heidelberg, June 2016, pp. 327–345.

[16] D. BEAVER, Efficient multiparty protocols using circuit randomization, in CRYPTO’91,

J. Feigenbaum, ed., vol. 576 of LNCS, Springer, Heidelberg, Aug. 1992, pp. 420–432.

[17] , Correlated pseudorandomness and the complexity of private computations, in 28th

ACM STOC, ACM Press, May 1996, pp. 479–488.

[18] D. BEAVER, S. MICALI, AND P. ROGAWAY, The round complexity of secure protocols

(extended abstract), in 22nd ACM STOC, ACM Press, May 1990, pp. 503–513.

[19] A. BECKER, A. JOUX, A. MAY, AND A. MEURER, Decoding random binary linear codes

in 2n/20: How 1 + 1 = 0 improves information set decoding, in EUROCRYPT 2012,

D. Pointcheval and T. Johansson, eds., vol. 7237 of LNCS, Springer, Heidelberg, Apr.

2012, pp. 520–536.

[20] M. BELLARE, V. T. HOANG, S. KEELVEEDHI, AND P. ROGAWAY, Efficient garbling from

a fixed-key blockcipher, in 2013 IEEE Symposium on Security and Privacy, IEEE

Computer Society Press, May 2013, pp. 478–492.

[21] M. BELLARE, V. T. HOANG, AND P. ROGAWAY, Foundations of garbled circuits, in ACM

CCS 12, T. Yu, G. Danezis, and V. D. Gligor, eds., ACM Press, Oct. 2012, pp. 784–796.

[22] M. BELLARE AND D. MICCIANCIO, A new paradigm for collision-free hashing: Incremen-

tality at reduced cost, in EUROCRYPT’97, W. Fumy, ed., vol. 1233 of LNCS, Springer,

Heidelberg, May 1997, pp. 163–192.

[23] A. BEN-DAVID, N. NISAN, AND B. PINKAS, FairplayMP: a system for secure multi-party

computation, in ACM CCS 08, P. Ning, P. F. Syverson, and S. Jha, eds., ACM Press, Oct.

2008, pp. 257–266.

154

BIBLIOGRAPHY

[24] A. BEN-EFRAIM, On multiparty garbling of arithmetic circuits, IACR Cryptology ePrint

Archive, 2017 (2017), p. 1186.

[25] A. BEN-EFRAIM, Y. LINDELL, AND E. OMRI, Optimizing semi-honest secure multiparty

computation for the internet, in ACM CCS 16, E. R. Weippl, S. Katzenbeisser, C. Kruegel,

A. C. Myers, and S. Halevi, eds., ACM Press, Oct. 2016, pp. 578–590.

[26] A. BEN-EFRAIM, Y. LINDELL, AND E. OMRI, Efficient scalable constant-round MPC via

garbled circuits, in ASIACRYPT 2017, Part II, T. Takagi and T. Peyrin, eds., vol. 10625

of LNCS, Springer, Heidelberg, Dec. 2017, pp. 471–498.

[27] A. BEN-EFRAIM AND E. OMRI, Concrete efficiency improvements for multiparty garbling

with an honest majority, in Latincrypt 2017, 2017.

[28] M. BEN-OR, S. GOLDWASSER, AND A. WIGDERSON, Completeness theorems for non-

cryptographic fault-tolerant distributed computation (extended abstract), in 20th ACM

STOC, ACM Press, May 1988, pp. 1–10.

[29] D. BOGDANOV, M. JÕEMETS, S. SIIM, AND M. VAHT, How the estonian tax and customs

board evaluated a tax fraud detection system based on secure multi-party computation,

in FC 2015, R. Böhme and T. Okamoto, eds., vol. 8975 of LNCS, Springer, Heidelberg,

Jan. 2015, pp. 227–234.

[30] D. BOGDANOV, L. KAMM, B. KUBO, R. REBANE, V. SOKK, AND R. TALVISTE, Students

and taxes: a privacy-preserving study using secure computation, PoPETs, 2016 (2016),

pp. 117–135.

[31] P. BOGETOFT, D. L. CHRISTENSEN, I. DAMGÅRD, M. GEISLER, T. JAKOBSEN, M. KRØI-

GAARD, J. D. NIELSEN, J. B. NIELSEN, K. NIELSEN, J. PAGTER, M. I. SCHWARTZBACH,

AND T. TOFT, Secure multiparty computation goes live, in FC 2009, R. Dingledine and

P. Golle, eds., vol. 5628 of LNCS, Springer, Heidelberg, Feb. 2009, pp. 325–343.

[32] L. BOTH AND A. MAY, Decoding linear codes with high error rate and its impact for lpn

security, IACR Cryptology ePrint Archive, 2017 (2017), p. 1139.

[33] G. BRACHA, An O(lgn) expected rounds randomized byzantine generals protocol, in 17th

ACM STOC, ACM Press, May 1985, pp. 316–326.

[34] S. S. BURRA, E. LARRAIA, J. B. NIELSEN, P. S. NORDHOLT, C. ORLANDI, E. ORSINI,

P. SCHOLL, AND N. P. SMART, High performance multi-party computation for binary

circuits based on oblivious transfer.

Cryptology ePrint Archive, Report 2015/472, 2015.

http://eprint.iacr.org/2015/472.

155

http://eprint.iacr.org/2015/472

BIBLIOGRAPHY

[35] R. CANETTI, Universally composable security: A new paradigm for cryptographic protocols,

in 42nd FOCS, IEEE Computer Society Press, Oct. 2001, pp. 136–145.

[36] R. CANETTI, A. COHEN, AND Y. LINDELL, A simpler variant of universally composable

security for standard multiparty computation, in CRYPTO 2015, Part II, R. Gennaro and

M. J. B. Robshaw, eds., vol. 9216 of LNCS, Springer, Heidelberg, Aug. 2015, pp. 3–22.

[37] I. CASCUDO, I. DAMGÅRD, B. DAVID, N. DÖTTLING, AND J. B. NIELSEN, Rate-1, lin-

ear time and additively homomorphic UC commitments, in CRYPTO 2016, Part III,

M. Robshaw and J. Katz, eds., vol. 9816 of LNCS, Springer, Heidelberg, Aug. 2016,

pp. 179–207.

[38] D. CHAUM, C. CRÉPEAU, AND I. DAMGÅRD, Multiparty unconditionally secure protocols

(extended abstract), in 20th ACM STOC, ACM Press, May 1988, pp. 11–19.

[39] S. G. CHOI, K.-W. HWANG, J. KATZ, T. MALKIN, AND D. RUBENSTEIN, Secure multi-party

computation of Boolean circuits with applications to privacy in on-line marketplaces, in

CT-RSA 2012, O. Dunkelman, ed., vol. 7178 of LNCS, Springer, Heidelberg, Feb. / Mar.

2012, pp. 416–432.

[40] S. G. CHOI, J. KATZ, R. KUMARESAN, AND H.-S. ZHOU, On the security of the “free-XOR”

technique, in TCC 2012, R. Cramer, ed., vol. 7194 of LNCS, Springer, Heidelberg, Mar.

2012, pp. 39–53.

[41] S. G. CHOI, J. KATZ, A. J. MALOZEMOFF, AND V. ZIKAS, Efficient three-party computation

from cut-and-choose, in CRYPTO 2014, Part II, J. A. Garay and R. Gennaro, eds.,

vol. 8617 of LNCS, Springer, Heidelberg, Aug. 2014, pp. 513–530.

[42] A. COSTACHE AND N. P. SMART, Which ring based somewhat homomorphic encryption

scheme is best?, in CT-RSA 2016, K. Sako, ed., vol. 9610 of LNCS, Springer, Heidelberg,

Feb. / Mar. 2016, pp. 325–340.

[43] I. DAMGÅRD AND Y. ISHAI, Scalable secure multiparty computation, in CRYPTO 2006,

C. Dwork, ed., vol. 4117 of LNCS, Springer, Heidelberg, Aug. 2006, pp. 501–520.

[44] I. DAMGÅRD, M. KELLER, E. LARRAIA, V. PASTRO, P. SCHOLL, AND N. P. SMART,

Practical covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits,

in ESORICS 2013, J. Crampton, S. Jajodia, and K. Mayes, eds., vol. 8134 of LNCS,

Springer, Heidelberg, Sept. 2013, pp. 1–18.

[45] I. DAMGÅRD AND J. B. NIELSEN, Scalable and unconditionally secure multiparty com-

putation, in CRYPTO 2007, A. Menezes, ed., vol. 4622 of LNCS, Springer, Heidelberg,

Aug. 2007, pp. 572–590.

156

BIBLIOGRAPHY

[46] I. DAMGÅRD, J. B. NIELSEN, M. NIELSEN, AND S. RANELLUCCI, The TinyTable protocol

for 2-party secure computation, or: Gate-scrambling revisited, in CRYPTO 2017, Part I,

J. Katz and H. Shacham, eds., vol. 10401 of LNCS, Springer, Heidelberg, Aug. 2017,

pp. 167–187.

[47] I. DAMGÅRD, V. PASTRO, N. P. SMART, AND S. ZAKARIAS, Multiparty computation from

somewhat homomorphic encryption, in CRYPTO 2012, R. Safavi-Naini and R. Canetti,

eds., vol. 7417 of LNCS, Springer, Heidelberg, Aug. 2012, pp. 643–662.

[48] I. DAMGÅRD, A. POLYCHRONIADOU, AND V. RAO, Adaptively secure multi-party computa-

tion from LWE (via equivocal FHE), in PKC 2016, Part II, C.-M. Cheng, K.-M. Chung,

G. Persiano, and B.-Y. Yang, eds., vol. 9615 of LNCS, Springer, Heidelberg, Mar. 2016,

pp. 208–233.

[49] I. DAMGÅRD AND S. ZAKARIAS, Constant-overhead secure computation of Boolean circuits

using preprocessing, in TCC 2013, A. Sahai, ed., vol. 7785 of LNCS, Springer, Heidelberg,

Mar. 2013, pp. 621–641.

[50] D. DEMMLER, T. SCHNEIDER, AND M. ZOHNER, ABY - A framework for efficient mixed-

protocol secure two-party computation, in NDSS 2015, The Internet Society, Feb. 2015.

[51] G. DESSOUKY, F. KOUSHANFAR, A.-R. SADEGHI, T. SCHNEIDER, S. ZEITOUNI, AND

M. ZOHNER, Pushing the communication barrier in secure computation using lookup ta-

bles, in Network and Distributed System Security Symposium (NDSSí17). The Internet

Society, 2017.

[52] W. DIFFIE AND M. E. HELLMAN, New directions in cryptography, IEEE Transactions on

Information Theory, 22 (1976), pp. 644–654.

[53] R. DINGLEDINE, N. MATHEWSON, AND P. F. SYVERSON, Tor: The second-generation onion

router, in USENIX, 2004, pp. 303–320.

[54] N. M. DÖTTLING, Cryptography based on the Hardness of Decoding, PhD thesis, Karlsruhe

Institute of Technology, 2014.

[55] Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016

on the protection of natural persons with regard to the processing of personal data and

on the free movement of such data, and repealing Directive 95/46/EC (General Data

Protection Regulation), Official Journal of the European Union, L119 (2016), pp. 1–88.

[56] M. FINIASZ AND N. SENDRIER, Security bounds for the design of code-based cryptosystems,

in ASIACRYPT 2009, M. Matsui, ed., vol. 5912 of LNCS, Springer, Heidelberg, Dec.

2009, pp. 88–105.

157

BIBLIOGRAPHY

[57] T. K. FREDERIKSEN, T. P. JAKOBSEN, AND J. B. NIELSEN, Faster maliciously secure

two-party computation using the GPU, in SCN 14, M. Abdalla and R. D. Prisco, eds.,

vol. 8642 of LNCS, Springer, Heidelberg, Sept. 2014, pp. 358–379.

[58] T. K. FREDERIKSEN, M. KELLER, E. ORSINI, AND P. SCHOLL, A unified approach to MPC

with preprocessing using OT, in ASIACRYPT 2015, Part I, T. Iwata and J. H. Cheon,

eds., vol. 9452 of LNCS, Springer, Heidelberg, Nov. / Dec. 2015, pp. 711–735.

[59] J. FURUKAWA, Y. LINDELL, A. NOF, AND O. WEINSTEIN, High-throughput secure

three-party computation for malicious adversaries and an honest majority, in EU-

ROCRYPT 2017, Part II, J. Coron and J. B. Nielsen, eds., vol. 10211 of LNCS, Springer,

Heidelberg, Apr. / May 2017, pp. 225–255.

[60] C. GENTRY, A fully homomorphic encryption scheme, PhD thesis, Stanford University,

2009.

[61] , Fully homomorphic encryption using ideal lattices, in 41st ACM STOC, M. Mitzen-

macher, ed., ACM Press, May / June 2009, pp. 169–178.

[62] O. GOLDREICH, The Foundations of Cryptography - Volume 2, Basic Applications, Cam-

bridge University Press, 2004.

[63] O. GOLDREICH AND L. A. LEVIN, A hard-core predicate for all one-way functions, in 21st

ACM STOC, ACM Press, May 1989, pp. 25–32.

[64] O. GOLDREICH, S. MICALI, AND A. WIGDERSON, How to play any mental game or A

completeness theorem for protocols with honest majority, in 19th ACM STOC, A. Aho,

ed., ACM Press, May 1987, pp. 218–229.

[65] S. GOLDWASSER AND Y. LINDELL, Secure multi-party computation without agreement,

Journal of Cryptology, 18 (2005), pp. 247–287.

[66] S. D. GORDON, S. RANELLUCCI, AND X. WANG, Secure computation with low communica-

tion from cross-checking, IACR Cryptology ePrint Archive, 2018 (2018), p. 216.

[67] S. HALEVI, C. HAZAY, A. POLYCHRONIADOU, AND M. VENKITASUBRAMANIAM, Round-

optimal secure multi-party computation, in CRYPTO 2018, Part II, H. Shacham and

A. Boldyreva, eds., vol. 10992 of Lecture Notes in Computer Science, Springer, 2018,

pp. 395–424.

[68] C. HAZAY, E. ORSINI, P. SCHOLL, AND E. SORIA-VAZQUEZ, Concretely efficient large-scale

MPC with active security (or, TinyKeys for TinyOT), in ASIACRYPT 2018, Part III,

T. Peyrin and S. D. Galbraith, eds., vol. 11274 of LNCS, Springer, Dec. 2018, pp. 86–117.

158

BIBLIOGRAPHY

[69] , TinyKeys: A new approach to efficient multi-party computation, in CRYPTO 2018,

Part III, H. Shacham and A. Boldyreva, eds., vol. 10993 of LNCS, Springer, Aug. 2018,

pp. 3–33.

[70] C. HAZAY, P. SCHOLL, AND E. SORIA-VAZQUEZ, Low cost constant round MPC combining

BMR and oblivious transfer, in ASIACRYPT 2017, Part I, T. Takagi and T. Peyrin, eds.,

vol. 10624 of LNCS, Springer, Heidelberg, Dec. 2017, pp. 598–628.

[71] Y. HUANG, J. KATZ, AND D. EVANS, Efficient secure two-party computation using symmetric

cut-and-choose, in CRYPTO 2013, Part II, R. Canetti and J. A. Garay, eds., vol. 8043 of

LNCS, Springer, Heidelberg, Aug. 2013, pp. 18–35.

[72] R. IMPAGLIAZZO, L. A. LEVIN, AND M. LUBY, Pseudo-random generation from one-way

functions (extended abstracts), in 21st ACM STOC, ACM Press, May 1989, pp. 12–24.

[73] R. IMPAGLIAZZO AND S. RUDICH, Limits on the provable consequences of one-way permu-

tations, in 21st ACM STOC, ACM Press, May 1989, pp. 44–61.

[74] Y. ISHAI, J. KILIAN, K. NISSIM, AND E. PETRANK, Extending oblivious transfers efficiently,

in CRYPTO 2003, D. Boneh, ed., vol. 2729 of LNCS, Springer, Heidelberg, Aug. 2003,

pp. 145–161.

[75] Y. ISHAI, M. PRABHAKARAN, AND A. SAHAI, Founding cryptography on oblivious transfer

- efficiently, in CRYPTO 2008, D. Wagner, ed., vol. 5157 of LNCS, Springer, Heidelberg,

Aug. 2008, pp. 572–591.

[76] , Secure arithmetic computation with no honest majority, in TCC 2009, O. Reingold,

ed., vol. 5444 of LNCS, Springer, Heidelberg, Mar. 2009, pp. 294–314.

[77] S. JHA, L. KRUGER, AND V. SHMATIKOV, Towards practical privacy for genomic computa-

tion, in 2008 IEEE Symposium on Security and Privacy, IEEE Computer Society Press,

May 2008, pp. 216–230.

[78] J. KATZ, U. MAURER, B. TACKMANN, AND V. ZIKAS, Universally composable synchronous

computation, in TCC 2013, A. Sahai, ed., vol. 7785 of LNCS, Springer, Heidelberg, Mar.

2013, pp. 477–498.

[79] M. KELLER, E. ORSINI, D. ROTARU, P. SCHOLL, E. SORIA-VAZQUEZ, AND S. VIVEK,

Faster secure multi-party computation of AES and DES using lookup tables, in ACNS 17,

D. Gollmann, A. Miyaji, and H. Kikuchi, eds., vol. 10355 of LNCS, Springer, Heidelberg,

July 2017, pp. 229–249.

[80] M. KELLER, E. ORSINI, AND P. SCHOLL, MASCOT: Faster malicious arithmetic secure

computation with oblivious transfer, in ACM CCS 16, E. R. Weippl, S. Katzenbeisser,

C. Kruegel, A. C. Myers, and S. Halevi, eds., ACM Press, Oct. 2016, pp. 830–842.

159

BIBLIOGRAPHY

[81] M. KELLER AND A. YANAI, Efficient maliciously secure multiparty computation for RAM,

in EUROCRYPT 2018, Part III, J. B. Nielsen and V. Rijmen, eds., vol. 10822 of LNCS,

Springer, Heidelberg, Apr. / May 2018, pp. 91–124.

[82] J. KILIAN, Founding cryptography on oblivious transfer, in 20th ACM STOC, ACM Press,

May 1988, pp. 20–31.

[83] V. KOLESNIKOV AND R. KUMARESAN, Improved OT extension for transferring short secrets,

in CRYPTO 2013, Part II, R. Canetti and J. A. Garay, eds., vol. 8043 of LNCS, Springer,

Heidelberg, Aug. 2013, pp. 54–70.

[84] V. KOLESNIKOV, P. MOHASSEL, AND M. ROSULEK, FleXOR: Flexible garbling for XOR

gates that beats free-XOR, in CRYPTO 2014, Part II, J. A. Garay and R. Gennaro, eds.,

vol. 8617 of LNCS, Springer, Heidelberg, Aug. 2014, pp. 440–457.

[85] V. KOLESNIKOV, J. B. NIELSEN, M. ROSULEK, N. TRIEU, AND R. TRIFILETTI, DUPLO:

Unifying cut-and-choose for garbled circuits, in ACM CCS 17, B. M. Thuraisingham,

D. Evans, T. Malkin, and D. Xu, eds., ACM Press, Oct. / Nov. 2017, pp. 3–20.

[86] V. KOLESNIKOV AND T. SCHNEIDER, Improved garbled circuit: Free XOR gates and

applications, in ICALP 2008, Part II, L. Aceto, I. Damgård, L. A. Goldberg, M. M.

Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, eds., vol. 5126 of LNCS, Springer,

Heidelberg, July 2008, pp. 486–498.

[87] E. LARRAIA, E. ORSINI, AND N. P. SMART, Dishonest majority multi-party computation for

binary circuits, in CRYPTO 2014, Part II, J. A. Garay and R. Gennaro, eds., vol. 8617 of

LNCS, Springer, Heidelberg, Aug. 2014, pp. 495–512.

[88] Y. LINDELL, Fast cut-and-choose based protocols for malicious and covert adversaries, in

CRYPTO 2013, Part II, R. Canetti and J. A. Garay, eds., vol. 8043 of LNCS, Springer,

Heidelberg, Aug. 2013, pp. 1–17.

[89] Y. LINDELL, E. OXMAN, AND B. PINKAS, The IPS compiler: Optimizations, variants and

concrete efficiency, in CRYPTO 2011, P. Rogaway, ed., vol. 6841 of LNCS, Springer,

Heidelberg, Aug. 2011, pp. 259–276.

[90] Y. LINDELL AND B. PINKAS, An efficient protocol for secure two-party computation in the

presence of malicious adversaries, in EUROCRYPT 2007, M. Naor, ed., vol. 4515 of

LNCS, Springer, Heidelberg, May 2007, pp. 52–78.

[91] , A proof of security of Yao’s protocol for two-party computation, Journal of Cryptology,

22 (2009), pp. 161–188.

160

BIBLIOGRAPHY

[92] , Secure two-party computation via cut-and-choose oblivious transfer, in TCC 2011,

Y. Ishai, ed., vol. 6597 of LNCS, Springer, Heidelberg, Mar. 2011, pp. 329–346.

[93] Y. LINDELL, B. PINKAS, N. P. SMART, AND A. YANAI, Efficient constant round multi-party

computation combining BMR and SPDZ, in CRYPTO 2015, Part II, R. Gennaro and

M. J. B. Robshaw, eds., vol. 9216 of LNCS, Springer, Heidelberg, Aug. 2015, pp. 319–338.

[94] Y. LINDELL AND B. RIVA, Cut-and-choose Yao-based secure computation in the on-

line/offline and batch settings, in CRYPTO 2014, Part II, J. A. Garay and R. Gennaro,

eds., vol. 8617 of LNCS, Springer, Heidelberg, Aug. 2014, pp. 476–494.

[95] , Blazing fast 2PC in the offline/online setting with security for malicious adversaries,

in ACM CCS 15, I. Ray, N. Li, and C. Kruegel:, eds., ACM Press, Oct. 2015, pp. 579–590.

[96] Y. LINDELL, N. P. SMART, AND E. SORIA-VAZQUEZ, More efficient constant-round multi-

party computation from BMR and SHE, in TCC 2016-B, Part I, M. Hirt and A. D. Smith,

eds., vol. 9985 of LNCS, Springer, Heidelberg, Oct. / Nov. 2016, pp. 554–581.

[97] D. MALKHI, N. NISAN, B. PINKAS, Y. SELLA, ET AL., Fairplay-secure two-party compu-

tation system., in USENIX Security Symposium, vol. 4, San Diego, CA, USA, 2004,

p. 9.

[98] A. MAY AND I. OZEROV, On computing nearest neighbors with applications to decoding

of binary linear codes, in EUROCRYPT 2015, Part I, E. Oswald and M. Fischlin, eds.,

vol. 9056 of LNCS, Springer, Heidelberg, Apr. 2015, pp. 203–228.

[99] P. MOHASSEL AND M. FRANKLIN, Efficiency tradeoffs for malicious two-party computation,

in PKC 2006, M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, eds., vol. 3958 of LNCS,

Springer, Heidelberg, Apr. 2006, pp. 458–473.

[100] P. MOHASSEL AND B. RIVA, Garbled circuits checking garbled circuits: More efficient and

secure two-party computation, in CRYPTO 2013, Part II, R. Canetti and J. A. Garay,

eds., vol. 8043 of LNCS, Springer, Heidelberg, Aug. 2013, pp. 36–53.

[101] P. MOHASSEL, M. ROSULEK, AND Y. ZHANG, Fast and secure three-party computation:

The garbled circuit approach, in ACM CCS 15, I. Ray, N. Li, and C. Kruegel:, eds., ACM

Press, Oct. 2015, pp. 591–602.

[102] J. MULLLIN, Newegg trial: crypto legend takes the stand, goes for knockout patent punch.

Ars Technica, Nov. 24, 2013.

[103] M. NAOR, B. PINKAS, AND R. SUMNER, Privacy preserving auctions and mechanism

design, in Proceedings of the 1st ACM conference on Electronic commerce, ACM, 1999,

pp. 129–139.

161

BIBLIOGRAPHY

[104] J. B. NIELSEN, P. S. NORDHOLT, C. ORLANDI, AND S. S. BURRA, A new approach to

practical active-secure two-party computation, in CRYPTO 2012, R. Safavi-Naini and

R. Canetti, eds., vol. 7417 of LNCS, Springer, Heidelberg, Aug. 2012, pp. 681–700.

[105] J. B. NIELSEN AND C. ORLANDI, LEGO for two-party secure computation, in TCC 2009,

O. Reingold, ed., vol. 5444 of LNCS, Springer, Heidelberg, Mar. 2009, pp. 368–386.

[106] J. B. NIELSEN AND S. RANELLUCCI, On the computational overhead of MPC with dishonest

majority, in PKC 2017, Part II, S. Fehr, ed., vol. 10175 of LNCS, Springer, Heidelberg,

Mar. 2017, pp. 369–395.

[107] J. B. NIELSEN, T. SCHNEIDER, AND R. TRIFILETTI, Constant round maliciously secure

2pc with function-independent preprocessing using lego, in 24th NDSS Symposium, The

Internet Society, 2017.

http://eprint.iacr.org/2016/1069.

[108] , Constant round maliciously secure 2PC with function-independent preprocessing

using LEGO, in NDSS 2017, The Internet Society, Feb. / Mar. 2017.

[109] J. PERRY, D. GUPTA, J. FEIGENBAUM, AND R. N. WRIGHT, Systematizing secure compu-

tation for research and decision support, in SCN 14, M. Abdalla and R. D. Prisco, eds.,

vol. 8642 of LNCS, Springer, Heidelberg, Sept. 2014, pp. 380–397.

[110] K. PIETRZAK, Subspace LWE, in TCC 2012, R. Cramer, ed., vol. 7194 of LNCS, Springer,

Heidelberg, Mar. 2012, pp. 548–563.

[111] B. PINKAS, T. SCHNEIDER, N. P. SMART, AND S. C. WILLIAMS, Secure two-party compu-

tation is practical, in ASIACRYPT 2009, M. Matsui, ed., vol. 5912 of LNCS, Springer,

Heidelberg, Dec. 2009, pp. 250–267.

[112] E. PRANGE, The use of information sets in decoding cyclic codes, IRE Trans. Information

Theory, 8 (1962), pp. 5–9.

[113] M. O. RABIN, How to exchange secrets with oblivious transfer, 1981, Harvard Center for

Research in Computer Technology, Cambridge, MA, (1981).

[114] T. RABIN AND M. BEN-OR, Verifiable secret sharing and multiparty protocols with honest

majority (extended abstract), in 21st ACM STOC, ACM Press, May 1989, pp. 73–85.

[115] S. RAZI, Nahj al-balagha, Tenth century.

[116] O. REGEV, On lattices, learning with errors, random linear codes, and cryptography, J.

ACM, 56 (2009), pp. 34:1–34:40.

162

http://eprint.iacr.org/2016/1069

BIBLIOGRAPHY

[117] P. RINDAL, libOTe: an efficient, portable, and easy to use Oblivious Transfer Library.

https://github.com/osu-crypto/libOTe.

[118] P. RINDAL AND M. ROSULEK, Faster malicious 2-party secure computation with on-

line/offline dual execution, in USENIX, 2016, pp. 297–314.

[119] P. ROGAWAY, The moral character of cryptographic work.

Cryptology ePrint Archive, Report 2015/1162, 2015.

https://eprint.iacr.org/2015/1162.

[120] M.-J. O. SAARINEN, Linearization attacks against syndrome based hashes, in IN-

DOCRYPT 2007, K. Srinathan, C. P. Rangan, and M. Yung, eds., vol. 4859 of LNCS,

Springer, Heidelberg, Dec. 2007, pp. 1–9.

[121] T. SCHNEIDER AND M. ZOHNER, GMW vs. Yao? Efficient secure two-party computation

with low depth circuits, in FC 2013, A.-R. Sadeghi, ed., vol. 7859 of LNCS, Springer,

Heidelberg, Apr. 2013, pp. 275–292.

[122] A. SHAMIR, How to share a secret, Communications of the Association for Computing

Machinery, 22 (1979), pp. 612–613.

[123] A. SHELAT AND C.-H. SHEN, Two-output secure computation with malicious adversaries,

in EUROCRYPT 2011, K. G. Paterson, ed., vol. 6632 of LNCS, Springer, Heidelberg,

May 2011, pp. 386–405.

[124] , Fast two-party secure computation with minimal assumptions, in ACM CCS 13, A.-R.

Sadeghi, V. D. Gligor, and M. Yung, eds., ACM Press, Nov. 2013, pp. 523–534.

[125] J. STERN, A method for finding codewords of small weight, in Coding Theory and Applica-

tions, 3rd International Colloquium, Toulon, France, November 2-4, 1988, Proceedings,

1988, pp. 106–113.

[126] S. R. TATE AND K. XU, On garbled circuits and constant round secure function evaluation,

CoPS Lab, University of North Texas, Tech. Rep, 2 (2003), p. 2003.

[127] D. WAGNER, A generalized birthday problem, in CRYPTO 2002, M. Yung, ed., vol. 2442 of

LNCS, Springer, Heidelberg, Aug. 2002, pp. 288–303.

[128] X. WANG, S. RANELLUCCI, AND J. KATZ, Authenticated garbling and efficient mali-

ciously secure two-party computation, in ACM CCS 17, B. M. Thuraisingham, D. Evans,

T. Malkin, and D. Xu, eds., ACM Press, Oct. / Nov. 2017, pp. 21–37.

[129] , Global-scale secure multiparty computation, in ACM CCS 17, B. M. Thuraisingham,

D. Evans, T. Malkin, and D. Xu, eds., ACM Press, Oct. / Nov. 2017, pp. 39–56.

163

https://github.com/osu-crypto/libOTe
https://eprint.iacr.org/2015/1162

BIBLIOGRAPHY

[130] S. WIESNER, Conjugate coding, ACM Sigact News, 15 (1983), pp. 78–88.

[131] A. C.-C. YAO, Protocols for secure computations (extended abstract), in 23rd FOCS, IEEE

Computer Society Press, Nov. 1982, pp. 160–164.

[132] , How to generate and exchange secrets (extended abstract), in 27th FOCS, IEEE

Computer Society Press, Oct. 1986, pp. 162–167.

[133] S. ZAHUR, M. ROSULEK, AND D. EVANS, Two halves make a whole - reducing data transfer

in garbled circuits using half gates, in EUROCRYPT 2015, Part II, E. Oswald and

M. Fischlin, eds., vol. 9057 of LNCS, Springer, Heidelberg, Apr. 2015, pp. 220–250.

[134] R. ZHU AND Y. HUANG, JIMU: Faster LEGO-based secure computation using additive

homomorphic hashes, in ASIACRYPT 2017, Part II, T. Takagi and T. Peyrin, eds.,

vol. 10625 of LNCS, Springer, Heidelberg, Dec. 2017, pp. 529–572.

164

	List of Tables
	List of Figures
	Introduction
	A Brief History of Practical Multi-Party Computation
	Outline of this Thesis
	Contributions of the Author

	Preliminaries
	Prerequisites
	Primitives
	Secret Sharing
	Pseudorandom Functions
	Oblivious Transfer

	Multi-Party Computation
	Universally Composable Security
	Garbled Circuits: The Two-Party Setting
	Garbling in the Two-Party Setting
	Example Garbled Circuit
	The Two-Party Computation Protocol

	Multi-Party Garbled Circuits: BMR
	Evaluating BMR Garbled Circuits
	A Brief History of Efficient Multi-Party Garbled Circuits

	A Note on Actively Secure Garbled Circuits

	Garbling using Somewhat Homomorphic Encryption
	Introduction
	Our Contributions
	Comparison
	Additional Related Work

	Preliminaries
	A Basic FHE Functionality With Distributed Decryption
	Gentry's FHE-Based MPC Protcol
	The BMR-SPDZ Protocol

	Extending the FFHE/FSHE Functionalities
	The Extended Functionality Definition
	Securely Realising the Extended Functionality

	The First Variant of the BMR-SHE Protocol, Depth-4
	Functionality FPreprocessing for the Offline Phase
	The BMR-SHE Protocol Specification MPC,4
	The Preprocessing,4 Protocol
	Analysis of Efficiency

	A Lower Depth Variant of the BMR-SHE Protocol, Depth-3
	Protocol Depth-3 Description
	Security Of the Modified Protocol
	Analysis of Efficiency of the Modified Protocol

	Garbling using Oblivious Transfer
	Introduction
	Our Contributions
	Technical Overview

	Preliminaries
	Security and Communication Models
	Circular 2-Correlation Robust Pseudorandom Functions
	Almost-1-Universal Linear Hashing
	Commitment Functionality
	Coin-Tossing Functionality
	Correlated Oblivious Transfer
	Functionality for Secret-Sharing-Based MPC

	Generic Protocol for Multi-Party Garbling
	The Preprocessing Functionality
	Protocol Overview
	Bit/String Multiplications
	Consistency Check
	Security Proof

	More Efficient Garbling with Multi-Party TinyOT
	Secret-Shared MAC Representation
	MAC-Based MPC Functionality
	Garbling with Fn TinyOT

	The Online Phase
	The Online Phase with FPreprocessingKQ

	Performance
	Implementation
	Communication Complexity Analysis

	A Multi-Party TinyOT-Style Protocol
	Why the Need for Key Queries?
	Security
	Parameters
	Communication Complexity
	Round Complexity
	Realizing General Secure Computation

	Multi-Party Computation with Short Keys
	Introduction
	Our Contributions
	Technical Overview

	Preliminaries
	Security and Communication Models
	Random Zero-Sharing
	Syndrome Decoding and Learning Parity with Noise
	Regular Syndrome Decoding Problem

	GMW-Style MPC with Short Keys
	Leaky Two-Party Secret-Shared Multiplication
	MPC for Binary Circuits From Leaky OT

	Multi-Party Garbled Circuits with Short Keys
	The Multi-Party Garbling Scheme
	Protocol and Functionalities for Bit and Bit/String Multiplication
	The Preprocessing Protocol
	Complexity and Security
	The Online Phase

	Complexity Analysis and Implementation Results
	Threshold Variants of Full-Threshold Protocols
	Instantiating the CRS
	Concrete Hardness of RSD and Our Choice of Parameters
	GMW-Style Protocol
	BMR-Style Protocol

	Conclusions and Future Work
	Bibliography

