1,049 research outputs found

    Even Delta-Matroids and the Complexity of Planar Boolean CSPs

    Full text link
    The main result of this paper is a generalization of the classical blossom algorithm for finding perfect matchings. Our algorithm can efficiently solve Boolean CSPs where each variable appears in exactly two constraints (we call it edge CSP) and all constraints are even Δ\Delta-matroid relations (represented by lists of tuples). As a consequence of this, we settle the complexity classification of planar Boolean CSPs started by Dvorak and Kupec. Using a reduction to even Δ\Delta-matroids, we then extend the tractability result to larger classes of Δ\Delta-matroids that we call efficiently coverable. It properly includes classes that were known to be tractable before, namely co-independent, compact, local, linear and binary, with the following caveat: we represent Δ\Delta-matroids by lists of tuples, while the last two use a representation by matrices. Since an n×nn\times n matrix can represent exponentially many tuples, our tractability result is not strictly stronger than the known algorithm for linear and binary Δ\Delta-matroids.Comment: 33 pages, 9 figure

    The moduli space of matroids

    Get PDF
    In the first part of the paper, we clarify the connections between several algebraic objects appearing in matroid theory: both partial fields and hyperfields are fuzzy rings, fuzzy rings are tracts, and these relations are compatible with the respective matroid theories. Moreover, fuzzy rings are ordered blueprints and lie in the intersection of tracts with ordered blueprints; we call the objects of this intersection pastures. In the second part, we construct moduli spaces for matroids over pastures. We show that, for any non-empty finite set EE, the functor taking a pasture FF to the set of isomorphism classes of rank-rr FF-matroids on EE is representable by an ordered blue scheme Mat(r,E)Mat(r,E), the moduli space of rank-rr matroids on EE. In the third part, we draw conclusions on matroid theory. A classical rank-rr matroid MM on EE corresponds to a K\mathbb{K}-valued point of Mat(r,E)Mat(r,E) where K\mathbb{K} is the Krasner hyperfield. Such a point defines a residue pasture kMk_M, which we call the universal pasture of MM. We show that for every pasture FF, morphisms kM→Fk_M\to F are canonically in bijection with FF-matroid structures on MM. An analogous weak universal pasture kMwk_M^w classifies weak FF-matroid structures on MM. The unit group of kMwk_M^w can be canonically identified with the Tutte group of MM. We call the sub-pasture kMfk_M^f of kMwk_M^w generated by ``cross-ratios' the foundation of MM,. It parametrizes rescaling classes of weak FF-matroid structures on MM, and its unit group is coincides with the inner Tutte group of MM. We show that a matroid MM is regular if and only if its foundation is the regular partial field, and a non-regular matroid MM is binary if and only if its foundation is the field with two elements. This yields a new proof of the fact that a matroid is regular if and only if it is both binary and orientable.Comment: 83 page

    How is a Chordal Graph like a Supersolvable Binary Matroid?

    Get PDF
    Let G be a finite simple graph. From the pioneering work of R. P. Stanley it is known that the cycle matroid of G is supersolvable iff G is chordal (rigid): this is another way to read Dirac's theorem on chordal graphs. Chordal binary matroids are not in general supersolvable. Nevertheless we prove that, for every supersolvable binary matroid M, a maximal chain of modular flats of M canonically determines a chordal graph.Comment: 10 pages, 3 figures, to appear in Discrete Mathematic
    • …
    corecore