Note

How is a chordal graph like a supersolvable binary matroid?

Raul Cordovil ${ }^{\text {a }}$, David Forge ${ }^{\text {b }}$, Sulamita Klein ${ }^{\text {c }}$
${ }^{a}$ Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco, Pais 1049-001, Lisboa, Portugal
${ }^{\mathrm{b}}$ LRI, Universite Paris XI-Orsay, UMR 8623, Batiment 490 Université Paris-Sud, 91405 Orsay Cedex, France
${ }^{\mathrm{c}}$ Instituto de Matemática and Coppe-Sistemas, Universidade Federal Do Rio De Janeiro, Caixa Postal 68511, 21945-970, Rio De Janeiro, RJ, Brazil

Received 5 December 2002; received in revised form 1 July 2004; accepted 4 August 2004
Available online 1 October 2004

To the memory of Claude Berge

Abstract

Let G be a finite simple graph. From the pioneering work of R.P. Stanley it is known that the cycle matroid of G is supersolvable iff G is chordal (rigid): this is another way to read Dirac's theorem on chordal graphs. Chordal binary matroids are in general not supersolvable. Nevertheless we prove that, for every supersolvable binary matroid M, a maximal chain of modular flats of M canonically determines a chordal graph.

© 2004 Elsevier B.V. All rights reserved.
MSC: primary 05B35; secondary 05CXX

Keywords: Binary matroids; Chordal graphs; Cliques; Supersolvable matroids

1. Introduction and notations

Throughout this note M denotes a matroid of rank r on the ground set $[n]:=\{1,2, \ldots, n\}$. We refer to $[7,9]$ as standard sources for matroid theory. We recall and fix some notation of matroid theory. The restriction of M to a subset $X \subseteq[n]$ is denoted $M \mid X$. A matroid M is said to be simple if all circuits have at least three elements. A matroid M is binary if the symmetric difference of any two different circuits of M is a union of disjoint circuits. Graphic and cographic matroids are extremely important examples of binary matroids. The dual of M is denoted M^{*}. Let $\mathscr{C}=\mathscr{C}(M)$ [resp. $\mathscr{C}^{*}=\mathscr{C}^{*}(M)=\mathscr{C}\left(M^{*}\right)$] be the set of circuits [resp. cocircuits] of M. Let $\mathscr{C}_{\ell}:=\{C \in \mathscr{C}:|C| \leqslant \ell\}$. In the following the singleton $\{x\}$ is denoted by x. We will denote by

$$
\operatorname{cl}(X):=X \cup\{x \in[n]: \exists C \in \mathscr{C}, C \backslash X=x\}
$$

the closure in M of a subset $X \subseteq[n]$. We say that $X \subseteq[n]$ is a flat of M if $X=\operatorname{cl}(X)$. The set $\mathscr{F}(M)$ of flats of M, ordered by inclusion, is a geometric lattice. The rank of a flat $F \in \mathscr{F}$, denoted $r(F)$, is equal to m if there are $m+1$ flats in a maximal chain of flats from \emptyset to F. The flats of rank 1,2,3 and $r-1$ are called points, lines, planes, and hyperplanes, respectively. A line L with two elements is called trivial and a line with at least three elements is called nontrivial (a binary matroid has no line

[^0]

Fig. 1. Graph G_{0}.
with more than three points). Given a set $X \subseteq[n]$, let $r(X):=r(\mathrm{cl}(X))$. A pair F, F^{\prime} of flats is called modular if

$$
r(F)+r\left(F^{\prime}\right)=r\left(F \vee F^{\prime}\right)+r\left(F \wedge F^{\prime}\right)
$$

A flat $F \in \mathscr{F}$ is modular if it forms a modular pair with every other flat $F^{\prime} \in \mathscr{F}$. The notion of supersolvable lattices was introduced and studied by Stanley [8]. In the particular case of geometric lattices the definition can be read as follows.

Definition 1.1 (Stanley [8]). A matroid M on [n] of rank r is supersolvable if there is a maximal chain of modular flats \mathscr{M}

$$
\mathscr{M}:=F_{0}(=\emptyset) \subsetneq \cdots \subsetneq F_{r-1} \subsetneq F_{r}(=[n]) .
$$

We call \mathscr{M} an M-chain of M. To the M-chain \mathscr{M} we associate the partition \mathscr{P} of $[n]$

$$
\mathscr{P}:=F_{1} \uplus \cdots \uplus\left(F_{i} \backslash F_{i-1}\right) \uplus \cdots \uplus\left(F_{r} \backslash F_{r-1}\right) .
$$

We call \mathscr{P} an M-partition of M.
We recall that a graph G is said to be chordal (or rigid or triangulated) if every cycle of length at least four has a chord. Chordal graphs are treated extensively in Chapter 4 of [6]. The notion of a "chordal matroid" has also been recently explored in the literature, see [2].

Definition 1.2 (Barahona and Grötschel [1, p. 53]). Let M be an arbitrary matroid (not necessarily simple or binary). A circuit C of M has a chord i_{0} if there are two circuits C_{1} and C_{2} such that $C_{1} \cap C_{2}=i_{0}$ and $C=C_{1} \Delta C_{2}$. In this case, we say that the chord i_{0} splits the circuit C into the circuits C_{1} and C_{2}. We say that a matroid is ℓ-chordal if every circuit with at least ℓ elements has a chord. A simple matroid M is chordal if it is 4-chordal.

In this paper, we always suppose that the edges of a graph G are labelled with the integers of [n]. If nothing else is indicated we suppose that G is a connected graph. Let $M(G)$ be the cycle matroid of the graph G : i.e., the elementary cycles of G, as subsets of [n], are the circuits of $M(G)$. In the same way, the minimal cutsets of a connected graph G (i.e, a set of edges that disconnect the graph) are the circuits of a matroid on [n], called the cocycle matroid of G. A matroid is graphic (resp. cographic) if it is the cycle (resp. cocycle) matroid of a graph. The cocycle matroid of G is dual to the cycle matroid of G and both are binary. The cocycle matroids of the complete graph K_{5} and of the complete bipartite graph $K_{3,3}$ are examples of binary but not graphic matroids; see Section 13.3 in [7] for details. The Fano matroid is an example of a supersolvable binary matroid that is neither graphic nor cographic. Finally, note that an elementary cycle C of G has a chord iff C seen as a circuit of the matroid $M(G)$ has a chord.

Example 1.3. Consider the chordal graph $G_{0}=G_{0}(V,[7])$ in Fig. 1 and the corresponding cycle matroid $M\left(G_{0}\right)$. It is clear that

$$
\mathscr{M}:=\emptyset \subsetneq\{1\} \subsetneq\{1,2,3\} \subsetneq\{1,2,3,4,5\} \subsetneq[7]
$$

is an M-chain. The associated M-partition is

$$
\mathscr{P}:=\{1\} \uplus\{2,3\} \uplus\{4,5\} \uplus\{6,7\} .
$$

The linear order of the vertices is such that for every i in $\{2,3,4,5\}$ the neighbors of the vertex v_{i} contained in the set $\left\{v_{1}, \ldots, v_{i-1}\right\}$ form a clique; this is Dirac's well-known characterization of chordal graphs (see [5,6]). This is also a characterization of graphic
supersolvable matroids (see Proposition 2.8 in [8]). That is, a graphic matroid $M(G)$ is supersolvable iff the vertices of G can be labeled as $v_{1}, v_{2}, \ldots, v_{m}$ such that, for every $i=2, \ldots, m$, the neighbors of v_{i} contained in the set $\left\{v_{1}, \ldots, v_{i-1}\right\}$ form a clique. We say that a linear order of the vertices of G with the above properties is an S-label of the vertices of G.

Ziegler proved that every supersolvable binary matroid without a Fano submatroid is graphic (Theorem 2.7 in [10]). In the next section we answer the following natural question:

- For a generic binary matroid, what are the relations between the notions of "chordal" and "supersolvable"?

2. Chordal and supersolvable matroids

Lemma 2.1. Let M be a simple binary matroid. The following two conditions are equivalent for every circuit C of M :
(2.1.1) $C \subsetneq \mathrm{cl}(C)$,
(2.1.2) C has a chord.

For nonbinary matroids only implication (2.1.2) \Rightarrow (2.1.1) holds.
Proof. If $i \in \operatorname{cl}(C) \backslash C$, then there is a circuit D such that $i \in D$ and $D \backslash i \subsetneq C$. As M is binary $D^{\prime}=D \Delta C$ is also a circuit of M. So i is a chord of C. If i is a chord of C, then clearly $i \in \operatorname{cl}(C)$. Finally, in the uniform rank-two nonbinary matroid $U_{2,4}$, the set $C=\{1,2,3\}$ is a circuit without a chord but $C \subsetneq \mathrm{cl}(C)=[4]$.

Theorem 2.2. A binary supersolvable matroid M is chordal but the converse does not hold in general.
Proof. Let $\mathscr{M}:=\emptyset \subsetneq \ldots \subsetneq F_{r-1} \subsetneq F_{r}=[n]$ be an M-chain of M. Suppose by induction that the restriction of M to F_{r-1} is chordal. The result is clear in the case that $C^{*}:=[n] \backslash F_{r-1}$ is a singleton. Suppose that $\left|C^{*}\right|>1$ and consider a circuit C of M not contained in the modular hyperplane F_{r-1}. Then there are two elements $i, j \in C \cap C^{*}$ and the line $\mathrm{cl}(\{i, j\})$ meets F_{r-1}. So $C \subsetneq \operatorname{cl}(C)$ and we know from Lemma 2.1 that C has a chord.

A counterexample of the converse is $M^{*}\left(K_{3,3}\right)$, the cocycle matroid of the complete bipartite graph $K_{3,3}$. It is easy to see from its geometric representation that it is chordal but not supersolvable (see [10] and page 514 in [7] for its geometric representation).

Definition 2.3 (Crapo [4]). Let M be an arbitrary matroid and consider an integer $\ell \geqslant 2$. The matroid M is ℓ-closed if the following two conditions are equivalent for every subset $X \subseteq[n]$:
(2.3.1) X is closed,
(2.3.2) for every subset Y of X with at most ℓ elements we have $\mathrm{cl}(Y) \subseteq X$.

We note that condition (2.3.2) is equivalent to
(2.3.2') for every circuit C of M with at most $\ell+1$ elements

$$
|C \cap X| \geqslant|C|-1 \Longrightarrow C \subseteq X
$$

Definition 2.4. Let \mathscr{C} ' be a subset of \mathscr{C}, the set of circuits of M. Let $\mathrm{cl}_{\Delta}\left(\mathscr{C}^{\prime}\right)$ denote the smallest subset of \mathscr{C} such that:
(2.4.1) $\mathscr{C}^{\prime} \subseteq \mathrm{cl}_{\Delta}\left(\mathscr{C}^{\prime}\right)$,
(2.4.2) whenever a circuit C splits into two circuits C_{1} and C_{2} that are in $\mathrm{cl}_{\Delta}\left(\mathscr{C}^{\prime}\right)$ then C is also in $\mathrm{cl}_{\Delta}\left(\mathscr{C}^{\prime}\right)$.

Theorem 2.5. For every simple binary matroid M the following three conditions are equivalent:
(2.5.1) M is ℓ-closed,
(2.5.2) M is $(\ell+2)$-chordal,
(2.5.3) $\mathscr{C}(M)=\mathrm{cl}_{\Delta}\left(\mathscr{C}_{\ell+1}\right)$.

Proof. $(2.5 .2) \Longleftrightarrow(2.5 .3)$: This equivalence is a direct consequence of the definitions.
(2.5.1) \Longrightarrow (2.5.2): Consider a circuit C with at least $\ell+2$ elements and suppose for a contradiction that C is not chordal. From Lemma 2.1 we know that $\operatorname{cl}(C)=C$. Pick an element $i \in C$. Then the set $X=C \backslash i$ is not closed but every subset Y of X with at most ℓ elements is closed which is a contradiction.
(2.5.3) \Longrightarrow (2.5.1): Let X be a subset of $[n]$ and suppose that for every circuit C with at most $\ell+1$ elements such that $|C \cap X| \geqslant|C|-1$, we have $C \subseteq X$; see (2.3.2'). To prove that X is closed it is enough to prove that for every circuit C such that $|C \cap X| \geqslant|C|-1$, we have $C \subseteq X$. Suppose that the result is true for every circuit with at most m elements and let D be a circuit with $m+1$ elements such that $D \backslash d \subset X$ with $d \in D$. By hypothesis there are circuits $C_{1}, C_{2} \in \operatorname{cl}_{\Delta}\left(\mathscr{C}_{\ell+1}\right)$ such that $C_{1} \cap C_{2}=i$ and $D=C_{1} \Delta C_{2}$. Suppose w.l.o.g that $d \in C_{1}$. We have $C_{2} \backslash i \subset X$ and since $\left|C_{2}\right| \leqslant m$ which implies that $i \in C_{2} \subset X$. We have that $C_{1} \backslash d \subset X$ and $\left|C_{1}\right| \leqslant m$ which implies that $C_{1} \subset X$. This gives that $D \subseteq X$ and concludes the proof.

We make use of the following elementary but useful proposition which is a particular case of Proposition 3.2 in [8]. The reader can easily check it from Brylawski's characterisation of modular hyperplanes [3].

Proposition 2.6. Let M be a supersolvable matroid and

$$
\mathscr{M}:=F_{0} \subsetneq \cdots \subsetneq F_{r-1} \subsetneq F_{r}
$$

an M-chain. Let F be a flat of M. Then $M \mid F$, the restriction of M to the flat F, is a supersolvable matroid and $\left\{F_{i} \cap F: F_{i} \in \mathscr{M}\right\}$ is the set of (modular) flats of an $M \mid F$-chain.

Definition 2.7. Let $\mathscr{P}=P_{1} \uplus \cdots \uplus P_{r}$ be an M-partition of a supersolvable matroid M. We associate to (M, \mathscr{P}) a graph $G_{\mathscr{P}}$ such that:

- $V\left(G_{\mathscr{P}}\right)=\left\{P_{i}: i=1,2, \ldots, r\right\}$ is the vertex set of $G_{\mathscr{P}}$,
- $\left\{P_{i}, P_{j}\right\}$ is an edge of $G_{\mathscr{P}}$ iff there is a nontrivial line L of M meeting P_{i} and P_{j}. We call $G_{\mathscr{P}}$ the S-graph of the pair (M, \mathscr{P}).

Note that every nontrivial line L of the binary supersolvable matroid M meets exactly two $P_{i}^{\prime} \mathrm{s}$ and if L meets P_{i} and P_{j}, with $i<j$, necessarily $\left|P_{i} \cap L\right|=1$ and $\left|P_{j} \cap L\right|=2$. Indeed $F_{j-1}=\bigcup_{\ell=1}^{j-1} P_{\ell}$ is a modular flat disjoint from P_{j}, so $\left|F_{j-1} \cap L\right|=1$. This simple property will be used extensively in the proof of Theorem 2.10. Given a chordal graph G with a fixed S-labeling, we get an associated supersolvable matroid $M(G)$ and an associated M-partition \mathscr{P}. We say that $G_{\mathscr{P}}$, the S -graph determined by $(M(G), \mathscr{P})$, is the derived S-graph of G for this S-labeling.

Remark 2.8. Note that the derived S-graph $G_{\mathscr{P}}$ of a chordal graph G is a subgraph of G. Indeed set $V\left(G_{\mathscr{P}}\right)=\left\{P_{1}, \ldots, P_{m}\right\}$ and consider the map $P_{\ell} \rightarrow v_{\ell+1}, \ell=1, \ldots, m$. Let $\left\{P_{i}, P_{j}\right\}, 1 \leqslant i<j \leqslant m$, be an edge of $G_{\mathscr{P}}$. From the definitions we see that $\left\{v_{i+1}, v_{j+1}\right\}$ is necessarily an edge of G.

Example 2.9. Consider the S-labeling of the graph G_{0} given in Fig. 1 and the associated M-partition \mathscr{P} (see Example 1.3). The derived S-graph $G_{\mathscr{P}}$ is a path from P_{1} to P_{4}. Consider now the M-partition of $M\left(G_{0}\right)$:

$$
\mathscr{P}^{\prime}:=\{4\} \uplus\{3,5\} \uplus\{1,2\} \uplus\{6,7\} .
$$

In this case the corresponding S-graph $G_{\mathscr{P}}^{\prime}{ }^{\prime}$ is $K_{1,3}$ with P_{2} being the degree- 3 vertex. It is easy to prove that for any M-partition \mathscr{P} of the cycle matroid of the complete graph K_{ℓ}, the S -graph $G_{\mathscr{P}}$ is the complete graph $K_{\ell-1}$.

Our main result is:
Theorem 2.10. Let M be a simple binary supersolvable matroid with an M-partition \mathscr{P}. Then the S-graph $G_{\mathscr{P}}$ is chordal.
Proof. Let $\mathscr{P}=P_{1} \uplus \cdots \uplus P_{r}$. We claim that P_{r} is a simplicial vertex of $G_{\mathscr{P}}$. Suppose that $\left\{P_{r}, P_{i}\right\}$ and $\left\{P_{r}, P_{j}\right\}, i<j$, are two different edges of $G_{\mathscr{P}}$ and that there are two nontrivial lines $L_{1}:=\{x, y, z\}$ and $L_{2}=\left\{x^{\prime}, y^{\prime}, z^{\prime}\right\}$ where $x, y, x^{\prime}, y^{\prime} \in P_{r}$ and $z \in P_{i}, z^{\prime} \in P_{j}$. We will consider two possible cases:

- Suppose first, that two of the elements $x, y, x^{\prime}, y^{\prime}$ are equal; w.l.o.g., we can suppose $x=x^{\prime}$. As M is binary the elements x, y, y^{\prime} cannot be colinear, $\operatorname{socl}\left(\left\{x, y, y^{\prime}\right\}\right)$ is a plane. From modularity of F_{r-1}, we know that $\operatorname{cl}\left(\left\{x, y, y^{\prime}\right\}\right) \cap F_{r-1}$ is a line.

Fig. 2.

So the line $\operatorname{cl}\left(\left\{y, y^{\prime}\right\}\right)$ meets the modular hyperplane F_{r-1} in a point a. Now the line $\left\{z, z^{\prime}, a\right\}$ is a nontrivial line which meets P_{i} and P_{j}. Then by definition $\left\{P_{i}, P_{j}\right\}$ is an edge of $G_{\mathscr{P}}$.

- Suppose now that the elements $x, y, x^{\prime}, y^{\prime}$ are different. Then as M is binary we have $r\left(\left\{x, y, x^{\prime}, y^{\prime}\right\}\right)=4$. From modularity of F_{r-1}, we know that $r\left(\operatorname{cl}\left(\left\{x, y, x^{\prime}, y^{\prime}\right\}\right) \cap F_{r-1}\right)=3$. Then the six lines $\operatorname{cl}(\{\alpha, \beta\})$, for α and β in $\left\{x, y, x^{\prime}, y^{\prime}\right\}$ meet F_{r-1} in six coplanar points; let these points be labelled as in Fig. 2. Let P_{ℓ} be the set that contains a. We will consider three subcases.
- Suppose first that $i<j<\ell$. From the property given immediately after Definition 2.7, we have that c is also in P_{ℓ}. Consider the modular flat $F_{\ell-1}=\bigcup_{h=1}^{\ell-1} P_{h}$. We know that the plane $\operatorname{cl}\left(\left\{a, c, z, z^{\prime}\right\}\right)$ meets $F_{\ell-1}$ in a line, so $\operatorname{cl}\left(\left\{z, z^{\prime}\right\}\right)$ is a nontrivial line meeting P_{i} and P_{j} and so $\left\{P_{i}, P_{j}\right\}$ is an edge of $G_{\mathscr{P}}$.
- Suppose now that $\ell<i<j$. Then the nontrivial line $\{a, d, z\}$ meets P_{i} and P_{ℓ} and we have $d \in P_{i}$. So the nontrivial line $\left\{c, d, z^{\prime}\right\}$ meets P_{i} and P_{j} and $\left\{P_{i}, P_{j}\right\}$ is an edge of $G_{\mathscr{P}}$.
- Suppose finally that $i \leqslant \ell \leqslant j$. The nontrivial line $\{a, d, z\}$ meets P_{i} and P_{ℓ} so $d \in P_{\ell}$. The nontrivial line $\left\{c, d, z^{\prime}\right\}$ meets P_{ℓ} and P_{j} and necessarily we have $c \in P_{j}$. We conclude that the nontrivial line $\{b, c, z\}$ meets P_{i} and P_{j} and $\left\{P_{i}, P_{j}\right\}$ is an edge of $G_{\mathscr{P}}$.
By induction we conclude that $G_{\mathscr{P}}$ is chordal.
We say that two M-chains

$$
\mathscr{M}:=\emptyset \subsetneq \cdots \subsetneq F_{r-1} \subsetneq F_{r}=[n]
$$

and

$$
\mathscr{M}^{\prime}:=\emptyset \subsetneq \cdots \subsetneq F_{r-1}^{\prime} \subsetneq F_{r}^{\prime}=[n]
$$

are related by an elementary deformation if they differ by at most one flat. We say that two M-chains are equivalent if they can be obtained from each other by elementary deformations.

Proposition 2.11. Every two M-chains of the same matroid M are equivalent.
Proof. We prove it by induction on the rank. The result is clear for $r=2$. Suppose it is true for all matroids of rank at most $r-1$. Consider two different M-chains

$$
\begin{aligned}
& \mathscr{M}:=\emptyset \subsetneq \cdots \subsetneq F_{r-1} \subsetneq F_{r}=[n], \\
& \mathscr{M}^{\prime}:=\emptyset \subsetneq \cdots \subsetneq F_{r-1}^{\prime} \subsetneq F_{r}^{\prime}=[n] .
\end{aligned}
$$

Let F_{ℓ} be the flat of highest rank of the M-chain \mathscr{M} contained in F_{r-1}^{\prime}. We know that $F_{j} \cap F_{r-1}^{\prime}, j=0,1, \ldots, r$, is a modular flat of the matroid M and that

$$
r\left(F_{j} \cap F_{r-1}^{\prime}\right)=j-1, \quad \text { for } j=\ell+2, \ldots, r-1
$$

Let $\mathscr{M}_{0}:=\mathscr{M}$ and for $i=1, \ldots, r-1-\ell$, let \mathscr{M}_{i} be the M-chain

$$
\emptyset \subsetneq \cdots \subsetneq F_{l} \subsetneq F_{\ell+2} \cap F_{r-1}^{\prime} \subsetneq \cdots F_{\ell+i+1} \cap F_{r-1}^{\prime} \subsetneq F_{\ell+i+1} \cdots \subsetneq[n] .
$$

We have clearly by, definition, that for $i=0, \ldots, r-2-\ell$, the M-chains \mathscr{M}_{i} and \mathscr{M}_{i+1} are equivalent. This sequence of equivalences shows that \mathscr{M} is equivalent to $\mathscr{M}_{r-1-\ell}$. Finally, note that the two M-chains \mathscr{M}^{\prime} and $\mathscr{M}_{r-1-\ell}$ have the same component of rank $r-1$, which by the induction hypothesis implies that \mathscr{M}^{\prime} is equivalent to $\mathscr{M}_{r-1-\ell}$. We have obtained the equivalence of \mathscr{M} and \mathscr{M}^{\prime} which concludes the proof.

Remark 2.12. Proposition 2.11 can be used to obtain all the S-labels of a given chordal graph G from a fixed one. If G is doubly connected the number of M-chains of $M(G)$ is equal to the half the number of such labelings, see [8, Proposition 2.8].

It is natural to ask if, given a chordal graph G, there is a supersolvable matroid M together with an M-partition \mathscr{P} such that $G=G_{\mathscr{P}}$. Can the matroid M be supposed graphic? The next proposition gives a positive answer to these questions.

Proposition 2.13. Let $G=(V, E)$ be a chordal graph with an S-labeling v_{1}, \ldots, v_{m} of its vertices, and \widetilde{G} the extension of G by a vertex v_{0} adjacent to all the vertices, i.e.

$$
V_{\widetilde{G}}=V_{G} \cup v_{0} \quad \text { and } \quad E_{\widetilde{G}}=E_{G} \cup\left\{\left\{v_{i}, v_{0}\right\}, i=1, \ldots, m\right\}
$$

Then $G_{\mathscr{P}}$, the derived S-graph of \widetilde{G} for the S-labeling $v_{0}, v_{1}, \ldots, v_{m}$ is isomorphic to G.
$\underset{\sim}{\text { Proof. As }} v_{0}$ is adjacent to every vertex $v_{i}, i=1, \ldots, m$, it is clear that $v_{0}, v_{1}, \ldots, v_{m}$ is an S-labeling of \widetilde{G}. Let \mathscr{P} and $\underset{\sim}{\mathscr{P}}$ denote the corresponding M-partitions of the graphic matroids $M(G)$ and $M(\widetilde{\sim})$. We have $\mathscr{P}=P_{1} \uplus \cdots \uplus P_{m-1}$ and $\widetilde{\mathscr{P}}=\widetilde{P}_{1}\left(=\left\{v_{0}, v_{1}\right\}\right), \uplus \widetilde{P}_{2} \uplus \cdots \uplus \widetilde{P}_{m}$ with $\widetilde{P}_{i}=P_{i-1} \cup\left\{v_{o}, v_{i}\right\}$, for $i=2, \ldots, m$. Now we can see that if $\left\{v_{i}, v_{j}\right\}, 0 \leqslant i<j \leqslant m-1$, is an edge of G then $\left\{\widetilde{P}_{i}, \widetilde{P_{j}}\right\}$ is an edge of $G \widetilde{\mathscr{P}}$. From Remark 2.8 we get that reciprocally $G_{\widetilde{\mathscr{P}}}$ is a subgraph of G.

Acknowledgements

The authors are grateful to the anonymous referees for their detailed remarks and suggestions on a previous version of this paper. The first author's research was supported in part by FCT/FEDER/POCTI (Portugal) and the project SAPIENS/FEDER/36563/00. The third author was partially supported by CNPq, MCT/FINEP PRONEX Project 107/97, CAPES (Brazil)/COFECUB (France), project number 213/97, FAPERJ. The second author was partially supported by the European network ADONET (in the Marie Curie Training Program).

References

[1] F. Barahona, M. Grötschel, On the cycle polytope of a binary matroid, J. Combin. Theory Ser. B 40 (1) (1986) 40-60.
[2] J. Bonin, A. de Mier, T-uniqueness of some families of k-chordal matroids, Adv. Appl. Math. 32 (2004) 10-30.
[3] T. Brylawski, Modular constructions for combinatorial geometries, Trans. Amer. Math. Soc. 203 (1975) 1-44.
[4] H. Crapo, Erecting geometries, in: Proceedings of the Second Chapel Hill Conference on Combinatorial Mathematics and Applications, University of North Carolina Press, Chapel Hill, NC, 1970, pp. 74-99.
[5] G.A. Dirac, On rigid circuits graphs, Abl. Math. Univ. Hamburg 38 (1961) 71-76.
[6] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
[7] J.G. Oxley, Matroid Theory, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1992.
[8] R.P. Stanley, Supersolvable lattices, Algebra Univ. 2 (1972) 197-217.
[9] N. White (Ed.), Theory of matroids, Encyclopedia of Mathematics and its Applications, vol. 26, Cambridge University Press, Cambridge, New York, 1986.
[10] G. Ziegler, Binary supersolvable matroids and modular constructions, Proc. Amer. Math. Soc. 113 (3) (1991) 817-829.

[^0]: E-mail addresses: cordovil@math.ist.utl.pt (R. Cordovil), forge@lri.fr (D. Forge), sula@cos.ufri.br (S. Klein).

