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In [3], Nathan Bowler and the first author introduced a 
category of algebraic objects called tracts and defined the 
notion of (weak and strong) matroids over a tract. In the first 
part of the paper, we summarize and clarify the connections 
to other algebraic objects which have previously been used in 
connection with matroid theory. For example, we show that 
both partial fields and hyperfields are fuzzy rings, that fuzzy 
rings are tracts, and that these relations are compatible with 
previously introduced matroid theories. We also show that 
fuzzy rings are ordered blueprints in the sense of the second 
author. Thus fuzzy rings lie in the intersection of tracts with 
ordered blueprints; we call the objects of this intersection 
idylls.
We then turn our attention to constructing moduli spaces 
for (strong) matroids over idylls. We show that, for any 
non-empty finite set E, the functor taking an idyll F to 
the set of isomorphism classes of rank-r strong F -matroids 
on E is representable by an ordered blue scheme Mat(r, E). 
We call Mat(r, E) the moduli space of rank-r matroids on 
E. The construction of Mat(r, E) requires some foundational 
work in the theory of ordered blue schemes; in particular, we 
provide an analogue for ordered blue schemes of the “Proj” 
construction in algebraic geometry, and we show that line 
bundles and their global sections control maps to projective 
spaces, much as in the usual theory of schemes.
Idylls themselves are field objects in a larger category 
which we call F±

1 -algebras; roughly speaking, idylls are to 
F±

1 -algebras as hyperfields are to hyperrings. We define 
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matroid bundles over ordered blue F±
1 -schemes and show that 

Mat(r, E) represents the functor taking an ordered blue F±
1 -

scheme X to the set of isomorphism classes of rank-r (strong) 
matroid bundles on E over X. This characterizes Mat(r, E)
up to (unique) isomorphism.
Finally, we investigate various connections between the space 
Mat(r, E) and known constructions and results in matroid 
theory. For example, a classical rank-r matroid M on E
corresponds to a morphism Spec(K) → Mat(r, E), where K
(the “Krasner hyperfield”) is the final object in the category 
of idylls. The image of this morphism is a point of Mat(r, E)
to which we can canonically attach a residue idyll kM , which 
we call the universal idyll of M . We show that morphisms 
from the universal idyll of M to an idyll F are canonically in 
bijection with strong F -matroid structures on M . Although 
there is no corresponding moduli space in the weak setting, 
we also define an analogous idyll kw

M which classifies weak 
F -matroid structures on M . We show that the unit group 
of kw

M can be canonically identified with the Tutte group of 
M , originally introduced by Dress and Wenzel. We also show 
that the sub-idyll kf

M of kw
M generated by “cross-ratios”, which 

we call the foundation of M , parametrizes rescaling classes of 
weak F -matroid structures on M , and its unit group coincides 
with the inner Tutte group of M . As sample applications of 
these considerations, we show that a matroid M is regular if 
and only if its foundation is the regular partial field (the initial 
object in the category of idylls), and a non-regular matroid 
M is binary if and only if its foundation is the field with two 
elements. From this, we deduce for example a new proof of the 
fact that a matroid is regular if and only if it is both binary 
and orientable.

© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

One of the most ubiquitous, and useful, moduli spaces in mathematics is the Grass-
mannian variety Gr(r, n) of r-dimensional subspaces of a fixed n-dimensional vector 
space. In Dress’s paper [14] (and much later, using a different formalism, in [3]), one 
finds that there is a precise sense in which rank-r matroids on an n-element set E are 
analogous to points of the Grassmannian Gr(r, n). More precisely, in the language of [3], 
both can be considered as matroids over hyperfields, or more generally matroids over 
tracts.1 So it seems natural to wonder if there is a “moduli space of matroids”. More 
precisely, one can ask if there is some “geometric” object Mat(r, E) whose “points” over 
any tract F are precisely the F -matroids of rank r on E in the sense of [3]. With some 
small technical caveats (such as the fact that we deal with a slightly restricted class of 
tracts and work with strong F -matroids as opposed to weak ones), we answer this ques-
tion affirmatively in the present paper. We also explore in detail how various properties 
of the moduli space Mat(r, E) are related to more “classical” considerations in matroid 
theory.

What kind of object should Mat(r, E) be? In modern algebraic geometry, one thinks 
of the Grassmannian Gr(r, n) as representing a certain moduli functor from schemes to 
sets.2 This is the point of view we wish to take here, but clearly schemes would not suffice 
for our purposes since there is no way to encode the algebra of tracts in the language of 
commutative rings. It turns out that the second author’s theory of ordered blueprints and 
ordered blue schemes [37] is well-suited to the task at hand. Indeed, as we show, a certain 
nice subcategory of tracts – which we call idylls3 – contains the category of hyperfields 
(as well as the more general category of fuzzy rings) and embeds as a full subcategory 
of ordered blueprints. We can then use the theory developed in [37], together with a few 
new results and constructions, to define a suitable moduli functor and prove that it is 
representable by an ordered blue scheme.4

1.1. Structure of the paper

This paper is divided into three parts, each having a different flavor: the first part 
is algebraic, the second geometric, and the third combinatorial. Each part is largely 
independent from the others except for certain common definitions. In particular, the 
reader who is mainly interested in the applications to matroid theory should be able 
to start reading sections 6 and 7 immediately after looking up the necessary definitions 

1 Tracts are more general than both hyperfields and fuzzy rings in the sense of [14]; see section 2 below 
for an in-depth discussion of the relationship between these and other algebraic structures.
2 More precisely, Gr(r, n) represents the functor taking a scheme X to the set of isomorphism classes of 

surjections from O⊕n
X onto a locally free OX -module of rank n − r.

3 In an earlier version of this text, what we now call ‘idylls’ were called ‘pastures’. We now reserve the 
term ‘pasture’ for a slightly different notion, see Definition 6.19.
4 We note that, in broad outline, Eric Katz had already envisioned using the theory of blueprints to 

represent moduli spaces of matroids in section 9.7 of [28].
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in sections 1.2 and 1.3. We have combined the algebraic, geometric, and combinatorial 
aspects of our theory into a single paper because we believe that the resulting “big 
picture” might lead to interesting new insights and developments in algebra/algebraic 
geometry and/or matroid theory.

In Part 1, which comprises sections 2 and 3, we compare various algebraic structures 
and different notions of matroids over these structures. The main goal of section 2 is to 
clarify precisely how hyperrings / hyperfields, partial fields, fuzzy rings, tracts, and idylls 
relate to ordered blueprints. We also describe the important category of F±

1 -algebras, 
which itself contains the category of idylls; the new feature of F±

1 -algebras is that they 
possess an element ε which plays the role of −1. (The element ε is needed, for example, 
in order to be able to write down the Plücker relations.) In section 3, we define matroids 
over idylls, and more generally F±

1 -algebras, and compare this notion to the existing 
notions of matroids over tracts, fuzzy rings, etc.

In Part 2, which comprises sections 4 and 5, we construct moduli spaces of strong 
matroids over F±

1 -algebras. These moduli spaces are constructed as ordered blue sub-
schemes of a certain projective space, and their construction requires developing some 
foundational material on the “Proj” construction, line bundles, and maps to projective 
spaces in the context of ordered blue schemes.

More precisely, we define matroid bundles over ordered blue F±
1 -schemes and show 

that the functor taking an ordered blue F±
1 -scheme X to the set of isomorphism classes 

of rank-r matroid bundles on E over X is representable by a (unique up to unique 
isomorphism) ordered blue F±

1 -scheme Mat(r, E).
In Part 3, which comprises sections 6 and 7, we relate certain properties of moduli 

spaces of matroids to known constructions and results in matroid theory. For example, we 
use moduli spaces to associate, in a natural way, a universal idyll kM to each (classical) 
matroid M . We show that morphisms from the universal idyll of M to an idyll F are 
canonically in bijection with strong F -matroid structures on M . Although there is no 
corresponding moduli space in the weak setting, we also define an analogous idyll kwM , 
which classifies weak F -matroid structures on M , and a sub-idyll kfM of kwM (which 
we call the foundation of M) which parametrizes rescaling classes of weak F -matroid 
structures on M . The unit group of kwM (resp. kfM ) can be canonically identified with the 
Tutte group (resp. the inner Tutte group) of M ; these groups were originally introduced 
by Dress and Wenzel via explicit presentations by generators and relations.

As sample applications of such considerations, we characterize regular and binary 
matroids in terms of their foundations and show that a matroid is regular if and only 
if it is both binary and representable over some idyll with ε �= 1. Examples of such 
idylls include fields of characteristic different from 2 and the hyperfield of signs S, so in 
particular we obtain a new proof of the fact that a matroid is regular if and only if it is 
both binary and orientable.

We now provide a more detailed overview of each of the three parts of the paper.
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1.2. Part 1: Idylls, ordered blueprints, and matroids

Our first goal, which is modest but necessary, is to tame the zoo of terminology which 
we are forced to deal with in order to clarify the relationship between ordered blueprints 
and various algebraic structures which have already appeared in the literature, as well 
as various notions of matroids over such objects.

1.2.1. Matroids over tracts
In [3], Nathan Bowler and the first author introduce a new category of algebraic 

objects called tracts and define a notion of matroids over tracts. Examples of tracts 
include hyperfields in the sense of Krasner and partial fields in the sense of Semple and 
Whittle. For example, matroids over the Krasner hyperfield K are just matroids, matroids 
over the hyperfield of signs S are oriented matroids, matroids over the tropical hyperfield 
T are valuated matroids, and matroids over a field are linear subspaces. Matroids over 
tracts generalize matroids over fuzzy rings in the sense of Dress ([14]).

Actually, there are two different notions of matroid over a tract F , called weak and 
strong F -matroids. Over many tracts of interest, including fields and the hyperfields 
K, S, and T , weak and strong matroids coincide. However, the two notions are different 
in general. For both weak and strong F -matroids, the results of [3] provide cryptomorphic
axiomatizations of F -matroids in terms of circuits, Grassmann-Plücker functions, and 
dual pairs. The subsequent work of Laura Anderson ([33]) also provides a cryptomorphic 
axiomatization of strong F -matroids in terms of vectors or covectors.

More formally, a tract is a pair (G, NG) consisting of an abelian group G (written 
multiplicatively), together with a subset NG (called the nullset of the tract) of the group 
semiring N[G] satisfying:

(T1) The zero element of N[G] belongs to NG, and the identity element 1 of G is not in 
NG.

(T2) NG is closed under the natural action of G on N[G].
(T3) There is a unique element ε of G with 1 + ε ∈ NG.

One thinks of NG as those linear combinations of elements of G which “sum to zero”. 
We let F = G ∪ {0} ⊂ N[G], and we often refer to the tract (G, NG) simply as F .

Tracts form a category in a natural way: a morphism (G, NG) → (G′, NG′) of tracts 
corresponds to a homomorphism G → G′ which takes NG to NG′ . The Krasner hyperfield 
K (identified with its corresponding tract, which is ({1}, {0, 2, 3, . . . })) is a final object 
in the category of tracts.

1.2.2. Idylls and ordered blueprints: a first glance
Although the axiom (T2) suffices for establishing all of the cryptomorphisms in [3], 

from a “geometric” point of view it is more natural to replace axiom (T2) with the 
stronger axiom:
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(P) The nullset of F is an ideal in N[G], i.e., it is closed under addition and if α ∈ N[G]
and β ∈ NG then αβ ∈ NG.

We define an idyll to be a tract satisfying (P ), i.e., a tract whose nullset is an ideal.5

One advantage of working with idylls is that they can be naturally thought of as 
ordered blueprints. The theory of ordered blueprints, developed by the second author, 
has a rich geometric theory associated to it. There is a speculative remark in [3] to the 
effect that ordered blue schemes might be a suitable geometric category for defining 
moduli spaces of matroids over tracts.6 One of the main goals of the present paper is 
to turn this speculation into a rigorous theorem, at least in the case of strong matroids 
over idylls. The other main goal is to give applications of this algebro-geometric point 
of view to more traditional questions and ideas in matroid theory.

1.2.3. The relationship between various algebraic structures
Loosely speaking, the relationship between hyperfields, tracts, idylls, ordered blue-

prints, and other algebraic structures mentioned in this Introduction can be depicted as 
follows (for a more precise statement, see Theorem 2.21 and the remarks in Section 2.9) 
(Fig. 1):

Fig. 1. Comparison of different algebraic structures.

5 Note that if F = (G, NG) is a tract and NG is closed under addition, then axiom (T2) guarantees that 
NG is in fact an ideal and thus F is an idyll.
6 In the special case of matroids over hyperfields, one could attempt to construct such moduli spaces as 

hyperring schemes in the sense of J. Jun ([27]), but this is potentially problematic for a few reasons: (i) 
The category of hyperring schemes does not appear to admit fiber products; (ii) the structure sheaf of a 
hyperring scheme as defined by Jun has some undesirable properties, e.g., the hyperring of global sections 
of the structure sheaf on Spec(R) is not always equal to R; and (iii) the theory of hyperring schemes is not 
as well developed as the theory of ordered blue schemes. In any case, it is highly desirable to fit not only 
matroids over hyperfields but also matroids over partial fields into our theory, and for this ordered blue 
schemes fit the bill quite well.
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Note that we consider idylls as both tracts and ordered blueprints, which makes sense 
since there is an adjunction between the categories of tracts and ordered blueprints that 
restricts to an equivalence precisely for idylls. In this sense, an idyll can be thought of an 
object that is both a tract and an ordered blueprint; cf. Theorem 2.21 for more details.

We now turn to giving a more precise definition of ordered blueprints and matroids 
over them.

1.2.4. Ordered blueprints
An ordered semiring is a semiring R together with a partial order � that is compatible 

with multiplication and addition. (See section 2.6 for a more precise definition.)
An ordered blueprint is a triple B = (B•, B+, �) where (B+, �) is an ordered semiring 

and B• is a multiplicative subset of B+ which generates B+ as a semiring and contains 
0 and 1.

A morphism of ordered blueprints (B•
1 , B

+
1 , �1) and (B•

2 , B
+
2 , �2) is an order-

preserving morphism f : B+
1 → B+

2 of semirings with f(B•
1) ⊂ B•

2 .
We denote the category of ordered blueprints by OBlpr.

Example 1.1. A hyperfield is an algebraic structure similar to a field, but where addition 
is allowed to be multivalued (see Section 2.3 for a precise definition). We can identify a 
hyperfield F with an ordered blueprint F oblpr as follows:

• The associated semiring (F oblpr)+ is the free semiring N[F×] over the multiplicative 
group F×.

• The underlying monoid (F oblpr)• is (F, ·).
• The partial order � of (F oblpr)+ is generated by the relations 0 �

∑
ai whenever 

0 ∈ �ai.

Example 1.2. A partial field P is a certain equivalence class of pairs (G, R) consisting of 
a commutative ring R with 1 and a subgroup G � R× containing −1. (See section 2.2
for a more precise definition.) We can identify a partial field P with an ordered blueprint 
P oblpr as follows:

• The associated semiring (P oblpr)+ is N[G].
• The underlying monoid (P oblpr)• is G ∪ {0}.
• The partial order � is generated by the 3-term relations 0 � a + b + c whenever 

a, b, c ∈ G satisfy a + b + c = 0 in R.

An example of particular interest is the ordered blueprint associated with the regular 
partial field U0 = ({−1, 0, 1}, Z), whose associated ordered blueprint F±

1 corresponds to 
the submonoid {0, 1, −1} of Z together with the partial order generated by 0 � 1 +(−1).
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The ordered blueprints associated to hyperfields and partial fields are in fact ordered 
blue fields, meaning that B = B× ⋃

{0}, where B× denotes the set of invertible elements 
of B. They are also F±

1 -algebras, a notion which will be defined shortly.
The category of ordered blueprints has an initial object called F1 with associated 

semiring N, underlying monoid {0, 1} (with the usual multiplication), and partial order 
given by equality.

1.2.5. Some properties of ordered blueprints
The category of ordered blueprints admits pushouts: given morphisms B → C and 

B → D of ordered blueprints, one can form their tensor product C⊗B D, which satisfies 
the universal property of a fiber coproduct.

One can also form the localization S−1B of an ordered blueprint B with respect to 
any multiplicative subset S, and it has the usual universal property.

1.2.6. F±
1 -algebras

An F±
1 -algebra is an ordered blueprint B together with a morphism F±

1 → B. Equiv-
alently, an F±

1 -algebra is an ordered blueprint B together with an element ε of B that 
satisfies 0 � 1 + ε. This element ε plays the role of −1 in this theory, and is crucial for 
defining structures such as matroids. We denote the full subcategory of F±

1 -algebras by 
OBlprF±

1
.

1.2.7. Idylls as F±
1 -algebras

The ordered blueprints associated to hyperfields and partial fields are F±
1 -algebras. 

More generally, if F = (G, NG) is any idyll in the sense of section 1.2.2, we can consider 
F as an F±

1 -algebra F oblpr as follows:

• The associated semiring (F oblpr)+ is N[G].
• The underlying monoid (F oblpr)• is G ∪ {0}.
• The partial order � is generated by the relations 0 �

∑
ai whenever ai ∈ G satisfy ∑

ai ∈ NG in N[G].

One can characterize ordered blueprints of the form F oblpr for some idyll F among all 
ordered blueprints in a simple way: they are precisely the F±

1 -algebras that of the form 
(B× ∪ {0}, N[B×], �) for which 0 � 1 + a only if a = ε and that are purely positive, 
meaning that � is generated by elements of the form 0 �

∑
ai.

1.2.8. Matroids over F±
1 -algebras

Let B be an F±
1 -algebra, let E be a finite totally ordered set, and let r ∈ N. We 

denote by 
(
E
r

)
the family of all r-element subsets of E.

A Grassmann-Plücker function of rank r on E with coefficients in B is a function 
ϕ :

(
E
)
→ B such that:
r
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• ϕ(I) ∈ B× for some I ∈
(
E
r

)
.

• ϕ satisfies the Plücker relations

0 �
r∑

k=0

εkϕ(I\ik)ϕ(J ∪ ik)

whenever J ∈
(

E
r−1

)
and I = {i0, . . . , ir} ∈

(
E

r+1
)

with i0 < · · · < ir. (We set 
ϕ(J ∪ i) = 0 if i ∈ J .)

We say that two Grassmann-Plücker functions ϕ, ϕ′ :
(
E
r

)
→ B are equivalent if 

ϕ = aϕ′ for some a ∈ B×.
A B-matroid of rank r on E is an equivalence class of Grassmann-Plücker functions. 

We denote by MatB(r, E) the set of all B-matroids of rank r on E.
If F is an idyll, an F -matroid of rank r on E in the above sense is the same thing as 

a strong F -matroid of rank r on E in the sense of [3]. In this case, we can characterize 
(strong) F -matroids of rank r on E in several different cryptomorphic ways, e.g. in terms 
of circuits, dual pairs, or vectors (see [33,3] or sections 3.1.4 and 3.1.6 below).

The definition of MatB(r, E) is functorial: if f : B → C is a morphism of F±
1 -algebras, 

there is an induced map f∗ : MatB(r, E) → MatC(r, E).
If F is an idyll and f : F → K is the canonical morphism to the final object K (which 

is shorthand for Koblpr) of the category of idylls, the push-forward M := f∗(M) is a 
K-matroid, i.e. a matroid in the usual sense. We call M the underlying matroid of M .

If M ′ is a matroid, we say that M ′ is weakly (resp. strongly) representable over an 
idyll F if M ′ = f∗(M) for some weak (resp. strong) F -matroid M . This generalizes the 
usual notion of representability over fields, or more generally partial fields (for which the 
notions of weak and strong F -matroids coincide).

1.3. Part 2: Constructing moduli spaces of matroids

As discussed above, we wish to construct a moduli space Mat(r, E) of rank-r matroids 
on E as a ordered blue scheme (over F±

1 ) which represents a certain functor. In order to 
formulate precisely what this means, and in particular to specify which moduli functor 
we wish to represent, we first provide the reader with a gentle introduction to the theory 
of ordered blue schemes.

1.3.1. Ordered blue schemes
One constructs the category of ordered blue schemes, starting from ordered blueprints, 

much in the same way that one constructs the category of schemes starting from com-
mutative rings. We give just a brief synopsis here; see section 4.1 for further details.

Let B be an ordered blueprint.
A monoid ideal of B is a subset I of B such that 0 ∈ I and IB = I where IB = {ab |

a ∈ I, b ∈ B}.
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A prime ideal of B is a monoid ideal whose complement is a multiplicative subset.
The spectrum SpecB of B is constructed as follows:

• The topological space of X = SpecB consists of the prime ideals of B, and comes 
with the topology generated by the principal opens

Uh = { p ∈ SpecB |h /∈ p }

for h ∈ B.
• The structure sheaf OX is the unique sheaf on X with the property that OX(Uh) =

B[h−1] for all h ∈ B. The stalk of OX at a point x ∈ X corresponding to p is Bp.

An ordered blueprinted space is a topological space X together with a sheaf OX

in OBlpr. Such spaces form a category OBlprSp. A morphism f : B → C of ordered 
blueprints defines a morphism f∗ : SpecC → SpecB of OBlpr-spaces. This defines the 
contravariant functor Spec : OBlpr −→ OBlprSp whose essential image is the category 
of affine ordered blue schemes.

An ordered blue scheme is an OBlpr-space that has an open covering by affine ordered 
blue schemes Ui. A morphism of ordered blue schemes is a morphism of OBlpr-spaces. 
We denote the category of ordered blue schemes by OBSch.

An ordered blue F±
1 -scheme is an ordered blue scheme X for which OX(U) has the 

structure of an F±
1 -algebra for every open subset U of X. We denote the full subcategory 

of ordered blue F±
1 -schemes by OBSchF±

1
.

1.3.2. Some properties of ordered blue schemes
Ordered blue schemes possess many familiar properties from the world of schemes. 

For example:

• The global section functor Γ : OBSch → OBlpr defined by Γ(X, OX) := OX(X) is a 
left inverse to Spec. In particular, B ∼= Γ(SpecB).

• The category OBSch contains fiber products, and in the affine case Spec(B) ×Spec(D)
Spec(C) ∼= Spec(B ⊗D C).

Various familiar objects from algebraic geometry have analogues in the context of 
ordered blue schemes; for example, one can define an invertible sheaf on an ordered blue 
scheme X to be a sheaf which is locally isomorphic to the structure sheaf OX of X. 
There is a tensor product operation which turns the set PicX of isomorphism classes of 
invertible sheaves on X into an abelian group.

Similarly, one can define, for each n ∈ N and each ordered blueprint B, the projective 
n-space Pn

B as an ordered blue scheme over Spec(B).
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1.3.3. Families of matroids
Let X be an ordered blue F±

1 -scheme. A Grassmann–Plücker function of rank r on 
E over X is an invertible sheaf L on X together with a map ϕ :

(
E
r

)
→ Γ(X, L) such 

that {ϕ(I)}
I∈(Er) generate L and the ϕ(I) satisfy the Plücker relations in Γ(X, L⊗2) (see 

Definition 5.1 for a more precise definition).
Two such functions (L, ϕ) and (L′, ϕ′) are said to be isomorphic if there is an isomor-

phism from L to L′ taking ϕ to ϕ′.
A matroid bundle of rank r on the set E over X is an isomorphism class of Grassmann–

Plücker functions.
If X = Spec(B) is an affine ordered blue F±

1 -scheme, it turns out that a matroid 
bundle over X is the same thing as a B-matroid.

1.3.4. The moduli functor of matroids
One can extend the (covariant) functor taking an F±

1 -algebra B to Mat (r, E)(B) to 
a (contravariant) functor Mat(r, E) : OBSchF±

1
→ Sets taking X to the set of matroid 

bundles of rank r on E over X.
We prove the following theorem, cf. Theorem 5.5:

Theorem A. The moduli functor Mat(r, E) is representable by an ordered blue F±
1 -scheme 

Mat(r, E). In particular, for every ordered blue F±
1 -scheme X there is a natural bijection

HomF±
1

(X,Mat(r, E)) ∼−→Mat(r, E)(X).

The moduli space Mat(r, E) is constructed as an ordered blue subscheme of PN
F±

1
, 

where N = #
(
E
r

)
−1. (This is analogous to the Plücker embedding of the Grassmannian 

Gr(r, n).) However, making this precise requires developing some foundational material 
on line bundles, the “Proj” construction, etc. in the context of ordered blue schemes.

1.4. Part 3: Applications to matroid theory

We conclude this introduction by providing a more detailed overview of Part 3 of the 
paper, in which we connect various algebraic structures related to the moduli spaces 
Mat(r, E) to concepts such as realization spaces, cross ratios, rescaling classes, and uni-
versal partial fields which have been previously studied in the matroid theory literature.

1.4.1. Universal idylls
Given a (classical) matroid M , we can associate to M a universal idyll kM , which is 

derived from a certain “residue ordered blue field” of the matroid space Mat(r, E).
More precisely, a classical matroid M corresponds to a morphism χM : SpecK →

Mat(r, E) which we call the characteristic morphism of M . Topologically, SpecK is a 
point, and the image point xM in the ordered blue F±

1 -scheme Mat(r, E) of the charac-
teristic morphism has an associated residue idyll, much as every point of a (classical) 
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scheme has an associated residue field. We call the residue idyll kM of xM the universal 
idyll of M .

1.4.2. Realization spaces
Let K be a field. The realization space over K of a rank-r matroid M on E = {1, . . . , n}

is the subset of the Grassmannian Gr(r, n) consisting of sub-vector spaces of Kn whose 
associated matroid is M . Such realization spaces have been used for proving that several 
moduli spaces, such as Hilbert schemes and moduli spaces of curves, can have arbitrarily 
complicated singularities, cf. [58].

Given a matroid M and an idyll F , the realization space XM (F ) is the set of iso-
morphism classes of F -matroids whose underlying matroid is M . More precisely, let 
Δ :

(
E
r

)
→ K be a Grassmann-Plücker function, M the corresponding matroid, and 

χM : Spec(K) → Mat(r, E) its characteristic morphism. The canonical map from F to 
K (which takes 0 to 0 and every nonzero element of F to 1) induces a natural map 
Φ : Mat(r, E)(F ) −→ Mat(r, E)(K) taking an F -matroid to its underlying matroid. 
With this notation, the realization space XM (F ) of M over F is the fiber of Φ over χM .

Realization spaces are functorial with respect to morphisms of idylls.
The functor from idylls to sets taking an idyll F to the realization space XM (F ) is 

represented by the universal idyll kM . In other words, there is a canonical bijection

Hom(kM , F ) ∼−→XM (F )

which is functorial in F .

1.4.3. The weak matroid space
So far we have been talking more or less exclusively about strong matroids in the sense 

of [3]. However, there is also a notion of weak matroids over an idyll F which is quite 
important in many contexts.

A weak Grassmann-Plücker function of rank r on E with coefficients in an idyll F is 
a function

Δ :
(
E
r

)
−→ F

whose support is the set of bases of a matroid and which satisfies the 3-term Plücker 
relations

0 � Δ(I1,2) Δ(I3,4) + εΔ(I1,3) Δ(I2,4) + Δ(I1,4) Δ(I2,3)

for every (r − 2)-subset I of E and all i1 < i2 < i3 < i4 with i1, i2, i3, i4 /∈ I, where 
Ik,l = I ∪ {ik, il}.

Two weak Grassmann-Plücker functions Δ and Δ′ are equivalent if Δ = aΔ′ for some 
element a ∈ F×.
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A weak F -matroid of rank r on E is an equivalence class M of weak Grassmann-
Plücker functions Δ of rank r on E with coefficients in F . We denote the set of all weak 
F -matroids of rank r on E by Matw(r, E)(F ).

The weak matroid space Matw(r, E) is defined analogously to Mat(r, E), with the 
important difference that we only impose 3-term Plücker relations; see section 6.4 for a 
precise definition.7 For a matroid M , we define the universal pasture kwM as the residue 
idyll of the space of weak matroids at the point corresponding to M . We can also define 
the weak realization space Xw

M (F ) of M over F to be the set of all weak F -matroids 
whose underlying matroid is M .

As in the strong case, there is a canonical bijection

Hom(kwM , F ) ∼−→Xw
M (F )

which is functorial in F .

1.4.4. Cross ratios
Four points on a projective line over a field K correspond to a point of the Grass-

mannian Gr(2, 4) over K, and their cross ratio can be expressed in terms of the Plücker 
coordinates of this point. This reinterpretation allows for a generalization of cross ratios 
to higher Grassmannians and also to non-realizable matroids.

Let F be an idyll and M be a matroid of rank r on E. The cross ratios of M in F are 
indexed by the set ΩM of 4-tuples I = (I, i1, i2, i3, i4) ∈

(
E

r−2
)
× E4 for which I1,2, I2,3, 

I3,4 and I4,1 are bases of M , where Ik,l = I ∪ {ik, il}.
Let F be an idyll and let M be a weak F -matroid defined by the weak Grassmann-

Plücker function Δ :
(
E
r

)
→ F . The cross ratio function of M is the function CrM :

ΩM → F× that sends an element I = (I, i1, i2, i3, i4) of ΩM to

CrM (I) = Δ(I1,2) · Δ(I3,4)
Δ(I2,3) · Δ(I4,1)

.

One checks easily that this depends only on the equivalence class of Δ, and is thus a 
well-defined function of M .

1.4.5. Foundations
Let B be an F±

1 -algebra. A fundamental element of B is an element a ∈ B such that 
0 � a + b + ε for some b ∈ B.

The foundation of B is the subblueprint Bfound of B generated by the fundamental 
elements of B. Taking foundations is a functorial construction.

7 Note that the natural injection Matw(r, E)(F ) → Matw(r, E)(F ) fails in general to be surjective. The 
reason is that the additional condition that the support of a weak Grassmann-Plücker function must be the 
set of bases of a matroid is not always satisfied by functions representing F -points of Matw(r, E).
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The relevance of this notion for matroid theory is that cross ratios of weak F -matroids 
are fundamental elements of F (which is a simple consequence of the 3-term Plücker 
relations).

If M is a matroid, we define the foundation of M , denoted kfM , to be the foundation of 
the universal pasture kwM of M . Since the functor taking an idyll F to the weak realization 
space Xw

M (F ) is represented by kwM , and cross ratios of weak F -matroids are fundamental 
elements of F , there is a natural universal cross ratio function Cruniv

M : ΩM → kfM .
We prove that the foundation kfM of M is generated by the universal cross ratios 

Cruniv
M (ΩM ) over F±

1 .
We also show (cf. Theorem 7.17) that for every matroid M and idyll F , the following 

are equivalent: (a) M is weakly representable over F ; (b) M is weakly representable over 
F found; and (c) there exists a morphism kfM → F .

1.4.6. The Tutte group and inner Tutte group
The Tutte group TM of a matroid M was introduced by Dress and Wenzel in [15] as a 

tool for studying the representability of matroids by algebraically encoding results such 
as Tutte’s homotopy theorem (cf. [55] and [56]).

The Tutte group is usually defined in terms of generators and relations, and several 
“cryptomorphic” presentations of this group are known. Our approach allows for an 
intrinsic definition of the Tutte group TM as the unit group of the universal pasture kwM
(see section 6.5 for details).

Dress and Wenzel also define a certain subgroup T (0)
M of the Tutte group TM which 

they call the inner Tutte group. Using their results, we show that the natural isomorphism 
(kwM )× → TM restricts to an isomorphism (kfM )× → T (0)

M . In other words, the inner Tutte 
group of M is the unit group of the foundation of M .

1.4.7. Rescaling classes
Let M be a matroid of rank r on E. The importance of the foundation of M is that it 

represents the functor which takes an idyll F to the set of rescaling classes of F -matroids 
with underlying matroid M , in the same way the universal idyll (resp. universal pasture) 
of M represents the realization space XM (F ) (resp. weak realization space Xw

M (F )).
Let F be an idyll, and let T (F ) be the group of functions t : E → F×. The rescaling 

class of an F -matroid M is the T (F )-orbit of M in Matw(r, E)(F ), where T (F ) acts on 
a weak Grassmann-Plücker function Δ :

(
E
r

)
→ F by the formula

t.Δ(I) =
∏
i∈I

t(i) · Δ(I).

Rescaling classes are the natural generalization to matroids over arbitrary idylls of 
reorientation classes for oriented matroids, where two (realizable) oriented matroids are 
considered reorientation equivalent if they correspond to the isomorphic real hyperplane 
arrangements. (For non-realizable matroids, there is a similar assertion involving pseudo-
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sphere arrangements; this is part of the famous “Topological Representation Theorem” 
of Folkman and Lawrence, cf. [19] or [6, section 5.2].)

If we fix a matroid M and an idyll F , we define the rescaling class space X
f
M (F ) to 

be the set of rescaling classes of weak F -matroids with underlying matroid M . There is 
a canonical bijection

Hom(kfM , F ) ∼−→X
f
M (F )

which is functorial in F .
As a sample motivation for considering rescaling classes over more general idylls than 

just the hyperfield of signs, we mention that while it is true that a matroid M is regular 
(i.e., representable over the rational numbers by a totally unimodular matrix) if and only 
if M is representable over F±

1 , there are in general many non-isomorphic F±
1 -matroids 

whose underlying matroid is a given regular matroid M . However, there is always pre-
cisely one rescaling class over F±

1 . In other words, regular matroids are the same thing 
as rescaling classes of F±

1 -matroids.

1.4.8. Foundations of binary and regular matroids
A binary matroid is a matroid that is representable over the finite field F2 with two 

elements.
We show that a matroid is regular if and only if its foundation is F±

1 , and binary if 
and only if its foundation is either F±

1 or F2. We recover from these observations a new 
proof of the well-known facts that (a) a matroid is regular if and only if it is representable 
over every field; and (b) a binary matroid is either representable over every field or not 
representable over any field of characteristic different from 2.

We also use these observations to give new and conceptual proofs of the following 
facts: (a) a binary matroid has at most one rescaling class over every idyll (compare 
with [61, Thm. 6.9]); and (b) every matroid has at most one rescaling class over F3

(cf. [7]).
In addition, we show (cf. Theorem 7.35) that a matroid M is regular if and only if 

M is binary and weakly representable over some idyll F with 1 �= ε. This implies, for 
example (taking F to be the hyperfield of signs) the well-known fact that a matroid is 
regular if and only if it is both binary and orientable.

1.4.9. Relation to the universal partial field of Pendavingh and van Zwam
The universal partial field PM of a matroid M was introduced by Pendavingh and 

van Zwam in [48]. It has the property that a matroid M is representable over a partial 
field P if and only if there is a partial field homomorphism PM → P .

We show that there is a partial field PM,0 naturally derived from the universal pasture 
kwM of M with the property that for every partial field P there is a natural bijection
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Hom(PM,0, P ) ∼−→XM (P oblpr)

which is functorial in P .
The universal partial field of Pendavingh and van Zwam is isomorphic to the partial 

subfield PM of PM,0 generated by the cross ratios of M . We prove that for every partial 
field P there is a natural and functorial bijection

Hom(PM , P ) ∼−→X
f
M (P oblpr).

One disadvantage of the universal partial field is that it doesn’t always exist: there are 
matroids (e.g. the Vámos matroid) which are not representable over any partial field. 
However, every matroid is representable over some idyll, so the foundation kfM of M
gives us information about representations of M even when the universal partial field is 
undefined.

Our classification of binary and regular matroids in terms of their foundations also 
yields a classification of such matroids in terms of their universal partial fields: a matroid 
is regular if and only if its universal partial field is F±

1 , and binary if and only if its 
universal partial field is F±

1 or F2.

Part 1. Idylls, ordered blueprints, and matroids

2. The interplay between partial fields, hyperfields, fuzzy rings, tracts, and ordered 
blueprints

Our approach to matroid bundles utilizes an interplay between tracts and ordered 
blueprints, as introduced by the first author and Bowler in [3] and the second author 
in [37], respectively. Tracts and ordered blueprints are common generalizations of other 
algebraic structures that appear in matroid theory, such as partial fields, hyperfields, 
and fuzzy rings.

In this section, we review the definitions of all of the aforementioned notions and ex-
plain their interdependencies. Our exposition culminates in Theorem 2.21, which exhibits 
a diagram of comparison functors between the corresponding categories.

2.1. Semirings

Since many of the following concepts are based on semirings and derived notions, we 
begin with an exposition of semirings. All of our structures will be commutative and, 
following the practice of the literature in commutative algebra and algebraic geometry, 
we omit the adjective “commutative” when speaking of semirings, monoids, and other 
structures.

A monoid is a commutative semigroup with a neutral element. A monoid morphism 
is a multiplicative map that preserves the neutral element. In this text, a semiring is a 
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set R together with two binary operations + and · and with two constants 0 and 1 such 
that the following axioms are satisfied:

(SR1) (R, +, 0) is a monoid;
(SR2) (R, ·, 1) is a monoid;
(SR3) 0 · a = 0 for all a ∈ R;
(SR4) a(b + c) = ab + ac for all a, b, c ∈ R.

A morphism of semirings is a map f : R1 → R2 between semirings R1 and R2 such that

f(0) = 0, f(1) = 1, f(a + b) = f(a) + f(b) and f(ab) = f(a)f(b)

for all a, b ∈ R1. We denote the category of semirings by SRings.
Let R be a semiring. An ideal of R is a subset I such that 0 ∈ I, a + b ∈ I and ac ∈ I

for all a, b ∈ I and c ∈ R. An ideal is proper if it is not equal to R.
Given any subset S = {ai}i∈I of elements of R, we define the ideal 〈S〉 = 〈ai〉i∈I

generated by S as the smallest ideal of R containing S, which is equal to

〈S〉 =
⋂

ideals J
with S⊂J

J =
{ ∑

i∈I

biai ∈ R
∣∣ bi ∈ R with bi = 0 for almost all i ∈ I

}
.

The group of units of R is the group R× of all multiplicatively invertible elements of 
R. A semifield is a semiring R such that R = R× ∪ {0}.

Note that an ideal I is proper if and only if I ∩ R× = ∅. A semiring R is a semifield 
if and only if {0} and R are the only ideals of R.

Example 2.1. Every (commutative and unital) ring is a semiring. Examples of semirings 
that are not rings are the natural numbers N and the nonnegative real numbers R�0. 
Examples of a more exotic nature are the tropical numbers R�0 together with the usual 
multiplication and the tropical addition a + b = max{a, b}, and the Boolean numbers
B = {0, 1} with 1 +1 = 1, which appears simultaneous as a subsemiring and as a quotient 
of the tropical numbers.

2.1.1. Monoid semirings
Let A be a multiplicatively written monoid and R a semiring. The monoid semiring 

R[A] consists of all finite formal R-linear combinations 
∑

raa of elements a of A, i.e. 
almost all ra ∈ R are zero. The addition and multiplication of R[A] are defined by the 
formulas (∑

a∈A

raa
)

+
(∑

a∈A

saa
)

=
∑
a∈A

(ra + sa)a and

(∑
raa

)
·
(∑

saa
)

=
∑( ∑

rbsc

)
a,
a∈A a∈A a∈A bc=a
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respectively. The zero of R[A] is 0 =
∑

0 · a and its multiplicative identity is 1 =
∑

raa

with r1 = 1 and ra = 0 for a �= 1.
This construction comes with an inclusion A → R[A], and we often identify A with 

its image in R[A], i.e. we write b or 1 · b for the element 
∑

raa of R[A] with rb = 1 and 
ra = 0 for a �= b. In the case R = N, every element of N[A] is a sum 

∑
ai of elements ai

in A.

Example 2.2. Polynomial semirings are particular examples of monoid semirings. Let R
be a semiring and let A = {

∏n
i=1 T

ei
i | ei ∈ N} be the monoid of all monomials in 

T1, . . . , Tn. Then R[A] is the polynomial semiring R[T1, . . . , Tn].

2.2. Partial fields

In [53], Semple and Whittle introduced partial fields as a tool for studying repre-
sentability questions about matroids. The theory of matroid representations over partial 
fields was developed further by Pendavingh and van Zwam in [48] and [49]; also cf. van 
Zwam’s thesis [59]. Loosely speaking, a partial field can be thought of as a set P together 
with distinguished elements 0 and 1, a map · : P × P → P , and a partially defined map 
+ : P × P → P satisfying:

• (P, ·, 1) is a commutative monoid in which every nonzero element is invertible
• + is associative and commutative with neutral element 0
• every element a ∈ P has a unique additive inverse −a

• multiplication distributes over addition.

Morphisms of partial fields are defined to be structure preserving maps.
It is somewhat involved to make the requirements on + rigorous; in particular, the 

formulation of the associativity of + involves binary rooted trees with labeled leaves.
Van Zwam gives in [59, section 2.1] a simpler but equivalent description of partial fields 

in terms of a ring R together with a subgroup G of the unit group R× of R that contains 
−1. The downside of this approach is that morphisms are not structure preserving maps; 
in particular, the isomorphism type of the ambient ring R is not determined by a partial 
field. There is, however, a distinguished ambient ring for every partial field, which has 
better properties than other choices for R, cf. [59, Thm. 2.6.11]. This latter observation 
leads us to the following hybrid of Semple-Whittle’s and van Zwam’s definitions.

Let Z[G] be the group ring of a group G, which comes together with the inclusion 
G ∪ {0} → Z[G], sending a ∈ G to 1 · a and 0 to 0.

A partial field P = (P×, πP ) is a commutative group P× together with a surjective 
ring homomorphism πP : Z[P×] → RP such that

(PF1) the composition P× ∪ {0} −→ Z[P×] πP−→ RP is injective;
(PF2) for every a ∈ P×, there is a unique element b ∈ P× such that πP (a + b) = 0;
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(PF3) the kernel of πP is generated by all elements a + b + c with a, b, c ∈ P×∪{0} such 
that πP (a + b + c) = 0.

We can recover the motivating properties of a partial field from these axioms:

• we define P× ∪ {0} as the underlying set of P , i.e. P is a subset of the ambient ring 
RP ;

• we write a + b = c for elements a, b, c ∈ P with πP (a + b + (−c)) = 0, which defines 
the partial addition + of P ;

• if πP (a + b) = 0, then πP (b) = πP ((−1) · a), i.e. every element a ∈ P has a unique 
additive inverse with respect to the partial addition of P , which we denote by −a.

A morphism f : P1 → P2 of partial fields is a group homomorphism P×
1 → P×

2 that 
extends to a ring homomorphism RP1 → RP2 . Using the notation introduced above, this 
is the same as a map f : P1 → P2 such that f(0) = 0, f(1) = 1, f(ab) = f(a)f(b) for all 
a, b ∈ P1 and f(a) + f(b) = f(c) if a + b = c with a, b, c ∈ P1. We denote the category of 
partial fields by PartFields.

Example 2.3. A field K can be identified with the partial field (K×, πK), where πK :
Z[K×] → K is the surjective ring homomorphism induced by the identity map K× ∪
{0} → K. Note that with this identification a field homomorphism is the same as a 
morphism between the associated partial fields.

The regular partial field U0 consists of the group U×
0 = {±1} and the surjective ring 

homomorphism πU0 : Z[U×
0 ] → Z mapping ±1 to the corresponding elements in Z. Note 

that it is an initial object in the category of partial fields. Later on, this partial field will 
be reincarnated as the ordered blue field F±

1 , cf. Example 2.19.
For an extensive list of other examples, we refer to [59].

2.3. Hyperfields and hyperrings

The notion of an algebraic structure in which addition is allowed to be multi-valued 
goes back to Frédéric Marty, who introduced hypergroups in 1934 ([43]). Later on, in 
the mid-1950’s, Marc Krasner ([30]) developed the theory of hyperrings and hyperfields 
in the context of approximating non-Archimedean fields, and in the 1990’s Murray Mar-
shall ([42]) explored connections to the theory of real spectra and spaces of orderings. 
Subsequent advocates of hyperstructures included Oleg Viro ([60], in connection with 
tropical geometry) and Connes and Consani ([9], in connection with geometry over F1).

A commutative hypergroup is a set G together with a distinctive element 0 and a
hyperaddition, which is a map

� : G×G −→ P(G)

into the power set P(G) of G, such that:
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(HG1) a � b is not empty, (nonempty sums)
(HG2)

⋃
d∈b� c a � d =

⋃
d∈a� b d � c, (associativity)

(HG3) 0 � a = a � 0 = {a}, (neutral element)
(HG4) there is a unique element −a in G such that 0 ∈ a � (−a), (inverses)
(HG5) a � b = b � a, (commutativity)
(HG6) c ∈ a � b if and only if (−a) ∈ (−c) � b (reversibility)

for all a, b, c ∈ G. Note that thanks to commutativity and associativity, it makes sense to 
define hypersums of several elements a1, . . . , an unambiguously by the recursive formula

n

�
i=1

ai =
⋃

b∈� n−1
i=1 ai

b� an.

A (commutative) hyperring is a set R together with distinctive elements 0 and 1 and 
with maps � : R×R → P(R) and · : R×R → R such that

(HR1) (R, � , 0) is a commutative hypergroup,
(HR2) (R, ·, 1) is a commutative monoid,
(HR3) 0 · a = a · 0 = 0,
(HR4) a · (b � c) = ab � ac

for all a, b, c ∈ R where a · (b � c) = {ad|d ∈ b � c}. Note that the reversibility axiom 
(HG6) for the hyperaddition follows from the other axioms of a hyperring.

A morphism of hyperrings is a map f : R1 → R2 between hyperrings such that

f(0) = 0, f(1) = 1, f(a� b) ⊂ f(a)� f(b) and f(ab) = f(a) · f(b)

for all a, b ∈ R1 where f(a � b) = {f(c)|c ∈ a � b}. We denote the category of hyperrings 
by HypRings.

The unit group R× of a hyperring R is the group of all multiplicatively invertible 
elements in R. A hyperfield is a hyperring K such that 0 �= 1 and K = K× ∪ {0}. We 
denote the full subcategory of hyperfields in HypRings by HypFields.

Example 2.4. Every ring R can be considered as a hyperring by defining a � b = {a + b}. 
If R is a field, the corresponding hyperring is a hyperfield.

The Krasner hyperfield is the hyperfield K = {0, 1} whose addition is characterized 
by 1 � 1 = {0, 1}. Note that all other sums and products are determined by the hyperring 
axioms. It is a terminal object in HypFields.

The tropical hyperfield T was introduced by Viro in [60]. Its multiplicative monoid 
consists of the non-negative real numbers R�0, together with the usual multiplication, 
and its hyperaddition is defined by the rule a � b = max{a, b} if a �= b and a � a = [0, a]. 
The tropical hyperfield has a particular importance for valuations and tropical geometry, 
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since a nonarchimedean absolute value v : K → R�0 on a field K is the same thing as a 
morphism v : K → T of hyperfields.

The sign hyperfield S is the multiplicative monoid S = {0, ±1} together with the 
hyperaddition characterized by 1 � 1 = {1}, (−1) � (−1) = {−1}, and 1 � (−1) =
{−1, 0, 1}. Note that with this definition, the sign map R → S becomes a morphism 
of hyperfields.

There is a more general construction of hyperfields, as quotients of fields by a multi-
plicative subgroup, which covers all of the previous examples. Let K be a field and G a 
multiplicative subgroup of K×. Then the quotient K/G of K by the action of G on K
by multiplication carries a natural structure of a hyperfield: we have (K/G)× = K×/G

as an abelian group and

[a]� [b] =
{

[c]
∣∣ c = a′ + b′ for some a′ ∈ [a], b′ ∈ [b]

}
for classes [a] and [b] of K/G.

Example 2.5. The Krasner hyperfield and the tropical hyperfield are instances of a 
construction that applies to all totally ordered idempotent semirings. Namely, every 
idempotent semiring R comes with a natural partial order � defined by declaring that 
a � b if a + b = b. If R is bipotent, i.e. a + b ∈ {a, b} for all a, b ∈ R, then R is totally 
ordered with respect to �.

When R is totally ordered, we can define a hyperaddition on R as

a� b =
{
{a + b} if a �= b,

{c ∈ R | c � a} if a = b.

The set R, together with its usual multiplication and the hyperaddition � , is a hyperring. 
(The only nontrivial thing to check is associativity of the hyperaddition, which requires 
the total order of R). If R is a totally ordered idempotent semifield, this procedure turns 
R into a hyperfield.

2.4. Fuzzy rings

We review the definition of a fuzzy ring from [14] in a slightly simplified but evidently 
equivalent form. As a second step, we give a yet simpler description of the category 
of fuzzy rings by exhibiting a representative of a particularly simple form in each iso-
morphism class. We refer the reader to section 2.1 for all preliminary definitions on 
semirings.

A fuzzy ring is a possibly nondistributive semiring R, i.e. it might disobey axiom 
(SR4) of a semiring, together with a proper ideal I that satisfies the following axioms 
for all a, b, c, d ∈ R:

(FR1) there is a unique ε ∈ R× such that 1 + ε ∈ I;
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(FR2) a + b, c + d ∈ I implies ac + εbd ∈ I.
(FR3) a ∈ R× implies a(b + c) = ab + ac;
(FR4) a + b(c + d) ∈ I implies a + bc + bd ∈ I;

Here R× = { a ∈ R | ab = 1 for some b ∈ R } denotes the unit group of R.
Since these axioms might look bewildering to the reader that sees them for the first 

time, we include a brief discussion to motivate them. The idea behind this definition is 
that the zero of a field becomes replaced by the ideal I; consequently additive inverses 
only exist “up to I”.

Axiom (FR1) implies that every unit a ∈ R× has a unique additive inverse in R×, 
which is εa. In particular, we have ε2 = 1. Axioms (FR3) and (FR4) are weakened forms 
of distributivity—these axioms hold automatically in a distributive semiring. Axiom 
(FR2) is reminiscent of the arithmetic of quotient rings: a ≡ εb (mod I) and c ≡ εd

(mod I) implies ac ≡ bd (mod I) and thus ab + εbd ∈ I.

Example 2.6. A standard example is the fuzzy ring associated with a field K, which is 
given by R = {S ⊂ K | S �= ∅} with addition S + T = {s + t | s ∈ S, t ∈ T} and 
multiplication S · T = {st | s ∈ S, t ∈ T} and whose ideal is I = {S ⊂ K | 0 ∈ S}. 
Another example is the group semiring N[G] of an abelian group G together with a 
proper ideal I of N[G] such that (FR1) and (FR2) hold—axioms (FR3) and (FR4) are 
automatically satisfied since N[G] is distributive.

A morphism R1 → R2 of fuzzy rings is a group homomorphism f : R×
1 → R×

2 such 
that 

∑
ai ∈ I1 implies 

∑
f(ai) ∈ I2 for all a1, . . . , an ∈ R×

1 . We denote the category of 
fuzzy rings by FuzzRings.

Note that Dress also defines homomorphisms of fuzzy rings in [14]. Since this latter 
notion does not have a particular meaning for matroid theory, we omit it from our 
exposition. Note further that morphisms and homomorphisms were renamed in [23] as 
weak and strong morphisms, respectively.

It follows immediately from the definition that a morphism of fuzzy rings preserves 1
and ε. It is also apparent that it depends only on the respective subsets of R1 and R2
whose elements can be written as a sum of units. This observation leads to the following 
fact.

Proposition 2.7. Let (R, I) be a fuzzy ring with unit group G = R× and π : N[G] → R

the natural map that sends a finite formal sum 
∑

ai of elements ai ∈ G to its sum in R. 
Define J = π−1(I). Then R = (N[G], J) is a fuzzy ring and the identity map G → R×

defines an isomorphism of fuzzy rings R → R.

Proof. We include a brief proof. For more details, we refer the reader to Appendix B of 
[3].

Since I ⊂ R is a proper ideal, R× ∩ I = ∅ and thus J ∩ G = ∅, i.e. J is proper. It 
follows from the definition that J is an ideal of N[G]. Properties (FR3) and (FR4) of 
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a fuzzy ring are satisfied since N[G] is distributive. Properties (FR1) and (FR2) follow 
immediately from the definition of J as π−1(I) and the validity of (FR1) and (FR2) in 
R.

It is also clear from the definition of R that the identity maps id : G → R× and 
id : R× → G are mutually inverse isomorphisms of fuzzy rings. �
Corollary 2.8. The category FuzzRings is equivalent to its full subcategory consisting of 
fuzzy rings of the form (N[G], I) for some abelian group G. Given an abelian group G and 
a proper ideal I ⊂ N[G], the pair (N[G], I) is a fuzzy ring if and only if it satisfies (FR1) 
and (FR2). A morphism between two fuzzy rings of the form (N[G1], I1) and (N[G2], I2)
is the same as a semiring homomorphism f : N[G1] → N[G2] with f(G1) ⊂ G2 and 
f(I1) ⊂ I2.

Proof. The first claim follows immediately from Proposition 2.7. The second claim fol-
lows since N[G] is distributive and thus satisfies (FR3) and (FR4) automatically. To 
conclude, a group homomorphism f : G1 → G2 extends uniquely to a semiring homo-
morphism f̃ : N[G1] → N[G2]. The homomorphism f is a morphism of fuzzy rings if 
and only if 

∑
ai ∈ I1 implies 

∑
f(ai) ∈ I2, i.e. if f̃(I1) ⊂ I2. Thus the last claim. �

Example 2.9. As we will see in Theorem 2.21, partial fields and hyperfields can be realized 
as fuzzy rings in a natural way. They represent somewhat opposite ends of a spectrum: 
while the sum of any two elements of a hyperfield needs to contain at least 1 element, 
the sum of two elements of a partial field is equal to at most 1 element.

The fuzzy ring associated with the regular partial field U0 is initial in FuzzRings and 
it is not associated with any hyperfield. The fuzzy ring associated with the Krasner 
hyperfield K is terminal in FuzzRings and it is not associated with any partial field.

We describe some examples of fuzzy rings that are neither partial fields nor hyperfields. 
Let n be an even integer and μn a cyclic group with n elements, generated by an element 
ζn. Let I be the ideal of N[μn] that is generated by the elements

n/d∑
i=1

ζidn

where d ranges through the divisors of n smaller than n. Then F = (N[μn], I) is a fuzzy 
ring, which does not come from a hyperfield since ζn+ζn is not defined. If n is divisible by 
a prime larger than 3, then F does not come from a partial field since I is not generated 
by only 3-term sums.

Another class of examples is the following. Let G be a group with neutral element 1
and I the ideal of N[G] that is generated by 1 + 1 and 1 + 1 + 1. Then F = (N[G], I)
is a fuzzy ring, which does not come from a partial field since it would require that 
0 = 1 + 1 + 1 = 1 + 0 = 1. If G contains an element a �= 1, then F does not come from a 
hyperfield since 1 � a would have to be empty.
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Both of the above examples can be realized as partial hyperfields, as considered in [3], 
which are (roughly speaking) hyperfields that are allowed to disobey the nonemptiness 
axiom (HG1). Though partial hyperfields and fuzzy rings are closely related, there are 
technical differences between them stemming from the different roles of the associative 
law in the two settings. This is discussed in detail in [23]; in particular, cf. Example 4.2.

2.5. Tracts

In the recent joint work [3], the first author and Nathan Bowler distill from the 
aforementioned theories of partial fields, hyperfields, and fuzzy rings the notion of a 
tract, which seems to be both a natural setting for matroid theory and a relatively 
simple (yet quite general) algebraic structure.

A tract F = (F×, NF ) is an abelian group F× together with a subset NF of the group 
semiring N[F×], called the nullset of F , satisfying the following properties:

(T1) 0 ∈ NF and 1 /∈ NF ;
(T2) aNF = NF for every a ∈ F×;
(T3) there is a unique element ε ∈ F× such that 1 + ε ∈ NF .

We sometimes write F for the set F×∪{0}, and we think of NF as the linear combinations 
of elements of F which “sum to zero”.

Let Fi = (F×
i , NFi

) be tracts for i = 1, 2. A morphism f : F1 → F2 of tracts is a 
group homomorphism F×

1 → F×
2 such that the induced homomorphism N[F×

1 ] → N[F×
2 ]

maps NF1 to NF2 . Equivalently, it is a map f : F1 → F2 such that f(0) = 0, f(1) = 1, 
f(ab) = f(a)f(b) for all a, b ∈ F1 and 

∑
f(ai) ∈ NF2 for all 

∑
ai ∈ NF1 . We denote the 

category of tracts by Tracts.
We recall some facts about tracts from [3].

Lemma 2.10. Let F be a tract and ε ∈ F× the unique element with 1 + ε ∈ NF . Then we 
have

(1) F ∩NF = {0};
(2) ε2 = 1;
(3) a + εa ∈ NF for every a ∈ F×;
(4) if a + b ∈ NF with a, b ∈ F×, then b = εa.

Example 2.11. The tract ({1}, N−{1}) associated to the Krasner hyperfield K is terminal 
in Tracts. More generally, every fuzzy ring (N[G], I) defines a tract (G, I) as we will see 
in Theorem 2.21. In fact, there are only two ways in which a tract can fail to come from 
a fuzzy ring.

The first deviation of tracts from fuzzy rings lies in the fact that the nullset NF of a 
tract does not have to be an ideal of the semiring N[F×], but merely an F×-invariant 
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subset. For example, the nullset NF = {0, 1 + ε} of the initial object F = ({1, ε}, NF ) of 
Tracts is not an ideal of N[{1, ε}].

Another example is the following. If F = (G, I) is a tract, for instance coming from a 
fuzzy ring (N[G], I), then we can consider the 3-term truncation

I3 =
{
a + b + c

∣∣ a + b + c ∈ I and a, b, c ∈ G ∪ {0}
}

of I, which is not an ideal of N[G], but merely a G-invariant set. The resulting tract 
(G, I3) can be a useful gadget to compare strong F -matroids, which are defined by all 
Plücker relations, with weak F -matroids, which are defined in terms of just the 3-term 
Plücker relations.

The second deviation of tracts from fuzzy rings stems from the omission of axiom 
(FR2) of a fuzzy ring. The following is an example of a tract whose nullset is an ideal, 
but which does not come from a fuzzy ring due to the failure of axiom (FR2).

Let F = (F×
5 , NF ) be the subtract of F5 = {0, 1, 2, 3, 4} that consists of the same 

underlying monoid, but whose nullset is the ideal NF of N[F×] generated by the elements 
1 + 4 and 1 + 1 + 3. Then F = (F×, NF ) is a tract with ε = 4. If (N[F×], NF ) was a 
fuzzy ring, then (FR2) applied to a = c = 1 + 1 and b = d = 3 would imply that

(1 + 1)(1 + 1) + 4 · 3 · 3 = 1 + 1 + 1 + 1 + 1

is an element of NF , which is not the case. (Note that 4 · 3 · 3 = 36 ≡ 1 modulo 5.)

2.6. Ordered blueprints

As a general reference for ordered blueprints, we refer the reader to Chapter 5 of the 
second author’s lecture notes [39].

An ordered semiring is a semiring R together with a partial order � that is compatible 
with multiplication and addition, i.e. x � y and z � t imply x + z � y + t and xz � yt

for all x, y, z, t ∈ R.
An ordered blueprint is a triple B = (B•, B+, �) where (B+, �) is an ordered semiring 

and B• is a multiplicative subset of B+ that generates B+ as a semiring and contains 
0 and 1. A morphism of ordered blueprints (B•

1 , B
+
1 , �1) and (B•

2 , B
+
2 , �2) is an order 

preserving morphism f : B+
1 → B+

2 of semirings with f(B•
1) ⊂ B•

2 . We denote the 
category of ordered blueprints by OBlpr.

Let B = (B•, B+, �) be an ordered blueprint. We call B• the underlying monoid of B
and think of it as the underlying set, i.e. we write a ∈ B for a ∈ B•. Note that a morphism 
f : B1 → B2 of ordered blueprints is determined by its restriction f• : B•

1 → B•
2 to the 

underlying monoids. We call B+ be associated semiring of B. We call � the partial order 
of B.

Typically, we denote the elements of B• by a, b, c and d, and the elements of B+ by 
either x, y, z and t or by 

∑
ai, 

∑
bj , 

∑
ck and 

∑
dl where assume that the ai, bj , ck

and dl are in B•. Note that every element of B+ is indeed a sum of elements in B•.



26 M. Baker, O. Lorscheid / Advances in Mathematics 390 (2021) 107883
The unit group B× of an ordered blueprint is the commutative group of all multi-
plicatively invertible elements of B. An ordered blue field is an ordered blueprint B with 
B• = B× ∪ {0}.

If we have 
∑

ai �
∑

bj and 
∑

bj �
∑

ai, then we write 
∑

ai ≡
∑

bj . If this is 
the case for all relations in B, then we say that B is an algebraic blueprint. (Algebraic 
blueprints are simply called “blueprints” in [38].)

Remark 2.12. Note that the partial order of B corresponds to what is called the sub-
addition of B in [37] in the following way: the subaddition of B is the preorder on the 
monoid semiring N[B•] that is the pullback of � along the quotient map N[B•] → B+.

The following constructions provide a rich class of examples of ordered blueprints.

2.6.1. Semirings and monoids
Every semiring R defines the ordered blueprint (R, R, =) where = denotes the trivial 

partial order given by equality of elements. A monoid with zero, which is a (multiplica-
tively written) commutative semigroup A with neutral element 1 and absorbing element 
0 (i.e. 0 · a = 0 for all a ∈ A), defines the ordered blueprint (A, N[A], =). In what fol-
lows, we identify semirings and monoids with their associated ordered blueprints and say 
that an ordered blueprint B is a semiring or a monoid if it is isomorphic to an ordered 
blueprint coming from a semiring or monoid with zero, respectively.

Example 2.13. The monoid F1 = {0, 1}, sometimes referred to as the field with one 
element, can be identified with the ordered blueprint ({0, 1},N,=), and the Boolean 
semifield B = {0, 1} (where 1 + 1 = 1) can be identified with ({0, 1}, B, =).

2.6.2. Free algebras
Given an ordered blueprint B and a set X = {Ti}i∈I , we can form the free ordered 

blueprint B[X] = B[Ti]i∈I over B, which is defined as follows. The associated semiring 
B[X]+ is the usual polynomial semiring over B+ in the variables Ti. The underlying 
monoid B[X]• is the subset of monomials a 

∏
Tni
i with coefficients a ∈ B. The partial 

order � of B[X]+ is the smallest partial order that contains the partial order of B+ and 
that is closed under multiplication and addition.

Example 2.14. The free algebra C[T ] = (C[T ]•, C[T ]+, =) is the ordered blueprint where 
C[T ]+ is the usual polynomial ring and C[T ]• is the subset of all terms of the form 
aTn with a ∈ C and n ∈ N. The free algebra F1[T ] is the ordered blueprint where 
F1[T ]+ = N[T ]+ is the usual polynomial semiring over N, endowed with the trivial 
order =, and where F1[T ]• consists of all monomials and 0.

Remark 2.15. The reader might be alarmed by the fact that the notation B[T ] for the free 
ordered blueprint conflicts with the notation for corresponding notation for semirings: 
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given a semiring R, the blueprint (R[T ], R[T ], =) associated with the polynomial semiring 
R[T ] differs from the free blueprint R[T ] = (R[T ]•, R[T ]+, �R[T ]). More precisely, if 
B = R and B[T ] is the free ordered blueprint, then the polynomial semiring R[T ] equals 
B[T ]+. However, it will be clear from the context to which construction we refer when 
we write B[T ] or R[T ]. Sometimes we indicate that we mean the latter construction by 
writing B[T ]+.

2.6.3. Quotients by relations
Given an ordered blueprint B = (B•, B+, �B) and a set of relations S = {xi � yi}i∈I , 

which we do not assume to be contained in �B, we define the ordered blueprint C =
B�〈S〉 as the following triple (C•, C+, �C). Let �′ be the smallest preorder on B+ that 
contains �B and S and that is closed under multiplication and addition. We write x ≡ y

if x � y and y � x. Then ≡ is an equivalence relation on B+, and we define C+ as 
B+/ ≡, which inherits naturally the structure of an ordered blueprint since �′ is closed 
under multiplication and addition. The preorder �′ induces a partial order �C on C+, 
which turns C+ into an ordered semiring. The multiplicative subset C• is defined as the 
image of B• under the quotient map B+ → C+.

Given an ordered blueprint B = (B•, B+, �), we say that the partial order � of B is
generated by a set S = {xi � yi}i∈I of relations on B+ if � is the smallest preorder on 
B+ that contains S and that is closed under multiplication and addition.

Example 2.16. With this construction, we can define ordered blueprints like F12 =
{0, 1, −1} � 〈0 ≡ 1 + (−1)〉 (note that in this case F+

12 = Z) and B[T1, . . . , T6] � 〈0 �
T1T6 + T2T5 + T3T4〉.

2.6.4. Subblueprints
Let B = (B•, B+, �B) be an ordered blueprint. An (ordered) subblueprint of B is an 

ordered blueprint C such that C• is a submonoid of B•, such that the ambient semiring 
C+ is the subsemiring of B+ that is generated by C• and such that the partial order 
of C is the restriction of the partial order of B+ to C+. Note that by definition, every 
submonoid C• of B• determines a unique subblueprint C of B.

2.6.5. Tensor products
Given two morphisms B → C and B → D of ordered blueprints, there exists a push-

out of the diagram C ← B → D, which is represented by the tensor product C ⊗B D of 
C and D over B. The tensor product is constructed as follows.

The semiring (C ⊗B D)+ is the usual tensor product C+ ⊗B+ D+ of commutative 
semirings, whose elements are classes of finite sums 

∑
ci ⊗ di of pure tensors ci ⊗ di

with respect to the usual identifications. The monoid (C⊗B D)• is defined as the subset 
of all pure tensors of (C ⊗B D)+. The partial order on (C ⊗B D)+ is defined as the 
smallest partial order that is closed under addition and multiplication and that contains 
all relations of the forms
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∑
ai ⊗ 1 �

∑
ck ⊗ 1 and

∑
1 ⊗ bj �

∑
1 ⊗ dl

for which 
∑

ai �
∑

ck in C and 
∑

bj �
∑

dl in D, respectively.

Example 2.17. The tensor product can be used to extend constants. For instance, we have 
F1[T1, . . . , Tn] ⊗F1 B = B[T1, . . . , Tn] for every ordered blueprint B. Given a semiring R, 
the tensor product R⊗F1 F12 = R⊗N Z is the ring of differences associated with R.

2.7. F±
1 -algebras and idylls

As we will see in Theorem 2.21, the ordered blueprint that corresponds to the regular 
partial field U0 under the embedding of PartFields in OBlpr is F±

1 = {0, 1, ε} �〈0 � 1 + ε〉.
An F±

1 -algebra is an ordered blueprint B together with a morphism αB : F±
1 → B, 

which we call the structure map of B. We denote the image αB(ε) of ε ∈ F±
1 by εB, or 

simply by ε if there is no danger of confusion. This element plays the role of −1, and for 
a given for a ∈ B, we call εa the weak inverse of a. Note that we do not use the symbol 
−1 in this context since 1 does not have an additive inverse in the ambient semiring B+, 
i.e. B+ is in general not a ring. (F±

1 itself provides an example: (F±
1 )+ = N[1, ε].)

A morphism of F±
1 -algebras from an F±

1 -algebra B to an F±
1 -algebra C is a morphism 

f : B → C of ordered blueprints that commutes with the respective structure maps 
αB and αC . Equivalently, it is a morphism of ordered blueprints f : B → C such that 
f(εB) = εC . This defines the category OBlprF±

1
of F±

1 -algebras.
The weak inverse εa of an element a of an F±

1 -algebra is in general not uniquely 
determined by the relation 0 � a + εa. For instance, we have 0 � 1 ⊗ 1 + ε ⊗ 1 and 
0 � 1 ⊗ 1 + 1 ⊗ ε in F±

1 ⊗F1 F
±
1 . For certain purposes, we want to impose the condition 

that b = εa is uniquely determined by the relation 0 � a + b. We call an F±
1 -algebra 

F±
1 → B with this property an F±

1 -algebra with unique weak inverses.8 This defines 
a full subcategory OBlpr± of OBlprF±

1
. The following definition captures the class of 

ordered blueprints that come from tracts.

Definition 2.18. An ordered blueprint B is purely positive if its partial order is generated 
by relations of the form 0 �

∑
ai. An idyll is a purely positive F±

1 -algebra B with unique 
weak inverses that is an ordered blue field and for which the natural map N[B×] → B+

is a bijection.

Since the element ε of an F±
1 -algebra B with unique weak inverses is uniquely 

determined by 0 � 1 + ε, the structure map F±
1 → B is the unique morphism 

from F±
1 to B. In other words, forgetting the structure map defines a fully faith-

ful embedding OBlpr± → OBlpr. This embedding has a left adjoint and left inverse 

8 In an earlier version of this paper, F±
1 -algebra with unique weak inverses were called pasteurized ordered 

blueprints.
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(−)± : OBlpr → OBlpr±, which can be described as follows. Let B = A �R be an ordered 
blueprint. Then we define the associated F±

1 -algebra with unique weak inverses as

B± = B⊗F1 F
±
1 // 〈a ≡ a′ | there is a b ∈ B⊗F1 F

±
1 such that 0 � a+ b and 0 � a′ + b〉.

A morphism f : B → C of ordered blueprints induces the morphism f± : B± → C±, 
defined by f±(a ⊗ b) = f(a) ⊗ b.

Example 2.19. We have already introduced F±
1 = {0, 1, ε} �〈0 � 1 + ε〉, which is an initial 

object of both OBlprF±
1

and OBlpr±. It corresponds to the regular partial field U0 under 
the embedding of PartFields in OBlpr± that is explained in Theorem 2.21.

If B is an algebraic blueprint, then B is an F±
1 -algebra with unique weak inverses if 

and only if 0 ≡ 1 + ε for some ε ∈ B. Indeed, we have 0 ≡ a + εa for every a ∈ B and 
0 ≡ a + b implies b ≡ b + a + εa ≡ εa. If B contains the relation 0 ≡ 1 + ε, then we write 
−1 for ε and say that B is with inverses or with −1. Note that B is with −1 if and only 
if it contains F12 as a subblueprint.

Remark 2.20. We would like to point out that the idea to consider ordered semirings 
(B+, �) together with a multiplicative subset B• and an involution ι : a �→ εa has been 
considered previously in the papers [1] by Akian, Gaubert and Guterman and [52] by 
Rowen. Although the algebraic datum is the same as for F±

1 -algebras, the axioms vary 
in these publications, so that the resulting notions have a different level of generality. 
To avoid a digression into technicalities, we refrain from a detailed discussion of these 
differences.

2.8. From partial fields and hyperfields to tracts and ordered blueprints

Partial fields and hyperfields turn out to be particular examples of tracts and ordered 
blueprints, passing through the intermediate categories of fuzzy rings and hyperrings. 
The latter objects are connected by an adjunction, as explained in the following:

Theorem 2.21. There is a diagram

PartFields Tracts

FuzzRings

HypFields HypRings OBlpr±

(−)fuzz

(−)oblpr

(−)tract

(−)oblpr
(−)fuzz

ι (−)oblpr

(−)tract 	

of functors with the following properties:
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(1) the functors with domains PartFields, HypFields, HypRings and FuzzRings are fully 
faithful;

(2) (−)tract : OBlpr± → Tracts is right adjoint to (−)oblpr : Tracts → OBlpr± and this 
adjunction restricts to an equivalence between the essential images of the functors, 
which are the full subcategory of idylls and the full subcategory of tracts whose nullsets 
are ideals, respectively;

(3) the square and both triangles in the diagram commute.

The functor ι : HypFields → HypRings is the inclusion as a full subcategory and hence 
is fully faithful. In the rest of this section, we will construct the other functors of this 
diagram and prove the various assertions of Theorem 2.21.

2.8.1. From partial fields to fuzzy rings
Let P be a partial field with unit group P× and projection πP : Z[P×] → RP . We 

define the associated fuzzy ring P fuzz as the pair (N[P×], I), where

I =
{ ∑

ai ∈ N[P×]
∣∣ πP (

∑
ai) = 0

}
is the kernel of the composition N[P×] ι−→ Z[P×] πP−→ RP of semiring morphisms.

Given a morphism f : P1 → P2 of partial fields, we define the associated morphism of 
fuzzy rings f fuzz : P fuzz

1 → P fuzz
2 as the restriction of f to P×

1 → P×
2 .

Claim. The above description defines a fully faithful functor (−)fuzz : PartFields →
FuzzRings.

Proof. We begin by showing that P fuzz = (N[P×], I) is indeed a fuzzy ring. Since 0 �= 1
in RP , I is a proper ideal. According to Corollary 2.8, we have to verify only (FR1) and 
(FR2) in order to show that (N[P×], I) is a fuzzy ring. Axiom (FR1) follows immediately 
from axiom (PF2) of a partial field.

We are left with (FR2). For simplicity, we write π = πP . Let a, b, c, d ∈ N[P×] and 
a + b, c + d ∈ I. Then π(b) = π(−a) and π(d) = π(−c). Since π(ε) = π(−1) = −1, we 
have

π(ac + εbd) = π(a)π(c) + π(ε)π(b)π(d) = π(a)π(c) − π(a)π(c) = 0,

i.e. ac + εbd ∈ I, as desired. This shows that P fuzz is indeed a fuzzy ring.
We continue by showing that f fuzz is a morphism of fuzzy rings. Note that f fuzz :

P×
1 → P×

2 is well-defined as a map since for a ∈ P×
1 , we have f(a)f(a−1) = f(aa−1) =

f(1) = 1 and thus f(a) �= 0. Since f(ab) = f(a)f(b), we conclude that f fuzz is a group 
homomorphism.

As the next step, we verify the additive axiom for f fuzz. For i = 1, 2, we denote by Ii the 
kernel of N[P×

i ] ιi−→ Z[P×
i ] πi−→ RPi

, where we write πi = πPi
. Then Ii = kerπi∩N[P×

i ]. 
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By (PF3), kerπi is generated by the elements a + b + c for which πi(a + b + c) = 0, where 
a, b, c ∈ Pi. As a consequence, Ii is generated by the same elements as an ideal of N[P×

i ].
Thus we have to verify that f(a) + f(b) + f(c) ∈ I2 if a + b + c ∈ I1 for a, b, c ∈ P×

1 . 
The condition a + b + c ∈ I1 means that π(a + b + c) = 0 or, equivalently, π1(a + b) =
−π(c) = π(εc). Thus f(a) + f(b) = f(εc), i.e. π2(f(a) + f(b)) = π2(εf(c)). We conclude 
that f(a) + f(b) + f(c) ∈ I2, as desired.

This shows that f fuzz : P fuzz
1 → P fuzz

2 is a morphism of fuzzy rings. Since the restriction 
of maps is functorial, this completes the proof that (−)fuzz : PartFields → FuzzRings is 
a functor.

Finally, we show that (−)fuzz is fully faithful. Let P1 and P2 be partial fields and 
g : P fuzz

1 → P fuzz
2 a morphism between the associated fuzzy rings. If g = f fuzz for a 

morphism f : P1 → P2 of partial fields, then f is determined by the rules f(0) = 0 and 
f(a) = g(a) for a ∈ P×

1 . This shows that (−)fuzz is faithful.
We verify that f as defined above is indeed a morphism of partial fields. Evidently, 

f(0) = 0, f(1) = 1 and f(ab) = f(a)f(b) for a, b ∈ P1. Given a + b = c in P1, we have 
to show that f(a) + f(b) = f(c). If a + b = c, then a + b + εc ∈ I1. After omitting the 
zero terms in this sum, we can apply f and see, after placing back the zero terms at the 
omitted positions, that f(a) + f(b) + εf(c) ∈ I2. Thus f(a) + f(b) = f(c) as required. 
This shows that (−)fuzz is full and finishes the proof of the claim. �
2.8.2. From hyperfields to fuzzy rings

The inclusion HypFields → FuzzRings is the theme of [23]. Since we agreed to work 
only with fuzzy rings of the shape (N[G], I), we have to adapt the construction from 
Theorem A in [23]. The reader can easily convince himself that our variant yields a fuzzy 
ring isomorphic to the original one via the isomorphism from Proposition 2.7.

Given a hyperfield K, the associated fuzzy ring Kfuzz = (N[G], I) is defined by G =
K× and

I =
{ ∑

ai ∈ N[G]
∣∣ ai ∈ G and 0 ∈ � ai

}
.

Given a morphism f : K1 → K2 of hyperfields, we define the associated morphism 
f fuzz : Kfuzz

1 → Kfuzz
2 of fuzzy rings as the restriction of f to K×

1 → K×
2 .

Claim. This defines a fully faithful embedding (−)fuzz : HypFields → FuzzRings.

Proof. We begin with the verification that (−)fuzz is well-defined on objects, i.e. that 
Kfuzz is a fuzzy ring for every hyperfield K. It is clear that G = K× is an abelian group. 
We continue with showing that I is an ideal of N[G]. Clearly 0 ∈ I. If 

∑
ai, 

∑
bj ∈ I, then 

0 ∈ � ai and 0 ∈ � bj . This implies that 0 ∈ � ai � � bj and thus 
∑

ai +
∑

bj ∈ I, 
as desired. Given an element 

∑
ai ∈ N[G] and 

∑
bj ∈ I, we have 0 ∈ � bj . By the 

distributivity of K, this implies that 0 ∈ � j aibj for every i. Summing over all i yields 
0 � � i,j aibj and thus 

∑
aibj ∈ I, as desired. This shows that I is an ideal.
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We proceed with the proof that (N[G], I) satisfies (FR1) and (FR2). Axiom (FR1) 
follows immediately from the existence and uniqueness of additive inverses in K. Namely, 
we have 0 ∈ 1 � (−1) and thus 1 + ε ∈ I for ε = −1. If 1 + a ∈ I, then 0 ∈ 1 � a, which 
means that a = ε.

In order to verify axiom (FR2), consider a + b, c + d ∈ I, i.e. 0 ∈ a � b and 0 ∈ c � d. 
By the uniqueness of additive inverses, this means that b = εa and d = εd. Thus bd =
ε2ac = ac and 0 ∈ ac � εac = ac � εbd. This shows that ab + εbd ∈ I, as desired, and 
concludes the proof that Kfuzz is a fuzzy ring.

We continue with the verification that (−)fuzz is well-defined on morphisms, i.e. that 
f fuzz is indeed a morphism of fuzzy rings for every hyperfield morphism f : K1 → K2. It 
is evident that f fuzz : K×

1 → K×
2 is a group homomorphism. Given an element 

∑
ai ∈ I1, 

i.e. 0 ∈ � ai, we have 0 ∈ � f(ai). Thus 
∑

f fuzz(ai) ∈ I2, which shows that f fuzz is a 
morphism of fuzzy rings. This verifies that (−)fuzz is indeed a functor.

We conclude with the proof that (−)fuzz is fully faithful. Since f(0) = 0, a morphism 
f : K1 → K2 is determined by its restriction f fuzz : K×

1 → K×
2 . Thus (−)fuzz is faithful.

Let g : K×
1 → K×

2 be a morphism of fuzzy rings Kfuzz
1 → Kfuzz

2 . Consider the extension 
of g to f : K1 → K2 with f(0) = 0. Then f is a multiplicative map with f(1) = 1 and 
f(0) = 0. Given two elements a, b ∈ K1 and c ∈ a � b, we have 0 ∈ a � b � εc. Thus 
a + b + εc ∈ I1 and f(1) + f(b) + εf(c) ∈ I2. This means that f(a) � f(b) contains an 
additive inverse of εf(c), which must be f(c) by the uniqueness of additive inverses. Thus 
f(c) ∈ f(a) � f(b), which verifies that f is a morphism of hyperfields. By construction, 
we have f fuzz = g, which shows that (−)fuzz is full. This completes the proof of the 
claim. �
2.8.3. From fuzzy rings to tracts

Let F = (N[G], I) be a fuzzy ring. We define the associated tract F tract as the pair 
(G, I). Note that axioms (T1) and (T2) of a tract are satisfied since I is a proper ideal 
of N[G] and axiom (T3) follows from axiom (FR1) of a fuzzy ring.

Let Fi = (N[Gi], Ii) be fuzzy rings for i = 1, 2. It is evident that a map G1 → G2
defines a morphism between the fuzzy rings f : F1 → F2 if and only if it is a morphism 
between associated tracts f tract : F tract

1 → F tract
2 . Therefore the association f �→ f tract

turns (−)tract into fully faithful functor from FuzzRings to Tracts.

2.8.4. From fuzzy rings to ordered blueprints
Let F = (N[G], I) be a fuzzy ring and G0 = G ∪ {0}, which is a submonoid of N[G]. 

We define the associated ordered blueprint as

F oblpr = G0�〈 0 �
∑

ai |
∑

ai ∈ I 〉.

Note that the associated semiring is the group semiring N[G] itself.
Let Fi = (N[Gi], Ii) be fuzzy rings for i = 1, 2. Given a morphism f : F1 → F2 of fuzzy 

rings, which is a group homomorphism f : G1 → G2, we define the associated morphism 
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foblpr : F oblpr
1 → F oblpr

2 of order blueprints as the linear extension N[G1] → N[G2] of f
to the respective group semirings.

Claim. The above description defines a fully faithful functor (−)oblpr : FuzzRings →
OBlpr±.

Proof. Note that axiom (FR1) of a fuzzy ring F implies that F oblpr is an F±
1 -algebra 

with unique weak inverses. Thus the image of (−)oblpr is indeed contained in OBlpr±.
A group homomorphism f : G1 → G2 is a morphism of fuzzy rings F1 → F2 if and only 

if for every formal sum 
∑

ai ∈ I1, we have 
∑

f(ai) ∈ I2. Note that foblpr(G1 ∪ {0}) ⊂
G2 ∪ {0} holds automatically. This condition on elements of I1 can be reformulated as 
follows: for every 0 �

∑
ai in F oblpr

1 , we have 0 �
∑

f(ai) in F oblpr
2 . This shows that 

foblpr is indeed a morphism of ordered blueprints and that (−)oblpr is fully faithful. �
2.8.5. From hyperrings to ordered blueprints

It is already mentioned in [37] that the category of hyperrings embeds fully faithfully 
into the category of ordered blueprints. In this text, we will consider a modification of 
this embedding which seems to be more natural with respect to the relation of ordered 
blueprints with fuzzy rings and tracts.

Given a hyperring R, we define the associated ordered blueprint as

Roblpr = R•�〈 0 �
∑

ai | 0 ∈ � ai and ai ∈ R 〉,

where R• is the multiplicative monoid of R. Note that the associated semiring Roblpr,+

is the free monoid semiring N[R•]+ modulo the identification of 0 ∈ R with the zero in 
N[R•]+.

Let f : R1 → R2 be a map of hyperrings with f(0) = 0, f(1) = 1 and f(ab) = f(a)f(b)
for all a, b ∈ R1. Let foblpr : Roblpr,+

1 → Roblpr,+
2 be the linear extension of f to the 

respective semirings.

Claim. The above description defines a fully faithful functor (−)oblpr : FuzzRings →
OBlpr±.

Proof. Let R be a hyperring. By axiom (HG4), the associated ordered blueprint Roblpr

is an F±
1 -algebra with unique weak inverses.

Let f : R1 → R2 be a multiplicative map between hyperrings preserving 0 and 1. Its 
linear extension foblpr : Roblpr,+

1 → Roblpr,+
2 to the respective semirings is well-defined 

since f(0) = 0. It is clear that foblpr(R•
1) ⊂ R•

2. Then f is a morphism of hyperrings 
if and only if for all relations 0 ∈

∑
ai in R1, we have 0 ∈

∑
f(ai) in R2. By the 

definition of the associated ordered blueprint, this condition is equivalent to foblpr being 
order preserving. To summarize, f is a morphism of hyperrings if and only if foblpr is a 
morphism of ordered blueprints. Finally note that f is uniquely determined by foblpr as 
the restriction of foblpr to R1 → R2.
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This shows that (−)oblpr : HypRings → OBlpr± is a fully faithful functor. �
This concludes the proof of part (1) of Theorem 2.21.

2.8.6. From tracts to ordered blueprints
Let F = (F×, NF ) be a tract. We define the associated ordered blueprint F oblpr as the 

triple B = (B•, B+, �) where B• = F , seen as a multiplicative subset of B+ = N[F×], 
and whose partial order � is generated by the relations 0 �

∑
ai for which 

∑
ai ∈ NF

with ai ∈ F •. By axiom (T3) of a tract, F oblpr is an F±
1 -algebra with unique inverses.

Given a morphism f : F1 → F2 of tracts, we define the morphism foblpr : F oblpr
1 →

F oblpr
2 between the associated ordered blueprints as the linear extension of f to f+ :

N[F×
1 ] → N[F×

2 ]. Note that foblpr(F1) = f(F1) ⊂ F2 and that f+ is order preserving 
since for a generator 0 �

∑
ai of the partial order of F oblpr

1 , i.e. 
∑

ai ∈ NF1 , we have ∑
f(ai) ∈ NF2 and thus 0 � f+(

∑
ai) in F oblpr

2 .
This defines the functor (−)oblpr : Tracts → OBlpr±.

2.8.7. From ordered blueprints to tracts
Let B = A �R be an ordered blueprint. In case that B is not trivial, i.e. 0 �= 1, we 

define the associated tract Btract as the pair F = (B×, NB) where NB = {
∑

ai | ai ∈
B× and 0 �

∑
ai}. Note that the underlying set of F is B× ∪ {0}. If B = {0 = 1}, then 

we define Btract as the terminal tract K = ({1}, N −{1}), which we denote by the same 
symbol K as the Krasner hyperfield.

Given a morphism f : B1 → B2 of ordered blueprints, we define the morphism f tract

as the restriction of f to B×
1 → B×

2 if B1 and B2 are nontrivial, and as the unique 
morphism Btract

1 → K if B2 is trivial. Note that if B1 is trivial and admits a morphism 
to B2, then B2 is trivial as well.

Claim. The above description yields a functor (−)tract : OBlpr± → Tracts.

Proof. Let B be an F±
1 -algebra with unique inverses. We verify that Btract = (B×, NB)

is indeed a tract. Since K = {0}tract is a tract, we can assume that B is nontrivial, i.e. 
0 �= 1. Since 0 � 0, we have 0 ∈ NB . We have 1 ∈ NB only if 0 � 1 in B. But then 
0 � 1 = 1 + 0 and thus 1 is the weak inverse of 0, i.e. 1 = ε0 = 0, a contradiction. This 
verifies axiom (T1) of a tract.

Axiom (T2) follows from the fact that � is closed under multiplication. Axiom (T3) 
follows since B is with unique weak inverses.

Let f : B1 → B2 be a morphism of F±
1 -algebras. If B2 is trivial, then f tract is evidently 

well-defined as the unique morphism Btract
1 → K into the terminal object. Therefore we 

can assume that B1 and B2 are nontrivial.
Since f(B×

1 ) ⊂ B×
2 and since f is multiplicative, f tract is a group homomorphism. If ∑

ai ∈ NBtract , i.e. 0 �
∑

ai in B1, then 0 �
∑

f(ai) in B2 and thus 
∑

f tract(ai) ∈
1
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NBtract
2

. This shows that f tract : Btract
1 → Btract

2 is indeed a morphism of tracts and 
defines the functor (−)tract : OBlpr± → Tracts. �
2.8.8. The adjunction between tracts and F±

1 -algebras
We begin with the description of the unit of the adjunction. Let F be a tract and 

F oblpr = (F, N[F×], �) the associated ordered blueprint. Then the underlying set of 
F̃ = (F oblpr)tract is equal to the underlying set of F , which is F×∪{0}. By the definition 
of �, we have 0 �

∑
ai for all elements 

∑
ai ∈ NF . Thus NF ⊂ NF̃ . This means that 

the identity map ηF : F → (F oblpr)tract is a morphism of tracts.
Note that a morphism F → Btract into a tract Btract that comes from an F±

1 -algebra 
with unique inverses B factors uniquely into ηF followed by a morphism (F oblpr)tract →
Btract.

Claim. Let B be an F±
1 -algebra with unique inverses. A morphism f : F → Btract factors 

uniquely into ηF followed by a morphism f̃ : (F oblpr)tract → Btract.

Proof. The uniqueness of this factorization is clear since ηF is the identity map between 
the underlying sets of F and F̃ = (F oblpr)tract and is thus an epimorphism. The nullset 
NF̃ of F̃ is the ideal of N[F×] generated by the nullset NF of F . Since the nullset of Btract

is also an ideal, independently of whether B is trivial or not, the map f : F → Btract

defines a morphism f̃ : F̃ → Btract and we have f = f̃ ◦ ηF , as claimed. �
We continue with the description of the counit of the adjunction. Let B be an F±

1 -
algebra with unique inverses and Btract = (B×, NB) the associated tract. If B = {0} is 
trivial, then {0} is a terminal object in OBlpr± and we define ε{0} : ({0}tract)oblpr → {0}
as the unique morphism into {0}. Note that ({0}tract)oblpr = {0, 1} �〈0 � 1 + 1, 0 �
1 + 1 + 1〉.

If B is nontrivial, then (Btract)oblpr is the ordered blueprint (B×∪{0}, N[B×], �Btract)
whose partial order �Btract is generated by the relations of the form 0 �

∑
ai with 

ai ∈ B× that are contained in the partial order of B. Thus the inclusion map B× → B

induces a morphism εB : (Btract)oblpr → B of ordered blueprints.

Claim. Let F be a tract. A morphism f : F oblpr → B factors uniquely into a morphism 
f̃ : F oblpr → (Btract)oblpr followed by εB.

Proof. If B = {0} is trivial, then (Btract)oblpr = Koblpr and there is a unique morphism 
f̃ : F oblpr → Koblpr, which sends 0 to 0 and nonzero elements a to 1. This morphism 
satisfies the claim.

If B is not trivial, then the uniqueness of the factorization follows from the fact that εB
is an injection and thus a monomorphism. Note that F oblpr is a blue field whose partial 
order is generated by relations of the form 0 �

∑
ai. Since B̃ = (Btract)oblpr contains all 

units of B and 0, the image of f : F oblpr → B is contained in B̃, i.e. f factors into εB ◦ f̃
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as a multiplicative map where f̃ : F oblpr → B̃ is the restriction of f to the codomain B̃. 
Since all relations of the form 0 �

∑
ai of B with ai ∈ B̃ = B× ∪ {0} hold in B̃, the 

map f̃ is indeed a morphism of ordered blueprints, which proves the claim. �
This yields the adjunction

HomTracts(F,Btract) 1:1←→ HomOBlpr±(F oblpr, B)[
F

f−→ Btract ]
�−→

[
F oblpr foblpr

−→ (Btract)oblpr εB−→ B
]

[
F

ηF−→ (F oblpr)tract ftract

−→ Btract ]
�−→

[
F oblpr f−→ B

]
for every tract F and every F±

1 -algebra with unique inverses B.

2.8.9. The images of the adjunction
Let F = Btract be a tract that comes from an F±

1 -algebra with unique inverses B. 
Then the nullset NF of F is an ideal of N[F×]. Thus the partial order �F of the ordered 
blueprint F oblpr is generated by the relations of the form 0 �

∑
ai for which 

∑
ai ∈ NF . 

After identifying the underlying sets of F and F̃ = (F oblpr)tract, the nullset NF̃ of F̃
is equal to NF . This shows that εF : F → (F oblpr)tract is an isomorphism and that the 
essential image of (−)oblpr : OBlpr± → Tracts consists of all tracts F whose nullset is an 
ideal of N[F×].

Let B = F oblpr be an ordered blueprint that comes from a tract F . Then B is an 
ordered blue field, i.e. B = B×∪{0}, B+ = N[B×] and the partial order of B is generated 
by relations of the form 0 �

∑
ai where ai ∈ B.

Thus ηB : (Btract)oblpr → B is a bijection and the partial orders of both ordered 
blue fields agree. This shows that ηB : (Btract)oblpr → B is an isomorphism of ordered 
blueprints and that the essential image of (−)tract : Tracts → OBlpr± consists of all 
idylls.

In summary, the adjoint functors (−)oblpr and (−)tract restrict to mutually inverse 
equivalences of categories between the respective images of these functors. This completes 
the proof of part (2) of Theorem 2.21.

2.8.10. Commutativity of the diagram
We verify that the square (starting in HypFields) and both triangles (starting in 

FuzzRings) of the diagram in Theorem 2.21 commute.

Claim. Let K be a hyperfield. Then Koblpr � (Kfuzz)oblpr.

Proof. The associated ordered blueprint Koblpr is B = K � 〈0 �
∑

ai | 0 ∈ � ai〉. 
The associated fuzzy ring Kfuzz is F = (N[K×], I) where I = {

∑
ai | 0 ∈ � ai}. The 

ordered blueprint associated with F is F oblpr = (F× ∪ {0}) �〈0 �
∑

ai | 
∑

ai ∈ I〉. 
The image of the natural embedding K → N[K×] is F× ∪ {0}. This defines a bijection 
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Koblpr → F oblpr, which is multiplicative and preserves 0 and 1. We have 0 �
∑

ai in 
Koblpr if and only if 

∑
ai ∈ I, which is the case if and only if 0 �

∑
ai in F oblpr. This 

establishes the claimed isomorphism Koblpr � (Kfuzz)oblpr. �
Claim. Let F = (N[F×], I) be a fuzzy ring. Then F oblpr � (F tract)oblpr and F tract �
(F oblpr)tract.

Proof. The associated ordered blueprint F oblpr is B = (F× ∪ {0}) �〈0 �
∑

ai | ai ∈ I〉. 
The associated tract F tract is T = (F×, I).

The ordered blueprint associated with T is T oblpr = (F× ∪ {0}) �〈0 �
∑

ai ∈ I〉, 
which is equal to B = F oblpr with respect to the identity map F× ∪ {0} → F× ∪ {0}. 
Thus the first isomorphism of the claim.

The tract associated with B is Btract = (B×, J) for J = {
∑

ai | 0 �
∑

ai}. Under 
the identification of B× = F× with T× = F×, we obtain I = J and thus the second 
isomorphism of the claim. �

We leave the easy verification that the above isomorphisms are functorial to the reader. 
This concludes the proof of Theorem 2.21.

2.9. Conventions for the rest of the paper

The dominant objects in the upcoming sections are F±
1 -algebras. From now on, we 

will rely on the results of Theorem 2.21 and think of the categories PartFields, FuzzRings
and HypFields as full subcategories of OBlpr±. Accordingly, we say that an ordered 
blueprint is a partial field, fuzzy ring or a hyperring if it is isomorphic to an object of 
the corresponding subcategory.

By a slight abuse of notation, we will denote the associated ordered blueprints by 
the same symbols as their avatars in the subcategories of hyperfields and partial fields. 
For instance, we denote the ordered blueprints associated with the Krasner hyperfield 
and the tropical hyperfield by K and T , respectively. This means that we make the 
identifications

K = {0, 1}
//〈

0 � 1 + 1, 0 � 1 + 1 + 1
〉

and

T = R•
�0

//〈
0 �

∑
ai

∣∣ max{ai} = ak = al for k �= l
〉
.

Similarly, we have U0 = F±
1 . We will proceed with the symbol F±

1 for the regular partial 
field since this is more systematic from our point of view.
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2.9.1. Remark on a common generalization of ordered blueprints and tracts
Since the category of tracts does not embed into the category of ordered blueprints, 

we lose a certain part of the theory of matroids over tracts when passing to ordered 
blueprints. In principle, it is possible to formulate a common generalization of ordered 
blueprints and tracts which would be compatible with matroid theory over any tract. 
This would, however, complicate the exposition of this text considerably and, at the time 
of writing, the authors are not aware of a reason that would justify such an effort. In 
particular, all types of matroids that appeared in the literature before [3] are based on 
tracts whose underlying nullset is an ideal.

3. Comparison of matroid theories

In this section, we review matroid theory in its different incarnations over partial fields, 
hyperfields, fuzzy rings and tracts and show that the full embeddings from Theorem 2.21
are compatible with the respective matroid theories. We follow the approach to matroids 
in terms of Grassmann-Plücker functions, which makes the compatibility of the different 
matroid theories most visible. We restrict ourselves to some brief remarks on existing 
cryptomorphisms in the literature. We have chosen a top-to-bottom approach, starting 
with matroids over tracts and allowing ourselves to streamline the definitions from the 
original sources slightly to make our exposition more coherent.

For the rest of this section, we fix a finite, non-empty ordered set E = {1, . . . , n} and 
a natural number r � n. We denote by 

(
E
r

)
the family of all r-element subsets of E.

3.1. Matroids over tracts

Matroids over tracts were introduced in [3]; we provide a brief summary of this theory.

3.1.1. Grassmann-Plücker functions
Let F = (F×, NF ) be a tract, let E = {1, . . . , n} be a non-empty finite ordered set, 

and let r be a natural number with r � n.

Definition 3.1. A Grassmann-Plücker function of rank r on E with coefficients in F is a 
function

Δ :
(
E
r

)
−→ F

that is not identically 0 and satisfies the Plücker relations

r∑
k=0

εk Δ
(
I − {ik}

)
Δ
(
J ∪ {ik}

)
∈ NF

for every (r − 1)-subset J of E and every (r + 1)-subset I = {i0, . . . , ir} of E with 
i0 < · · · < ir, where we define Δ(J ∪ {ik}) = 0 if ik ∈ J .
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Two Grassmann-Plücker functions Δ and Δ′ are equivalent if Δ = aΔ′ for some 
element a ∈ F×. A (strong) F -matroid of rank r on E is an equivalence class M of 
Grassmann-Plücker functions Δ of rank r on E with coefficients in F . We denote the set 
of all F -matroids of rank r on E by Mat(r, E)(F ).

The notion of F -matroids, where F is a tract, includes as particular special cases 
various generalizations of matroids which have appeared previously in the literature. In 
particular, one obtains

• matroids as K-matroids where K is the Krasner hyperfield;
• oriented matroids as S-matroids where S is the hyperfield of signs;
• valuated matroids as T -matroids where T is the tropical hyperfield.

Furthermore, if K is a field, a K-matroid of rank r on E is the same thing as a K-
linear subspace of KE of dimension r. For more details, we refer the reader once again 
to [3].

3.1.2. Pushforwards and the underlying matroid
A morphism f : F1 → F2 of tracts yields a map f∗ : Mat(r, E)(F1) → Mat(r, E)(F2)

by sending the class M = [Δ] of a Grassmann-Plücker function Δ :
(
E
r

)
→ F1 to the class 

f∗(M) = [f ◦ Δ] of the composition f ◦ Δ :
(
E
r

)
→ F2, which is a Grassmann-Plücker 

function with coefficients in F2. We call f∗(M) the pushforward of the F1-matroid M
along f . Note that pushforwards are clearly functorial, i.e. (g ◦ f)∗ = g∗ ◦ f∗ for tract 
morphisms f : F1 → F2 and g : F2 → F3.

The Krasner hyperfield K is terminal in the category of tracts, i.e. every tract F
admits a unique morphism f : F → K. Given an F -matroid M , we call the pushforward 
f∗(M) the underlying matroid of M .

3.1.3. Weak Grassmann-Plücker functions
Let Δ :

(
E
r

)
−→ F be a nonzero function. We define the support of Δ to be

Δ := {B ∈
(
E
r

)
| Δ(B) �= 0}.

We say that Δ is a weak Grassmann-Plücker function of rank r on E with coefficients 
in F if the following two conditions hold:

(GP1)′ Δ is the set of bases of a matroid M of rank r on E.
(GP2)′ Δ satisfies the 3-term Plücker relations, i.e., all relations of the form

Δ(I1,2) Δ(I3,4) + εΔ(I1,3) Δ(I2,4) + Δ(I1,4) Δ(I2,3) ∈ NF

for every (r − 2)-subset I of E and all i1 < i2 < i3 < i4 with i1, i2, i3, i4 /∈ I, 
where Ik,l = I ∪ {ik, il}.
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A weak F -matroid of rank r on E is an equivalence class M of weak Grassmann-
Plücker functions Δ of rank r on E with coefficients in F (with respect to the same 
equivalence relation as above).

Remark 3.2. For many tracts of interest, the notions of weak and strong F -matroids 
agree, cf. section 3 in [3] for more details. In particular, weak and strong F -matroids 
agree when F is a partial field or F is one of the hyperfields K, S, or T .

3.1.4. Cryptomorphisms
The main results of [3] provide equivalent (“cryptomorphic”) descriptions of weak and 

strong F -matroids in terms of circuits and dual pairs. Since these cryptomorphisms do 
not play a very important role in the present paper, we provide only a brief description 
here. (We slightly simplify the exposition from [3] by assuming, in the case of circuit 
axioms, that the underlying structure forms a matroid in the usual sense.)

If F and E are as above, we denote by FE the set of functions from E to F , which 
carries a natural action of F by pointwise multiplication. The F -circuits and F -vectors 
of a (strong or weak) F -matroid will by definition be certain subsets of FE .

The support of X ∈ FE , denoted X or supp(X), is the set of e ∈ E such that 
X(e) �= 0. If A ⊆ FE , we set supp(A) := {X | X ∈ A}.

The linear span of X1, . . . , Xk ∈ FE is defined to be the set of all X ∈ FE such that

c1X1 + · · · + ckXk + εX ∈ (NF )E

for some c1, . . . , ck ∈ F .
The inner product of X = (x1, . . . , xn) and Y = (y1, . . . , yn) in FE with respect to a 

fixed involution x �→ x̄ on F is defined to be

X · Y := x1 · ȳ1 + · · · + xn · ȳn.

We say that X, Y are orthogonal, denoted X ⊥ Y , if X · Y ∈ NF .
Let M be a (classical) matroid with ground set E. We call a subset C of FE an

F -signature of M if:

(S1) The support C of C is the set of circuits of M .
(S2) If X ∈ C and α ∈ F×, then α ·X ∈ C.
(S3) If X, Y ∈ C and X = Y , there exists α ∈ F× such that X = α · Y .

Circuits. A subset C of FE is called the F -circuit set of a strong F -matroid of rank r
on E if:

(C1) There is a matroid M of rank r on E such that C is an F -signature of M .
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(C2) Let B be a basis of M , and for e /∈ B let X(e) be the unique element of C such that 
X(e) = 1 and whose support is the fundamental circuit of B ∈ M with respect to 
e. Then every X ∈ C is in the F -linear span of {Xe}e∈E .

We call C the F -circuit set of a weak F -matroid of rank r on E if it satisfies (C1) and 
the following axiom:

(C2)′ Let B be a basis of M , let e1, e2 ∈ E\B be distinct, and for i = 1, 2 let Xi be the 
unique element of C such that Xi(ei) = 1 and whose support is the fundamental 
circuit of B ∈ M with respect to ei. Then there exists X ∈ C belonging to the 
F -linear span of X1 and X2.

These definitions are equivalent to the ones in [3] (use Lemma 2.7 and Theorem 2.12 
from [3]).
Dual pairs. Let M be a (classical) matroid of rank r with ground set E. We say that 
(C, D) is a strong dual pair of F -signatures of M if:

(DP1) C is an F -signature of the matroid M .
(DP2) D is an F -signature of the dual matroid M∗.
(DP3) X ⊥ Y whenever X ∈ C and Y ∈ D.

We say that (C, D) is a weak dual pair of F -signatures of M if C and D satisfy (DP1), 
(DP2), and the following weakening of (DP3):

(DP3)′ X ⊥ Y for every pair X ∈ C and Y ∈ D with |X ∩ Y | � 3.

The results of [3] imply:

Theorem 3.3. Let E be a non-empty finite set, let F be a tract endowed with an involution 
x �→ x̄, and let r be a positive integer. Then there are natural bijections between:

(1) Equivalence classes of Grassmann-Plücker functions of rank r on E with coefficients 
in F .

(2) F -circuit sets of strong F -matroids of rank r on E.
(3) Matroids M endowed with a strong dual pair of F -signatures.

Similarly, there are natural bijections between:

(1) Equivalence classes of weak Grassmann-Plücker functions of rank r on E with coef-
ficients in F .

(2) F -circuit sets of weak F -matroids of rank r on E.
(3) Matroids M endowed with a weak dual pair of F -signatures.
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3.1.5. Duality
There is a duality theory for matroids over tracts which generalizes the established 

duality theory for matroids, oriented matroids, valuated matroids, etc. The results of [3]
show:

Theorem 3.4. Let E be a non-empty finite set with |E| = n, let F be a tract, and let M
be a strong (resp. weak) F -matroid of rank r on E with strong (resp. weak) F -circuit set 
C and Grassmann-Plücker function (resp. weak Grassmann-Plücker function) Δ. Then 
there is a strong (resp. weak) F -matroid M∗ of rank n − r on E, called the dual matroid 
of M , with the following properties:

• A Grassmann-Plücker function (resp. weak Grassmann-Plücker function) Δ∗ for M∗

is defined by the formula

Δ∗(I) = σI · Δ(Ic),

where I = {i1, . . . , in−r} ⊆ E with i1 < · · · < in−r, Ic = {i′1, . . . , i′r} is the com-
plement of I in E with i′1 < · · · < i′r, and σI is the sign of the permutation taking 
(1, 2, . . . , n) to (i1, . . . , in−r, i′1, . . . , i

′
r).

• The F -circuits of M∗ are the elements of C∗ := SuppMin(C⊥ − {0}), where 
SuppMin(S) denotes the elements of S of minimal support.

• The underlying matroid of M∗ is the dual of the underlying matroid of M , i.e., 
M∗ = M∗.

• M∗∗ = M .

The F -circuits of M∗ are called the F -cocircuits of M , and vice-versa.

3.1.6. Vector axioms for strong F -matroids
The set of F -vectors of an F -matroid M is defined as the set V (M) of all X ∈ FE

such that X ⊥ D for all F -cocircuits D of M . (Similarly, the set of F -covectors of M is 
the set of vectors of M∗.)

Laura Anderson has worked out a cryptomorphic axiomatization of strong F -matroids 
in terms of their vectors in [33]. We briefly recall her description.

If W is a subset of FE , a support basis for W is a minimal subset of E meeting every 
element of supp(W\{0}).

Let B be a support basis for W . A B-frame for W 9 is a collection ΦB = {wB
i }i∈B of 

elements of W such that wB
i (j) = δij and every w ∈ W is in the F -linear span of ΦB. It 

is not hard to see that a B-frame for W , if it exists, is unique.
We define a collection Φ = {ΦB} of frames for W to be tight if W is precisely the set 

of elements of FE which are in the F -linear span of ΦB for all ΦB ∈ Φ.

9 In [33] this is called a reduced row-echelon form.
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Vectors. A subset W of FE is the F -vector set of a strong F -matroid of rank r on E if:

(V1) Every support basis B for W\{0} admits a B-frame.
(V2) The collection of all such B-frames is tight.

Theorem 3.5 (Anderson). There are natural bijections between strong F -matroids of rank 
r on E and subsets W of FE satisfying (V1) and (V2).

3.2. Matroids over fuzzy rings

Matroids over fuzzy rings were introduced in by Dress in [14]. The cryptomorphic 
description in terms of Grassmann-Plücker functions can be found in [13]. Let (R, I) be 
a fuzzy ring.

A Grassmann-Plücker function of rank r on E with coefficients in R is a function 
Δ :

(
E
r

)
→ R× ∪ {0} that is not identically 0 and satisfies the Plücker relations

r∑
k=0

(−1)k Δ
(
I − {ik}

)
Δ
(
J ∪ {ik}

)
∈ I

for every (r − 1)-subset J of E and every (r + 1)-subset I = {i0, . . . , ir} of E with 
i0 < · · · < ir.

Two Grassmann-Plücker functions Δ and Δ′ are equivalent if Δ = aΔ′ for some 
element a ∈ R×. An R-matroid of rank r on E is an equivalence class M of Grassmann-
Plücker functions Δ of rank r on E with coefficients in R. We denote the set of all 
R-matroids of rank r on E by Mat(r, E)(R).

3.2.1. Pushforwards
A morphism f : R1 → R2 of fuzzy rings induces a pushforward f∗ : Mat(r, E)(R1) →

Mat(r, E)(R2), which sends an R1-matroid M = [Δ] to the R2-matroid f∗(M) = [f ◦Δ].
Note that an isomorphism of fuzzy rings f : R1 → R2 induces a bijection f∗ :

Mat(r, E)(R1) → Mat (r, E)(R2) since an isomorphism preserves both the codomain 
R×

1 ∪ {0} of Grassmann-Plücker functions as well as the Plücker relations, which are 
relations of the form 

∑
ai ∈ I1 with ai ∈ R×

1 ∪ {0}.

3.2.2. Compatibility with matroids over tracts
A matroid over a fuzzy ring is the same thing as a matroid over the associated tract. 

More precisely:

Proposition 3.6. The functor (−)tract : FuzzRings → Tracts induces a functorial bijection 
Mat(r, E)(F ) → Mat(r, E)(F tract) for every fuzzy ring F .
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Proof. By the observations in section 3.2.1 and Corollary 2.8, we can restrict ourselves 
to fuzzy rings of the form F = (N[G], I) where G is a group. Recall from section 2.8.3
that the associated tract is F tract = (G, I).

A Grassmann-Plücker function Δ :
(
E
r

)
→ G ∪ {0} is evidently a Grassmann-Plücker 

function with coefficients in F tract, and the equivalence relation on Grassmann-Plücker 
functions coincides for F and F tract. Thus we obtain a bijection Mat (r, E)(F ) →
Mat (r, E)(F tract). Since pushforwards for both morphisms of fuzzy rings and morphisms 
of tracts are defined by composition, this association is functorial. �
3.2.3. Cryptomorphisms

The original definition of F -matroids in Dress’ paper [14] was formulated in terms 
of sets of relations, which includes both circuit sets as minimal sets of relations and 
dependency sets as maximals set of relations. The descriptions of closure operators, 
flats, rank functions and duality are derived from this definition, but without exhibiting 
a cryptomorphic axiomatization which ensures an equivalence with the definition by 
dependency sets.

The equivalence with classes of Grassmann-Plücker functions is the theme of the sub-
sequent joint paper [13] with Wenzel. Interestingly enough, the proof of this equivalence 
appears to be quite different from the corresponding proof for matroids over tracts in [3]: 
instead of utilizing a cryptomorphic description of matroids in terms of duality theory, 
the proof in [13] is based on the Tutte group of a matroid, cf. section 6.5. It seems inter-
esting for future generalizations, e.g. to matroid bundles, to gain a better understanding 
of the relation between these two seemingly different approaches.

3.3. Matroids over hyperfields

Matroids over hyperfields were introduced by the first author and Bowler in [3].
Let K be a hyperfield. A Grassmann-Plücker function of rank r on E with coefficients 

in K is a function Δ :
(
E
r

)
→ K that is not identically 0 and satisfies the Plücker relations

0 ∈ �r
k=0(−1)k Δ

(
I − {ik}

)
Δ
(
J ∪ {ik}

)
for every (r − 1)-subset J of E and every (r + 1)-subset I = {i0, . . . , ir} of E with 
i0 < · · · < ir.

Two Grassmann-Plücker functions Δ and Δ′ are equivalent if Δ = aΔ′ for some 
element a ∈ K×. A K-matroid of rank r on E is an equivalence class M of Grassmann-
Plücker functions Δ of rank r on E with coefficients in K. We denote the set of all 
K-matroids of rank r on E by Mat(r, E)(K).

3.3.1. Pushforwards
A morphism f : K1 → K2 of hyperfields induces a pushforward f∗ : Mat (r, E)(K1) →

Mat (r, E)(K2), which sends a K1-matroid M = [Δ] to the K2-matroid f∗(M) = [f ◦Δ].



M. Baker, O. Lorscheid / Advances in Mathematics 390 (2021) 107883 45
3.3.2. Compatibility with matroids over fuzzy rings
The following fact is already covered in Theorem B of [23]. For completeness, we 

include a short proof.

Proposition 3.7. The functor (−)fuzz : HypFields → FuzzRings induces a functorial bi-
jection Mat(r, E)(K) → Mat(r, E)(Kfuzz) for every hyperfield K.

Proof. Let K be a hyperfield. Recall from section 2.8.2 that the associated fuzzy ring is 
Kfuzz = (N[G], I) where G = K× and

I =
{ ∑

ai ∈ N[G]
∣∣ ai ∈ G such that 0 ∈ � ai

}
.

A Grassmann-Plücker function Δ :
(
E
r

)
→ K is evidently a Grassmann-Plücker 

function with coefficients in Kfuzz, and the equivalence relation on Grassmann-Plücker 
functions coincides for F and F tract. Thus we obtain a bijection Mat(r, E)(K) →
Mat(r, E)(Kfuzz). Since pushforwards for both hyperfield morphisms and morphisms 
of fuzzy rings are defined by composition, this association is functorial. �
3.4. Matroids over partial fields

Strictly speaking, the concept of a matroid over a partial field has not been introduced 
in the literature yet, but partial fields were utilized to realize matroids as matrices with 
coefficients over a given partial field. However, our approach via Grassmann-Plücker 
functions suggests a definition of matroids over a partial field. We will explain in this 
section in which sense this definition is compatible with the notion of a representation 
of a matroid over a partial field.

3.4.1. Representations of matroids over a partial field
Partial fields and representations of matroids over such were introduced in Semple and 

Whittle’s paper [53]. Let M be a matroid, which is the same as a K-matroid. This means 
that M is the class of a Grassmann-Plücker function Δ :

(
E
r

)
→ K, which is uniquely 

determined by M since K× = {1}. The set of bases of M is B = {I ∈
(
E
r

)
| Δ(I) = 1}.

Let P be a partial field with unit group P× and projection πP : Z[P×] → RP . As 
usual, we identify P with the subset P× ∪ {0} of RP .

An r×E-matrix A with coefficients in RP is a P -matrix if all of its r× r minors are 
in P . Given a P -matrix A = (ai,j)1�i�r,j∈E and an r-subset I of E, we denote by AI

the square submatrix (ai,j)1�i�r,j∈I and by δI(A) = detAI the determinant of AI .
A representation of M over P is a P -matrix A of size r × E such that for every 

r-subset I of E, the minor δI(A) is nonzero if and only if I is a basis of M .
Conversely, let f : P → K be the map that sends 0 to 0 and every nonzero element 

to 1. It is shown in [53, Thm. 3.6] that every non-degenerate (meaning that some r × r

minor is nonzero) P -matrix A defines a matroid M [A], which is represented by the 
Grassmann-Plücker function Δ :

(
E
)
→ K with Δ(I) = f

(
δI(A)

)
.
r
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3.4.2. P -matroids
Realizing a partial field P as the fuzzy ring P fuzz = (N[P×], I) with

I =
{ ∑

ai ∈ N[P×]
∣∣πP (

∑
ai) = 0

}
= ker

(
N[P×] ↪→ Z[P×] πP−→ RP

)
leads to the following definition of a P -matroid.

Definition 3.8. A Grassmann-Plücker function of rank r on E with coefficients in P is a 
function Δ :

(
E
r

)
→ P that is not identically 0 and satisfies the Plücker relations

r∑
k=0

(−1)k Δ
(
I − {ik}

)
Δ
(
J ∪ {ik}

)
= 0

in RP for every (r− 1)-subset J of E and every (r+1)-subset I = {i0, . . . , ir} of E with 
i0 < · · · < ir.

Two Grassmann-Plücker functions Δ and Δ′ are equivalent if Δ = aΔ′ for some 
element a ∈ P×. A P -matroid of rank r on E is an equivalence class M of Grassmann-
Plücker functions Δ of rank r on E with coefficients in P . We denote the set of all 
F -matroids of rank r on E by Mat(r, E)(P ).

Since a partial field is embedded into its universal ring RP , we can use the usual 
Grassmannian Gr(r, E) over RP to lay the relation to representations of matroids, which 
is as follows.

Proposition 3.9. Let A be a non-degenerate P -matrix of size r × E. Then the map 
ΔA :

(
E
r

)
→ P defined by Δ(I) = δI(A) is a Grassmann-Plücker function and 

M [A] = f∗([ΔA]). Conversely, every P -matroid is of the form [ΔA] for some P -matrix 
A.

Proof. A P -matrix A is, in particular, a matrix with coefficients in the ring RP . Therefore 
the r × r-minors δI(A) of A are the homogeneous coordinates of a point in the Grass-
mannian Gr(r, E)(RP ) and thus satisfy the Plücker relations. Since the bases I ∈

(
E
r

)
of 

M [A] are defined by the non-vanishing of δI(A), we obtain M [A] = f∗([ΔA]), as claimed.
Conversely, let M be a P -matroid that is represented by a Grassmann-Plücker func-

tion Δ :
(
E
r

)
→ P . Then [Δ(I)]

I∈(Er) are the homogeneous coordinates of a point the 

Grassmannian Gr(r, E)(RP ), which is covered by affine spaces whose coordinates corre-
spond to entries of r×E-matrices with coefficients in RP . Thus [Δ(I)]

I∈(Er) corresponds 
to an r×E-matrix A with coefficients in RP . More precisely, this matrix can be described 
as follows.

After multiplying by a suitable nonzero element of P×, we can assume that Δ(I0) = 1
for some r-subset I0 of E. After reordering E, we can assume that I0 = {1, . . . , r}. 
Then the matrix A = (ai,j)1�i�r,j∈E has the following shape. For 1 � i, j � r, we have 
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ai,j = 1 if i = j and ai,j = 0 if i �= j. If 1 � i � r and r < j � n, then we have 
ai,j = (−1)r−iΔ(I). This shows already that A is a matrix with coefficients in P . Since 
[Δ(I)]

I∈(Er) is uniquely determined by A, we conclude that Δ(I) = δI(A) for all I in (
E
r

)
.

We are left with showing that A is indeed a P -matrix, i.e. that all minors of A are 
in P . Consider a square submatrix AĨ,J̃ = (ai,j)i∈Ĩ,j∈J̃ of A where Ĩ ⊂ I0 = {1, . . . , r}
and J̃ ⊂ E. Define J = J̃ ∪ (I0 − Ĩ). Then we have detAĨ,J̃ = ±Δ(J) if #J = r

and detAĨ,J̃ = 0 otherwise. This shows that all minors of A are in P and that A is a 
P -matrix. �

Given a partial field P , we denote by P tract the tract (P fuzz)tract associated with the 
fuzzy ring that is associated with P . An immediate consequence of Proposition 3.9 is the 
following.

Corollary 3.10. Let M be a matroid of rank r on E and P a partial field. Then M is rep-
resentable over P if and only if M is contained in the image of f∗ : Mat(r, E)(P tract) →
Mat(r, E)(K), where f : P tract → K is the unique morphism into the Krasner hyperfield 
K. �

3.4.3. Relation to regular matroids
A totally unimodular matrix is an integral matrix A whose minors are all in {0, 1, −1}. 

This means, in particular, that the only possible coefficients of A are 0, 1 and −1 and 
that the coefficients of the Plücker vector of A are in {0, 1, −1} as well.

A regular matroid is a matroid M that has a representation over Z by a totally 
unimodular matrix A. It is well-known, and easy to prove, that a matroid M is realizable 
by a totally unimodular matrix A if and only if M is realizable over the regular partial 
field F±

1 ; cf. [53, Prop. 4.3].
Corollary 3.10 allows for the following reformulation of this fact: a matroid is regular 

if and only if it is the underlying matroid of an F±
1 -matroid. It is important to note, 

however, that different elements of Mat(r, E)(F±
1 ) can give rise to the same regular 

matroid. This is one of our motivations for studying rescaling classes of F -matroids: we 
show in section 7.4 that two elements of Mat(r, E)(F±

1 ) correspond to the same regular 
matroid if and only if they lie in the same rescaling class.

In section 7.6, we will reprove Tutte’s characterization of regular matroids as matroids 
that are representable over every field.

3.5. Matroids over F±
1 -algebras

We extend the definition of matroids from tracts to F±
1 -algebras in the following way.
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Definition 3.11. Let B be an F±
1 -algebra, E a non-empty finite ordered set and r a 

natural number. A Grassmann-Plücker function of rank r on E with coefficients in B is 
a function

Δ :
(
E
r

)
−→ B

such that ΔI ∈ B× for some I ∈
(
E
r

)
and Δ satisfies the Plücker relations

0 �
r∑

k=0

εk Δ
(
I − {ik}

)
Δ
(
J ∪ {ik}

)
for every (r − 1)-subset J of E and every (r + 1)-subset I = {i0, . . . , ir} of E with 
i0 < · · · < ir, where we define Δ(J ∪ {ik}) = 0 if ik ∈ J .

Two Grassmann-Plücker functions Δ and Δ′ are equivalent if Δ = aΔ′ for some 
element a ∈ B×. A B-matroid of rank r on E is an equivalence class M of Grassmann-
Plücker functions Δ of rank r on E with coefficients in F . We denote the set of all 
F -matroids of rank r on E by Mat(r, E)(B).

3.5.1. Pushforwards
A morphism f : B → C of F±

1 -algebras induces a pushforward

f∗ : Mat (r, E)(B) → Mat(r, E)(C)

which sends a B-matroid M = [Δ] to the C-matroid f∗(M) = [f ◦ Δ].

3.5.2. Compatibility with matroids over tracts
In the following, we will explain the relation between the matroid theory of ordered 

blueprints and the matroid theory of tracts. In particular, Lemma 3.14 shows that the 
matroid theory of an F1-algebra B with unique weak inverses that is an ordered blue field 
with B+ = N[B×] is completely determined by the matroid theory of the underlying 
idyll (Btract)oblpr. Proposition 3.12 in turn shows that the matroid theory of an idyll is 
equal to the matroid theory of the associated tract. These results allow us to apply the 
results from [3] to matroids over F±

1 -algebras that are blue fields.
Let ηF : F → (F oblpr)tract be the unit and εB : (Btract)oblpr → B the counit of the 

adjunction between Tracts and OBlpr± studied in section 2.8.8. Let ιF : F → F oblpr

be the identity map between the respective underlying sets and ιB : Btract → B the 
inclusion of the underlying set B× ∪ {0} of Btract into B.

Proposition 3.12. Let B be a nontrivial F±
1 -algebra with unique inverses and F a tract. 

Let E be a non-empty finite ordered set and r a natural number. Then ιF defines an 
injection
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ιF,∗ : Mat (r, E)(F ) −→ Mat (r, E)(F oblpr),

[Δ] �−→ [ιF ◦ Δ]

which is surjective if ηF an isomorphism, and ιB defines an injection

ιB,∗ : Mat(r, E)(Btract) −→ Mat(r, E)(B),

[Δ] �−→ [ιB ◦ Δ]

which is surjective if εB an isomorphism.

Proof. For better readability, we write B = (Btract)oblpr and F = (F oblpr)tract. Re-
call from Theorem 2.21 that the adjoint functors (−)oblpr : Tracts → OBlpr± and 
(−)tract : OBlpr± → Tracts restrict to mutually inverse equivalences between their re-
spective images. This means that ηBtract and εF oblpr are isomorphisms and that the maps 
ιF and ιB decompose as

F F oblpr

F F
oblpr

ιF

ηF

ιF

ε
Foblpr and

Btract B

B
tract

B.

ιB

ηBtract

ιB

εB

Consequently, we have ιF,∗ = εF oblpr,∗ ◦ ιF,∗ ◦ ηF,∗ and ιB,∗ = εB,∗ ◦ ιB,∗ ◦ ηBtract,∗ where 
εF oblpr,∗ and ηBtract,∗ are bijections.

By Theorem 2.21 and the definition of (−)oblpr, the map ιF : F → F
oblpr is an isomor-

phism of monoids and a linear combination 
∑

ai of elements ai ∈ F is in the nullset NF of 
F if and only if 0 �

∑
ai holds in F

oblpr. Therefore a map Δ :
(
E
r

)
→ F is a Grassmann-

Plücker function if and only if ιF ◦ Δ :
(
E
r

)
→ F

oblpr is a Grassmann-Plücker function. 
Since ιF restricts to an isomorphism F

× → (F oblpr)×, the classes of Grassmann-Plücker 
functions agree for F and F

oblpr, which shows that ιF,∗ : Mat (r, E)(F ) → Mat(r, E)(B)
is a bijection.

An analogous argument shows that ιB,∗ is a bijection. Thus we can trace back the 
claims about the injectivity and surjectivity of ιF,∗ and ιB,∗ to the corresponding claims 
for ηF,∗ and εB,∗, respectively.

Since the morphism ηF : F → F is a bijection that restricts to an isomorphism 
F× → F

× between the respective unit groups, the pushforward ηF,∗ : Mat(r, E)(F ) →
Mat(r, E)(F ) is an injective map. It is surjective if ηF is an isomorphism. This proves 
the first part of the proposition.

Since the morphism εB : B → B is an injection that restricts to an isomorphism 
B

× → B× between the respective unit groups, the pushforward εB,∗ : Mat (r, E)(B) →
Mat(r, E)(B) is an injective map. It is surjective if εB is an isomorphism. This proves 
the second part of the proposition. �
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Remark 3.13. Note that for the trivial ordered blueprint B = {0}, there is a unique 
matroid of rank r on E, which is represented by the Grassmann-Plücker function Δ :(
E
r

)
→ {0} sending every r-subset I of E to 0 = 1. In this case, Btract = ({1}, N − {1})

is the Krasner hyperfield and the map Mat(r, E)(Btract) → Mat(r, E)(B) is the unique 
map into the one-point set, which is not injective if 0 < r < #E.

Lemma 3.14. Let E be a non-empty finite ordered set, r a natural number and B an F±
1 -

algebra that is a blue field. Then the canonical morphism εB : (Btract)oblpr → B induces 
a bijection{

B-matroids of rank r on E
}

−→
{
(Btract)oblpr-matroids of rank r on E

}
.

M �−→ εB,∗(M)

Proof. This follows at once from the fact that the Plücker relations are contained in 
(Btract)oblpr. �
3.5.3. Examples

Example 3.15. Let B be an idyll. Then it is easily seen that B[T±1] is also an idyll. Let 
ι : B[T ] → B[T±1] be the canonical inclusion. The pushforward along ι defines a map

Φ :
{
B[T ]-matroids

}
−→

{
B[T±1]-matroids

}
.

We claim that this map is an isomorphism. Indeed, its inverse Ψ can be described as 
follows. Let M be a B[T±1]-matroid, represented by a Grassmann-Plücker function Δ :(
E
r

)
→ B[T±1]. Define i as the minimal exponent j that occurs in a nonzero term 

Δ(I) = aT j for some r-subset I of E. Then the image of T−iΔ is contained in B[T ]
and T−iΔ(I) ∈ B× for the r-subset I for which the nonzero term Δ(I) = aT i assumes 
the minimal exponent. We define Ψ(M) = [T−iΔ]. It is easily verified that Φ and ψ are 
indeed mutually inverse bijections.

This phenomenon is particular to “rank 1”. The inclusion B[T1, T2] → B[T±1
1 , T±2

2 ] de-
fines an injection from the set of B[T1, T2]-matroids into the set of B[T±1

1 , T±2
2 ]-matroids 

which fails to be surjective. For instance, consider E = {1, 2, 3, 4} and the Grassmann-
Plücker function Δ :

(
E
2
)
→ B[T±1

1 , T±2
2 ] with

Δ1,2 = Δ1,3 = T1, Δ2,4 = T2, Δ3,4 = εT2 and Δ1,4 = Δ2,3 = 0

where Δi,j = Δ({i, j}). Then the B[T±1
1 , T±2

2 ]-matroid M = [Δ] is not the pushforward 
of a B[T1, T2]-matroid, since it there is no unit a in B[T±1

1 , T±2
2 ] such that aT1, aT2 ∈

B[T1, T2] with one of aT1 and aT2 invertible in B[T1, T2].

Example 3.16. Let OT be the hyperring of tropical integers, which is the subhyperring 
of T whose underlying set is the unit interval [0, 1]. As an ordered blueprint, it can be 
described as
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OT = [0, 1]�〈c � a + b | c = max{a, b} or a = b and c ∈ [0, a]〉.

For similar reasons as in Example 3.15, the inclusion OT → T defines a bijection

{
OT -matroids

}
−→

{
T -matroids

}
.

Part 2. Constructing moduli spaces of matroids

4. Projective geometry for ordered blueprints

In this section, we review the definition of an ordered blue scheme from [37] and 
extend the Proj functor from [36] to ordered blue schemes. This makes it possible to 
define projective schemes, like Grassmannians, in terms of homogeneous algebras and to 
characterize morphisms to projective space in terms of invertible sheaves together with 
a fixed set of global sections.

4.1. Ordered blue schemes

In this section, we introduce the spectrum of an ordered blueprint as the space of its 
prime ideals together with a structure sheaf. Glueing the spectra of ordered blueprints 
in an appropriate sense leads to the notion of ordered blue schemes.

4.1.1. Localizations
Let B be an ordered blueprint. Recall that we consider the monoid B• as the under-

lying set of B. A multiplicative subset of B is a multiplicatively closed subset of B that 
contains 1, i.e. a submonoid of B•.

Let S be a multiplicative subset of B. The localization of B at S is the ordered 
blueprint S−1B = S−1B•�RS where S−1B• = {a

s | a ∈ B, s ∈ S} is the localization of 
the monoid B• at S, i.e. as = a′

s′ if and only if there is a t ∈ S such that tsa′ = ts′a, and 
where

RS =
〈∑ ai

1 ≡
∑ bj

1

∣∣∣∣∑ ai ≡
∑

bj in B

〉
.

The localization of B at S comes together with a morphism ιS : B → S−1B that sends 
a to a1 , and which satisfies the usual universal property: for every morphism f : B → C

with f(S) ⊂ C×, there is a unique morphism fS : S−1B → C such that f = fS ◦ ιS .

Example 4.1. Let B[T ] be the free algebra in T over an ordered blueprint B and S =
{T i}i�0. The localization S−1B[T ] is the ordered blueprint

B[T±1] =
(
B × {T k}k∈Z

)//〈∑
aiT

k �
∑

bjT
k
∣∣ ∑ ai �

∑
bj in B, k ∈ Z

〉
.
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Analogously, we define B[T±1
1 , . . . , T±1

n ] as the localization of the free algebra B[T1, . . . ,
Tn] in several variables T1, . . . , Tn at the multiplicative subset generated by {T1, . . . , Tn}.

4.1.2. Ideals
Let B be an ordered blueprint. A monoid ideal, or m-ideal, of B is a subset I of B

such that 0 ∈ I and IB = I.
An m-ideal I ⊂ B is proper if I �= B. Note that every ordered blueprint B has a 

unique maximal proper m-ideal m = B − B×. In this sense, every ordered blueprint is 
local with respect to m-ideals.

A prime m-ideal of B is an m-ideal p of B such that its complement S = B − p

is a multiplicative subset. The localization of B at p is Bp = S−1B. Note that the 
maximal m-ideal of an ordered blueprint is a prime m-ideal. The maximal m-ideal of the 
localization Bp at a prime m-ideal is pBp.

Let T = {ai}i∈I be a subset of B. The m-ideal 〈T 〉 = 〈ai〉i∈I generated by T is the 
smallest m-ideal that contains T , which is equal to

〈T 〉 =
⋂

I⊂B m-ideal
with T⊂I

I =
{
ab

∣∣ a ∈ T ∪ {0}, b ∈ B
}
.

Lemma 4.2. Let B be an ordered blueprint and T a subset of B such that B• is generated 
by T ∪B× ∪{0} as a monoid. Then every prime m-ideal p of B is generated by a subset 
of T .

Proof. Consider an element b ∈ p, which can be written as the product b = ua1 · · · an
with u ∈ B× and a1, · · · , an ∈ T by the hypothesis on T . Then also u−1b = a1 . . . an
is an element of p. Since the complement of p in B is multiplicatively closed, one of 
a1, . . . , an must be in p. This shows that p is generated by a subset of T . �
Example 4.3. Let B be an ordered blue field, e.g. an ordered blueprint associated with 
a tract. Then the underlying monoid of the free algebra B[T1, . . . , Tn] is generated by 
T = {T1, . . . , Tn} over B = B× ∪ {0}, i.e. T satisfies the hypothesis of Lemma 4.2. Thus 
every prime m-ideal of B[T1, . . . , Tn] is generated by a subset J of T . It is easily verified 
that pJ = 〈J〉 is indeed a prime m-ideal for every J ⊂ T .

4.1.3. Ordered blueprinted spaces
An ordered blueprinted space, or for short an OBlpr-space, is a topological space X

together with a sheaf OX in OBlpr. In practice, we suppress the structure sheaf OX

from the notation and denote an OBlpr-space by the same symbol X as its underlying 
topological space.

For every point x of X, the stalk at x is the colimit OX,x = colimOX(U) over the 
system of all open neighborhoods U of x. Note that this colimit always exists since OBlpr
contains all small limits and colimits.
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A morphism of OBlpr-spaces is a continuous map ϕ : X → Y between the underlying 
topological spaces together with a morphism ϕ# : ϕ−1OY → OX of sheaves on X that 
is local in the following sense: for every x ∈ X and y = ϕ(x), the induced morphism 
OY,y → OX,x of stalks sends non-units to non-units. This defines the category OBlprSp
of ordered blueprinted spaces.

4.1.4. The spectrum
Let B be an ordered blueprint. We define the spectrum SpecB of B as the following 

ordered blueprinted space. The topological space of X = SpecB consists of the prime 
m-ideals of B and comes with the topology generated by the principal opens

Uh = { p ∈ SpecB |h /∈ p }

where h varies through the elements of B. Note that the principal opens form a basis 
of the topology for X since Uh ∩ Ug = Ugh. The structure sheaf OX on X = SpecB is 
determined by the following theorem:

Proposition 4.4. There is a unique sheaf of B-algebras OX on X = SpecB such that 
OX(Uh) = B[h−1] for all h ∈ B. The stalk at a prime ideal p of B is OX,p = Bp.

Proof. The proof is similar to the case for monoid schemes, cf. [10, Prop. 2.1]. We briefly 
outline the arguments.

The uniqueness of OX is clear since the open subsets Uh form a basis for the topology 
of X and B-linearity uniquely determines the restriction maps B[h−1] → B[g−1] for 
Ug ⊂ Uh.

For existence, we construct OX in the usual way. Let U be an open subset of X. A 
section on U is a function s : U →

∐
p∈U Bp such that: (a) s(p) ∈ Bp for all p; and (b) 

there is a finite open covering {Uhi
} of U by principal open subsets Uhi

and elements 
ai ∈ B[h−1

i ] whose respective images in Bp equal s(p) whenever p ∈ Uhi
. We define 

OX(U) to be the set of sections on U , which comes naturally with the structure of an 
ordered blueprint. The restriction of sections to subsets yield B-linear morphisms as 
desired.

In order to see that OX(Uh) = B[h−1], note that Uh has a unique maximal point, 
which is the prime ideal ph consisting of all elements a ∈ B that are not divisible by h. 
Thus every covering Ui of Uh must contain one subset Ui that contains ph, which means 
that Ui = Uh. Thus a section s ∈ OX(Uh) is represented by an element a/h ∈ B[h−1], 
which establishes the claim.

From the construction of OX , it is immediate that OX,p = Bp. �
A morphism f : B → C of ordered blueprints defines a morphism f∗ : SpecC →

SpecB of OBlpr-spaces by taking the inverse image of prime m-ideals and pulling back 
sections. This defines the contravariant functor
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Fig. 2. The affine space A1
k and A2

k over an ordered blue field k.

Spec : OBlpr −→ OBlprSp .

We call OBlpr-spaces in the essential image of this functor affine ordered blue schemes.

Example 4.5 (Blue affine spaces). Let k be an ordered blue field. The affine ordered blue 
scheme An

k = Spec k[T1, . . . , Tn] consists of the set An
k = {pI | I ⊂ {1, . . . , n}} of all 

prime m-ideals pI = (Ti)i∈I of k[T1, . . . , Tn]. A subset U of An
k is open if and only if for 

every J ⊂ I such that pI ∈ U also pJ ∈ U . Let h =
∏

i∈I Ti for some I ⊂ {1, . . . , n}. 
Then the value of the structure sheaf on the principal open

Uh =
{
pJ

∣∣ J ∩ I = ∅
}

is k[T1, . . . , Tn][T−1
i ]i∈I . We call An

k the (ordered blue) affine space since it plays the 
analogous role for ordered blue schemes as affine spaces in classical algebraic geometry. 
We illustrate A1

k and A2
k in Fig. 2.

4.1.5. Ordered blue schemes
An open subspace of an OBlpr-space X is an open subset U together with the restric-

tion of the structure sheaf OX of X to U . An open covering of X is a collection of open 
subspaces Ui such that X is covered by the Ui as a topological space. An open covering 
{Ui} is affine if every Ui is affine.

An ordered blue scheme is an OBlpr-space that has an open covering by affine ordered 
blue schemes Ui. A morphism of ordered blue schemes is a morphism of OBlpr-spaces. 
We denote the category of ordered blue schemes by OBSchF1 .

We mention some fundamental properties of ordered blue schemes. These facts can be 
proven in the same way as the corresponding facts in usual algebraic geometry, but the 
proof is substantially easier due to the fact that an affine ordered blue scheme SpecB
has a unique closed point, which is the maximal ideal of B. We restrict ourselves to brief 
outlines of the main ideas of those proofs, which follow the same line of thoughts as their 
counterparts in usual algebraic geometry.

Proposition 4.6. Let X be an ordered blue scheme. The collection of open subspaces of 
X that are affine ordered blue schemes form a basis for the topology of X.

Proof. This is true for every affine open subscheme. Since X can be covered by affine 
open subschemes, the result follows. �
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We define the contravariant functor

Γ : OBSch → OBlpr

of taking global sections by ΓX = OX(X) for an ordered blue scheme X and ϕ#(Y ) :
ΓY → ΓX for a morphism ϕ : X → Y of ordered blue schemes.

Proposition 4.7. The functor Γ is a left inverse to Spec. In particular, sending an element 
a ∈ B to the constant section on SpecB with value a defines an isomorphism B →
Γ SpecB.

Proof. This follows from the fact that every ordered blueprint B has a unique maximal 
m-ideal, which is m = B − B×. Therefore X = SpecB has a unique closed point and 
every open covering of X must contain X itself. Thus every global section of X comes 
from B and B → Γ SpecB is an isomorphism. �
Lemma 4.8. Let B be an ordered blueprint and X an ordered blue scheme. Then the 
canonical map Hom(X, SpecB) → Hom(B, ΓX) is a bijection.

Proof. The canonical map Hom(X, SpecB) → Hom(ΓB, ΓX) associates with a mor-
phism ϕ : X → SpecB the morphism ϕ∗ : ΓB → ΓX between the respective ordered 
blueprints of global sections. Moreover, the composition of a morphism f : B → ΓX
with the globalization σB : B → ΓB defines a bijection Hom(ΓB, ΓX) → Hom(B, ΓX). 
Thus we may without loss of generality replace ΓB by B.

Given a morphism f : B → ΓX, we can cover X by affine opens Ui and obtain induced 
morphisms

fi : B
f−→ ΓX

resX,Ui−→ ΓUi and fi,j : B
f−→ ΓX

resX,Ui,j−→ ΓUi,j

where Ui,j = Ui ∩ Uj . This defines morphisms ϕi = f∗
i : Ui → SpecB and ϕi,j = f∗

i,j :
Ui,j → SpecB between affine ordered blue schemes. Since the diagrams

Ui

Ui,j SpecB
Uj

ϕi

ϕj

commute for all i and j, the morphisms ϕi glue to a morphism ϕ : X → SpecB. Since a 
global section s ∈ ΓX is determined by its restrictions si to Ui, we conclude that Γϕ = f .

Conversely, every morphism ϕ : X → SpecB is determined by its restrictions ϕi :
Ui → SpecB. Since we have Γϕi = resX,Ui

◦Γϕ, we see that we reobtain ϕ from the above 
construction applied to f = Γϕ. This verifies that the canonical map Hom(X, SpecB) →
Hom(B, ΓX) is a bijection. �
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Remark 4.9. Since the bijection Hom(X, SpecB) → Hom(B, ΓX) is natural in B and 
X, we have in fact proven that there is an adjunction

OBlprop OBSch .
Spec ◦(−)op

⊥
(−)op◦Γ

Proposition 4.10. Let ϕ : X → Y be a morphism of ordered blue schemes and {Vj}j∈J

an affine open covering of Y . Then there is an affine open covering {Ui}i∈I of X, a map 
f : I → J and for every i ∈ I a morphism of ordered blueprints fi : ΓVf(i) → ΓUi such 
that ϕ(Ui) ⊂ Vf(i) and such that the restriction of ϕ to Ui → Vf(i) is equal to f∗

i for 
every i ∈ I.

Proof. For every j ∈ J , we can cover the open subset ϕ−1(Vj) of X by affine opens Ui

of X and define f(i) = j for those indices i. Let I be the set of all such indices i (for 
varying j). Then {Ui}i∈I is an affine open covering of X, and we obtain a map f : I → J

such that ϕ(Ui) ⊂ Vf(i) for all i ∈ I. This defines blueprint morphisms fi : ΓVf(i) → ΓUi

for every i ∈ I. By Lemma 4.8, the restriction of ϕ to Ui → Vf(i) is equal to f∗
i , which 

concludes the proof of the proposition. �
With these results at hand, we can transfer the usual construction of fiber products 

to the case of ordered blue schemes. We omit the proof of this result.

Theorem 4.11. OBSchF1 contains fiber products. In particular, we have X ×Z Y �
Spec(B ⊗D C) for affine ordered blue schemes X = SpecB, Y = SpecC and Z =
SpecD. �

The most interesting class of non-affine blue schemes will be projective blue schemes, 
for which we introduce the Proj-construction in section 4.2. For examples of projective 
blue schemes, we refer the reader to Example 4.13.

4.1.6. Open and closed subschemes
Let X be an ordered blue scheme. An open subscheme of X is an open subspace of X

as an OBlpr-space. An open immersion of ordered blue schemes is a morphism of ordered 
blue schemes ϕ : Y → X that restricts to an isomorphism with an open subscheme of 
X.

A morphism ϕ : Y → X is affine if for every affine open subscheme U of X, the inverse 
image ϕ−1(U) in Y is affine. As in usual scheme theory, this can be tested on an affine 
open covering of X, i.e. given an open and affine covering {Ui} of X, then ϕ is affine if 
and only if ϕ−1(Ui) is affine for all i.

A closed immersion of ordered blue schemes is an affine morphism Y → X such 
that for every affine open subset U of X and its inverse image V = ϕ−1(U), the map 
ϕ#(U) : OX(U) → OY (V ) of ordered blueprints is surjective. Again, this can be tested 
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on an affine open covering of X, i.e. given an open and affine covering {Ui} of X, an 
affine morphism ϕ : Y → X is a closed immersion if and only if ΓUi → Γϕ−1(Ui) is 
surjective for all i.

A closed subscheme of X is an equivalence class of closed immersions ϕ : Y →
X, where two closed immersions ϕi : Yi → X (i = 1, 2) are equivalent if there is an 
isomorphism ψ : Y1 → Y2 such that ϕ2 ◦ ψ = ϕ1.

4.2. The Proj-construction

Similar to usual algebraic geometry, it is possible to define a Proj-construction that as-
sociates with a graded ordered blueprint a projective ordered blue scheme. The following 
is an adaptation of the Proj-construction for k-ideals, as treated in [36], to m-ideals.

A graded ordered blueprint is an ordered blueprint B together with a family {Bi}i∈N
of subsets Bi of B such that B =

⋃
i∈N Bi, Bi ∩Bj = {0} for i �= j and ab ∈ Bi+j for all 

a ∈ Bi and b ∈ Bj . The subset Bi is called the i-th homogeneous part of B. We write 
B =

∨
Bi if B is a graded ordered blueprint with homogeneous parts Bi. A nonzero 

element of Bi is called homogeneous of degree i.
Let S be a multiplicative subset of B. If b/s is a nonzero element of the localization 

S−1B where b is homogeneous of degree i and s is homogeneous of degree j, we say that 
b/s is homogeneous of degree i − j. We define (S−1B)0 to be the subset of homogeneous 
elements of degree 0. It is multiplicatively closed, and thus inherits the structure of an 
ordered blueprint from S−1B. If S is the complement of a prime m-ideal p, we write B(p)
for the subblueprint (Bp)0 of homogeneous elements of degree 0 in Bp.

Let B be a graded blueprint. We define ProjB to be the set of all homogeneous prime 
m-ideals p of B which are relevant, i.e. which do not contain B>0 =

⋃
i>0 Bi. The set 

X = ProjB comes with the topology defined by the basis

Uh = { p ∈ X | h /∈ p },

where h ranges through B, and with a structure sheaf OX that maps an open subset U
of X to the set of locally represented sections on U , which is the set of maps s : U −→∐

p∈U B(p) such that (a) for every p ∈ U , we have s(p) ∈ B(p); and (b) for every p ∈ U , 
there are an open neighborhood V ⊂ U of p and elements a, h ∈ Bi for some i ∈ N such 
that for all q ∈ V , we have h /∈ q and s(q) = a

h in B(q).
The following theorem is proven as in the case of schemes; for instance, cf. [24, Prop. 

2.5]:

Theorem 4.12. Let B =
∨
Bi be a graded ordered blueprint. Then X = ProjB is an 

ordered blue scheme. The stalk of OX at a point p ∈ ProjB is isomorphic to B(p). For 
every h ∈ B>0, the open subscheme Uh is isomorphic to SpecB[h−1]0. �
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Since none of the prime ideals p in ProjB contain B>0, we have ProjB =
⋃

h∈B>0
Uh. 

Consequently, the inclusions B0 ↪→ B[h−1]0 yield morphisms SpecB[h−1]0 → SpecB0, 
which glue to a morphism ProjB → SpecB0.

More generally, if B is an ordered blueprint and C =
∨
Ci is a graded B-algebra, i.e. 

a graded ordered blueprint together with morphism B → C0 of ordered blueprints, then 
ProjC comes together with the structural morphism ProjC → SpecC0 → SpecB. This 
construction is functorial in the following sense.

A morphism of graded B-algebras is a morphism f : C → D of ordered blueprints 
between graded ordered B-algebras C =

∨
Ci and D =

∨
Di with f(Ci) ⊂ Di for all 

i � 0 that commutes with the morphisms B → C0 and B → D0. Given a morphism 
f : C → D of graded B-algebras, this defines a rational map f∗ : ProjD → ProjC of 
ordered blue B-schemes, i.e. a morphism f∗ : U → ProjC where U is an open subset of 
ProjC, by mapping a homogeneous prime m-ideal p of D to f−1(p) and by pulling back 
functions in the structure sheaf of ProjC. Note that the domain of f∗ is the open subset 
U ⊂ ProjC of all homogeneous prime m-ideals p such that f−1(p) is relevant.

4.2.1. Projective space
The functor Proj leads to the definition of the projective space Pn

B over an ordered 
blueprint B. Namely, the free algebra C = B[T0, . . . , Tn] over B comes together with a 
natural grading where Ci consists of all monomials bT e0

0 · · ·T en
n such that e0+· · ·+en = i

and b ∈ B. Note that C0 = B. The projective space Pn
B is defined as ProjB[T0, . . . , Tn]. 

It comes together with a structure morphism Pn
B → SpecB. It is covered by the principal 

opens Ui = UTi
for i = 0, . . . , n, which are isomorphic to affine n-spaces over B.

In the case B = F1, the projective space Pn
F1

is the monoid scheme that is known from 
F1-geometry (see [8, Section 3.1.4], [11] and [38, Ex. 1.6]). The topological space of Pn

F1
is 

finite. Its points correspond to the homogeneous prime m-ideals (Ti)i∈I of F1[T0, . . . , Tn], 
where I ranges through all proper subsets of {0, . . . , n}.

Note that when B is a ring, the ordered blue projective space Pn
B does not coincide 

with the usual projective space, since the free ordered blueprint B[T0, . . . , Tn] is not a 
ring, but merely the ordered blueprint of all monomials of the form bT e0

0 · · ·T en
n with 

b ∈ B. However, the associated scheme (Pn
B)+ coincides with the usual projective space 

over B. The relation between the matroid space Mat(r, E), as defined in section 5.4, and 
the usual Grassmannian Gr(r, E) is similar, cf. Remark 5.4 for details.

Example 4.13 (The projective line and the projective plane). Let k be an ordered blue 
field. We can label the points of Pn

k by homogeneous coordinates: we denote a homoge-
neous prime m-ideal (Ti)i∈I by [a0 : · · · : an] with ai = 0 if i ∈ I and ai = 1 otherwise. 
Note, however, that the real meaning of ai = 1 is ai �= 0, i.e. a coefficient ai = 1 denotes 
a generic value. Therefore [1 : · · · : 1] is the generic point of Pn

k . We illustrate the points 
and their homogeneous coordinates for the projective line P 1

k and the projective plane 
P 2
k over k in Fig. 3.
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Fig. 3. The projective line P1
k and the projective plane P2

k over k.

4.2.2. Closed subschemes of projective space
The closed subschemes of the ordered blue projective n-space Pn

B over an ordered 
blueprint B correspond to quotients of the free B-algebra B[T0, . . . , Tn] by homogeneous 
relations, as we will explain in the following.

A homogeneous relation on B[T0, . . . , Tn] is a relation of the form 
∑

ai �
∑

bj where 
ai, bj ∈ Bk are homogeneous of the same degree k. If S is a set of homogeneous relations, 
then the quotient map B[T0, . . . , Tn] → B[T0, . . . , Tn] �〈S〉 is a surjective morphism of 
graded B-algebras. For such morphisms, the following holds true.

Lemma 4.14. Let f : B[T0, . . . , Tn] → C be a surjective morphism of graded B-algebras. 
Then f∗ : ProjC → Pn

B is a closed immersion of ordered blue schemes.

Proof. Let us write D = B[T0, . . . , Tn] and ϕ = f∗ for short. The property of f being a 
closed immersion can be tested on the open affine covering of Pn

B by Ui = SpecD[T−1
i ]0. 

The inverse image ϕ−1(Ui) is the principal open Uhi
� SpecC[h−1

i ]0 of ProjC where 
hi = f(Ti). Thus ϕ is affine. The induced morphisms fi : C[h−1

i ]0 → D[T−1
i ]0 are 

surjective since f is. This shows that ϕ is a closed immersion. �
Remark 4.15. The converse of Lemma 4.14 holds true as well, i.e. every closed B-
subscheme of Pn

B comes from a surjective morphism of graded B-algebras. This can 
be proven as in the case of usual schemes.

4.3. Invertible sheaves

Loosely speaking, an invertible sheaf on an ordered blue scheme X is a sheaf that 
is locally isomorphic to the structure sheaf OX of X. To give this definition a precise 
meaning, we need to introduce ordered blue modules.

4.3.1. Ordered blue modules
An ordered semigroup is a commutative and unital semigroup (M, +) together with 

a partial order � that is compatible with the addition, i.e. m � n and p � q implies 
m +p � n +q. An ordered blue module is an ordered semigroup M+ with neutral element 
0 together with a subset M• that contains 0 and generates M+ as a semigroup. We write 
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M = (M•, M+, �) for an ordered blue module. A morphism of ordered blue modules
is an order preserving homomorphism f : M+ → N+ of semigroups with f(0) = 0 and 
f(M•) ⊂ N•. We denote the category of ordered blue modules by OBMod.

Let B be an ordered blueprint. An ordered blue B-module is a map B+×M+ → M+

that maps (a, m) to a.m and which satisfies, for all a, b ∈ B and m, n ∈ M :

(1) a.m ∈ M• if a ∈ B• and m ∈ M•;
(2) 0.m = 0, 1.m = m and a.0 = 0;
(3) (ab).m = a.(b.m), (a + b).m = a.m + b.m and a.(m + n) = a.m + a.n;
(4) a.m � b.n if a � b and m � n.

A morphism of ordered blue B-modules is a morphism f : M → N of ordered blue 
modules such that the resulting diagram

B ×M M

B ×N N

commutes. We denote the category of ordered blue B-modules by OBModB.
Note that every ordered blue module has a unique structure as an F1-module. Thus 

OBMod is equivalent to OBModF1.
We remark that the category OBModB is complete and cocomplete for every ordered 

blueprint B. In particular, the categorical product of M and N is the Cartesian product 
M ×N .

4.3.2. OX-modules
Let X be an ordered blue scheme. A sheaf of ordered blue modules on X is a sheaf 

on X with values in OBMod. For example, the structure sheaf OX is naturally a sheaf 
of ordered blue modules. Note that products of sheaves in ordered blue modules are 
calculated valuewise in OBMod.

An OX -module is a sheaf F on X with values in OBMod together with a morphism of 
sheaves OX ×F → F such that for every open subset U of X, the map OX(U) ×F(U) →
F(U) endows F(U) with the structure of an ordered blue module. A morphism F → G

of OX -modules is a morphism of sheaves F → G such that F(U) → G(U) is a morphism 
of OX(U)-modules for every open subset U of X.

An invertible sheaf on X is an OX -module L such that there are an open covering 
{Ui}i∈I and isomorphisms L|Ui

→ OUi
of OUi

-modules for every i ∈ I.

Example 4.16. Recall that a principal open subset Uh of Pn
B consists of all homogeneous 

prime ideals p of B[T0, . . . , Tn] not containing a given element h nor the ideal (T0, . . . , Tn). 
The twisted sheaf O(d) on Pn

B is defined by O(d)(Uh) = B[T0, . . . , Tn][h−1]d, together 
with the tautological inclusions O(d)(Uh) → O(d)(Ug) whenever Ug ⊂ Uh, i.e. g divides 
h. This definition extends uniquely to a sheaf on Pn

B.
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The sheaf O(d) inherits the structure of an OX-module from the natural action of 
OPn

B
(Uh) = B[T0, . . . , Tn][h−1]0 on O(d)(Uh) = B[T0, . . . , Tn][h−1]d by multiplication. 

For the canonical open subsets Ui = UTi
, multiplication by T−d

i yields an isomorphism 
O(d)(Ui) → OPn

B
(Ui), which shows that O(d) is an invertible sheaf.

Note that O(d) contains nontrivial global sections if and only if d � 0. For instance, 
ΓO(1) is freely generated over B by the global sections T0, . . . , Tn.

4.3.3. Tensor products of invertible sheaves
As for usual schemes, there is a notion of a tensor product L ⊗ L′ = L ⊗OX

L′ of 
invertible sheaves, which is again an invertible sheaf; it is defined as the sheafification 
of the presheaf U �→ L(U) ⊗OX(U) L

′(U). The dual L∨ = Hom(L, OX) of an invertible 
sheaf is an invertible sheaf, and L ⊗ L∨ � OX . This turns the set PicX of isomorphism 
classes of invertible sheaves on X into an abelian group with respect to tensor product.

For example, if B is an ordered blue field, PicPn
B is an infinite cyclic group generated 

by the isomorphism class of O(1).
Note that two global sections s ∈ Γ(X, L) and s′ ∈ Γ(X, L′) have a product ss′ = s ⊗s′

in Γ(X, L ⊗ L′).

4.3.4. Pullbacks of invertible sheaves
Let ϕ : X → Y be a morphism of ordered blue schemes and L an invertible sheaf on 

Y . Let ϕ−1(L) be the sheaf on X that sends an open subset U of X to colimL(V ) where 
V runs through all open subsets of Y containing ϕ(U). The pullback of L along ϕ is the 
sheaf ϕ∗(L) = ϕ−1(L) ⊗ϕ−1(OY ) OX on X.

The pullback ϕ∗(L) of L is again an invertible sheaf, as can be seen as follows. Let 
{Vi} be an open covering of Y such that there are isomorphisms ηi : L|Vi

→ OVi
. Then 

X is covered by the open subsets Ui = ϕ−1(Vi) and OUi
� ϕ∗(OVi

) Thus the pullbacks 
of the ηi define isomorphisms ϕ∗(ηi) : ϕ∗(L)|Ui

→ OUi
, which verifies that ϕ∗(L) is an 

invertible sheaf.
There is a natural morphism

ϕ#
L : Γ(Y,L) −→ Γ

(
X,ϕ∗(L)

)
that sends a global section s of L to 

(
colim resX,V (s)

)
⊗ 1, where the colimit taken over 

the system of all restrictions of s to open subsets V of Y containing ϕ(X).
The pullback commutes with tensor products, i.e. we have ϕ∗(L) ⊗ ϕ∗(L′) � ϕ∗(L ⊗

L′). As a result, we obtain a group homomorphism ϕ∗ : PicY → PicX.

4.4. Morphisms to projective space

A key point in our approach to matroid bundles is the characterization of morphisms 
into projective space, which can be described in complete analogy to classical algebraic 
geometry. We will prove the relevant results in this section.
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Let X be an ordered blue scheme and L an invertible sheaf on X. Let k = OX(X) be 
the ordered blueprint of global sections of X. We denote the ordered blue k-module of 
global sections of L by ΓL = L(X). We say that global sections s1, . . . , sn ∈ ΓL generate 
L if for every point x ∈ X their images s1,x, . . . , sn,x in Lx generate Lx as an ordered 
blue OX,x-module. This is the case if and only if not all of s1,x, . . . , sn,x are contained in 
mxLx, where mx is the maximal ideal of Ox,x.

Example 4.17. Let O(1) be the twisted sheaf on Pn
B, cf. Example 4.16. Then the global 

sections T0, . . . , Tn ∈ ΓO(1) generate O(1), since Pn
B = ProjB[T0, . . . , Tn] consists of all 

homogeneous prime m-ideals p of B[T0, . . . , Tn] that do not contain all of T0, . . . , Tn. 
Thus for every such p, there is at least one Ti that is a unit in the stalk O(1)p.

Lemma 4.18. Let ϕ : X → Y be a morphism of ordered blue schemes and L an invert-
ible sheaf on Y that is generated by global sections s1, . . . , sn ∈ ΓL. Then the images 
ϕ#
L(s1), . . . , ϕ#

L(sn) generate the invertible sheaf ϕ∗L.

Proof. As a first step, we observe that for every x ∈ X and y = ϕ(x),

(ϕ∗L)x = colimϕ∗(L)(U) = colim
(
L⊗OY

ϕ∗OX

)
(V )

=
(
L⊗OY

ϕ∗OX

)
y

= Ly ⊗OY,y
OX,x

where the first colimit is taken over all open neighborhoods U of x and the second colimit 
is taken over all open neighborhoods V of y.

If we write ti = ϕ#
L(si) for i = 1, . . . , n, the above calculation shows that we can 

identify the image ti,x of ti in the stalk (ϕ∗L)x = Ly ⊗OY,y
OX,x with si,y ⊗ 1 for 

i = 1, . . . , n. From this, it is clear that if s1,y, . . . , sn,y generate Ly as an ordered blue 
OY,y-module, then s1,y ⊗1, . . . , sn,y ⊗1 generate Ly ⊗OY,y

OX,x as an ordered blue OX,x-
module. We conclude that t1, . . . , tn generate ϕ∗L. �
Lemma 4.19. Let X be an ordered blue scheme and s ∈ ΓOX . If the image sx of s in 
OX,x is a unit for all x ∈ X, then s is a unit of ΓOX .

Proof. Since OX,x is the colimit over the local sections in the open neighborhoods U

of x, an inverse tx of sx in OX,x must come from an inverse of the restriction of s to 
some open neighborhood U of x. Thus we find an open covering Ui of X such that the 
restrictions si of s to Ui have inverses ti in ΓOUi

. On the intersections Ui ∩ Uj , we get 
t̄i = t̄i s̄ t̄j = t̄j where t̄i, t̄j and s̄ denote the respective restrictions of ti, tj and s to 
Ui ∩Uj . This shows that the local sections ti coincide on the overlaps of the Ui and thus 
glue to a global section t of OX . Since st is locally equal to 1, we must have st = 1 in 
ΓOX , which shows that s is a unit in ΓOX . �
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Theorem 4.20. Let B be an ordered blueprint, X an ordered blue B-scheme and n � 0. 
Let Pn

B = ProjB[x0, . . . , xn] be the projective space over B and O(1) the twisted sheaf of 
degree 1.

(1) If ϕ : X → Pn
B is a B-linear morphism, then ϕ∗(O(1)

)
is an invertible sheaf on X, 

which is generated by the global sections si = ϕ#
O(1)(xi) for i = 0, . . . , n.

(2) If L is an invertible sheaf on X and s0, . . . , sn ∈ ΓL are global sections that gen-
erate L, there is a unique B-linear morphism ϕ : X → Pn

B such that there is an 
isomorphism L → ϕ∗(O(1)

)
that identifies si with ϕ#

O(1)(xi) for i = 0, . . . , n.

Proof. Part (1) of the theorem follows immediately from Lemma 4.18.
Part (2) is trivial for the empty scheme X. Thus we may assume that X is nonempty. 

Then the subsets Xi = { x ∈ X | si ∈ L×
x } are open, and they cover X since s0, . . . , sn

generate L.
Since L is locally free of rank 1, we can choose for every x ∈ X a generator θx of Lx

as an OX,x-module. Thus for every i = 0, . . . , n and x ∈ X, the image si,x of si in Lx is 
a multiple of θx, i.e. si,x = λi,xθx for some λi,x.

For a fixed i, we have si ∈ L×
x for every x ∈ Xi. Lemma 4.19 implies that the 

restriction of si to Xi is invertible. Thus we can define for every j the quotient sj
si

in 
ΓXi. Note that sjsi does not depend on the choice of the generators θx.

Let Ui = SpecB[x0
xi
, . . . , xn

xi
] be the i-th canonical open subset of Pn

B. The association 
xj

xi
�→ sj

si
defines a morphism fi : B[x0

xi
, . . . , xn

xi
] → ΓXi. By Lemma 4.8, fi corresponds 

to a morphism ϕi : Xi → Ui of ordered blue schemes, which is obviously B-linear. Since 
ϕi and ϕj coincide on the intersection Xi ∩ Xj , the morphisms ϕi glue to a B-linear 
morphism ϕ : X → Pn

B .
It is clear from the definition of ϕ that ϕ∗(O(1)

)
is isomorphic to L and that the 

pullbacks of the coordinates xi coincide with the global sections si. It is also clear 
that there is a unique ϕ with these properties. This finishes the proof of the theo-
rem. �

Let X be an ordered blue scheme. An invertible sheaf with n generators is an invertible 
sheaf L together with global sections s1, . . . , sn that generate L. Two invertible sheaves 
with n generators (L; s1, . . . , sn) and (L′; s′1, . . . , s′n) are isomorphic if there exists an 
isomorphism ϕ : L → L′ of invertible sheaves such that si = ϕ#

L(s′i) for i = 1, . . . , n. 
Let PicGen(n, X) be the set of isomorphism classes of invertible sheaves on X with n
generators.

The following is an immediate consequence of Theorem 4.20.

Corollary 4.21. Let B be an ordered blueprint, X an ordered blue B-scheme and n � 0. 
Then the map
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HomB(X,Pn
B) −→ PicGen(n + 1, X)

ϕ : X → Pn
B �−→

(
ϕ∗(O(1)

)
;ϕ#

O(1)(x0), . . . ,ϕ#
O(1)(xn)

)
is a bijection. In particular, we have Pn

B(C) = PicGen(n + 1, X) if X = SpecC. �
5. Families of matroids and their moduli spaces

At this point, we have developed the necessary formalism to define matroid bundles 
over ordered blue F±

1 -schemes. Besides our immediate goal of constructing a (fine) mod-
uli space of matroids, which requires the notion of a universal family, the concept of a 
matroid bundle should have applications to tropical geometry (and conceivably to clas-
sical matroid theory as well). For example, we hope that matroid bundles will be useful 
for developing a theory of sheaf cohomology for tropical varieties. In addition, a suitable 
notion of families of valuated matroids appears to be a necessary ingredient for defining 
families of tropical schemes in the sense of Maclagan and Rincón ([41]).

In this section, we will introduce matroid bundles, study their first properties, and 
use them to define a suitable moduli functor which will be represented by the moduli 
space of matroids.

5.1. Families of matroids

An ordered blue F±
1 -scheme is an ordered blue scheme X together with a structure 

morphism X → SpecF±
1 . An F±

1 -linear morphism between two ordered blue F±
1 -schemes 

is a morphism ϕ : X → Y that commutes with the respective structure morphisms. This 
defines the category SchF±

1
of ordered blue F±

1 -schemes.
If X is an ordered blue F±

1 -scheme, then Γ(X, OX) is an F±
1 -algebra. As usual, we 

denote the weak inverse of 1 by ε. Note that Γ(X, L) is an ordered blue Γ(X, OX)-module 
for every invertible sheaf L over X. We define L⊗2 = L ⊗L and recall from section 4.3.3
that the product s · s′ of two elements s, s′ ∈ Γ(X, L) is an element of Γ(X, L⊗2).

Definition 5.1. Let E be a non-empty finite ordered set, r a natural number and X an 
ordered blue F±

1 -scheme. A Grassmann-Plücker function of rank r on E over X is an 
invertible sheaf L over X together with a map

Δ :
(
E
r

)
−→ Γ(X,L)

I �−→ Δ(I)

such that {Δ(I)}
I∈(Er) generate L and satisfy the Plücker relations

0 �
r+1∑

εk · Δ(I ∪ {ik}) · Δ(I ′ − {ik})

k=1
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in Γ(X, L⊗2) for every (r− 1)-subset I and every (r+1)-subset I ′ = {i1, . . . , ir+1} of E, 
where i1 < · · · < ir+1 and we define Δ(I ∪ {ik}) = 0 if I ∪ {ik} is of cardinality r − 1.

Two Grassmann-Plücker functions (L, Δ) and (L′, Δ′) on X are isomorphic if there 
exists an isomorphism ϕ : L → L′ of invertible sheaves such that Δ′ = Γϕ ◦ Δ, where 
Γϕ : Γ(X, L) → Γ(X, L′) is the induced isomorphism between the ordered blueprints of 
global sections.

A matroid bundle over X is an isomorphism class of Grassmann-Plücker functions.

5.1.1. Pullbacks of matroid bundles
The pullback ϕ∗(M) of a matroid bundle M on Y along a morphism ϕ : X → Y of 

ordered blue F±
1 -schemes is defined by the following lemma.

Lemma 5.2. Let ϕ : X → Y be a morphism in OBSchF±
1

and L an invertible sheaf 
on Y . Let E be a non-empty finite ordered set, r a natural number and M a matroid 
bundle over Y represented by a Grassmann-Plücker function Δ :

(
E
r

)
→ Γ(Y, L). Then 

ϕ∗(Δ) = ϕ#
L ◦ Δ :

(
E
r

)
→ Γ(X, ϕ∗(L)) is a Grassmann-Plücker function over X and the 

matroid bundle ϕ∗(M) = [Δ̃] over X does not depend on the choice of representative Δ
of M.

Proof. As a first step, we verify that ϕ∗(Δ) = ϕ#
L ◦Δ is a Grassmann-Plücker function. 

Since {Δ(I)}
I∈(Er) generates L, Lemma 4.18 implies that {ϕ#

L(Δ(I))}
I∈(Er) generates 

ϕ∗(L). The identification ϕ∗(L⊗2) = ϕ∗(L)⊗2 yields a morphism ϕ#
L⊗2 : Γ(Y, L⊗2) →

Γ(X, ϕ∗(L)⊗2) of ordered blueprints. Thus the validity of the Plücker relations in 
Γ(Y, L⊗2) implies the validity of the Plücker relations in Γ(X, ϕ∗(L)⊗2). This shows 
that ϕ∗(Δ) is a Grassmann-Plücker function.

Next we show independence from the choice of representative Δ. Let Δ′ :
(
E
r

)
→

Γ(Y, L′) be another Grassmann-Plücker function representing M, i.e. there is an iso-
morphism η : L → L′ such that Δ′ = Γ(Y, η) ◦ Δ. This yields an isomorphism 
ϕ∗(η) : ϕ∗(L) → ϕ∗(L′) and ϕ∗(Δ′) = Γ(Y, ϕ∗(η)) ◦ ϕ∗(Δ), as desired. �
5.2. The moduli functor of matroids

Let E be a non-empty finite ordered set and r a natural number. We extend the 
functor Mat(r, E) : OBlprF±

1
→ Sets to the functor

Mat(r, E) : OBSchF±
1

−→ Sets

X �−→
{

matroid bundles of rank r on E over X
}

ϕ : X → Y �−→ ϕ∗ : Mat (r, E)(Y ) → Mat (r, E)(X)

Thanks to Proposition 5.3, we have Mat(r, E)(SpecB) = Mat (r, E)(B) for every F±
1 -

algebra and Mat(r, E)(Spec f) = Mat(r, E)(f) for every morphism f : B → C in 
OBlprF± .
1
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5.3. Compatibility with matroids over ordered blueprints

In the following, we verify that matroid bundles over SpecB correspond bijectively 
to B-matroids in a functorial way.

Proposition 5.3. Let B be an F±
1 -algebra, E a non-empty finite ordered set, r a natural 

number and X = SpecB. Then the map

ΦB :
{
B-matroids of rank r on E

}
−→

{
matroid bundles of rank r on E over X

}
M = [Δ :

(
E
r

)
→ B] �−→ M̃ = [ιB ◦ Δ :

(
E
r

)
→ Γ(X,OX)]

is a bijection, where ιB : B → Γ(X, OX) is the inclusion as constant sections. If f : B →
C is a morphism of F±

1 -algebras, ϕ = f∗ : SpecC → SpecB the induced morphism and 
M a B-matroid, then ΦC(f∗(M)) = ϕ∗(ΦB(M)). In other words, we have a commutative 
diagram of functors

OBlprF±
1

Sets .
OBSchF±

1

Mat(r,E)

Spec

Mat(r,E)

Proof. To begin with, we verify that ΦB is well-defined. Let Δ :
(
E
r

)
→ B be a 

Grassmann-Plücker function. Then Δ(I) ∈ B× for some r-subset I of E. Therefore 
ιB(Δ(I)) ∈ Γ(X, OX)×, which shows that {ιB ◦ Δ(I)}

I∈(Er) generates OX . The Plücker 
relations for Δ imply the Plücker relations for ιB◦Δ. Thus ιB◦Δ is a Grassmann-Plücker 
function over X. Since every a ∈ B× defines an automorphism of OX , the map ΦB is 
independent of the choice of representative, which shows that ΦB is well-defined.

The injectivity of ΦB can be verified as follows. The inclusion ιB : B → Γ(X, OX)
as constant sections is an isomorphism of ordered blueprints, which implies that any 
two Grassmann-Plücker functions Δ, Δ′ :

(
E
r

)
→ B are different if ιB ◦ Δ and ιB ◦ Δ′

are different. Moreover, this implies that the automorphisms of OX are equal to the 
automorphisms of B as a B-module, which are given by multiplication with a unit, i.e. 
Aut(OX) = B×. Thus different B-matroids yield different matroid bundles over X, which 
proves the injectivity of ΦB.

The surjectivity of ΦB can be verified as follows. It is obvious if B is trivial. If B is 
nontrivial, then B has a unique maximal ideal, which is m = B−B×. Therefore the only 
open subset of X containing m is X itself. Thus there are no nontrivial coverings of X and 
consequently every invertible sheaf on X is isomorphic to OX . This shows that we can 
represent every matroid bundle M over X by a Grassmann-Plücker function Δ̃ :

(
E
r

)
→

Γ(X, OX). Composing Δ̃ with the inverse ι−1
B of ιB yields a map Δ = ι−1

B ◦ Δ̃ :
(
E
r

)
→ B. 

Since {ιB ◦Δ(I)}
I∈(Er) generates OX , it generates the stalk OX,m = B as an ordered blue 

B-module, which means that Δ(I) ∈ B× for some r-subset I of E. The Plücker relations 
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for Δ̃ imply the Plücker relations for Δ. Thus Δ is a Grassmann-Plücker function with 
coefficients in B and Δ̃ = ΦB(Δ), as desired. This shows that ΦB is bijective.

To verify the final claim of the proposition, let Δ :
(
E
r

)
→ B be a Grassmann-Plücker 

function representing M . Then f∗(M) is represented by the Grassmann-Plücker function 
f ◦ Δ :

(
E
r

)
→ C. The matroid bundle M̃ = ΦB(M) is represented by the Grassmann-

Plücker function ιB ◦ Δ :
(
E
r

)
→ Γ(X, OX). By Lemma 5.2, the pullback ϕ∗(M̃) is 

represented by the Grassmann-Plücker function ϕ#
OX

◦ ιB ◦ Δ :
(
E
r

)
→ Γ(Y, ϕ∗(OY ))

where Y = SpecC.
The result now follows from the commutativity of the diagram

B C

Γ(X,OX) Γ(Y,ϕ∗(OY ))

f

ιB ιC
ϕ#

OX

where ιC : C → Γ(Y, OY ) is the canonical isomorphism. �
5.3.1. Example of a matroid bundle over the projective line over K

In this example, we investigate matroid bundles of rank 2 on E = {1, 2, 3, 4} over 
the projective line P 1

K = Proj
(
K[T0, T1]

)
. We review some general facts that we will use 

below.
Since K• = {0, 1}, the underlying monoid of K[T0, T1] is {0} ∪ {T e0

0 T e1
1 |e0, e1 ∈ N}. 

Thus the homogeneous prime ideals of K[T0, T1] not containing both T0 and T1 are (0), 
(T0) and (T1), cf. Fig. 3 for an illustration.

As in the classical case, every invertible sheaf on P 1
K is isomorphic to a twisted sheaf 

O(d) for some d ∈ Z and every automorphism of O(d) is given by the multiplication by 
a unit of K, i.e. Aut(O(d)) = K× = {1}. This means that every matroid bundle M of 
rank 2 on E over P 1

K is represented by a unique Grassmann-Plücker function of the form 
Δ :

(
E
2
)
→ Γ(X, O(d)). Note that there is only one Plücker relation in this case, which is

0 � Δ1,2Δ3,4 + Δ1,3Δ2,4 + Δ1,4Δ2,3

where we write Δi,j = Δ({i, j}).
We have Γ(P 1

K, O(d)) = {0} for d < 0, which means that O(d) cannot be generated by 
global sections for d < 0. For d � 0, we have Γ(P 1

K, O(d)) = {0} ∪ {T d
0 , T

d−1
0 T1, . . . , T d

1 }. 
Since T0 is contained in the maximal ideal of K[T0, T1](T0) and T1 is contained in the 
maximal ideal of K[T0, T1](T1), there is a unique minimal set of global sections that 
generates O(d): for d = 0, this set is {1} and for d > 0, this set is {T d

0 , T
d
1 }.

For every d � 0, there exists a nonempty set of Grassmann-Plücker functions Δ :(
E
2
)
→ Γ(P 1

K, O(d)). We classify them for d = 0 and d = 1 in the following.
The case d = 0 ties to K-matroids as follows: the pullback along the structure mor-

phism χ : P 1
K → SpecK yields a bijection
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χ∗ :
{

Grassmann-Plücker functions
Δ :

(
E
2
)
→ K

}
−→

{
Grassmann-Plücker functions

Δ :
(
E
2
)
→ Γ(P 1

K,OP1
K
)

}
,

which realizes K-matroids as “constant” matroid bundles over P 1
K. The inverse is given 

by the pullback ξ∗(Δ) along an arbitrary morphism ξ : SpecK → P 1
K. (Note that there 

are three such morphisms, which are characterized by their image, which can be each of 
the three points of P 1

K.)
The K-matroids of rank 2 on E correspond to the functions Δ :

(
E
2
)
→ {0, 1} for 

which at least two of the products Δ1,2Δ3,4, Δ1,3Δ2,4 and Δ1,4Δ2,3 are equal to 1, or 
for which all three products are equal to 0 but Δi,j = 1 for at least one 2-subset {i, j}
of E.

The case d = 1 is more involved and reveals some novel phenomena. We have 
Γ(P 1

K, O(1)) = {0, T0, T1}. Let Δ :
(
E
2
)
→ {0, T0, T1} be a function. Since {Δi,j}{i,j}∈(E2)

has to generate O(1) in order for Δ to be a Grassmann-Plücker function, we must have 
Δi,j = T0 and Δk,l = T1 for some 2-subsets {i, j} and {k, l} of E. Moreover, at least 
two of the products Δ1,2Δ3,4, Δ1,3Δ2,4 and Δ1,4Δ2,3 must be equal to each other, while 
the third might be equal to the other two or equal to 0. This allows for the following 
Grassmann-Plücker functions:

• Δ1,2Δ3,4 = Δ1,3Δ2,4 = Δ1,4Δ2,3 = T0T1;
• Δi,jΔk,l = Δi,kΔj,l = T 2

0 , Δi,l = 0, and Δj,k = T1 for some {i, j, k, l} = E;
• Δi,jΔk,l = Δi,kΔj,l = T 2

1 , Δi,l = 0, and Δj,k = T0 for some {i, j, k, l} = E;
• Δi,jΔk,l = Δi,kΔj,l = T0T1, Δi,l = 0, and Δj,k ∈ {0, T0, T1} for some {i, j, k, l} = E;
• Δ1,2Δ3,4 = Δ1,3Δ2,4 = Δ1,4Δ2,3 = 0, Δi,j = T0, and Δi,k = T1 for some pairwise 

distinct i, j, k.

The cases d � 2 become increasingly more involved.

5.4. The moduli space of matroids

We define the matroid space of rank r on E as the ordered blue scheme

Mat(r, E) = Proj
(
F±

1
[
xI

∣∣ I ∈
(
E
r

) ]
�Pl (r, E)

)
,

where Pl (r, E) is generated by the Plücker relations

0 �
r+1∑
k=1

εk · xI∪{ik} · xI′−{ik}

for every (r−1)-subset I and every (r+1)-subset I ′ = {i1, . . . , ir+1} of E. By definition, 
it comes with a closed immersion into projective space

ι : Mat(r, n) −→ PN
± = Proj

(
F±

1
[
xI

∣∣ I ∈
(
E
) ] )
F1 r
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where N = #
(
E
r

)
− 1. We denote the pullback of the tautological bundle O(1) of PN

F±
1

to 

Mat(r, E) by Luniv = ι∗O(1). The pullbacks of the canonical sections xI of O(1) define a 
map

Δuniv :
(
E
r

)
−→ Γ(Mat(r, E),Luniv).

I �−→ Δuniv(I) = ι#
O(1)(xI)

Since {xI}I∈(Er) generates O(1), Lemma 4.18 implies that {Δuniv(I)}I∈(Er) generates 
Luniv. Since Mat(r, E) satisfies the Plücker relations, the function Δuniv is a Grassmann-
Plücker function on Mat(r, E). The universal matroid bundle is the class Muniv of Δuniv, 
which is a matroid bundle of rank r on E over Mat(r, E).

Remark 5.4. The matroid space Mat(r, E) should be thought of as an analogue of the 
Grassmannian Gr(r, E)R over a ring R from usual algebraic geometry. In fact, we can 
recover the Grassmannian as the scheme Mat(r, E)+B associated to the base extension 
Mat(r, E)B of the matroid space to the ordered blueprint B associated with R. The 
functor (−)+ respects many of the standard ‘decorations’ of the Grassmannian (e.g. its 
Plücker embedding into PN ) in an obvious sense, linking them to their respective avatars 
in classical algebraic geometry.

The following theorem shows that the pair (Mat(r, E), Muniv) represents the moduli 
functor Mat(r, E):

Theorem 5.5. Let E be a non-empty finite ordered set and let r be a natural number. The 
ordered blue F±

1 -scheme Mat(r, E), together with its universal matroid bundle Muniv, is 
the fine moduli space of all matroid bundles of rank r on E, i.e. the map

Φ : HomF±
1

(
X,Mat(r, E)

)
−→ Mat(r, E)(X)

ϕ : X → Mat(r, E) �−→ ϕ∗(Muniv)

is a bijection for every ordered blue F±
1 -scheme X.

Proof. Note that every morphism ϕ : SpecB → Mat(r, E) is automatically F±
1 -linear 

since the morphism F±
1 → B is unique. Therefore we can omit F±

1 -linearity from the 
notation for the morphism set Hom(X, Mat(r, E)).

As a first step, we define a map Ψ : Mat(r, E)(X) → Hom(X, Mat(r, E)) in the 
opposite direction of Φ. Let M be a matroid bundle over X that is represented by 
a Grassmann-Plücker function Δ :

(
E
r

)
→ Γ(X, L) for some invertible sheaf L over 

X. Let N = #
(
E
r

)
− 1. By Theorem 4.20 (2), there is a unique F±

1 -linear morphism 
ϕ0 : X → PN

F±
1

such that Δ(I) = ϕ#
0 (xI) for all I ∈

(
E
r

)
. Since Δ satisfies the Plücker 

relations, ϕ0 factors uniquely into a morphism ϕ : X → Mat(r, E) followed by the closed 
immersion ι : Mat(r, E) → PN

± .

F1
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That Φ and Ψ are mutually inverse bijections follows at once from Corollary 4.21.
Consider a morphism ψ : Y → X in OBSchF±

1
. Then by the definition of the pullback 

of a matroid bundle, we have (ϕ ◦ ψ)∗(Muniv) = ψ∗(ϕ∗(Muniv)), which establishes the 
functoriality of the bijection Φ. This completes the proof of the theorem. �
5.5. Duality

One of the fundamental features of matroid theory is that every matroid (with coef-
ficients) comes with a canonical dual matroid. This extends to matroid bundles, and, in 
fact, the duality is derived from a duality between the moduli spaces.

Theorem 5.6. Let E be a non-empty finite ordered set, r � #E a natural number and 
r∨ = #E − r. Let Ic = E − I denote the complement of a subset I of E. Then the 
association xI �→ xIc defines a graded F±

1 -linear isomorphism

α∨ : F±
1
[
xI

∣∣ I ∈
(
E
r

) ]
�Pl (r, E) ∼−→ F±

1
[
xI

∣∣ I ∈
(
E
r∨

) ]
�Pl (r∨, E)

and thus an isomorphism

ϕ∨ : Mat(r∨, E) ∼−→ Mat(r, E)

of ordered blue F±
1 -schemes.

Proof. Clearly xI �→ xIc defines a graded F±
1 -linear isomorphism

α̃∨ : F±
1
[
xI

∣∣ I ∈
(
E
r

) ] ∼−→ F±
1
[
xI

∣∣ I ∈
(
E
r∨

) ]
.

Thus we are left with verifying that α̃∨ preserves the respective Plücker relations.
For this verification, we rewrite the Plücker relations in a form that is more symmetric 

with respect to duality. For I ⊂ E and i ∈ E, we define σ(i, I) = #{j ∈ I|j � i}. Then 
the Plücker relation given by an (r − 1)-subset I and an (r + 1)-subset J of E is

0 �
∑

i∈J−I

εσ(i,I)+σ(i,J) · xI∪{i} · xJ−{i}.

Note that

(I ∪ {i})c = Ic − {i}, (J − {i})c = Jc ∪ {i} and J − I = Ic − Jc.

The last equality implies that σ(i, J − I) = σ(i, Ic − Jc). Since σ(i, J − I) = σ(i, J) −
σ(i, I ∩ J), and likewise for σ(i, Ic − Jc), we obtain

σ(i, J) − σ(i, I ∩ J) = σ(i, Ic) − σ(i, Jc ∩ Ic).



M. Baker, O. Lorscheid / Advances in Mathematics 390 (2021) 107883 71
Exchanging the roles of I and J yields an analogous equation. Adding both equations 
yields

σ(i, I) + σ(i, J) − 2σ(i, I ∩ J) = σ(i, Jc) + σ(i, Ic) − 2σ(i, Jc ∩ Ic).

This shows that εσ(i,Jc)+σ(i,Ic) = εσ(i,I)+σ(i,J). Thus applying α̃∨ to the Plücker relation 
for I and J yields

0 �
∑

i∈Ic−Jc

εσ(i,Jc)+σ(i,Ic) · xJc∪{i} · xIc−{i},

which is the Plücker relation for the (r∨ − 1)-subset Jc and the (r∨ + 1)-subset Ic of 
E. We conclude that α̃∨ maps Pl (r, E) to Pl (r∨, E), which completes the proof of the 
theorem. �
Definition 5.7. Let X be an ordered blue F±

1 -scheme endowed with an involution (gener-
alizing the involution on a tract F from Section 3.1.4) ι : X → X, L a line bundle on X, 
and M a matroid bundle on X that is represented by the Grassmann-Plücker function 
Δ :

(
E
r

)
→ Γ(X, L). The dual of Δ with respect to ι is the function

Δ∨
ι :

(
E
r∨

)
−→ Γ(X,L)

I �−→ ι#L ◦ Δ(Ic)

where ι#L : Γ(X, L) → Γ(X, L) is the involution induced by ι.
The dual of M with respect to ι is the isomorphism class M∨

ι of Δ∨
ι .

In the following proposition, we verify that Δ∨
ι is a Grassmann-Plücker function and 

thus that M∨
ι is a matroid bundle on X. Moreover, we will see that the duality of 

matroid bundles is compatible with the duality of the moduli spaces of matroids from 
Theorem 5.6.

Note that in case that X = SpecF for an idyll F , the duality of the matroid bundle 
M on SpecF coincides with the duality of the corresponding F tract-matroid M from [3, 
Thm. 2.24].

Given a matroid bundle M on X, we call the morphism χM : X → Mat(r, E) that 
corresponds to M under the bijection from Theorem 5.5 the characteristic morphism of 
M.

Proposition 5.8. Let X be an ordered blue F±
1 -scheme with involution ι : X → X and 

L a line bundle on X. Let Δ :
(
E
r

)
→ Γ(X, L) be a Grassmann-Plücker function that 

represents a matroid bundle M on X with characteristic morphism χM : X → Mat(r, E). 
Then the dual Δ∨

ι of Δ with respect to ι is a Grassmann-Plücker function and M∨
ι is the 

matroid bundle on X whose characteristic morphism is
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χM∨
ι

= ϕ∨ ◦ χM ◦ ι : X
ι−→ X

χM−→ Mat(r, E) ϕ∨

−→ Mat(r∨, E)

where r∨ = #E − r and ϕ∨ is the isomorphism from Theorem 5.6.

Proof. That Δ∨
ι is a Grassmann-Plücker function can be shown directly by an analogous 

calculation to that from the proof of Theorem 5.6. Alternatively, we can show this by 
applying the result from Theorem 5.6 in the following way.

The direct sum 
⊕

i�0 Γ(X, L⊗i) can be given the structure of an ordered blueprint 
(B•, B+, �) as follows:

• The ambient semiring B+ is the direct sum of the semigroups Γ(X, L⊗i)+ for all 
i � 0, which comes with a natural multiplication.

• The monoid B• is the union of all the subsets Γ(X, L⊗i)• in B+.
• The partial order � is the smallest additive and multiplicative partial order that 

contains the partial order of Γ(X, L⊗i)+ for every i � 0.

Since Δ is a Grassmann-Plücker function, the association xI �→ Δ(I) defines a mor-
phism

ξΔ : F±
1
[
xI

∣∣ I ∈
(
E
r

) ]
�Pl (r, E) −→

⊕
i�0 Γ(X,L⊗i).

Composing this morphism with the map jr,E :
(
E
r

)
→ F±

1
[
xI

∣∣I ∈
(
E
r

)]
�Pl (r, E) that 

sends I to xI gives the Grassmann-Plücker function Δ :
(
E
r

)
→ Γ(X, L), where we 

consider Γ(X, L) as a subset of 
⊕

i�0 Γ(X, L⊗i).
Precomposing ξΔ with the inverse of the isomorphism α∨ from Theorem 5.6 yields a 

morphism ξΔ∨
ι
, whose composition with jr∨,E is the dual Δ∨

ι of Δ. This means that we 
obtain a commutative diagram

(
E
r

)
F±

1
[
xI

∣∣ I ∈
(
E
r

)]
�Pl (r, E)

⊕
i�0 Γ(X,L⊗i)

F±
1
[
xI

∣∣ I ∈
(
E
r∨

)]
�Pl (r∨, E)

⊕
i�0 Γ(X,L⊗i).(

E
r

)

jr,E Δ

α∨

ξΔ

ι

ξΔ∨
ι

jr∨,E
Δ∨

ι

Since Δ∨
ι factors through ξΔ∨

ι
, it satisfies the Plücker relations. Thus Δ∨

ι is a Grassmann-
Plücker function, which verifies the first part of the proposition.

Note that the characteristic morphism χM : X → Mat(r, E) is induced from the graded 
morphism ξΔ. Thus applying the Proj-functor to inner square of the above diagram yields 
a commutative diagram
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X Mat(r, E)

X Mat(r∨, E),

χM

ι ϕ∨

χM∨
ι

which verifies the second part of the proposition. �
5.6. Contraction and deletion

The operations of contracting and deleting an element e of the ground set E of an 
F -matroid M , as introduced in [3, section 3.9], are defined on the level of maps between 
subvarieties of the matroid spaces for E and E′ = E − {e} and appropriate ranks. To 
this end we define the closed subschemes

V/e = Proj
(
F±

1 [TI | I ∈
(
E
r

)
]�〈Pl (r, E) ∪ {TI | e ∈ I}〉

)
and

V\e = Proj
(
F±

1 [TI | I ∈
(
E
r

)
]�〈Pl (r, E) ∪ {TI | e /∈ I}〉

)
of Mat(r, E), as well as their respective set-theoretic complements

U/e = Mat(r, E) − V/e and U\e = Mat(r, E) − V\e,

which we consider as open subschemes of Mat(r, E).
The graded morphism

F±
1 [TJ | J ∈

(
E′

r−1
)
]�Pl (r − 1, E′) −→ F±

1 [TI | I ∈
(
E
r

)
]�Pl (r, E)

TJ �−→ TJ∪{e}

defines a rational map Mat(r, E) Mat(r−1, E′) whose domain is U/e, since the inverse 
image of a homogeneous prime ideal 〈TI | I ∈ I〉 is relevant if and only if I contains an 
I with e /∈ I. This yields a morphism Ψo

/e : U/e → Mat(r− 1, E′). The graded morphism

F±
1 [TJ | J ∈

(
E′

r

)
]�Pl (r, E′) −→ F±

1 [TI | I ∈
(
E
r

)
]�〈Pl (r, E) ∪ {TI | e ∈ I}〉

TJ �−→ TJ

is an isomorphism and defines an isomorphism Ψc
/e : V/e → Mat(r, E′) of ordered blue 

schemes. Combining these morphisms, we obtain the diagram

Mat(r, E)
ι/e←− U/e � V/e

Ψ/e−→ Mat(r − 1, E′) � Mat(r, E′),

where ι/e is the disjoint union of the inclusions of the subschemes U/e and V/e into 
Mat(r, E) and Ψ/e is the disjoint union of Ψo and Ψc .
/e /e
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Similarly, the graded morphism

F±
1 [TJ | J ∈

(
E′

r

)
]�Pl (r, E′) −→ F±

1 [TI | I ∈
(
E
r

)
]�Pl (r, E)

TJ �−→ TJ

and the graded isomorphism

F±
1 [TJ | J ∈

(
E′

r−1
)
]�Pl (r − 1, E′) −→ F±

1 [TI | I ∈
(
E
r

)
]�〈Pl (r, E) ∪ {TI | e ∈ I}〉

TJ �−→ TJ∪{e}

define morphisms Ψo
\e : U\e → Mat(r, E′) and Ψc

\e : V\e → Mat(r−1, E′) of ordered blue 
schemes, and combining these yields the diagram

Mat(r, E)
ι\e←− U\e � V\e

Ψ\e−→ Mat(r, E′) � Mat(r − 1, E′).

The following theorem explains how these morphisms extend the usual operations of 
contraction and deletion to the level of moduli spaces. Since we will not use this result 
in the paper, we omit a proof.

Theorem 5.9. Let F be an idyll and M an F -matroid of rank r on E with characteristic 
morphism χM : SpecF → Mat(r, E). Let e ∈ E and E′ = E −{e}. Define r/e = r if e is 
a loop and r/e = r−1 if not, and define r\e = r−1 if e is a coloop and r\e = r if not. Let 
χM/e : SpecF → Mat(r/e, E′) and χM\e : SpecF → Mat(r\e, E′) be the characteristic 
morphisms of the contraction M/e and the deletion M\e, respectively. Then the following 
holds:

(1) The morphism χM factors into a uniquely determined morphism χM,/e : SpecF →
U/e�V/e composed with ι/e, as well as into a uniquely determined morphism χM,\e :
SpecF → U\e � V\e composed with ι\e.

(2) The morphism χM\e is the unique morphism from SpecF to Mat(r/e, E′) that makes 
the diagram

SpecF Mat(r/e, E′)

Mat(r, E) U/e � V/e Mat(r − 1, E′) � Mat(r, E′)

χM χM,/e

χM/e

ι/e Ψ/e

commute, and χM/e is the unique morphism from SpecF to Mat(r\e, E′) that makes 
the diagram

SpecF Mat(r\e, E′)

Mat(r, E) U\e � V\e Mat(r, E′) � Mat(r − 1, E′)

χM χM,\e

χM\e

ι\e Ψ\e
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commute, where the vertical arrows on the right hand side are the respective canonical 
inclusions into the coproduct.

(3) Let r∨ = #E − r and let U∨
\e and V ∨

\e be the obvious respective variants of U\e
and V\e for Mat(r∨, E). Then there are unique isomorphisms ϕo,∨ : U/e → U∨

\e and 
ϕc,∨ : V/e → V ∨

\e that make the diagram

Mat(r, E) U/e � V/e Mat(r − 1, E′) � Mat(r, E′)

Mat(r∨, E) U∨
\e � V ∨

\e Mat(r∨, E′) � Mat(r∨ − 1, E′)

ϕ∨ ∼

ι/e Ψ/e

ϕo,∨�ϕc,∨∼ ϕ∨�ϕ∨∼
ι∨\e Ψ∨

\e

commute, where ι∨\e and Ψ∨
\e are the obvious variants of ι\e and Ψ\e, respectively, and 

where the vertical morphisms denoted by ϕ∨ are the isomorphisms from Theorem 5.6.

5.7. Rational point sets

In this section, we explain how the matroid space recovers classical objects like the 
Grassmannian, the Dressian and the MacPhersonian as rational point sets.

Let B be an F±
1 -algebra. By the universal property of the matroid space, Mat(r, E)(B)

corresponds to the set of B-matroids of rank r on E. If B carries a topology, then 
Mat(r, E)(B) inherits the so-called fine topology from B. The fine topology is defined 
by a general categorical construction, which has been exhibited first in [40] and which 
has been transferred to rational point sets of ordered blue schemes in [37]. Instead of 
recalling the definition of the fine topology in full generality, we will provide an equivalent 
characterization in Theorem 5.11.

A topological idyll is an idyll F together with a topology such that the multiplication 
F × F → F (where F × F carries the product topology) is a continuous map, and such 
that F× is an open subset of F and the inversion map F× → F×, sending a to a−1, is 
continuous.

Remark 5.10. It might appear strange at first sight that the definition of a topological 
idyll does not involve any continuity condition for addition. Thus a topological idyll 
that is a field is not necessarily a topological field. However, our definition is guided by 
properties of the fine topology on rational point sets, as described in Theorem 5.11 below. 
The proof of these properties does not require any continuity conditions for addition, in 
contrast to the corresponding proof for topological fields. This difference in the proofs 
can be traced back to the fact that free algebras in the world of ordered blueprints consist 
of monomials (as opposed to more general polynomials).

Given an ordered blue scheme X and a topological idyll F , the fine topology for the 
rational point set X(F ) is determined in terms of the following theorem.
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Theorem 5.11. Let F be a topological idyll. Then there is a unique way to endow the 
rational point sets X(F ) for all ordered blue schemes X with a topology such that the 
following properties hold true:

(1) the canonical bijection F → A1
F (F ) is a homeomorphism;

(2) the canonical bijection (X × Y )(F ) → X(F ) × Y (F ) is a homeomorphism;
(3) for every morphism Y → X, the canonical map Y (F ) → X(F ) is continuous;
(4) for every open / closed immersion Y → X, the canonical inclusion Y (F ) → X(F )

is an open / closed topological embedding;
(5) for every covering of X by ordered blue open subschemes Ui, a subset W of X(F ) is 

open if and only if W ∩ Ui(F ) is open in Ui(F ) for every i.

Moreover, if F → F ′ is a continuous morphism of idylls and X an ordered blue scheme, 
the induced map X(F ) → X(F ′) is continuous.

Proof. This is a special case of Theorem 5.2 in [37]. �

Example 5.12. Every topological field is a topological idyll in a tautological way. An-
derson and Davis have extended this notion to hyperfields in [2]. It turns out that a 
topological hyperfield is the same as a topological idyll if identified with the associated 
idyll via the functor (−)oblpr : HypFields → OBlpr±. In the following, we consider the 
following topological idylls:

• the reals R with the usual topology;
• the Krasner hyperfield K together with the topology that consists of the open subsets 

∅, {1}, K;
• the sign hyperfield S together with the topology that consists of the open subsets ∅, 

{1}, {−1}, {±1}, S;
• the tropical hyperfield T together with the topology coming from the identification 

of T with R�0 and its embedding into R;
• the regular partial field F±

1 together with the topology that consists of the open 
subsets ∅, {1}, {−1}, {±1}, F±

1 .

Note that [2] contains reasons why it might be better to exclude all neighborhoods of 0
in the topology of T ; we refer to section 2.3.2 of [2], but ignore this issue in the following. 
The topological spaces X(F ) appearing in Theorem 5.11 are also closely related to Jun’s 
considerations in [26]. Namely for F = K, F = T or F = S, a blue scheme X and its 
associated scheme X+, it is not hard to show that the topological space X(F ) coincides 
with the topological space X+(F ) from [26].
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5.7.1. Matroids
A matroid is the same as a K-matroid where K = {0, 1} �〈0 � 1 + 1, 0 � 1 + 1 + 1〉 is 

the Krasner hyperfield. Thus Mat(r, E)(K) is the set of all matroids of rank r on E. The 
topology on K turns Mat(r, E)(K) into a contractible topological space, cf. [2, section 6]
for details.

5.7.2. Oriented matroids and the MacPhersonian
Note that as an idyll, the sign hyperfield turns into S = {0, 1, ε} �R where R is 

generated by relations 0 � 1 + · · ·+ 1 + ε + · · ·+ ε that contain at least one 1 and one ε.
An oriented matroid is the same thing as a S-matroid. Thus Mat(r, E)(S) is the set 

of all oriented matroids of rank r on E. The topology of S turns Mat(r, E)(S) into a 
topological space, which is, by definition, the MacPhersonian MacPh(r, E) of rank r on 
E; cf. [2, section 6] for details.

5.7.3. Subspaces and the Grassmannian
Let k be a field, which we identify with the idyll k• � 〈0 �

∑
ai| 

∑
ai = 0 in k〉. 

(Note that this results from considering k as a partial field and applying the functor 
PartFields → OBlpr± or, equivalently, from considering k as a hyperfield and applying 
the functor HypFields → OBlpr±. This allows us to consider fields as objects of either 
subcategory PartFields and HypFields of OBlpr±.)

It is immediate that the class of a Grassmann-Plücker function Δ :
(
E
r

)
→ k cor-

responds to the point 
[
Δ(I)

∣∣I ∈
(
E
r

)]
of the Grassmannian Gr(r, E)(k) and vice-versa. 

This yields an identification Mat(r, E)(k) = Gr(r, E)(k) and shows that a k-matroid is 
the same thing as an r-dimensional subspace of kE .

5.7.4. The oriented matroid of real subspaces
The topology of R endows Mat(r, E)(R) with a topology that coincides with the usual 

topology of the real Grassmannian. The hyperfield morphism sign : R → S is continuous 
and therefore induces a continuous map

Gr(r, E)(R) = Mat(r, E)(R) −→ Mat(r, E)(S) = MacPh(r, E).

This map sends an r-dimensional subspace V of RE to its associated oriented matroid 
MV , which is the class of the Grassmann Plücker function sign ◦ Δ :

(
E
r

)
→ S, where Δ

is defined by the Plücker coordinates 
[
Δ(I)

∣∣I ∈
(
E
r

)]
of V .

This map is closely connected to the MacPhersonian conjecture, as formulated by 
Mnëv and Ziegler in [44], which asserts a relation between the homotopy type of 
Gr(r, E)(R) and the MacPhersonian MacPh(r, E). For more details on these connec-
tions, see [2, section 7]. Note that certain cases of this conjecture have recently been 
disproven by Liu in [35].
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5.7.5. Valuated matroids and the Dressian
A valuated matroid is the same thing as a T -matroid, where T is the tropical hy-

perfield. Thus Mat(r, E)(T ) is the set of all valuated matroids of rank r on E. An
r-dimensional tropical linear space in RE is the geometric realization of a valuated ma-
troid as a subspace of RE, analogous to the Bergman fan of a matroid; cf. [54] for a 
precise definition. The Dressian Dress(r, E) is the set of r-dimensional tropical linear 
spaces in RE .

By definition, the r-dimensional tropical linear spaces in RE correspond bijectively 
to the valuated matroids of rank r on E. This yields an identification Dress(r, E) =
Mat(r, E)(T ) of the Dressian with the T -rational points of the matroid space. Note that 
the topology of T endows the Dressian Dress(r, E) with a natural topology.

5.7.6. Regular matroids
It follows from our explanations in section 3.4.3 that the subset of regular matroids in 

Mat(r, E)(K) is equal to the image of the map Mat(r, E)(F±
1 ) → Mat(r, E)(K) induced 

by the unique morphism F±
1 → K. Note that the topology of F±

1 endows the set of F±
1 -

matroids Mat(r, E)(F±
1 ) with a topology. Since the morphism F±

1 → K is continuous, 
the map Mat(r, E)(F±

1 ) → Mat(r, E)(K) is continuous.
Note that this map is in general not injective, as the following example shows. Let 

E = {1, 2}. Then the Grassmann-Plücker functions Δ1 :
(
E
1
)
→ F±

1 and Δ2 :
(
E
1
)
→ F±

1
with

Δ1({1}) = Δ1({2}) = Δ2({1}) = 1 and Δ2({2}) = ε

define different F±
1 -matroids M1 = [Δ1] and M2 = [Δ2] with the same underlying 

matroid.

Part 3. Applications to matroid theory

6. Realization spaces and the Tutte group

A new feature that comes along with the matroid space is the universal idyll associated 
with a matroid. We will introduce this notion and explain how it interacts with questions 
about the representability of matroids and realization spaces. We will also discuss the 
analogous invariant for weak matroids and its relation to the Tutte group.

Throughout the entire section, we fix a totally ordered non-empty finite set E and a 
natural number r � #E.

6.1. The universal idyll of a matroid

We can associate with every matroid its universal idyll, which is derived from a certain 
residue field of the matroid space. We will define the universal idyll and describe its basic 
properties in this section.
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Let N = #
(
E
r

)
−1. Recall from section 5.4 that the matroid space comes with a closed 

immersion

ι : Mat(r, E) −→ PN
F±

1

into ordered blue projective space.

Lemma 6.1. The closed immersion ι is a homeomorphism between the respective under-
lying topological spaces.

Proof. Since ι is a closed immersion, it is clearly injective and continuous. Since the 
Plücker relations in the definition of Mat(r, E) are merely inequalities, they do not 
identify any elements of the underlying monoid of F±

1
[
xI

∣∣ I ∈
(
E
r

)]
. As a result, the 

underlying topological space of Mat(r, E) is the same as that of its image in PN
F±

1
. �

In section 4.2.1, we have defined the points of PN
F±

1
as the relevant homogeneous prime 

ideals pI = (TI)I∈I of F±
1
[
xI

∣∣ I ∈
(
E
r

)]
, where I can be any proper subset of 

(
E
r

)
. This 

means that the underlying points of Mat(r, E) are of the form pI for I ⊂
(
E
r

)
.

Fix a proper subset I of 
(
E
r

)
. The stalk at pI is the ordered blueprint

OMat(r,E),pI
=

(
F±

1
[
x±
I , xJ

∣∣ I ∈ I, J ∈ Ic
]
�Pl (r, E)

)
0

where (−)0 refers to the degree-0 part of the graded ordered blueprint in brackets and 
where Pl (r, E) is generated by the Plücker relations

0 �
r+1∑
k=1

εk · xI∪{ik} · xI′−{ik}

for every (r − 1)-subset I and every (r + 1)-subset I ′ = {i1, . . . , ir+1} of E with i1 <

· · · < ir+1. The residue field at pI is

k(pI) = OMat(r,E),pI
�〈xJx

−1
I ≡ 0 | J ∈ Ic〉

where I ∈ I is an arbitrary fixed index that allows us to express the equation xJ = 0 in 
terms of elements of OMat(r,E),pJ

, which have degree 0.
Note that the residue field k(pI) is not a field in the classical sense. For the matroid 

space, it turns out that residue fields are always ordered blue fields, but in general it 
happens that some residue fields are the trivial ordered blueprint with 0 = 1; cf. [39, 
section 5.9] for more details.

Definition 6.2. Let F be an idyll and M an F -matroid. The terminal map of F is the 
unique morphism tF : F → K into the Krasner hyperfield K. The characteristic mor-
phism of M is the morphism χM : SpecF → Mat(r, E) determined by the bijection in 
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Theorem 5.5. The underlying matroid of M is the push-forward tF,∗(M) of M along the 
terminal map tF : F → K.

Definition 6.3. Let M be a matroid with characteristic morphism χM : SpecK →
Mat(r, E). The support of M is the image point xM of χM and the universal idyll 
of M is kM = k(xM )±.

More explicitly, we have

kM =
(
F±

1
[
x±
I

∣∣ I ∈ I
]
�Pl (r, E)

)±
0

where Pl (r, E) is generated by the Plücker relations

0 �
r+1∑
k=1

εk · xI∪{ik} · xI′−{ik}

for every (r − 1)-subset I and every (r + 1)-subset I ′ = {i1, . . . , ir+1} of E with i1 <

· · · < ir+1.

Remark 6.4. The universal idyll is indeed an idyll, which can be seen as follows. From the 
above description, it is clear that kM is a purely positive ordered blue field with unique 
weak inverses. The residue field k(pI) satisfies the required property k(pI)+ = N[k(pI)×], 
and this property is inherited by kM since the quotient k+

M of k(pI)+ is defined by 
relations between elements of the underlying monoid of k(pI) (elements a and b of k(pI)•
become identified in kM whenever there is a Plücker relation of the form 0 � a + b).

We denote the underlying topological space of Mat(r, E) by Mat(r, E)top.

Proposition 6.5. The map

Φ : Mat(r, E)(K) −→ Mat(r, E)top
χ �−→ imχ

is injective, where we identify imχ = {x} with the point x. The points x of Mat(r, E)top
that are supports of matroids are characterized by the following equivalent assertions:

(1) x is the support of a matroid;
(2) x is in the image of Φ;
(3) there is a unique morphism k(x)± → K;
(4) k(x)± �= {0};
(5) k(x)± is an idyll.
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Proof. By the definition of the support of a matroid, (1) and (2) are equivalent. Thus we 
are left with proving the equivalence of (2) with the latter affirmations. By Theorem 5.5, 
a morphism χ : SpecK → Mat(r, E) corresponds to a matroid M . Let Δ :

(
E
r

)
→ K be 

the unique Grassmann-Plücker function that represents M and pI the image point of χ. 
Then we have Δ(I) = 0 if and only if I ∈ I. This shows that Δ and M are determined 
by χ and that Φ is injective. This proves the first part of the theorem.

Let x be a point of Mat(r, E)top. We begin with (2)⇒(3). Assume that x is the image 
point of a morphism χ : K → Mat(r, E). This means that χ factors into a uniquely 
determined morphism SpecK → Spec k(x) followed by Spec k(x) → Mat(r, E). This 
yields a morphism k(x) → K, which extends uniquely to a morphism k(x)± → K. Thus 
(3).

The existence of a morphism k(x)± → K implies that k(x)± �= {0}, thus (3)⇒(4).
We continue with (4)⇒(5). If k(x)± �= {0}, then it is an ordered blue field. It is an 

F±
1 -algebra with unique weak inverses by definition, and the partial order of k(x)± is 

generated by relations of the form 0 �
∑

ai, which shows that k(x)± is an idyll. Thus 
(5).

We continue with (5)⇒(2). Assume that k(x)± is an idyll and let tx : k(x)± → K be 
the terminal map. Then we obtain a morphism

SpecK
t∗x−→ Spec k(x)± −→ Spec k(x) −→ Mat(r, E),

which shows that x is in the image of Φ and thus (2). This concludes the proof. �
Corollary 6.6. Let M be a matroid with support xM and with characteristic morphism 
χM : SpecK → Mat(r, E). Let tM : kM → K be the terminal map. Then χM equals the 
composition

SpecK
t∗M−→ Spec kM −→ Spec k(xM ) −→ Mat(r, E)

where the middle morphism is induced by the canonical map k(xM) → k(xM )± = kM
and the last morphism is the canonical inclusion of the spectrum of the residue field.

Proof. By the latter part of Proposition 6.5, kM is an idyll, thus kM comes with a 
terminal map tM : kM → K. By the first part of Proposition 6.5, there is at most one 
morphism SpecK → Mat(r, E) with given image point. Thus the morphism resulting 
from t∗M with the canonical morphism Spec kM → Mat(r, E) must be equal to χM . �
Remark 6.7. As a consequence of Proposition 6.5 and Corollary 6.6, we see that only the 
points x in the image of Φ are supports of matroids.

Lemma 6.8. Let k be a field and N = #
(
E
r

)
−1. Let x be a point of Mat(r, E). Then k(x)×

is the product of {1, ε} with a free abelian group whose rank is equal to the dimension of 
the closed subvariety 

(
{x} ⊗F± k

)+ of PN
k , where {x} is the closure of x in Mat(r, E).
1
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Proof. Let I be the subset of 
(
E
r

)
such that x = pI and Ic its complement in 

(
E
r

)
. Then

k(x)× = {1, ε} ×
{ ∏

I /∈Ic x
eI
I

∣∣ eI ∈ Z with
∑

I∈Ic eI = 0
}
,

whose second factor is a free abelian group of rank #Ic−1 = N −#I. This rank is equal 
to the dimension of (

{x} ⊗F±
1
k
)+ = Proj

(
k[ xI | I ∈ Ic ]

)
,

which proves the assertion of the lemma. �
Remark 6.9. Note that if M is a matroid with support xM = pI, then the complement 
B = Ic of I in 

(
E
r

)
is the set of bases of the matroid M . Thus the rank of k(x)× is one 

less than the number of bases of the matroid.
Note however that structure of the universal idyll kM is more complicated. In general, 

k×M is a proper quotient of k(x)×, which means that the free rank of the unit group 
drops when we identify different weak inverses. This happens, for instance, in the cases 
β(x) = 4 and β(x) = 5 in section 6.2.

Corollary 6.10. A point x of Mat(r, E) is a closed point if and only if k(x) = F±
1 . Thus 

every closed point is the support of a matroid.

Proof. A point x is closed if and only if β(x) = 1. By Lemma 6.8, this is equivalent to 
k(x)× = {1, ε}, or k(x) = F±

1 , as claimed. Proposition 6.5 implies that x is the support 
of a matroid. �
Example 6.11 (Support of the uniform matroid). The uniform matroid of rank r on 
E is the matroid represented by the Grassmann-Plücker function Δ :

(
E
r

)
→ K with 

Δ(I) = 1 for all r-subsets I of E. The support of the uniform matroid is the generic 
point of Mat(r, E).

To summarize, all closed points and the generic point of Mat(r, E) are supports of 
matroids. But if 2 � r � #E − 2, then there are points of Mat(r, E) that are not the 
support of matroids. In other words, the map Φ from Proposition 6.5 is not surjective in 
general. The following section will exhibit points of the matroid space that are not the 
support of a matroid for r = 2 and #E = 4. This can be easily generalized to any r and 
E with 2 � r � #E − 2.

Remark 6.12. Let F be an idyll and M an F -matroid with characteristic morphism χM :
SpecF → Mat(r, E). Then the image point xM of χM is the support of the underlying 
matroid of M . Together with our previous observation about points of Mat(r, E) that 
are not the support of matroids, this shows that these points are not the image for any 
morphism SpecF → Mat(r, E) for any idyll F .
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But every point x of Mat(r, E) occurs in the support for some matroid bundle. Namely, 
let OX,x be the stalk of Mat(r, E) at x. Then the canonical inclusion SpecOX,x →
Mat(r, E) defines an OX,x-matroid that has support at x, together with all more general 
points of Mat(r, E).

6.2. Universal idylls for rank 2-matroids on the four element set

In the following, we characterize the different universal idylls that can occur for 
Mat(2, E) where E = {1, 2, 3, 4}. Note that Mat(2, E) is defined by a single Plücker 
relation, namely

0 � x1,2x3,4 + ε · x1,3x2,4 + x1,4x2,3

where we write xi,j for x{i,j}. We systematically determine the residue field k(x)
and k(x)± for every point x of Mat(r, E), in increasing order of the number β(x) =
rk(k(x)×) + 1 where rk(k(x)×) is the free rank of the abelian group k(x)×. Note that if 
M is a matroid with support xM = pI, then β(x) equals the number of bases of M ; cf. 
Lemma 6.8. The complement B = Ic of I in 

(
E
r

)
is the set of bases of the matroid M .

Case β(x) = 1. By Corollary 6.10, we have k(x)± = k(x) = F±
1 . In particular, x is the 

support of a matroid.

Case β(x) = 2. By Lemma 6.8, we have x = pI for a 2-subset I = {I, J} of 
(
E
r

)
. There 

are two cases. If I and J intersect nontrivially, then

k(x)± = k(x) = F±
1 [x±1

I , x±1
J ]0

and x is the support of a matroid. If I ∩ J = ∅, then the Plücker relation of Mat(r, E)
yields 0 � xIxJ after substituting all other terms by 0. Multiplication with x−1

I x−1
J yields 

0 � 1 and we obtain

k(x) =
(
F±

1 [x±1
I , x±1

J ]�〈0 � 1〉
)
0.

Since 0 � 1 = 1 + 0, we see that 0 is a weak inverse of 1. We conclude that k(x)± = {0}
and that x is not the support of a matroid.

Case β(x) = 3. By Lemma 6.8, we have x = pI for a 3-subset I = {I, J, K} of 
(
E
r

)
. As 

in the rank 1-case, we are confronted with two cases. If each two of I, J and K have 
nonempty intersection, the Plücker relation is trivial. Thus we have

k(x)± = k(x) = F±
1 [x±1

I , x±1
J , x±1

K ]0

and x is the support of a matroid. If not—for instance, I ∩ J = ∅— then
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k(x) =
(
F±

1 [x±1
I , x±1

J , x±1
K ]�〈0 � 1〉

)
0,

as in the rank 1-case. Thus k(x)± = {0} and x is not the support of a matroid.

Case β(x) = 4. By Lemma 6.8, we have x = pI for a 4-subset I = {I, J, K, L} of (
E
r

)
. There is at least one pair of subsets with empty intersection, say I ∩ J = ∅. We 

differentiate two cases. If K and L intersect nontrivially, then we have

k(x) =
(
F±

1 [x±1
I , x±1

J , x±1
K , x±1

L ]�〈0 � 1〉
)
0

and k(x)± = {0}, i.e. x is not the support of a matroid. If K ∩ L = ∅, then

k(x) =
(
F±

1 [x±1
I , x±1

J , x±1
K , x±1

L ]�〈0 � xIxJ + εixKxL〉
)
0

where i = 0 or 1, depending on I, J , K and L. In this case, k(x) has multiple weak 
inverses, and

k(x)± = k(x)�〈ε ≡ εixKxLx
−1
I x−1

J 〉 � F±
1 [x±1

I , x±1
J , x±1

K ]0.

Since k(x)± �= {0}, the point x is the support of a matroid.

Case β(x) = 5. By Lemma 6.8, we have x = pI for a 5-subset I = {I, J, K, L, N} of (
E
r

)
, which contains two pairs of subsets with empty intersection, say I ∩J = K ∩L = ∅. 

Then we have

k(x) =
(
F±

1 [x±1
I , x±1

J , x±1
K , x±1

L , x±1
N ]�〈0 � xIxJ + εixKxL〉

)
0

where i = 0 or 1, depending on I, J , K and L. As in the rank 4-case, we have

k(x)± = k(x)�〈ε ≡ εixKxLx
−1
I x−1

J 〉 � F±
1 [x±1

I , x±1
J , x±1

K , x±1
N ]0.

Thus x is the support of a matroid.

Case β(x) = 6. By Lemma 6.8, we have x = pI for I =
(
E
r

)
and

k(x)± = k(x) =
(
F±

1 [x±1
I | I ∈

(
E
r

)
]�〈0 � x1,2x3,4 + εx1,3x2,4 + x1,4x2,3〉

)
0.

The point x is the support of the uniform matroid.

6.3. Realization spaces

Let k be a field. The realization space of a matroid M is the subset of the Grass-
mannian over k that consists of the subspaces whose associated matroid is M . These 
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realization spaces have been used for proving that several moduli spaces, such as Hilbert 
schemes and moduli spaces of curves, can become arbitrarily complicated, cf. [58]. In this 
section, we show that realization spaces are the same as morphism sets from universal 
idylls.

Let Δ :
(
E
r

)
→ K be a Grassmann-Plücker function, M = [Δ] the corresponding 

matroid and χM : K → Mat(r, E) its characteristic morphism. Let F be an idyll. The 
terminal map tF : F → K induces a map

Φr,E,F : Mat(r, E)(F ) −→ Mat(r, E)(K)

that sends a morphism χ : SpecF → Mat(r, E) to χ ◦ t∗F : SpecK → Mat(r, E). In other 
words, Φr,E,F maps an F -matroid to its underlying matroid.

Definition 6.13. The realization space of M over F is the fiber

XM (F ) = Φ−1
r,E,F (M) =

{
χ : SpecF → Mat(r, E)

∣∣χ ◦ t∗F = χM

}
of Φr,E,F over χM .

Note that the realization space of M is functorial in F : a morphism f : F → F ′ of 
idylls induces a map

XM (F ) −→ XM (F ′).
χ �−→ χ ◦ f∗

Example 6.14. In the case of a field k, XM (k) is the subset of Gr(r, E)(k) = Mat(r, E)(k)
that consists of all subspaces V of kE whose associated matroid is M , i.e. tF ◦ΔV (I) =
Δ(I) for all I ∈

(
E
r

)
, where ΔV (I) are the Plücker coordinates of V . Note that XM (k)

comes with the structure of a locally closed subvariety of Gr(r, E)(k) since it is defined 
by the equations xI = 0 whenever Δ(I) = 0 and xI �= 0 whenever Δ(I) �= 0.

It turns out that XM is represented by kM as a functor from idylls to sets. In other 
words, Spec kM is the fine moduli space of realization spaces for M . In down-to-earth 
terms, this means the following:

Theorem 6.15. Let M be a matroid and ιM : Spec kM → Mat(r, E) the inclusion of the 
universal idyll kM of M into the matroid space. Let F be an idyll. The map

ιM,∗ : Hom(kM , F ) −→ XM (F )
f �−→ ιM ◦ f∗

is a bijection that is functorial in F .
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Proof. We will show that every morphism χ : SpecF → Mat(r, E) in XM (F ) factors 
uniquely through ιM . As a first step, we observe that the equality χM = χ ◦ t∗F implies 
that imχ = imχM = {xM} where χM is the characteristic morphism of M , xM its 
image point and tF : F → K the terminal map.

We conclude that χ factors uniquely into a morphism χ : SpecF → Spec k(xM )
followed by the inclusion ι : Spec k(xM ) → Mat(r, E), where k(xM ) is the residue field 
of xM . Taking global sections yields a morphism f = Γχ : k(xM ) → F with χ = f∗.

Since F is an idyll, f factors into the canonical map k(xM ) → k(xM )± = kM followed 
by a uniquely determined morphism f± : kM → F of idylls. We conclude that ϕ =
(f±)∗ : SpecF → Spec kM is the unique morphism such that χ = ιM ◦ ϕ.

This shows that ιM,∗ is a bijection for every F . The functoriality of F is clear from 
the definitions. This completes the proof of the theorem. �
Remark 6.16. Roughly speaking, the universality theorem of Mnëv says that the realiza-
tion spaces for oriented matroids M can become arbitrarily complex for varying M , cf. 
[45]. Lafforgue adapts in [31] Mnëv’s proof to realization spaces for matroids. Lee and 
Vakil explain in [34] that arbitrarily complex means, in particular, that every type of 
singularity can occur in a realization space of a matroid.

The universality theorem, paired with Theorem 6.15, implies (loosely speaking) that 
universal idylls can be “arbitrarily complex”. It would be interesting to have a precise 
formulation of this.

6.4. The weak matroid space

There is a variant of the matroid space for weak matroids, which leads to the notion 
of the universal pasture of a matroid. Although the weak matroid space is not a moduli 
space for weak matroids, it turns out that the universal idyll is a very useful object for 
matroid theory because of its connections to the Tutte group and rescaling classes.

Since an idyll F can be considered as a tract, we gain the notion of a weak F -
matroid, as explained in section 3.1.3. This means that in contrast to a strong F -matroid, 
which is defined by all Plücker relations, a weak F -matroid is represented by a function 
Δ :

(
E
r

)
→ F whose support is the set of bases of a matroid and that is only required to 

satisfy the 3-term Plücker relations

0 � Δ(I1,2) Δ(I3,4) + εΔ(I1,3) Δ(I2,4) + Δ(I1,4) Δ(I2,3)

for every (r − 2)-subset I of E and all i1 < i2 < i3 < i4 with i1, i2, i3, i4 /∈ I, where 
Ik,l = I ∪ {ik, il}.

Remark 6.17. Note that a strong Grassmann-Plücker function is evidently a weak 
Grassmann-Plücker function. Thus every strong F -matroid is a weak F -matroid. For 
many tracts of interest, the reverse implication is also true. For instance, this holds 
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for the class of perfect tracts, which are tracts for which covectors are orthogonal to 
vectors, cf. [3, section 3] for details. Examples of perfect tracts are F±

1 , K, S, T , par-
tial fields and doubly-distributive hyperfields. (A hyperfield K is doubly-distributive if 
(a � b)(c � d) = ac � bc � ad � bd for all a, b, c, d ∈ K.) Not every tract, or even hyper-
field, is perfect. For instance, the phase hyperfield, which is the hyperfield quotient of C
by R>0, admits weak matroids that are not strong. See Example 2.36 in [3] for details.

In the following, we shall call an idyll F perfect if the associated tract F tract is perfect. 
Since the matroid theories of F and F tract coincide by Proposition 3.12, which is also 
true for weak matroids, we conclude that every weak matroid over a perfect idyll is a 
strong matroid. This justifies our abuse of terminology.

Definition 6.18. The weak matroid space of rank r on E is the ordered blue scheme

Matw(r, E) = Proj
(
F±

1
[
xI

∣∣ I ∈
(
E
r

) ]
�Pl w(r, E)

)
,

where Pl w(r, E) is generated by the 3-term Plücker relations

0 � xI,1,2 xI,3,4 + εxI,1,3 xI,2,4 + xI,1,4 xI,2,3

for every (r − 2)-subset I of E and all i1 < i2 < i3 < i4 with i1, i2, i3, i4 /∈ I where 
xI,k,l = xI∪{ik,il}.

By definition, the weak matroid space comes with a closed immersion into projective 
space

ι : Matw(r, E) −→ PN
F±

1
= Proj

(
F±

1
[
xI

∣∣ I ∈
(
E
r

) ] )
where N = #

(
E
r

)
− 1. Let Lw

univ = ι∗(O(1)) be the pullback of the tautological bundle 
O(1) on PN

F±
1

to Matw(r, E).
The identity map induces a morphism

F±
1
[
xI

∣∣ I ∈
(
E
r

) ]
�Pl w(r, E) −→ F±

1
[
xI

∣∣ I ∈
(
E
r

) ]
�Pl (r, E)

of graded ordered blueprints, which in turn induces a morphism

γw : Mat(r, E) −→ Matw(r, E)

of ordered blue schemes. Since the underlying monoids of the graded ordered blueprints 
above are equal, γw is a homeomorphism between the respective underlying topological 
spaces.

In order to capture the analogue of the universal idyll for the weak matroid space, 
we introduce the concept of a pasture. Please note that this definition is equivalent with 
the corresponding notion in the authors’ follow-up paper [4].
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Definition 6.19. A pasture is an idyll B whose partial order is generated by relations of 
the form 0 � a + b + c with a, b, c ∈ B•.

Note that since a pasture B is an idyll, its partial order is in fact generated by 
0 � 1 + (−1) and by terms of the form 0 � a + b + c with a, b, c ∈ B×.

Definition 6.20. Let M be a matroid with characteristic morphism χM and support 
xM . The weak characteristic morphism is the morphism χw

M = γw ◦ χM : SpecK →
Matw(r, E). The weak support of M is the image xw

M = γw(xM ) of xM in Matw(r, E). 
The universal pasture of M is kwM = k(xw

M )± where k(xw) is the residue field of xw
M .

More explicitly, we have

kwM =
(
F±

1
[
x±
I

∣∣ I ∈ I
]
�Pl w(r, E)

)±
0

where Pl w(r, E) is generated by the 3-term Plücker relations

0 � Δ(I1,2) Δ(I3,4) + εΔ(I1,3) Δ(I2,4) + Δ(I1,4) Δ(I2,3)

for every (r − 2)-subset I of E and all i1 < i2 < i3 < i4 with i1, i2, i3, i4 /∈ I. Note that 
kfM is a pasture for the same reasons that kM is an idyll; cf. Remark 6.4.

Definition 6.21. Let M be a matroid with weak characteristic morphism χw
M and F an 

idyll with terminal map tF : F → K. The weak realization space of M over F is the set

Xw
M (F ) =

{
χ : SpecF → Matw(r, E)

∣∣χ ◦ t∗F = χw
M

}
of all weak F -matroids that represent M .

Recall from Remark 6.17 the definition of a perfect idyll.

Lemma 6.22. Let M be a matroid and F an idyll. The map

γw
∗ : XM (F ) −→ Xw

M (F )
χ �−→ γw ◦ χ

is injective. If F is a perfect idyll then γw
∗ is bijective.

Proof. The map γw
∗ identifies an F -matroid with the corresponding weak F -matroid 

and is obviously injective. If F is a perfect idyll, then every weak F -matroid is a strong 
F -matroid, cf. Remark 6.17. Thus γw

∗ is a bijection in this case. �
Proposition 6.23. Let M be a matroid and ιwM : Spec kwM → Matw(r, E) the inclusion of 
the universal pasture kwM of M into the weak matroid space. Let F be an idyll. Then the 
map
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ιwM,∗ : Hom(kwM , F ) −→ Xw
M (F )

f �−→ ιwM ◦ f∗

is a bijection.

Proof. The proof is analogous to that of the corresponding result for strong F -matroids, 
see Theorem 6.15. For completeness, we outline the idea of the proof.

We need to show that every morphism χ : SpecF → Matw(r, E) in Xw
M (F ) factors 

uniquely through ιwM . Since M is the underlying matroid of χ, the image point of χ is 
the weak support xw

M of M . Thus we obtain a unique morphism k(xw
M) → F , which 

extends uniquely to a morphism kwM → F . This association provides an inverse bijection 
to ιwM,∗. �
Remark 6.24. It seems unlikely that the functor Matw(r, E) can be represented by an 
ordered blue scheme. The obstacle is that in the definition of a weak F -matroid M = [Δ]
with representing Grassmann-Plücker function Δ :

(
E
r

)
→ F , it is required that the 

support of Δ is the basis set of a matroid, i.e. tF ◦Δ satisfies all Plücker relations where 
tF : F → K is the terminal map. Since the locus of points of Matw(r, E) supporting 
matroids is not locally closed, but merely constructible in general, this locus does not 
inherit a scheme structure from Matw(r, E) in an obvious way.

For instance, it is a well-known fact that the 3-term Plücker relations do not suffice, 
in general, to define classical Grassmann varieties. In fact, the same holds true for any 
idyll, as the following example shows.

Example 6.25. Let F be an idyll. In this example, we exhibit a function Δ :
(
E
r

)
→ F

that satisfies all 3-term Plücker relations, but is not a weak Grassmann-Plücker function 
since it fails to satisfy all Plücker relations over K.

Let E = {1, 2, 3, 4, 5, 6} and J and Jc a pair of disjoint 3-subsets of E. Let Δ :
(
E
3
)
→ F

be the function with Δ(J) = Δ(Jc) = 1 and Δ(I) = 0 for all other 3-subsets I of E. 
Consider the 3-term Plücker relation

0 � Δ(I1,2) Δ(I3,4) + εΔ(I1,3) Δ(I2,4) + Δ(I1,4) Δ(I2,3)

for I = {i0} and i1 < i2 < i3 < i4 with i1, i2, i3, i4 /∈ {i0}, where Ik,l = {i0, ik, il}. 
In order for some term in this equation to be nonzero, we have to have that Δ(Ik,l) =
Δ(Ik′,l′) = 1 where {k, l, k′, l′} = {1, 2, 3, 4}. Since i0 is contained in both Ik,l and 
Ik′,l′ , this means that the elements i0, . . . , i4 have to all be contained in J or else all be 
contained in Jc, which is impossible since #J = #Jc = 3. This shows that Δ satisfies 
all 3-term Plücker relations.

To show that Δ is not a weak Grassmann-Plücker function, let Δ = tF ◦Δ :
(
E
3
)
→ K

where tF : F → K is the terminal map. Let j ∈ J and define I = J−{j} and I ′ = Jc∪{j}. 
Then I ′ = {j1, j2, j3, j4} for j1 < j2 < j3 < j4 and j = jl for some l ∈ {1, 2, 3, 4}. The 
Plücker relation for I and I ′ is
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0 �
4∑

k=1

εk · Δ(I ∪ {jk}) · Δ(I ′ − {jk})

where ε = 1. The sum on the right hand side has precisely one nonzero term, namely

Δ(I ∪ {jl}) · Δ(I ′ − {jl}) = Δ(J) · Δ(Jc) = 1.

But the relation 0 � 1 does not hold in K, which shows that Δ does not satisfy all 
Plücker relations. Therefore Δ is not a weak Grassmann-Plücker function.

Let I be the complement of {J, Jc} in 
(
E
r

)
and xw = pI the corresponding point 

of the weak matroid space Matw(3, E). Since all 3-term Plücker relations for Δ are 
trivial, the residue field of x is k(xw) = F±

1 [x±1
J , x±1

Jc ]0. Note that k(xw) is an idyll, i.e. 
k(xw)± = k(xw) is nonzero. This shows that the weak supports of matroids cannot be 
characterized by the nonvanishing of k(xw)±, in contrast to the corresponding result for 
(strong) supports of matroids, cf. Proposition 6.5.

6.5. The Tutte group

The Tutte group is introduced by Dress and Wenzel in [15] and used as a tool to study 
the representability of matroids and to provide cryptomorphisms for matroids over fuzzy 
rings, cf. [13]. In this section, we show that the Tutte group is precisely the unit group 
of the universal pasture.

For the following characterization of the Tutte group, see Definition 1.2 and Theorem 
1.1 in [15].

Definition 6.26. Let M be a matroid of rank r on E and B the set of bases of M . Consider 
the quotient GM of the free abelian group generated by symbols ε and X(i1,...,ir) for every 
(i1, . . . , ir) ∈ Er such that {i1, . . . , ir} ∈ B modulo the subgroup generated by

ε2, εsign(σ)X(σ(i1),...,σ(ir))X
−1
(i1,...,ir)

for every permutation σ of {1, . . . , r} and

X(i1,...,ir−2,k1,l1)X(i1,...,ir−2,k2,l2)X
−1
(i1,...,ir−2,k1,l2)X

−1
(i1,...,ir−2,k2,l1)

whenever {i1, . . . , ir−2, k1, k2} /∈ B. The Tutte group TM of M is defined as the sub-
group of GM that is generated by ε and elements of the form X(i1,...,ir)X

−1
(j1,...,jr) with 

{i1, . . . , ir}, {j1, . . . , jr} ∈ B.

Let xM be the support of M and xw
M its weak support. The natural map k(xw

M ) →
k(xM ) between the respective residue fields is a bijection because the difference between 
the two is the validity of the higher Plücker relations in k(xM), but these relations do not 
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identify any elements. Thus k(xw
M )× = k(xM )×. As explained in the proof of Lemma 6.8, 

we have xM = pBc where Bc is the complement of B in 
(
E
r

)
, and

k(xw
M )× = k(xM )× =

{
εi ·

∏
I∈B

xeI
I

∣∣∣ i ∈ {0, 1}, eI ∈ Z and
∑
I∈B

eI = 0
}
.

Theorem 6.27. Let M be a matroid with universal pasture kwM and Tutte group TM . For 
a basis I = {i1, . . . , ir} of M with i1 < · · · < ir, we define XI = X(i1,...,ir). Then the 
association εi

∏
xeI
I �→ εi

∏
XeI

I defines an isomorphism (kwM )× → TM of groups.

Proof. Let xw
M be the weak support and B the set of bases of M . To enable ourselves 

to work with degree-0 elements, we will work with two graded abelian groups G′
M and 

HM , which contain TM and (kwM )×, respectively, as subquotients.
Namely, we define G′

M as the abelian group generated by the symbols ε and X(i1,...,ir)
for every (i1, . . . , ir) ∈ Er such that {i1, . . . , ir} ∈ B modulo the subgroup generated by

ε2 and εsign(σ)X(σ(i1),...,σ(ir))X
−1
(i1,...,ir)

for every permutation σ of {1, . . . , r}, where ε is of degree 0 and X(i1,...,ir) is of degree 1.
The second group is

HM = {1, ε} ×
{ ∏

I∈B

xeI
I

∣∣∣ eI ∈ Z
}
,

where ε is of degree 0, ε2 = 1, and xI is of degree 1.
Since ε2 = 1 in both HM and G′

M and since X(σ(i1),...,σ(ir)) = εsign(σ)X(i1,...,ir) for 
every permutation σ of {1, . . . , r}, the association εi

∏
xeI
I �→ εi

∏
XeI

I defines a degree-
preserving group isomorphism f : HM → G′

M .
Let GM be the group from Definition 6.26 and g : G′

M → GM the quotient map. Then 
the kernel of g is generated by the elements

X(i1,...,ir−2,k1,l1)X(i1,...,ir−2,k2,l2)X
−1
(i1,...,ir−2,k1,l2)X

−1
(i1,...,ir−2,k2,l1)

for which {i1, . . . , ir−2, k1, k2} /∈ B. Consequently, TM is the degree-0 subgroup of the 
quotient group G′

M/ ker g.
Let h : k(xw

M )× → (kwM )× be the quotient map. Then (kwM )× is the degree-0 subgroup 
of the quotient group HM/ kerh. Thus the theorem follows if we can show that the 
isomorphism f identifies kerh with ker g.

As our next step, we exhibit a set of generators for kerh. The kernel of h consists 
of all weak inverses of 1 in k(xw

M ). Such elements must come from the 3-term Plücker 
relation

0 � xI,1,2 xI,3,4 + εxI,1,3 xI,2,4 + xI,1,4 xI,2,3
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for an r − 2-subset I and i1 < i2 < i3 < i4 with i1, i2, i3, i4 /∈ I, where xI,p,q =
xI∪{ip,iq}.

If none or all of the products xI,p,qxI,p′,q′ are zero, then the 3-term Plücker relation 
does not define new weak inverses in k(xw

M ). The case where precisely one of the products 
xI,p,qxI,p′,q′ is nonzero cannot happen since then kM = kwM = {0}, which contradicts 
Proposition 6.5.

Thus we are left with the case that precisely two of products xI,p,qxI,p′,q′ are nonzero. 
There are three cases:

• If the first two products in the Plücker relation are nonzero, then the relation 
0 � xI,1,2xI,3,4 + εxI,1,3xI,2,4 in k(xw

M ) implies that εxI,1,3xI,2,4 is a weak inverse of 
xI,1,2xI,3,4. Thus xI,1,2xI,3,4x

−1
I,1,3x

−1
I,2,4 is in kerh.

• If the first and the third product are nonzero, then xI,1,4xI,2,3 is a weak inverse of 
xI,1,2xI,3,4 and εxI,1,2xI,3,4x

−1
I,1,4x

−1
I,2,3 is in kerh.

• If the last two products are nonzero, then xI,1,3xI,2,4x
−1
I,1,4x

−1
I,2,3 is in kerh.

We have thus exhibited a complete set of generators for kerh in all cases. In the 
following, we will show that f maps this set to the set of generators for ker g that we 
used in the definition of GM = G′

M/ ker g.
Let j1, . . . , jr−2, k1, k2, l1, l2 be pairwise different elements of E, and define I =

{j1, . . . , jr−2} and {i1, i2, i3, i4} = {k1, k2, l1, l2} with i1 < i2 < i3 < i4. Then 
{j1, . . . , jr−2, kp, lq} ∈ B for all p, q ∈ {1, 2} and {j1, . . . , jr−2, k1, k2} /∈ B is equiva-
lent to the fact that xI,k1,l1xI,k2,l2 and xI,k1,l2xI,k2,l1 are nonzero and that xI,k1,k2 is 
zero in k(xw

M ).
To compare both types of generators, we need to relate the terms X(j1,...,jr−2,kp,lq)

and XI∪{kp,lq} for p, q ∈ {1, 2}, which differ by the power of ε that arises from permuting 
the elements I ∪ {kp, lq}. For k, l ∈ E, define μ(k, l) = 0 if k < l and μ(k, l) = 1 if l < k. 
It is easily verified that there is an N such that for all p, q ∈ {1, 2} and p′ = 3 − p, 
q′ = 3 − q, we have

X(j1,...,jr−2,kp,lq) X(j1,...,jr−2,kp′ ,lq′ ) = εN+μ(kp,lp)+μ(kp′ ,lq′ ) XI∪{kp,lq} XI∪{kp′ ,lq′}.

Indeed, we can define N as the number of transpositions needed to bring all elements 
into increasing order, up to exchanging kp with lq and kp′ with lq′ if necessary. For 
instance, if j1 < · · · < jr−2, then we have

N =
∑

i∈{k1,k2,l1,l2}
#{j ∈ I|i < j}.

From these considerations, we obtain the equality

X(j1,...,jr−2,kp,lq) X(j1,...,jr−2,kp′ ,lq′ )

X X
= εμ(k1,k2;l1,l2)

XI∪{kp,lq} XI∪{kp′ ,lq′}

X X
(j1,...,jr−2,kp,lq′ ) (j1,...,jr−2,kp′ ,lq) I∪{kp,lq′} I∪{kp′ ,lq}
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where μ(k1, k2; l1, l2) = μ(k1, l2) +μ(k1, l2) +μ(k2, l1) +μ(k2, l2). Note that the term εN

disappears since it appears in both nominator and denominator.
We are led to an inspection of the different possible orderings of k1, k2, l1 and l2, i.e. 

the different identifications {i1, i2, i3, i4} = {k1, k2, l1, l2} where i1 < i2 < i3 < i4. Note 
that permuting k1 and k2 and permuting l1 and l2 changes neither μ(k1, k2; l1, l2) nor 
the nonzero terms of the 3-term Plücker relations. Since εμ(k1,k2;l1,l2) depends only on 
the parity of μ(k1, k2, l1, l2) and both xI,k1,k2 and xI,l1,l2 appear in the same product of 
the 3-term Plücker relation, a simultaneous exchange of k1 and k2 with l1 and l2 will 
leave the validity of our arguments below unchanged. Up to these permutations, we are 
left with three cases.

We begin with the case (i1, i2, i3, i4) = (k1, k2, l1, l2), i.e. k1 < k2 < l1 < l2. Then 
we have μ(k1, k2; l1, l2) = 0 and xI,i1,i2xI,i3,i4 is zero, while the last two terms of the 
corresponding 3-Plücker relation are nonzero. We obtain

X(j1,...,jr−2,k1,l1) X(j1,...,jr−2,k2,l2)

X(j1,...,jr−2,k1,l2) X(j1,...,jr−2,k2,l1)
=

XI∪{i1,i3} XI∪{i2,i4}
XI∪{i1,i4} XI∪{i2,i3}

.

The inverse image of the right-hand side under f is the element xI,1,3xI,2,4x
−1
I,1,4x

−1
I,2,3

of HM . We have seen in our discussion of the relations of kerh that this is the gen-
erator in the case that the last two products of the 3-term Plücker relations are 
nonzero.

In the case (i1, i2, i3, i4) = (k1, l1, k2, l2), we have μ(k1, k2; l1, l2) = 1 and the zero 
term of the 3-term Plücker relation is εxI,i1,i3xI,i2,i4 . Thus

X(j1,...,jr−2,k1,l1) X(j1,...,jr−2,k2,l2)

X(j1,...,jr−2,k1,l2) X(j1,...,jr−2,k2,l1)
= ε ·

XI∪{i1,i2} XI∪{i3,i4}
XI∪{i1,i4} XI∪{i2,i3}

,

whose inverse image under f is εxI,1,2xI,3,4x
−1
I,1,4x

−1
I,3,4, which coincides with the gener-

ator of kerh exhibited in the case that the first and last product of the 3-term Plücker 
relation are nonzero.

In the case (i1, i2, i3, i4) = (k1, l1, l2, k2), we have μ(k1, k2; l1, l2) = 2 and the zero 
term of the 3-term Plücker relation is εxI,i1,i4xI,i3,i4 . Since ε2 = 1, we have

X(j1,...,jr−2,k1,l1) X(j1,...,jr−2,k2,l2)

X(j1,...,jr−2,k1,l2) X(j1,...,jr−2,k2,l1)
=

XI∪{i1,i2} XI∪{i3,i4}
XI∪{i1,i3} XI∪{i2,i4}

,

whose inverse image under f is xI,1,2xI,3,4x
−1
I,1,3x

−1
I,2,4, which coincides with the generator 

of kerh exhibited in the case that the first two products of the 3-term Plücker relation 
are nonzero.

This establishes the claimed bijection between the generating sets of kerh and ker g
and concludes the proof of the theorem. �
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7. Cross ratios and rescaling classes

In this section, we will define and study the properties of the foundation of a matroid, 
which is a subidyll of the universal pasture that is closely related to the inner Tutte 
group from [15] and the universal partial field from [48].

The key notions in this section are cross ratios, rescaling classes, fundamental el-
ements, and the foundation of a matroid. We will study their interdependencies and 
apply our theory to reprove some classical results, e.g. the characterization of regular 
matroids as matroids which are representable over every field. We refer to section 1.4.8
of the introduction for a list of such results.

7.1. Cross ratios

The study of cross ratios of four points on a line belongs to the oldest themes in 
mathematics and finds its earliest traces in the writings of Pappus of Alexandria ([47]). 
Its main property is that it is invariant under projective transformation and that it 
characterizes the ratios of the pairwise differences between the four points.

Four points on a projective line correspond to a point of the Grassmannian Gr(2, 4), 
and the cross ratio can be reformulated as an invariant of the Plücker coordinates of this 
point. This reinterpretation allows for a generalization of cross ratios to higher Grass-
mannians and subsequently found its entrance into matroid theory. For instance, cf. the 
papers [16], [13] and [17] of Dress and Wenzel and [61] of Wenzel, [21] by Gelfand, Ryb-
nikov and Stone, [48] and [51] by Pendavingh–van Zwam and Pendavingh, respectively, 
and [12] by Delucchi, Hoessly and Saini. For more details on the developments of cross 
ratios in general and explanations of their relevance for matroid theory, we refer to the 
book [50] of Richter-Gebert.

Let F be an idyll and M a matroid of rank r on E. The cross ratios of M in F are 
indexed by certain quadrangles or 4-cycles in the basis exchange graph of M .

We formalize these quadrangles as tuples I = (I, i1, i2, i3, i4) ∈
(

E
r−2

)
× E4 for which 

I1,3, I1,4, I2,3 and I2,4 are bases of M , where Ik,l = I ∪ {ik, il}. We denote the collection 
of such tuples I by ΩM . We say that I = (I, i1, i2, i3, i4) is non-degenerate if also I1,2
and I3,4 are bases of M . Otherwise we call (I, i1, i2, i3, i4) degenerate. We define

μ(I) = μ(i1, i2; i3, i4) = #
{
(k, l) ∈ {1, 2} × {3, 4}

∣∣ ik > il
}
,

which is the same function that appears in the proof of Theorem 6.27. Note that 
εμ(i1,i2;i3,i4) = ε if and only if{

{1, 2}, {3, 4}
}

=
{
{σ(1),σ(3)}, {σ(2),σ(4)}

}
where σ ∈ S4 is the permutation with iσ(1) < iσ(2) < iσ(3) < iσ(4). In particular, we have

μ(1, 2; 3, 4) + μ(1, 3; 2, 4) + μ(1, 4; 2, 3) ≡ 1 (mod 2).
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Definition 7.1. Let F be an idyll and Δ :
(
E
r

)
→ F a weak Grassmann-Plücker function 

with underlying matroid M . The cross ratio function of Δ is the function CrΔ : ΩM →
F× that sends an element I = (I, i1, i2, i3, i4) of ΩM to

CrΔ(I) = εμ(I) · ΔI,1,3 · ΔI,2,4

ΔI,1,4 · ΔI,2,3

where ΔI,k,l = Δ(I ∪ {ik, il}).

Remark 7.2. From the perspective of Grassmann-Plücker functions as functions Δ :(
E
r

)
→ F , the factor εμ(I) might appear unmotivated, but it appears naturally if one 

considers Grassmann-Plücker functions as alternating functions Δ : Er → F instead; in 
particular, our definition is compatible with [16], [48] and [4]. The formulas of Lemma 7.3
reflect the relevance of this factor.

The following properties are immediate from the definition. Let I = (I, i1, i2, i3, i4) ∈
ΩM . For a permutation σ of {1, 2, 3, 4}, we define σ.I = (I, iσ(1), iσ(2), iσ(3), iσ(4)). Then 
the cross ratio satisfies the relations

CrΔ
(
σ.I

)
= CrΔ(I) and CrΔ

(
τ .I

)
= CrΔ(I)−1

for every σ in the Klein four group V =
{
e, (12)(34), (13)(24), (14)(23)

}
and every τ in 

the coset V.(34). In particular, all of these cross ratios are defined. If I is non-degenerate, 
then CrΔ(σ.I) is defined for all permutations σ and we have the identity

CrΔ(I) · CrΔ
(
(234).I

)
· CrΔ

(
(243).I

)
= ε.

Finally, we observe that CraΔ(I) = CrΔ(I) for every a ∈ F×. In other words, the cross 
ratio depends only on the weak F -matroid [Δ] defined by Δ.

Lemma 7.3. Let F be an idyll and Δ :
(
E
r

)
→ F a weak Grassmann-Plücker function 

with underlying matroid M . Let I ∈ ΩM . If I is degenerate, then CrΔ(I) = 1. If I is 
non-degenerate, then

0 � CrΔ(I) + CrΔ
(
(23).I

)
+ ε.

Proof. Let I = (I, i1, i2, i3, i4) ∈ ΩM and let σ ∈ S4 be the permutation with iσ(1) <

iσ(2) < iσ(3) < iσ(4). Since εμ(i1,i2;i3,i4) = ε if and only if

{
{1, 2}, {3, 4}

}
=

{
{σ(1),σ(3)}, {σ(2, ),σ(4)}

}
,

the 3-term Grassmann-Plücker relation for Δ becomes
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0 � ΔI,σ(1),σ(2) ΔI,σ(3),σ(4) + ε ΔI,σ(1),σ(3) ΔI,σ(2),σ(4) + ΔI,σ(1),σ(4) ΔI,σ(2),σ(3)

= εμ(1,2;3,4)ΔI,1,2ΔI,3,4 + εμ(1,3;2,4)ΔI,1,3ΔI,2,4 + εμ(1,4;2,3)ΔI,1,4ΔI,2,3

where ΔI,k,l = Δ
(
I ∪ {ik, il}

)
.

If I is degenerate, then the term ΔI,1,2ΔI,3,4 is zero and thus the quantities 
εμ(1,3;2,4)ΔI,1,3ΔI,2,4 and εμ(1,4;2,3)ΔI,1,4ΔI,2,3 are mutually weakly inverse to each other. 
Thus

CrΔ(I) = εμ(1,2;3,4) ΔI,1,3ΔI,2,4

ΔI,1,4ΔI,2,3
= εμ(1,2;3,4)+μ(1,3;2,4)+μ(1,4;2,3)+1 ΔI,1,4ΔI,2,3

ΔI,1,4ΔI,2,3
= 1,

where we use that μ(1, 2; 3, 4) + μ(1, 3; 2, 4) + μ(1, 4; 2, 3) + 1 is even.
If I is non-degenerate, then all three terms of the Plücker relation are nonzero. After 

dividing by εμ(1,4;2,3)+1ΔI,1,4ΔI,2,3 and interchanging the order of the first two terms, 
we obtain

0 � εμ(1,3;2,4)+μ(1,4;2,3)+1 · ΔI,1,3ΔI,2,4

ΔI,1,4ΔI,2,3
+ εμ(1,2;3,4)+μ(1,4;2,3)+1 · ΔI,1,2ΔI,3,4

ΔI,1,4ΔI,2,3
+ ε

= CrΔ(I) + CrΔ
(
(23).I

)
+ ε,

as claimed. �
Remark 7.4. Let Δ :

(
E
r

)
→ F be a Grassmann-Plücker function with values in F . We 

can extend the cross ratio CrΔ(I) to tuples I = (I, i1, i2, i3, i4) such that only one of

ΔI,1,3 · ΔI,2,4 and ΔI,1,4 · ΔI,2,3

is nonzero, which is the case if #I ∪{ik, il} = r for all distinct k, l ∈ {1, . . . , 4} and if no 
three of i1, . . . , i4 are identical. In this case, we define CrΔ(I) to be 0 if the numerator 
is 0 and to be ∞ if the denominator is 0. This extended notion of cross-ratio gives a 
function with values in P 1(F ), generalizing the cross ratio of four points (no three of 
which coincide) on a line in classical projective geometry.

7.2. Foundations

Pendavingh and van Zwam exhibit in [48] the role of fundamental elements for the 
representability of matroids over partial fields. In this section, we extend this concept to 
F±

1 -algebras, which makes this theory applicable to matroids over all idylls.
Recall from section 2.6.4 the definition of a subblueprint of B as a submonoid C• of 

B• together with the structure of an ordered blueprint that is induced from B.

Definition 7.5. Let B be an F±
1 -algebra. A fundamental element of B is an element a ∈ B

such that there exists an element b ∈ B with 0 � a + b + ε. The foundation of B is the 
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subblueprint Bfound of B generated by the fundamental elements over F±
1 . We call B a

foundation if Bfound = B.

Note that Bfound is a foundation and that 0 and 1 are always fundamental elements 
since 0 � 0 + 1 + ε. Note further that the definition of the foundation is functorial: if 
f : B → C is a morphism of F±

1 -algebras and 0 � a +b +ε in B, then 0 � f(a) +f(b) +ε in 
C. Thus f restricts to a morphism f found : Bfound → Cfound. This defines an idempotent 
endofunctor (−)found : OBlprF±

1
→ OBlprF±

1
.

Remark 7.6. If R is an integral domain of characteristic zero which is finitely generated 
over Z, then for every subidyll F of R, the set of fundamental elements of F (which 
generates the foundation of F as an ordered blueprint) is finite. (This general result 
applies, for example, to many of partial fields appearing in [59].)

Indeed, Serge Lang proves in [32] that an integral domain R of characteristic zero 
which is finitely generated over Z contains only a finite number of pairs of elements 
a, b ∈ R× with a + b = 1. The original proof in [32] was ineffective, but [18] contains 
an effective proof. An effective upper bound for the number of fundamental elements, 
depending only on the rank of R× as an abelian group, is given in [5]. There is a similar 
result for characteristic p > 0 if one counts solutions up to p-th powers; cf. [29].

The relevance of fundamental elements and foundations for matroid theory is that the 
foundation of B contains all cross ratios of all Grassmann-Plücker functions in B. More 
precisely, we have the following:

Lemma 7.7. Let F be an idyll, M a matroid, I ∈ ΩM and Δ :
(
E
r

)
→ F a Grassmann-

Plücker function representing M . Then CrΔ(I) is a fundamental element in F .

Proof. This follows at once from the relations for the cross ratios exhibited in 
Lemma 7.3. �
Definition 7.8. Let M be a matroid and kwM its universal pasture. The foundation of M
is the subidyll kfM = (kwM )found of kwM .

Let Δ :
(
E
r

)
→ kwM be the weak Grassmann-Plücker function with Δ(I) = xI/xI0

for some fixed basis I0 of M . The universal cross ratio function of M is the function 
Cruniv

M : ΩM → kfM that sends I ∈ ΩM to the universal cross ratio Cruniv
M (I) = CrΔ(I) of 

I.

Note that multiplying Δ with a nonzero scalar a ∈ kwM does not change the value of 
the cross ratio. Thus Cruniv

M is an invariant of the matroid M .

Lemma 7.9. Let M be a matroid. Then the foundation kfM of M is generated by the 
universal cross ratios Cruniv

M (ΩM ) over F±
1 .
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Proof. Since all additive relations of kwM come from the 3-term Plücker relations, every 
3-term relation in kwM must be a multiple of a Plücker relation. If we ask that a specified 
term of such a multiple is equal to εi for i = 0 or 1, then this multiple 0 � a + b + εi is 
uniquely determined and must be of the form of the relations occurring in Lemma 7.3, 
up to a factor of ε. Thus we conclude that a and b must be zero or a cross ratio, up to a 
possible factor of ε. Since ε ∈ F±

1 , this verifies the claim of the lemma. �
Example 7.10 (Foundations for rank-2 matroids on a four element set). We calculate 
all foundations kfM of rank-2 matroids M on the set E = {1, 2, 3, 4}, leaning on the 
classification of the universal idylls in section 6.2. Recall that there is a unique Plücker 
relation in this case, which is

0 � x1,2x3,4 + ε · x1,3x2,4 + x1,4x2,3

where we write xi,j for x{i,j}. If any of the three terms is zero, then all cross ratios are 
1 by Lemma 7.3 and thus kfM = F±

1 . From our results in section 6.2, we see that this is 
the case for all matroids M except for the uniform matroid. In particular this implies 
that all these matroids are regular, cf. Theorem 7.35.

In case of the uniform matroid M , it is easily seen that its foundation is

kfM = F±
1 [T±

1 , T±
2 ]�〈0 � T1 + T2 + ε〉

where T1 and T2 stand for the cross ratios

T1 = x1,3x2,4

x1,4x2,3
and T2 = ε · x1,2x3,4

x1,4x2,3
,

which do not satisfy any multiplicative relation. Note that kfM admits a morphism into 
every field with more than 2 elements. This shows that the uniform matroid of rank 2
on 4 elements is representable over every field but F2.

7.3. The inner Tutte group

Let M be a matroid of rank r on E and B the set of bases of M . As a consequence of 
Theorem 6.27, the Tutte group TM of M is isomorphic to the abelian group generated 
by ε and 

∏
I∈B XeI

I with 
∑

eI = 0 modulo the relations ε2 = 1 and

εμ(i1,i2;i3,i4) · XI,1,3 XI,2,4

XI,1,4 XI,2,3
= 1

for every degenerate (I, i1, i2, i3, i4) ∈ ΩM , where XI,k,l = XI∪{ik,il}.
We recall the definition of the inner Tutte group from [15, Def. 1.6]. For a subset I of 

E, let δI : E → Z be the characteristic function on I, i.e. δI(i) = 1 if i ∈ I and δI(i) = 0
otherwise. Since
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δI∪{i1,i2} + δI∪{i3,i4} − δI∪{i2,i3} − δI∪{i4,i1} = 0

for every degenerate (I, i1, i2, i3, i4) ∈ ΩM , we obtain a group homomorphism

degE : TM −→ ZE .∏
XeI

I �−→
∑

eIδI

Definition 7.11. The inner Tutte group T (0)
M is the kernel of degE .

The following result is Proposition 6.4 in [61]. Its proof relies on Tutte’s “fundamental 
theorem on linear subclasses” (Theorem 4.34 in [57]), which is significantly easier to 
prove than the relatively deeper parts of Tutte’s homotopy theory for matroids found in 
[55] and [56] (and also exposited in [57]).

Theorem 7.12. The inner Tutte group T (0)
M is generated by ε and the elements

εμ(i1,i2;i3,i4) · XI,1,3 XI,2,4

XI,1,4 XI,2,3

for every non-degenerate (I, i1, i2, i3, i4) ∈ ΩM .

This theorem has a series of consequences for our theory that we will explain in the 
following. Recall from Theorem 6.27 that the association 

∏
xeI
I �→

∏
XeI

I defines an 
isomorphism (kwM )× → TM between the units of the universal pasture and the Tutte 
group of M .

Corollary 7.13. The isomorphism (kwM )× → TM restricts to an isomorphism (kfM )× →
T (0)
M .

Proof. Let Δ :
(
E
r

)
→ kwM be the Grassmann-Plücker function defined by Δ(I) = xI/xI0

for some fixed basis I0 ∈ B. By Lemma 7.3, we have CrΔ(I) ∈ {1, ε} for degenerate 
I ∈ ΩM . Therefore kfM is generated by ε and the cross ratios CrΔ(I) for non-degenerate 
I ∈ ΩM .

For non-degenerate I = (I, i1, i2, i3, i4), the image of CrΔ(I) in TM is εμ(i1,i2;i3,i4) ·
XI,1,3 XI,2,4
XI,1,4 XI,2,3

. Thus the generators of (kfM )× and T (0)
M agree, which yields the promised 

isomorphism. �
Let B be an ordered blueprint. Recall from Example 4.1 the definition of B[T±1

1 , . . . ,
T±1
s ] as the localization of the free algebra B[T1, . . . , Ts] at the multiplicative subset 

generated by {T1, . . . , Ts}. The canonical isomorphism

B[T±1
1 , . . . , T±1

s ] ∼−→ B ⊗F1 F1[T±1
1 , . . . , T±1

s ]
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makes clear that all additive relations of B[T±1
1 , . . . , T±1

s ] come from B. In particular, 
the ordered blueprint B[T±1

1 , . . . , T±1
s ] is an F±

1 -algebra with unique weak inverses if and 
only if B is so. By the very construction of B[T±1

1 , . . . , T±1
s ], we have B[T±1

1 , . . . , T±1
s ]× �

B× × Zs.

Corollary 7.14. The universal pasture kwM is isomorphic to kfM [T±1
1 , . . . , T±1

s ] for some 
s � 0.

Proof. The additive relations of kwM are generated by the 3-term Plücker relations. We 
have seen in Lemma 7.3 that the 3-term Plücker relations lead to relations in kfM . It is 
clear that we can recover the 3-term Plücker relations from these relations between the 
cross ratios by multiplying with an appropriate element of kwM .

Since both kwM and kfM are ordered blue fields, we are done if we can show that (kwM)×
is isomorphic to the product of (kfM )× with a free abelian group. By Theorem 6.27, we 
have (kwM )× � TM , and by Corollary 7.13, this isomorphism restricts to an isomorphism 
(kfM )× � T (0)

M . By definition, T (0)
M is the kernel of degE : TM → ZE . Thus the quotient 

TM/T (0)
M is isomorphic to a subgroup of ZE and is therefore free abelian. This proves 

our claim. �
Remark 7.15. We will see in Corollary 7.24 that the number s of variables in 
kfM [T±1

1 , . . . , T±1
s ] is equal to n − c, where n = #E and c is the number of connected 

components of M .

Definition 7.16. Let F be an idyll and tF : F → K the terminal map. A matroid M is
weakly (resp. strongly) representable over F if there is a weak (resp. strong) F -matroid 
M ′ whose pushforward under tF is M .

Equivalently, M is weakly (resp. strongly) representable over F if and only if Xw
M (F )

(resp. XM (F )) is nonempty. The following result is motivated by a theorem of Pendavingh 
and van Zwam, cf. [48, Thm. 2.27].

Theorem 7.17. Let M be a matroid and F an idyll. Then the following are equivalent:

(1) M is weakly representable over F ;
(2) M is weakly representable over F found;
(3) there exists a morphism kfM → F .

Proof. The inclusion F found → F induces a map Xw
M (F found) → Xw

M (F ), which shows 
that if M is representable over F found, then it is representable over F . Thus (2)⇒(1).

If M is weakly representable over F , then there exists a morphism kwM → F by 
Proposition 6.23. Composing it with the inclusion kfM → kwM yields the desired morphism 
kfM → F . Thus (1)⇒(3).
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If there is a morphism kfM → F , then its image is contained in F found. By Corol-
lary 7.14, we have kwM � kfM [T±1

1 , . . . , T±1
s ], and thus there exists a morphism kwM → kfM , 

for instance by extending the identity on kfM by Ti �→ 1. Thus we obtain a mor-
phism kwM → F found. By Proposition 6.23, M is weakly representable over F found. Thus 
(3)⇒(2). �
7.4. Rescaling classes

Let B be an F±
1 -algebra and T (B) the set of functions t : E → B×, which comes with 

the structure of an abelian group with respect to the product t · t′(i) = t(i) · t′(i). For 
a subset I of E, we define tI =

∏
i∈I t(i). For t ∈ T (B) and a weak Grassmann-Plücker 

function Δ :
(
E
r

)
→ B, we define

t.Δ(I) = tI · Δ(I).

It is evident that t.Δ :
(
E
r

)
→ B is also a weak Grassmann-Plücker function. This defines 

an action

T (B) × Matw(r, E)(B) −→ Matw(r, E)(B)
(t, [Δ]) �−→ [t.Δ]

of T (B) on the set Matw(r, E)(B) of weak B-matroids.
Note that t.[Δ] = [Δ] if t is a constant function, i.e. t(i) = t(j) for all i, j ∈ E. Thus 

the action of T (B) on Matw(r, E)(B) factors through an action of the quotient of T (B)
by the subgroup of constant functions. See Corollary 7.26 for a detailed description of 
the stabilizer and the orbit of a weak F -matroid under this action in case of an idyll F .

Definition 7.18. Let M be a B-matroid. The rescaling class of M is the T (B)-orbit of M
in Matw(r, E)(B). Two Grassmann-Plücker functions Δ and Δ′ are rescaling equivalent
if [Δ] and [Δ′] lie in the same rescaling class of M .

Remark 7.19. The “rescaling” equivalence relation on B-matroids appears under different 
names in the literature. While we borrow the terminology “rescaling class” from [12], the 
term “projective equivalence class” is used in [61]. Rescaling classes of oriented matroids 
appear as “reorientation classes” in [21]. In [48], projective equivalence is called “strong 
equivalence” in the context of partial fields (cf. Remark 7.52).

In the context of matroid representations over fields, there are additional notions of 
equivalence which one encounters in the literature. We briefly explain the connection with 
the notion of equivalent representations that one finds in Oxley’s book [46]. Consider a 
matroid M with Grassmann-Plücker function Δ :

(
E
r

)
→ K. Recall from section 3.4.1

that a representation of M over a field k is an r×E-matrix A whose r× r-minors vanish 
for precisely those r-subsets I of E for which Δ(I) = 0. Equivalence of representations 
A and A′, in the sense of [46], is defined in terms of realizations as incidence geometries 
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inside P r−1(k): A and A′ are said to be equivalent if there is an automorphism of P r−1(k)
(as an incidence geometry) which identifies the respective realizations of A and A′.

In our language this boils down to the following (using [46, Cor. 6.3.11]). The repre-
sentations A and A′ define Grassmann-Plücker functions Δ :

(
E
r

)
→ k and Δ′ :

(
E
r

)
→ k, 

respectively. Then A and A′ are equivalent in the sense of [46] if and only if r � 2 or 
there exists a field automorphism τ : k → k such that the k-matroids [Δ′] and [τ ◦ Δ]
are rescaling equivalent. (Matroids of rank 2 behave exceptionally in this approach due 
to the lack of rigidity of P 1 as an incidence geometry.) In view of this rephrasing, we see 
that equivalence of representations over k in the sense of [46] is weaker than the notion 
of rescaling equivalence of k-matroids.

Remark 7.20. From the point of view of complex algebraic geometry, rescaling classes are 
related to the natural action of the diagonal torus (C×)n on the Grassmannian Gr(r, n). 
The closure Xp of the torus orbit of a point p ∈ Gr(r, n) is a toric variety which depends 
only on the matroid Mp whose bases correspond to the non-zero Plücker coordinates of 
p, and the polytope corresponding to Xp under the moment map is the matroid polytope
of Mp, cf. [20].

Remark 7.21. Note that t.Δ is a (strong) Grassmann-Plücker function if Δ is so. Thus 
the action of T (B) restricts to an action on the matroid space Mat(r, E)(B). This action 
is, in fact, defined on the level of ordered blue schemes.

To see this, let us (for notational purposes) identify E with {1, . . . , n}. The ordered 
blue scheme Gn

m,F±
1

= SpecF±
1 [T±1

1 , . . . , T±1
n ] is a group object in OBSchF±

1
with respect 

to the comultiplication given by Ti �→ Ti⊗Ti. It acts on Mat(r, E) via the coaction given 
by xI �→ (

∏
i∈I Ti) ⊗ xI . The action of T (B) on Mat(r, E)(B) results from applying 

Hom(SpecB, −) to the morphism T × Mat(r, E) → Mat(r, E).

Note that a morphism f : F → F ′ of idylls induces a map f∗ : Xw(F ) → Xw(F ′) since 
f ◦ (t.Δ) = (f ◦ t).(f ◦ Δ) for all t ∈ T (F ) and all weak Grassmann-Plücker functions 
Δ :

(
E
r

)
→ F . This defines a functor Xf : OBlprF±

1
→ Sets that sends an F±

1 -algebra to 

the set Xf (F ) of rescaling classes in Matw(r, E)(F ).

Lemma 7.22. Let Δ and Δ′ be rescaling equivalent Grassmann-Plücker functions in B. 
Then they correspond to the same B-matroid M and CrΔ(I) = CrΔ′(I) for all I ∈ ΩM .

Proof. Since Δ and Δ′ are rescaling equivalent, there are elements a ∈ B× and t ∈ T (B)
such that Δ′ = a(t.Δ). Since atI ∈ B× for all subsets I of E, we have Δ(I) = 0 if and 
only if Δ′(I) = a(tIΔ(I)) = 0. This shows that Δ and Δ′ correspond to the same matroid 
M .

Let I = (I, i1, i2, i3, i4) ∈ ΩM . Then for Ik,l = I ∪{ik, il}, we have tI1,3tI2,4 = tI1,4tI2,3
and thus
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CrΔ′(I) =
Δ′

I,1,3Δ′
I,2,4

Δ′
I,1,4Δ′

I,2,3
=

atI1,3atI2,4
atI1,4atI2,3

· ΔI,1,3ΔI,2,4

ΔI,1,4ΔI,2,3
= CrΔ(I)

as desired, where Δ′
I,k,l = Δ′(I ∪ {ik, il}

)
and ΔI,k,l = Δ

(
I ∪ {ik, il}

)
. �

Let M be a matroid. Recall from section 7.3 that the group homomorphism degE :
TM → ZE sends an element 

∏
XeI

I of the Tutte group TM to 
∑

eIδI , where δI is the 
characteristic function of I. For the proof of Theorem 7.25, we require the following fact, 
which follows from Theorem 1.5 in [15]. For completeness, we include a short proof.

Lemma 7.23. Let c be the number of connected components of M . The cokernel of degE :
TM → ZE is a free abelian group of rank c.

Proof. As a first step, we claim that the Tutte group TM is the direct sum of the Tutte 
groups of the connected components of M , modulo the identification of the weak inverses 
ε of all summands (also cf. [15, Prop. 5.1]). Recall that a connected component of M is the 
restriction of M to an equivalence class of the equivalence relation ∼ on E generated by 
the relations i ∼ j whenever there are bases I and J such that I−J = {i} and J−I = {j}. 
Let (I, i1, i2, i3, i4) ∈ ΩM be degenerate and εμ(i1,i2;i3,i4)XI,1,3XI,2,4X

−1
I,1,4X

−1
I,2,3 = 1 the 

corresponding relation of the Tutte group. The bases involved in this relation imply that 
i1 ∼ i2 ∼ i3 ∼ i4. Thus the relation εμ(i1,i2;i3,i4)XI,1,3XI,2,4X

−1
I,1,4X

−1
I,2,3 = 1 comes from 

the restriction of M to the equivalence class of i1, i2, i3 and i4. This establishes the 
claim.

Thus the morphism degE : TM → ZE is the direct sum of its restrictions to the 
support of the connected components of M and the rank of the cokernel is the sum of 
the ranks for each summand. Therefore we may assume that M is connected, and we are 
left to show that under this assumption the cokernel of degE is free of rank c = 1.

Given bases I and J with I − J = {i} and J − I = {j}, the quantity δi − δj =
degE(XI/XJ) is in the image of degE . By the multiplicativity of degE and the connect-
edness of M , we conclude that δi − δj is in the image of degE for all i, j ∈ E. These 
elements generate the degree-0 hyperplane in ZE , and thus the quotient of ZE by the 
image of degE is Z. This completes the proof of the lemma. �

This lemma leads to the following strengthening of Corollary 7.14.

Corollary 7.24. Let M be a matroid of rank r on E with c connected components. Then 
kwM � kfM [T±1

1 , . . . , T±1
s ] for s = #E − c.

Proof. We know from Corollary 7.14 that kwM � kfM [T±1
1 , . . . , T±1

s ] for some s � 0. By 
Theorem 6.27, (kwM )× � TM and by Corollary 7.13, (kfM )× � T (0)

M . By Lemma 7.23, the 
quotient TM/T (0)

M is a free group of rank #E − c. Thus s = #E − c. �
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Theorem 7.25. Let F be an idyll and M a matroid. Let Δ, Δ′ :
(
E
r

)
→ F be two weak 

Grassmann-Plücker functions representing M with respective characteristic morphisms 
χ[Δ], χ[Δ′] : kwM → F . Then the following assertions are equivalent.

(1) Δ and Δ′ are rescaling equivalent.
(2) CrΔ and CrΔ′ are equal as functions ΩM → F×.
(3) The restrictions of χ[Δ] and χ[Δ′] to the foundation kfM are equal.

Proof. The implication (1)⇒(2) follows from Lemma 7.22. We continue with (2)⇒(3). 
Let Cruniv

M : ΩM → kfM be the universal cross ratio function, cf. Definition 7.8. Since 
χ[Δ] sends 

∏
xeI
I to 

∏
Δ(I)eI , and similarly for χ[Δ′], we have CrΔ = χ[Δ] ◦ Cruniv

M and 
CrΔ′ = χ[Δ′] ◦ Cruniv

M . Thus for every J ∈ ΩM we have

χ[Δ]|kf
M

(
Cruniv

M (I)
)

= CrΔ(I) = CrΔ′(I) = χ[Δ′]|kf
M

(
Cruniv

M (I)
)
.

By definition, kfM is generated by the cross ratios in kM , i.e. by the image of Cruniv
M . Thus 

χ[Δ]|kf
M

= χ[Δ′]|kf
M

, which establishes the implication (2)⇒(3).
We conclude with (3)⇒(1). Recall that the inner Tutte group T (0)

M is defined as the 
kernel of degE : TM → ZE . By the assumption from (2), the restrictions of χ[Δ] and χ[Δ′]

to T (0)
M = (kfM )× are equal. Thus there is a group homomorphism t : im degE → F×

such that

χ[Δ](x) = t
(

degE(x)
)
· χ[Δ′](x)

for every element x ∈ TM . Since the cokernel of degE is free, ZE is the direct sum 
of the image of degE with a free abelian group. Therefore we can extend t to a group 
homomorphism t : ZE → F×. Then we have

∏
Δ(I)eI = χ[Δ]

(∏
xeI
I

)
= t

(∑
eIδI

)
χ[Δ′]

(∏
xeI
I

)
=

∏
teII ·

∏
Δ′(xI)eI = (t.Δ′)(I)eI

for all eI with 
∑

eI = 0, where I varies through the bases of M . This shows that Δ and 
t.Δ′ are proportional, i.e. [Δ] = [t.Δ′], and establishes the implication (3)⇒(1). �
Corollary 7.26. Let M be a matroid with c connected components, F an idyll and Δ :(
E
r

)
→ F a Grassmann-Plücker function representing M . Then the stabilizer of [Δ] in 

T (F ) is isomorphic to (F×)c and the rescaling class of [Δ] is in bijection with (F×)n−c

where n = #E.

Proof. An element of T (F ), which is a function t : E → F×, can be extended linearly 
to a group homomorphism t : ZE → F×, which we denote by the same symbol t. From 



M. Baker, O. Lorscheid / Advances in Mathematics 390 (2021) 107883 105
the proof of Theorem 7.25, it is clear that the stabilizer of [Δ] consists of those group 
homomorphisms t : ZE → F× that are trivial on the image of degE . By Lemma 7.23, 
the cokernel of degE is a free abelian group of rank h. Thus the stabilizer of [Δ] is a 
subgroup of T (F ) isomorphic to (F×)c. Consequently, the orbit of [Δ] corresponds to 
(F×)E/(F×)c � (F×)n−c. �
Definition 7.27. Let M be a matroid and F be an idyll. The rescaling class space Xf

M (F )
is the set of rescaling classes of weak F -matroids with underlying matroid M .

Note that Xf
M (F ) is a subset of Xf (F ) and that Xf

M (F ) is functorial in F .

Corollary 7.28. Let M be a matroid and F be an idyll. Then the map

Φ : X
f
M (F ) −→ Hom(kfM , F )
[Δ] �−→ χ[Δ]|kf

M

is a bijection that is functorial in F .

Proof. By Theorem 7.25, two Grassmann-Plücker functions Δ and Δ′ that represent M
are rescaling equivalent if and only if χ[Δ]|kf

M
= χ[Δ′]|kf

M
. This shows that Φ is well-

defined and injective. The functoriality of Φ in F is clear.
To show surjectivity, consider a morphism χf : kfM → F . By Corollary 7.14, there is 

an isomorphism kwM � kfM [T±1
1 , . . . , T±1

s ]. Thus sending T1, . . . , Ts to any choice of units 
of kfM defines an extension of the identity map kfM → kfM to a morphism kwM → kfM . 
Composing this morphism with χf : kfM → F yields a morphism χ : kwM → F and thus 
an F -matroid [Δ]. By construction, it is clear that Φ([Δ]) = χ|kf

M
= χf . This verifies 

the surjectivity of Φ and concludes the proof. �
The following corollary is somewhat surprising, given that the foundation of F is 

intimately connected with weak representability but a priori has little to do with strong 
representability:

Corollary 7.29. Let M be a matroid and F an idyll. Then M is strongly representable 
over F if and only if it is strongly representable over F found.

Proof. The inclusion F found → F induces a morphism XM (F found) → XM (F ), which 
shows that M is strongly representable over F if it is strongly representable over F found.

Conversely, assume that M is strongly representable over F by a Grassmann-Plücker 
function Δ :

(
E
r

)
→ F and let χ[Δ] : kM → F be the characteristic morphism. Then 

the composition with kfM → kwM → kM induces a morphism χf
[Δ] : kfM → F , which 

corresponds to the rescaling class of [Δ] by Corollary 7.28. Since the image of χf
[Δ] is 

contained in F found, the rescaling class of [Δ] comes from a class of an F found-matroid 
[Δ′] that is represented by a Grassmann-Plücker function Δ′ :

(
E
)
→ F found.
r
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Thus Δ and ι ◦ Δ′ represent the same rescaling class over F , where ι : F found → F

is the inclusion, i.e. [ι ◦ Δ′] = t.[Δ] for some t ∈ T (F ). Since the T (F )-action maps 
strong matroids to strong matroids, Δ′ satisfies all Plücker relations. This shows that M
is representable over F found. �

A consequence of Corollaries 7.14 and 7.28 is that if F is a finite idyll (e.g. a finite 
field Fq), the number of lifts of a matroid M to F is determined in terms of the number 
of rescaling classes of M over F .

Corollary 7.30. Let F be a finite idyll with q elements and M a matroid of rank r on E
with c connected components. Let n = #E. Then

#Xw
M (F ) = (q − 1)n−c · #X

f
M (F ).

Proof. By Corollary 7.24, we have kwM = kfM [T±1
1 , . . . , T±1

s ] for some elements 
T1, . . . , Ts ∈ kwM where s = n − c. Therefore every morphism f : kfM → F has (q−1)s ex-
tensions to a morphism g : kwM → F , corresponding to the choices of images g(Ti) ∈ F×. 
Thus by Corollary 7.28 and Proposition 6.23, we have

#Xw
M (F ) = # Hom(kwM , F ) = (q − 1)s · # Hom(kfM , F ) = (q − 1)s · #X

f
M (F ). �

Remark 7.31. Over a field k, the weak realization space Xw
M (k) is naturally identified with 

the k-rational points of a locally closed subscheme Xw
M of the Grassmannian Gr(r, n). By 

Corollary 7.26, the natural action of the diagonal torus T ⊂ GLn on Xw
M factors through 

a free action by a quotient torus T ′. Thus there exists a GIT quotient Xf
M = Xw

M/T ′ as 
a scheme, and this quotient satisfies Xf

M (k) = X
f
M (k) for every field k.

7.5. Foundations of binary matroids

A binary matroid is a matroid that is representable10 over the finite field F2 with 
two elements. In this section, we classify the foundations of binary matroids, and draw 
conclusions about the representability of binary matroids.

In the following, we consider F2 as the ordered blueprint F2 = {0, 1} �〈0 � 1 +1〉, which 
results from the embedding (−)oblpr : PartFields → OBlpr. Note that by Lemma 3.14, 
a matroid is representable over F2 if and only if it is representable over {0, 1} � 〈0 ≡
1 + 1〉, which would be the alternative choice of realizing F2 as an ordered blueprint; cf. 
section 7.8.2 for more details.

Theorem 7.32. A matroid is binary if and only if its foundation is either F±
1 or F2.

10 Since fields are perfect idylls, cf. Remark 6.17, it does not matter here if we talk about weak or strong 
representability.
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Proof. Let M be a matroid and kfM its foundation. If kfM is F±
1 or F2, then there is a 

morphism kfM → F2. Thus M is binary by Theorem 7.17.
Conversely, let M be a binary matroid that is represented by a Grassmann-Plücker 

function Δ :
(
E
r

)
→ F2, i.e. Δ(I) = 1 if I is a basis of M and Δ(I) = 0 otherwise. A 

3-term Plücker relation is satisfied over F2 if and only if an even number of its terms are 
nonzero. This means that either all terms are zero, and thus there are not cross ratios 
for the corresponding tuple of ΩM , or precisely two terms are nonzero, in which case all 
involved cross ratios are 1 or ε, cf. Lemma 7.3. By Lemma 7.9, the foundation of M is 
generated by the cross ratios over F±

1 .
This leads to the following two possibilities for the foundation kfM of M : all nontrivial 

Plücker relations are of the form 0 � 1 + ε (up to a scalar multiple) and kfM = F±
1 ; or 

there exists a Plücker relation that is of the form 0 � 1 + 1 (up to a scalar multiple). In 
the latter case, 1 is a weak inverse of 1 and becomes identified with ε in kwM = k(xw

M )±. 
Thus kfM = F2. This proves the theorem. �

Note that both situations of Theorem 7.32 occur. The case kfM = F±
1 occurs for regular 

matroids M , which is investigated in more detail in section 7.6. And we have kfM = F2
if M is a binary matroid that is not regular. An example of such a matroid is the Fano 
plane, which is not representable over any field of characteristic different from 2, cf. [25, 
para. 16].

In fact, it is a classical result that a binary matroid fails to be regular only if it 
contains the Fano plane or its dual as a minor, cf. [56, (4.5)]. Thus binary matroids are 
either representable over every field or only over fields of characteristic 2. Theorem 7.32
provides a proof of this result which does not require us to consider minors or the Fano 
plane.

Corollary 7.33. A binary matroid is either representable over every field or it is not 
representable over any field of characteristic different from 2.

Proof. Let M be a binary matroid. By Theorem 7.32, the foundation of M is either 
F±

1 or F2. If kfM = F±
1 and k is a field, then there exists a map F±

1 → k. Thus M is 
representable over k by Theorem 7.17.

If kfM = F2 and k is a field of characteristic different from 2, then there exists no 
morphism F2 → k. By Theorem 7.17, M is not representable over k. �

The following has already been observed in [7] in the context of fields and has been 
extended in [61, Thm. 6.9] to fuzzy rings:

Corollary 7.34. A binary matroid has at most one rescaling class over every idyll.

Proof. Let M be a binary matroid and F an idyll. By Corollary 7.28, the classes in 
X

f
M (F ) correspond bijectively to the morphisms kfM → F . For both possibilities of kfM , 

there is at most one such morphism. Thus the theorem follows. �
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7.6. Foundations of regular matroids

Our results on binary matroids lead to a short proof of Tutte’s characterization of 
regular matroids. While Tutte’s original proof was based on his homotopy theory for 
matroids, cf. [55] and [56], shorter and more elementary proofs were found later on, cf. 
[22] and [59, Thm. 3.1.6].

Our proof has some ingredients in common with these latter approaches, but in con-
trast to other proofs, it is based on the observation that the universal idyll of a regular 
matroid is F±

1 .

Theorem 7.35. Let M be a matroid. Then the following are equivalent.

(1) M is regular;
(2) the foundation of M is F±

1 ;
(3) M is weakly representable over every idyll;
(4) M is binary and weakly representable over an idyll with 1 �= ε.

Proof. In the following, we show (1)⇒(2)⇒(3)⇒(1) and (3)⇒(4)⇒(2). The implications 
(3)⇒(1) and (3)⇒(4) are trivial.

We continue with (1)⇒(2). Assume that M is regular. Then M is binary and its 
foundation is F±

1 or F2 by Theorem 7.32. The latter is not possible since there is no 
morphism from F2 to F±

1 . This establishes (1)⇒(2).
We continue with (2)⇒(3). Assume that kfM = F±

1 . Let F an idyll. Then there exists 
a morphism kfM → F , and thus M is weakly representable over F by Theorem 7.17. This 
establishes (2)⇒(3).

We continue with (4)⇒(2). Assume that F is binary and weakly representable over 
an idyll F with 1 �= ε. By Theorem 7.32, the foundation of M is F±

1 or F2. Since 1 �= ε

in F , there is no morphism from F2 to F . Thus the foundation of M must be F±
1 . This 

establishes (4)⇒(2) and concludes the proof of the theorem. �
A matroid is orientable if it is representable over the sign hyperfield S. Since both 

S and Fq (for q odd) are idylls with 1 �= ε, we reobtain the following well-known con-
sequences of Tutte’s characterization of regular matroids (cf. 7.52 in [57]) as immediate 
consequences of Theorem 7.35.

Corollary 7.36. A matroid is regular if and only if it is binary and orientable. �
Corollary 7.37. A matroid is regular if and only if it is binary and representable over Fq

for some odd prime-power q. �
Corollary 7.38. A matroid is regular if and only if it has precisely one rescaling class 
over every idyll.
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Proof. By Theorem 7.35, a regular matroid is representable over every idyll. Thus there 
is at least one rescaling class for every idyll. A regular matroid is binary and thus has 
precisely one rescaling class over every idyll by Corollary 7.34.

Conversely, assume that M is a matroid that has exactly one rescaling class over 
every idyll. Then M is, in particular, representable over every idyll. Thus M is regular 
by Theorem 7.35. �
Corollary 7.39. Let M be a regular matroid of rank r on E with c connected components. 
Then #XM (F±

1 ) = #Xw
M (F±

1 ) = 2#E−c.

Proof. This follows at once from Corollaries 7.30 and 7.38 and the fact that F±
1 is 

perfect. �
7.7. Uniqueness for rescaling classes over F3

A matroid is called ternary if it is representable over the field F3 with 3 elements. 
Brylawski and Lucas show in [7] that every ternary matroid has a unique rescaling class 
over F3. We find the following short proof of this result, employing the foundation of a 
matroid.

Theorem 7.40. Every matroid admits at most one rescaling class over F3.

Proof. Let M be a matroid with foundation kfM . By Corollary 7.28, the rescaling classes 
of M over F3 correspond bijectively to the morphisms f : kfM → F3. Thus we aim to 
show that such a morphism is uniquely determined.

The foundation kfM of M is defined as the subidyll of kwM that is generated by the 
fundamental elements a of kwM , which satisfy a relation of the form

0 � a + b + ε

for some b ∈ kwM . Since f maps nonzero elements of kfM to F×
3 , we encounter the following 

possibilities. If a = 0, then f(a) = 0. If b = 0, then a = 1 and f(a) = 1. If both a and b
are nonzero, then f(a) and f(b) are units in F3 and f(a) +f(b) = 1. This is only possible 
if f(a) = f(b) = −1. This shows that f : kfM → F3 is uniquely determined if it exists 
and concludes the proof of the theorem. �
Corollary 7.41. Let M be a ternary matroid of rank r on E with c connected components. 
Then #XM (F3) = #Xw

M (F3) = 2#E−c.

Proof. This follows at once from Theorem 7.40, Corollary 7.30 and the fact that F±
1 is 

perfect. �
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7.8. The bracket ring and the universal partial field

In [48], Pendavingh and Van Zwam introduce new techniques for establishing rep-
resentability theorems for matroids. Their central tools are the bracket ring and the 
universal partial field. We will explain in this section how these two objects relate to the 
universal pasture and the foundation.

7.8.1. The bracket ring
Pendavingh and van Zwam’s bracket ring is a variation of White’s bracket ring from 

[62, Def. 3.1]. We recall the definition from [48, Def. 4.1].

Definition 7.42. Let M be a matroid with representing Grassmann-Plücker function Δ :(
E
r

)
→ K. Let

B =
{
I ∈

(
E
r

) ∣∣Δ(I) �= 0
}

be the set of bases of M . The bracket ring of M is the ring BM = Z[x±1
J |J ∈ B]/IM

where IM is the ideal of Z[x±1
J |J ∈ B] generated by the 3-term Plücker relations

xI,1,2 xI,3,4 − xI,1,3 xI,2,4 + xI,1,4 xI,2,3

for every (r − 2)-subset I of E and all i1 < i2 < i3 < i4 with i1, i2, i3, i4 /∈ I, where 
xI,k,l = xI∪{ik,il} if I ∪ {ik, il} ∈ B and xI,k,l = 0 otherwise.

In order to relate the bracket ring of a matroid to its universal pasture, we require 
some auxiliary definitions. The units of the bracket ring are

B×
M =

{
±
∏

I∈B xeI
I

∣∣ eI ∈ Z
}
.

We define the partial bracket field as the partial field PM = (P×
M , πPM

) where P×
M = B×

M

and πPM
: Z[P×

M ] → BM is the canonical projection. Note that PM is indeed a partial 
field if BM is nontrivial since kerπPM

is generated by the 3-term Plücker relations. This 
partial field has been considered by Pendavingh and van Zwam without being given a 
distinctive name, cf. [48, Lemma 4.4]. Note that there are matroids with trivial bracket 
ring, cf. Remark 7.46.

Since the bracket ring BM is Z-graded by putting degxJ = 1, we can consider its 
degree-0 subring BM,0, which we call the degree-0 bracket ring of M . Analogously, we 
define the partial degree-0 bracket field of M as PM,0 = (B×

M,0, πPM,0) where πPM,0 :
Z[B×

M,0] → BM,0 is the restriction of πPM
to the degree-0 elements.

7.8.2. Relation to the universal pasture
The bracket ring can be derived from the universal pasture in a functorial way. The 

most conceptually satisfying way to see this involves first modifying the way in which 
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we realize partial fields as ordered blueprints. Namely, let P = (P×, πP ) be a partial 
field, where πP : Z[P×] → RP is the surjection onto the ambient ring RP of P . The 
construction used primarily in this paper associates with P the idyll

P oblpr = P�〈0 � a + b + c |πP (a + b + c) = 0〉.

Alternatively, we can view P as the F±
1 -algebra

P blpr = P�〈
∑

ai ≡
∑

bj |
∑

πP (ai) =
∑

πP (bj)〉.

Both associations are functorial and define fully faithful embeddings into OBlprF±
1

, which 
can be transformed into each other in the following way.

Given an ordered blueprint B, we define the associated purely positive ordered 
blueprint as

Bppos = B•//〈0 �
∑

ai
∣∣ 0 �

∑
ai holds in B

〉
.

Then the identity map on P induces a natural morphism P oblpr → P blpr, which in turn 
induces isomorphisms

P oblpr ⊗F±
1
F12

∼−→ P blpr and P oblpr ∼−→ (P blpr)ppos

since P blpr is an F12 -algebra and P oblpr is purely positive. Note that we can recover the 
ambient ring of P as RP = (P oblpr ⊗F±

1
F12)+ = (P blpr)+; recall from section 2.6 the 

notation B+ for the ambient semiring of an ordered blueprint B.
Recall from section 6.4 the definition of the universal pasture kwM of M as

kwM =
(
F±

1 [x±1
J | J ∈

(
E
r

)
]�Pl w(r, E)

)
0

where Pl w(r, E) is generated by the 3-term Plücker relations. Since these relations are 
satisfied in PM,0, there is a canonical morphism of idylls

kwM −→ P oblpr
M,0 .

Note that this morphism is in general not an isomorphism. In particular, PM,0 can be 
trivial while kwM is not; cf. Remark 7.46.

Lemma 7.43. Let M be a matroid whose set of bases is B. Let kwM be its universal pasture 
and PM,0 its partial degree-0 bracket field. Then kwM ⊗F±

1
F12 � P blpr

M,0 and there are 
natural bijections

XM (P oblpr) 1:1←→ Hom(kwM , P oblpr) 1:1←→ Hom(kwM ⊗F±
1
F12 , P blpr) 1:1←→ Hom(PM,0, P )

for every partial field P .



112 M. Baker, O. Lorscheid / Advances in Mathematics 390 (2021) 107883
Proof. The first claim follows readily: since both kwM ⊗F±
1
F12 and P blpr

M,0 are with −1, 
the ambient semiring of both ordered blueprints is a ring and is thus trivially ordered. 
In both cases, the ambient ring is generated by Laurent monomials in the xJ of degree 
0, and all relations between the Laurent monomials are generated by the 3-term Plücker 
relations. Thus (kwM ⊗F±

1
F12)+ � BM,0 � (P blpr

M,0 )+ is the degree-0 bracket ring. The 

underlying monoids of both kwM ⊗F±
1
F12 and P blpr

M,0 are generated by the terms ±x±1
J . 

Thus kwM ⊗F±
1
F12 � P blpr

M,0 .
We turn to the proof of the second claim. A partial field is a doubly-distributive 

partial hyperfield and thus perfect by [3, Cor. 3.3]. Thus XM (P oblpr) = Xw
M (P oblpr) by 

Lemma 6.22 and Xw
M (P oblpr) = Hom(kwM , P oblpr) by Proposition 6.23. This establishes 

the first bijection.
The second bijection is obtained by applying the functors (−)ppos and − ⊗F±

1
F12 , 

which define mutually inverse bijections between the two morphism sets in question. 
The last bijection follows from the isomorphism kwM ⊗F±

1
F12 � P blpr

M,0 and the fact that 
(−)oblpr : PartFields → OBlpr± is fully faithful. �

As a consequence of Lemma 7.43, we can reprove Theorem 4.6 from [48], which is the 
following assertion.

Corollary 7.44. Let M be a matroid with bracket ring BM . Then M is representable over 
some partial field if and only if BM is nontrivial.

Proof. By Corollary 3.10 and Theorem 5.5, M is representable over a partial field P if 
and only if XM (P oblpr) is nonempty.

Assume that XM (P oblpr) is nonempty. By Lemma 7.43, XM (P oblpr) = Hom(PM,0, P ), 
i.e. there is a morphism PM,0 → P , where PM,0 is the partial degree-0 bracket field of 
M . This induces a morphism BM,0 → RP between the respective ambient rings. This 
shows that the degree-0 bracket ring BM,0 of M is nontrivial, and as a consequence BM

is nontrivial.
If BM is nontrivial, then PM is a partial field and the canonical morphism kwM →

PM,0 → PM yields a point in XM (P oblpr) by Lemma 7.43. Thus XM (P oblpr) is nonempty 
and M is representable over the partial field PM . �

The following fact shows that the class of representable matroids does not change if 
we ask for representability over fields or partial fields. This was already observed in [49, 
Cor. 5.2]. Note that for a partial field, strong and weak matroids coincide, so we do not 
have to distinguish these two classes.

Lemma 7.45. Let M be a matroid. Then M is representable over a partial field if and 
only if M is representable over a field.
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Proof. Since a field is a partial field, one implication is trivial. Assume that M is repre-
sentable over a partial field P = (P×, πP ), i.e. there is a morphism χ : kM → P . Then 
the ambient ring RP of P is nontrivial and admits therefore a morphism f : RP → k

into a field k. The composition

kM
χ−→ P blpr −→ Z[P×] πP−→ RP

f−→ k

yields a representation of M over k where we consider all objects as ordered blueprints. 
This proves the reverse implication. �
Remark 7.46. By Lemma 7.45, a matroid M that is not representable over any field is not 
representable over any partial field. By Corollary 7.44, such matroids are characterized 
by the property that their bracket ring is trivial. Since such matroids exist, for instance 
the Vámos matroid, this means that there are matroids M with trivial bracket ring BM .

On the other hand, the (weak) universal idyll is always nontrivial. This shows, in 
particular, that the canonical morphism kwM → PM,0 from the universal pasture of M to 
the partial degree-0 bracket field is not injective in general.

7.8.3. The universal partial field
The universal partial field of a matroid M was introduced by Pendavingh and van 

Zwam in [48] as a device for proving representability theorems for matroids over par-
tial fields. The definition in [48] is somewhat technical, which is perhaps an inevitable 
consequence of their approach to matroid representations over partial fields in terms 
of concrete matrix manipulations. Unraveling their definitions leads to the following 
short characterization of the universal partial field. The interested reader will find in 
Remark 7.52 an outline of the equivalence of our definition with that of [48].

Definition 7.47. Let M be a matroid and PM its partial bracket field. Let Δ :
(
E
r

)
→ PM

be the weak Grassmann-Plücker function defined by Δ(I) = xI for I ∈ B and Δ(I) = 0
otherwise. The universal partial field of M is the partial subfield PM of PM generated 
by the cross ratios CrΔ(I) for I ∈ ΩM .

Note that since all cross ratios are expressions in the xI of degree 0, the universal 
partial field PM is contained in the partial degree-0 bracket field PM,0. Recall from 
Lemma 7.43 that the canonical morphism kwM → P oblpr

M,0 induces an isomorphism kwM ⊗F±
1

F12 → P blpr
M,0 . The following lemma recovers [48, Cor. 4.12] in a more concise form.

Lemma 7.48. The isomorphism kwM⊗F±
1
F12 → P blpr

M,0 restricts to an isomorphism kfM⊗F±
1

F12 → Pblpr
M and there are natural bijections

X
f
M (P oblpr) 1:1←→ Hom(kfM , P oblpr) 1:1←→ Hom(kfM ⊗F±

1
F12 , P blpr) 1:1←→ Hom(PM , P )

for every partial field P .
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Proof. The former claim is immediate from the definitions of kfM and PM as the subob-
jects of kwM and PM , respectively, that are generated by the cross ratios.

We turn to the proof of the latter claim. The first bijection is established in 
Corollary 7.28. The second bijection comes from applying − ⊗F±

1
F12 and (−)ppos to 

the morphism sets, cf. the proof of Lemma 7.43. The third bijection follows from 
kfM ⊗F±

1
F12 � Pblpr

M and the fact that (−)oblpr : PartFields → OBlpr± is fully faith-
ful. �
Corollary 7.49. Let P be a partial field and M a matroid. Then M is representable over 
P if and only if there is a morphism PM → P .

Proof. The matroid M is representable over P if and only if there is a rescaling class over 
P , i.e. Xf

M (P oblpr) is nonempty. By Lemma 7.48, this is equivalent with Hom(PM , P )
being nonempty. �
Corollary 7.50. Let M be a matroid with foundation kfM and universal partial field PM . 
If kfM is a partial field, then the canonical morphism kfM → kfM ⊗F±

1
F12 → PM is an 

isomorphism.

Proof. The latter morphism kfM ⊗F±
1
F12 → PM is the isomorphism from Lemma 7.48. 

Since B ⊗F±
1
F12 = B�〈1 + ε ≡ 0〉 and since 1 + ε ≡ 0 holds in every partial field, the 

canonical inclusion kfM → kfM �〈1 + ε ≡ 0〉 = kfM ⊗F±
1
F12 is an isomorphism, and so is 

the composition kfM → PM of these two isomorphisms. �
Let P = (P×, πP ) be a partial field with quotient map πP : Z[P×] → RP . Then we 

define P [T±1
1 , . . . , T±1

s ] as the partial field (P× × {
∏

T ei
i }ei∈Z, ̂πP ) where

π̂P : Z[P×][T±1
1 , . . . , T±1

s ] −→ RP [T±1
1 , . . . , T±1

s ]

is the extension of πP that maps Ti to Ti. Note that P [T±1
1 , . . . , T±1

n ]blpr = P blpr[T±1
1 , . . . ,

T±1
s ].

Corollary 7.51. Let M be a matroid. Then PM,0 � PM [T±1
1 , . . . , T±1

s ] for some s � 0.

Proof. By Corollary 7.14, we have kwM � kfM [T±1
1 , . . . , T±1

s ] for some s � 0. Using the 
isomorphisms kwM ⊗F±

1
F12 → P blpr

M,0 from Lemma 7.43 and kfM ⊗F±
1
F12 → Pblpr

M from 
Lemma 7.48, we obtain a sequence of isomorphisms

P blpr
M,0 � kwM ⊗F±

1
F12 � kfM [T±1

1 , . . . , T±1
s ] ⊗F±

1
F12

� (kfM ⊗F±
1
F12)[T±1

1 , . . . , T±1
s ] � Pblpr

M [T±1
1 , . . . , T±1

s ] � PM [T±1
1 , . . . , T±1

n ]blpr.

Since (−)blpr is fully faithful, this yields the desired isomorphism PM,0 � PM [T±1
1 , . . . ,

T±1
s ]. �
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Remark 7.52. We indicate how it can be seen that our definition of the universal partial 
field is equivalent to that of Pendavingh and van Zwam in [48]. This equivalence is not 
hard to establish, but requires unraveling a series of definitions. This remark is meant 
as a guide for the reader who wants to do this exercise.

Let P be a partial field and M a matroid of rank r on E. The matrix representations 
A of M considered in [48] are assumed to be normalized in the sense that they contain a 
square submatrix of maximal size that is an identity matrix, which corresponds to fixing 
a canonical affine open subset of the matroid space. Note that in the case of a field, the 
matroid space is nothing else than a Grassmann variety, which might give the reader 
some geometric intuition. Moreover, the identity matrix is omitted from A and only the 
truncated part of A is considered.

Strong equivalence of two such truncated normalized matrices A and A′ is defined by 
three elementary operations: pivoting, permuting rows and columns, and scaling rows 
and columns by nonzero elements of P . We explain the effect on the corresponding 
Plücker coordinates. Pivoting incorporates the effect of a change of the affine open of the 
Grassmannian on the truncated matrix A, but has no effect on the Plücker coordinates, 
except for possible sign changes. Exchanging rows and columns has no effect on the 
Plücker coordinates except for sign changes. Scaling rows corresponds to multiplying 
the truncated columns with the inverse scalar. Thus all operations that generate the 
strong equivalence relation come from scaling columns of a (non-truncated and possibly 
non-normalized) matrix representation A of M . This corresponds to the torus action 
appearing in the definition of rescaling classes.

Let A be a truncated and normalized matrix representation of M . With the help of 
column and row scaling, every 2 ×2-submatrix of A with nonzero entries can be brought 
into the shape 

(1 1
p 1

)
. The element p is called the cross ratio of the submatrix. In [48], 

the universal partial field is defined as the subfield of PM that is generated by all cross 
ratios p that occur in submatrices of the form 

(1 1
p 1

)
for some matrix A′ that is strongly 

equivalent to A.
Since A is normalized, all entries in A are Plücker coordinates of A. A 2 ×2-submatrix 

with nonzero entries corresponds to a tuple I = (I, i1, i2, i3, i4) ∈ ΩM where i1, i3 label 
the rows and i2, i4 label the columns of 

(1 1
p 1

)
. Thus p is the cross ratio CrΔ(I), up to 

a possible difference in signs. Since cross ratios are invariant under the action of T (P )
and since every 2 × 2-submatrix can be brought into the form 

(1 1
p 1

)
by scaling rows and 

columns, this establishes a bijective correspondence between cross ratios in the sense of 
[48] and the cross ratios CrΔ(I) for I ∈ ΩM . The difference in signs that occur do not 
affect the universal partial field PM since it contains all (weak) inverses.

7.8.4. The universal partial fields of binary and regular matroids
Our classification of binary and regular matroids in terms of their foundation, cf. 

section 7.5 and 7.6, yields a classification of such matroids in terms of their universal 
partial fields.
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Corollary 7.53. A matroid is binary if and only if its universal partial field is F±
1 or F2. 

A matroid is regular if and only if its universal partial field is F±
1 .

Proof. Let M be a binary matroid. By Theorem 7.32, its foundation is F±
1 or F2. Since 

both of these idylls are partial fields, the foundation is isomorphic to the universal partial 
field by Corollary 7.50. If M is regular, then its foundation, and hence its universal partial 
field, is F±

1 by Theorem 7.35.
Conversely, assume that M is a matroid with universal partial field F±

1 . Since there 
is a morphism from F±

1 to every field, it follows from Corollary 7.49 that M is regular 
and binary. If the universal partial field of M is F2, on the other hand, then clearly M
is binary. �
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