514 research outputs found

    Music-reading training alleviates crowding with musical notation

    Get PDF
    published_or_final_versio

    Cross-modal music integration in expert memory: Evidence from eye movements

    Get PDF
    The study investigated the cross-modal integration hypothesis for expert musicians using eye tracking. Twenty randomized excerpts of classical music were presented in two modes (auditory and visual), at the same time (simultaneously) or successively (sequentially). Musicians (N = 53, 26 experts and 27 non-experts) were asked to detect a note modified between the auditory and visual versions, either in the same major/minor key or violating the key. Experts carried out the task faster and with greater accuracy than non-experts. Sequential presentation was more difficult than simultaneous (longer fixations and higher error rates) and the modified notes were more easily detected when violating the key (fewer errors), but with longer fixations (speed/accuracy trade-off strategy). Experts detected the modified note faster, especially in the simultaneous condition in which cross-modal integration may be applied. These results support the hypothesis that the main difference between experts and non-experts derives from the difference in knowledge structures in memory built over time with practice. They also suggest that these high-level knowledge structures in memory contain harmony and tonal rules, arguing in favour of cross-modal integration capacities for experts, which are related to and can be explained by the long-term working memory (LTWM) model of expert memory (e.g. Drai-Zerbib & Baccino, 2014; Ericsson & Kintsch, 1995)

    Music Listening, Music Therapy, Phenomenology and Neuroscience

    Get PDF

    Music Listening as Therapy

    Get PDF
    Music is a universal phenomenon and is a real, physical thing. It is processed in neural circuits that overlap with language circuits, and it exerts cognitive, emotional, and physiological effects on humans. Many of those effects are therapeutic, such as reduced symptoms of physical and mental ailments. Music is the result of the elements rhythm, melody, harmony, timbre, dynamics, and form. Rhythm is the focus of pop music, and melody is the focus of classical music. The mind perceives and organizes music in learned, consistent ways in order to generate predictions and extract meaning. There are perceptual laws and information processing limitations to this process. Predictions are based in schematic and veridical approaches, which give rise to expectations. Frustrated expectations result in an effective response. Music only has meaning unto itself and the music listener ascribes any extra-musical meaning. This includes any emotional meaning. The unfolding of a song is much like how Gestalt Therapy theory conceptualizes human experience. Mindfulness offers a clear definition of how one can frame and approach experience to support health and well-being. MinMuList (said “min-mew-list”) is an evidenced-based workshop that offers a concise discussion and straightforward methods for implementation of these aspects of music and psychology

    Predictive cognition in dementia: the case of music

    Get PDF
    The clinical complexity and pathological diversity of neurodegenerative diseases impose immense challenges for diagnosis and the design of rational interventions. To address these challenges, there is a need to identify new paradigms and biomarkers that capture shared pathophysiological processes and can be applied across a range of diseases. One core paradigm of brain function is predictive coding: the processes by which the brain establishes predictions and uses them to minimise prediction errors represented as the difference between predictions and actual sensory inputs. The processes involved in processing unexpected events and responding appropriately are vulnerable in common dementias but difficult to characterise. In my PhD work, I have exploited key properties of music – its universality, ecological relevance and structural regularity – to model and assess predictive cognition in patients representing major syndromes of frontotemporal dementia – non-fluent variant PPA (nfvPPA), semantic-variant PPA (svPPA) and behavioural-variant FTD (bvFTD) - and Alzheimer’s disease relative to healthy older individuals. In my first experiment, I presented patients with well-known melodies containing no deviants or one of three types of deviant - acoustic (white-noise burst), syntactic (key-violating pitch change) or semantic (key-preserving pitch change). I assessed accuracy detecting melodic deviants and simultaneously-recorded pupillary responses to these deviants. I used voxel-based morphometry to define neuroanatomical substrates for the behavioural and autonomic processing of these different types of deviants, and identified a posterior temporo-parietal network for detection of basic acoustic deviants and a more anterior fronto-temporo-striatal network for detection of syntactic pitch deviants. In my second chapter, I investigated the ability of patients to track the statistical structure of the same musical stimuli, using a computational model of the information dynamics of music to calculate the information-content of deviants (unexpectedness) and entropy of melodies (uncertainty). I related these information-theoretic metrics to performance for detection of deviants and to ‘evoked’ and ‘integrative’ pupil reactivity to deviants and melodies respectively and found neuroanatomical correlates in bilateral dorsal and ventral striatum, hippocampus, superior temporal gyri, right temporal pole and left inferior frontal gyrus. Together, chapters 3 and 4 revealed new hypotheses about the way FTD and AD pathologies disrupt the integration of predictive errors with predictions: a retained ability of AD patients to detect deviants at all levels of the hierarchy with a preserved autonomic sensitivity to information-theoretic properties of musical stimuli; a generalized impairment of surprise detection and statistical tracking of musical information at both a cognitive and autonomic levels for svPPA patients underlying a diminished precision of predictions; the exact mirror profile of svPPA patients in nfvPPA patients with an abnormally high rate of false-alarms with up-regulated pupillary reactivity to deviants, interpreted as over-precise or inflexible predictions accompanied with normal cognitive and autonomic probabilistic tracking of information; an impaired behavioural and autonomic reactivity to unexpected events with a retained reactivity to environmental uncertainty in bvFTD patients. Chapters 5 and 6 assessed the status of reward prediction error processing and updating via actions in bvFTD. I created pleasant and aversive musical stimuli by manipulating chord progressions and used a classic reinforcement-learning paradigm which asked participants to choose the visual cue with the highest probability of obtaining a musical ‘reward’. bvFTD patients showed reduced sensitivity to the consequence of an action and lower learning rate in response to aversive stimuli compared to reward. These results correlated with neuroanatomical substrates in ventral and dorsal attention networks, dorsal striatum, parahippocampal gyrus and temporo-parietal junction. Deficits were governed by the level of environmental uncertainty with normal learning dynamics in a structured and binarized environment but exacerbated deficits in noisier environments. Impaired choice accuracy in noisy environments correlated with measures of ritualistic and compulsive behavioural changes and abnormally reduced learning dynamics correlated with behavioural changes related to empathy and theory-of-mind. Together, these experiments represent the most comprehensive attempt to date to define the way neurodegenerative pathologies disrupts the perceptual, behavioural and physiological encoding of unexpected events in predictive coding terms

    Hearing the Tonality in Microtonality

    Get PDF
    In the late 1970s and 1980s, composer-pianist Easley Blackwood wrote a series of microtonal compositions exploring the tonal and modal behavior of a dozen non–twelve-tone equal temperaments, ranging from 13 to 24 tones per octave. This dissertation investigates a central paradox of Blackwood’s microtonal music: that despite being full of intervals most Western listeners have never heard before, it still seems to “make sense” in nontrivial ways. Much of this has to do with the music’s idiosyncratic approach to tonality, which I define as a regime of culturally conditioned expectations that guides one’s attentional processing of music’s gravitational qualities over time. More specifically, Blackwood configures each tuning’s unfamiliar elements in ways that correspond to certain schematic expectations Western listeners tend to have about how tonal music “works.” This is why it is still possible to hear the forest of tonality in this music, so to speak, despite the odd-sounding trees that comprise it. Because of its paradoxical blend of expectational conformance and expectational noncompliance, Blackwood’s microtonal music makes for a useful tool to snap most Western-enculturated listeners out of their ingrained modes of musical processing and reveal certain things about tonality that are often taken for granted. Accordingly, just as Blackwood writes conventional-sounding music in unconventional tunings, this dissertation rethinks several familiar music-theoretic terms and concepts through the defamiliarizing lens of microtonality. I use Blackwood’s microtonal music as a prism to shine a light on traditional theories of tonality, scale degrees, consonance and dissonance, and harmonic function, arguing that many of these theories rely on assumptions that are tacitly tied to twelve-tone equal temperament and common-practice major/minor music. By unhooking these terms and concepts from any one specific tuning or historical period, I build up a set of analytical tools that can allow one to engage more productively with the many modalities of tonality typically heard on a daily basis today. This dissertation proceeds in six chapters. The four interior chapters each center on one of the terms and concepts mentioned above: scale degrees (Chapter 2), consonance and dissonance (Chapter 3), harmonic function (Chapter 4), and tonality (Chapter 5). In Chapter 2, I propose a system for labeling scale degrees that can provide more nuance and flexibility when reckoning with music in any diatonic mode (and in any tuning). In Chapter 3, I advance an account of consonance and dissonance as expectational phenomena (rather than purely psychoacoustic ones), and I consider the ways that non-pitched elements such as meter and notation can act as “consonating” and/or “dissonating” forces. In Chapter 4, I characterize harmonic function as arising from the interaction of generic scalar position and metrical position, and I devise a system for labeling harmonic functions that is better attuned to affective differences across the diatonic modes. In Chapter 5, I synthesize these building blocks into a conception of fuzzy heptatonic diatonic tonality that links together not only all of Blackwood’s microtonal compositions but also more familiar musics that use a twelve-tone octave, from Euroclassical to popular styles. The outer chapters are less explicitly music-analytical in focus. Chapter 1 introduces readers to Blackwood’s compositional approach and notational system, considers the question of his intended audience, and discusses the ways that enculturation mediates the cognition of microtonality (and of unfamiliar music more generally). Chapter 6 draws upon archival documents to paint a more detailed picture of who Blackwood was as a person and how his idiosyncratic worldview colors his approach to composition, scholarship, and interpersonal interaction. While my nominal focus in these six chapters is Blackwood’s microtonal music, the repertorial purview of my project is far broader. One of my guiding claims throughout is that attending more closely to the paradoxes and contradictions of Blackwood’s microtonality can help one better understand the musics they are accustomed to hearing. For this reason, I frequently compare moments in Blackwood’s microtonal music to ones in more familiar styles to highlight unexpected analogies and point up common concerns. Sharing space with Blackwood in the pages that follow are Anita Baker, Ornette Coleman, Claude Debussy, and Richard Rodgers, among others—not to mention music from Curb Your Enthusiasm, Fortnite, Sesame Street, and Star Wars. Ultimately, this project is a testament to the value of stepping outside of one’s musical comfort zone. For not only can this reveal certain things about that comfort zone that would not be apparent otherwise, but it can also help one think with greater nuance, precision, and (self-)awareness when “stepping back in” to reflect upon the music they know and love
    • 

    corecore