2,011 research outputs found

    Difference of Normals as a Multi-Scale Operator in Unorganized Point Clouds

    Full text link
    A novel multi-scale operator for unorganized 3D point clouds is introduced. The Difference of Normals (DoN) provides a computationally efficient, multi-scale approach to processing large unorganized 3D point clouds. The application of DoN in the multi-scale filtering of two different real-world outdoor urban LIDAR scene datasets is quantitatively and qualitatively demonstrated. In both datasets the DoN operator is shown to segment large 3D point clouds into scale-salient clusters, such as cars, people, and lamp posts towards applications in semi-automatic annotation, and as a pre-processing step in automatic object recognition. The application of the operator to segmentation is evaluated on a large public dataset of outdoor LIDAR scenes with ground truth annotations.Comment: To be published in proceedings of 3DIMPVT 201

    Point Cloud Framework for Rendering 3D Models Using Google Tango

    Get PDF
    This project seeks to demonstrate the feasibility of point cloud meshing for capturing and modeling three dimensional objects on consumer smart phones and tablets. Traditional methods of capturing objects require hundreds of images, are very slow and consume a large amount of cellular data for the average consumer. Software developers need a starting point for capturing and meshing point clouds to create 3D models as hardware manufacturers provide the tools to capture point cloud data. The project uses Googles Tango computer vision library for Android to capture point clouds on devices with depth-sensing hardware. The point clouds are combined and meshed as models for use in 3D rendering projects. We expect our results to be embraced by the Android market because capturing point clouds is fast and does not carry a large data footprint

    From 3D Point Clouds to Pose-Normalised Depth Maps

    Get PDF
    We consider the problem of generating either pairwise-aligned or pose-normalised depth maps from noisy 3D point clouds in a relatively unrestricted poses. Our system is deployed in a 3D face alignment application and consists of the following four stages: (i) data filtering, (ii) nose tip identification and sub-vertex localisation, (iii) computation of the (relative) face orientation, (iv) generation of either a pose aligned or a pose normalised depth map. We generate an implicit radial basis function (RBF) model of the facial surface and this is employed within all four stages of the process. For example, in stage (ii), construction of novel invariant features is based on sampling this RBF over a set of concentric spheres to give a spherically-sampled RBF (SSR) shape histogram. In stage (iii), a second novel descriptor, called an isoradius contour curvature signal, is defined, which allows rotational alignment to be determined using a simple process of 1D correlation. We test our system on both the University of York (UoY) 3D face dataset and the Face Recognition Grand Challenge (FRGC) 3D data. For the more challenging UoY data, our SSR descriptors significantly outperform three variants of spin images, successfully identifying nose vertices at a rate of 99.6%. Nose localisation performance on the higher quality FRGC data, which has only small pose variations, is 99.9%. Our best system successfully normalises the pose of 3D faces at rates of 99.1% (UoY data) and 99.6% (FRGC data)

    Deep Depth Completion of a Single RGB-D Image

    Full text link
    The goal of our work is to complete the depth channel of an RGB-D image. Commodity-grade depth cameras often fail to sense depth for shiny, bright, transparent, and distant surfaces. To address this problem, we train a deep network that takes an RGB image as input and predicts dense surface normals and occlusion boundaries. Those predictions are then combined with raw depth observations provided by the RGB-D camera to solve for depths for all pixels, including those missing in the original observation. This method was chosen over others (e.g., inpainting depths directly) as the result of extensive experiments with a new depth completion benchmark dataset, where holes are filled in training data through the rendering of surface reconstructions created from multiview RGB-D scans. Experiments with different network inputs, depth representations, loss functions, optimization methods, inpainting methods, and deep depth estimation networks show that our proposed approach provides better depth completions than these alternatives.Comment: Accepted by CVPR2018 (Spotlight). Project webpage: http://deepcompletion.cs.princeton.edu/ This version includes supplementary materials which provide more implementation details, quantitative evaluation, and qualitative results. Due to file size limit, please check project website for high-res pape

    Algorithms for the reconstruction, analysis, repairing and enhancement of 3D urban models from multiple data sources

    Get PDF
    Over the last few years, there has been a notorious growth in the field of digitization of 3D buildings and urban environments. The substantial improvement of both scanning hardware and reconstruction algorithms has led to the development of representations of buildings and cities that can be remotely transmitted and inspected in real-time. Among the applications that implement these technologies are several GPS navigators and virtual globes such as Google Earth or the tools provided by the Institut Cartogràfic i Geològic de Catalunya. In particular, in this thesis, we conceptualize cities as a collection of individual buildings. Hence, we focus on the individual processing of one structure at a time, rather than on the larger-scale processing of urban environments. Nowadays, there is a wide diversity of digitization technologies, and the choice of the appropriate one is key for each particular application. Roughly, these techniques can be grouped around three main families: - Time-of-flight (terrestrial and aerial LiDAR). - Photogrammetry (street-level, satellite, and aerial imagery). - Human-edited vector data (cadastre and other map sources). Each of these has its advantages in terms of covered area, data quality, economic cost, and processing effort. Plane and car-mounted LiDAR devices are optimal for sweeping huge areas, but acquiring and calibrating such devices is not a trivial task. Moreover, the capturing process is done by scan lines, which need to be registered using GPS and inertial data. As an alternative, terrestrial LiDAR devices are more accessible but cover smaller areas, and their sampling strategy usually produces massive point clouds with over-represented plain regions. A more inexpensive option is street-level imagery. A dense set of images captured with a commodity camera can be fed to state-of-the-art multi-view stereo algorithms to produce realistic-enough reconstructions. One other advantage of this approach is capturing high-quality color data, whereas the geometric information is usually lacking. In this thesis, we analyze in-depth some of the shortcomings of these data-acquisition methods and propose new ways to overcome them. Mainly, we focus on the technologies that allow high-quality digitization of individual buildings. These are terrestrial LiDAR for geometric information and street-level imagery for color information. Our main goal is the processing and completion of detailed 3D urban representations. For this, we will work with multiple data sources and combine them when possible to produce models that can be inspected in real-time. Our research has focused on the following contributions: - Effective and feature-preserving simplification of massive point clouds. - Developing normal estimation algorithms explicitly designed for LiDAR data. - Low-stretch panoramic representation for point clouds. - Semantic analysis of street-level imagery for improved multi-view stereo reconstruction. - Color improvement through heuristic techniques and the registration of LiDAR and imagery data. - Efficient and faithful visualization of massive point clouds using image-based techniques.Durant els darrers anys, hi ha hagut un creixement notori en el camp de la digitalització d'edificis en 3D i entorns urbans. La millora substancial tant del maquinari d'escaneig com dels algorismes de reconstrucció ha portat al desenvolupament de representacions d'edificis i ciutats que es poden transmetre i inspeccionar remotament en temps real. Entre les aplicacions que implementen aquestes tecnologies hi ha diversos navegadors GPS i globus virtuals com Google Earth o les eines proporcionades per l'Institut Cartogràfic i Geològic de Catalunya. En particular, en aquesta tesi, conceptualitzem les ciutats com una col·lecció d'edificis individuals. Per tant, ens centrem en el processament individual d'una estructura a la vegada, en lloc del processament a gran escala d'entorns urbans. Avui en dia, hi ha una àmplia diversitat de tecnologies de digitalització i la selecció de l'adequada és clau per a cada aplicació particular. Aproximadament, aquestes tècniques es poden agrupar en tres famílies principals: - Temps de vol (LiDAR terrestre i aeri). - Fotogrametria (imatges a escala de carrer, de satèl·lit i aèries). - Dades vectorials editades per humans (cadastre i altres fonts de mapes). Cadascun d'ells presenta els seus avantatges en termes d'àrea coberta, qualitat de les dades, cost econòmic i esforç de processament. Els dispositius LiDAR muntats en avió i en cotxe són òptims per escombrar àrees enormes, però adquirir i calibrar aquests dispositius no és una tasca trivial. A més, el procés de captura es realitza mitjançant línies d'escaneig, que cal registrar mitjançant GPS i dades inercials. Com a alternativa, els dispositius terrestres de LiDAR són més accessibles, però cobreixen àrees més petites, i la seva estratègia de mostreig sol produir núvols de punts massius amb regions planes sobrerepresentades. Una opció més barata són les imatges a escala de carrer. Es pot fer servir un conjunt dens d'imatges capturades amb una càmera de qualitat mitjana per obtenir reconstruccions prou realistes mitjançant algorismes estèreo d'última generació per produir. Un altre avantatge d'aquest mètode és la captura de dades de color d'alta qualitat. Tanmateix, la informació geomètrica resultant sol ser de baixa qualitat. En aquesta tesi, analitzem en profunditat algunes de les mancances d'aquests mètodes d'adquisició de dades i proposem noves maneres de superar-les. Principalment, ens centrem en les tecnologies que permeten una digitalització d'alta qualitat d'edificis individuals. Es tracta de LiDAR terrestre per obtenir informació geomètrica i imatges a escala de carrer per obtenir informació sobre colors. El nostre objectiu principal és el processament i la millora de representacions urbanes 3D amb molt detall. Per a això, treballarem amb diverses fonts de dades i les combinarem quan sigui possible per produir models que es puguin inspeccionar en temps real. La nostra investigació s'ha centrat en les següents contribucions: - Simplificació eficaç de núvols de punts massius, preservant detalls d'alta resolució. - Desenvolupament d'algoritmes d'estimació normal dissenyats explícitament per a dades LiDAR. - Representació panoràmica de baixa distorsió per a núvols de punts. - Anàlisi semàntica d'imatges a escala de carrer per millorar la reconstrucció estèreo de façanes. - Millora del color mitjançant tècniques heurístiques i el registre de dades LiDAR i imatge. - Visualització eficient i fidel de núvols de punts massius mitjançant tècniques basades en imatges

    Fast and Accurate 3D Face Recognition Using Registration to an Intrinsic Coordinate System and Fusion of Multiple Region classifiers

    Get PDF
    In this paper we present a new robust approach for 3D face registration to an intrinsic coordinate system of the face. The intrinsic coordinate system is defined by the vertical symmetry plane through the nose, the tip of the nose and the slope of the bridge of the nose. In addition, we propose a 3D face classifier based on the fusion of many dependent region classifiers for overlapping face regions. The region classifiers use PCA-LDA for feature extraction and the likelihood ratio as a matching score. Fusion is realised using straightforward majority voting for the identification scenario. For verification, a voting approach is used as well and the decision is defined by comparing the number of votes to a threshold. Using the proposed registration method combined with a classifier consisting of 60 fused region classifiers we obtain a 99.0% identification rate on the all vs first identification test of the FRGC v2 data. A verification rate of 94.6% at FAR=0.1% was obtained for the all vs all verification test on the FRGC v2 data using fusion of 120 region classifiers. The first is the highest reported performance and the second is in the top-5 of best performing systems on these tests. In addition, our approach is much faster than other methods, taking only 2.5 seconds per image for registration and less than 0.1 ms per comparison. Because we apply feature extraction using PCA and LDA, the resulting template size is also very small: 6 kB for 60 region classifiers
    corecore