19,840 research outputs found

    How Close are the Edges of a Closed Fracture?

    Get PDF
    A laboratory experiment is peresented where the theory of amplitude reflection tuning in thin beds is tested. The results show a very good agreement with the theory previsio

    Data-Driven Approach to Simulating Realistic Human Joint Constraints

    Full text link
    Modeling realistic human joint limits is important for applications involving physical human-robot interaction. However, setting appropriate human joint limits is challenging because it is pose-dependent: the range of joint motion varies depending on the positions of other bones. The paper introduces a new technique to accurately simulate human joint limits in physics simulation. We propose to learn an implicit equation to represent the boundary of valid human joint configurations from real human data. The function in the implicit equation is represented by a fully connected neural network whose gradients can be efficiently computed via back-propagation. Using gradients, we can efficiently enforce realistic human joint limits through constraint forces in a physics engine or as constraints in an optimization problem.Comment: To appear at ICRA 2018; 6 pages, 9 figures; for associated video, see https://youtu.be/wzkoE7wCbu

    Coupling and robustness of intra-cortical vascular territories

    Get PDF
    Vascular domains have been described as being coupled to neuronal functional units enabling dynamic blood supply to the cerebral cyto-architecture. Recent experiments have shown that penetrating arterioles of the grey matter are the building blocks for such units. Nevertheless, vascular territories are still poorly known, as the collection and analysis of large three-dimensional micro-vascular networks are difficult. By using an exhaustive reconstruction of the micro-vascular network in an 18 mm 3 volume of marmoset cerebral cortex, we numerically computed the blood flow in each blood vessel. We thus defined arterial and venular territories and examined their overlap. A large part of the intracortical vascular network was found to be supplied by several arteries and drained by several venules. We quantified this multiple potential to compensate for deficiencies by introducing a new robustness parameter. Robustness proved to be positively correlated with cortical depth and a systematic investigation of coupling maps indicated local patterns of overlap between neighbouring arteries and neighbouring venules. However, arterio-venular coupling did not have a spatial pattern of overlap but showed locally preferential functional coupling, especially of one artery with two venules, supporting the notion of vascular units. We concluded that intra-cortical perfusion in the primate was characterised by both very narrow functional beds and a large capacity for compensatory redistribution, far beyond the nearest neighbour collaterals

    GPR image decomposition using two dimensional Singular Spectrum Analysis

    Get PDF

    What is Time? A New Mathematico- Physical and Information Theoretic Approach

    Full text link
    A New Mathematico-Physical and Information Theoretic Approach Examination of the available hard core information to firm up the process of unification of quantum and gravitational physics leads to the conclusion that for achieving this synthesis, major paradigm shifts are needed as also the answering of `What is Time?' The object of this submission is to point out the means of achieving such a grand synthesis. Currently the main pillars supporting the edifice of physics are: (i) The geometrical concepts of space- time-gravitation, (ii) The dynamic concepts involving quantum of action, (iii) Statistical thermodynamic concepts, heat and entropy, (iv) Mathematical concepts, tools and techniques serving both as a grand plan and the means of calculation and last but not least v)Controlled observation, pertinent experimentation as the final arbiter. In making major changes the author is following Dirac's dictum "....make changes without sacrificing the existing superstructure". It is shown that time can be treated as a parameter rather than an additional dimension. A new entity called "Ekon" having the properties of both space and momentum is introduced along with a space called "Chalachala". The requisite connection with Einstein's formulation and mathematical aperatus required have been formulated which is highly suited for the purpose. The primacy of the Plancks quantum of action and its representation geometrically as a twist is introduced. The practical and numerical estimates have been made and applied to evaluation of the gravitational constant in a a seperate submission "Estimations of gravitational constant from CMBR data".Comment: 29 pages, pdf fil

    Classification of Humans into Ayurvedic Prakruti Types using Computer Vision

    Get PDF
    Ayurveda, a 5000 years old Indian medical science, believes that the universe and hence humans are made up of five elements namely ether, fire, water, earth, and air. The three Doshas (Tridosha) Vata, Pitta, and Kapha originated from the combinations of these elements. Every person has a unique combination of Tridosha elements contributing to a person’s ‘Prakruti’. Prakruti governs the physiological and psychological tendencies in all living beings as well as the way they interact with the environment. This balance influences their physiological features like the texture and colour of skin, hair, eyes, length of fingers, the shape of the palm, body frame, strength of digestion and many more as well as the psychological features like their nature (introverted, extroverted, calm, excitable, intense, laidback), and their reaction to stress and diseases. All these features are coded in the constituents at the time of a person’s creation and do not change throughout their lifetime. Ayurvedic doctors analyze the Prakruti of a person either by assessing the physical features manually and/or by examining the nature of their heartbeat (pulse). Based on this analysis, they diagnose, prevent and cure the disease in patients by prescribing precision medicine. This project focuses on identifying Prakruti of a person by analysing his facial features like hair, eyes, nose, lips and skin colour using facial recognition techniques in computer vision. This is the first of its kind research in this problem area that attempts to bring image processing into the domain of Ayurveda
    corecore