
GPR Image Decomposition Using  

Two Dimensional Singular Spectrum Analysis

Branislav Vuksanovic 
School of Engineering 

University of Portsmouth 
Portsmouth, UK 

branislav.vuksanovic@port.ac.uk

 
Abstract— Ground penetrating radar measurements can 

suffer from large amount of noise and clutter. Current methods, 
such as time gating and background averaging, mostly applied to 
remove reflections from air-ground interface do not perform well 
when removal of extraneous and very strong and non-uniform 
clutter signals originating from the objects in the surveyed area 
other than the target is needed. This work describes and 
evaluates performance of Singular Spectrum Analysis (SSA) and 
its multivariate derivatives for those tasks. Experimental GPR 
data using simple geometric shapes measured under laboratory 
conditions are used to demonstrate the effectiveness of proposed 
algorithm for these tasks. 

Keywords—ground penetrating radar; clutter; target; two 
dimensional singular spectrum analysis; 

I.  INTRODUCTION 

The term Ground Penetrating Radar (GPR) refers to a range 
of electromagnetic (EM) techniques designed primarily for the 
location of objects or interfaces beneath the earth’s surface or 
within a visually opaque structure [1]. GPR is a non-
destructive and non-invasive geophysical technique with a 
wide variety of applications in site and ground investigations. 
It is mostly used in reflection mode where a signal is emitted 
via a transmitter antenna into the structure and soil under 
investigation. Energy reflected by changes in material 
properties is received and recorded by the receiver antenna as 
shown in Fig 1. The collected raw data are then processed and 
interpreted  [2]. 

The signal reflected of the target can be weak and 
overlapped with clutter, defined as group of signals that are 
uncorrelated to the target scattering characteristics but occupy 
the same frequency band as the target [3, 4], making it 
difficult to distinguish between both (signals and clutter) 
without applying suitable signal processing techniques. 

The interference in measured GPR signals is usually made 
up of three main components [5]: 

(i) The cross-talk between the transmitting and receiving 
antennas, 

(ii) The reflection from the air-ground interface, 
(iii) The scattered signals from other objects within the 

soil. 
 

 

Fig. 1. Elements of Ground Penetrating Radar System 

However, due to the constant distance between both 
antennas, the cross-talk signal (i) will arrive to antenna 
receiver earlier than any other signal which makes it easier to 
distinguish and reject this “interference” component [6]. The 
air-ground interface portion of the signal (ii) is usually very 
strong and a number of clutter reduction approaches have been 
suggested in the literature, including simple mean scan 
subtraction [7], two-dimensional digital filtering [8], wavelet 
packet decomposition [7], likelihood ratio test [6, 7, 9], 
parametric system identification [7, 10], and Kalman filtering 
[9, 11]. Most of these methods depend on background signal 
estimation [6] where the background signal is estimated by 
taking the mean value of the unprocessed ensemble of the 
collected GPR data, followed by employing the simple mean 
scan subtraction. A-scan, a trace of returned radar signal far 
away from the target location might be used instead of mean 
scan subtraction. These methods have been used widely in 
GPR applications, but the work on this problem is ongoing as 
they cannot completely remove the direct wave from the 
received data due to the air-earth interface and time-shift 
(jitter) of the radar system. 

Removing signals (iii) scattered from other objects within 
the soil is a difficult problem and cannot be effectively tackled 
with previously listed methods. Those features are usually 
unevenly distributed across the image and can in many cases 
be much stronger and overlap – spatially and spectrally with 
the weak target signals. To extract the target signals from such 
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a complex data set, this work proposes the use of a relatively 
new data decomposition technique – Singular Spectral 
Analysis (SSA). SSA is closely related to more established 
Principal Component Analysis method and relies on reducing 
the higher-order statistical dependencies in GPR returned 
signals. Using the modified versions of SSA – multivariate 
and two dimensional singular spectral analysis (M-SSA and 
2D-SSA) techniques, GPR images can effectively be 
decomposed into clutter and useful signals by selecting a set 
of extracted components. Selected components can then be 
used to determine the subspace for reconstruction of a GPR 
data set containing significantly reduced clutter components. 

Various researchers have shown interest in subspace 
techniques including the Singular Value Decomposition 
(SVD) [7, 12], Linear Discriminant Analysis (LDA) [13], 
PCA [14, 15], and ICA [4, 14, 16, 17]. The PCA uses a 
second-order statistics to decompose measured data set into 
two orthogonal matrices that convey useful information about 
the main components contained in the data set. PCA also 
provides a third, diagonal matrix where diagonal elements of 
this matrix indicate the amount of information (variance) 
contained in each principal component. This makes it 
relatively easy to decide which components to discard in the 
reconstruction process of the GPR image, based on the values 
of the diagonal elements in this matrix. On the other side, 
components extracted via PCA technique are orthogonal and 
therefore not easily physically interpreted, which can represent 
a problem in processing results of physical measurements such 
are GPR data sets. The ICA technique minimises the statistical 
dependence between the data and uses higher-order statistics 
to provide more meaningful information about data. 
Components returned by ICA are however scaled in amplitude 
and usually randomly permutated so the task of identifying the 
“most important” components in the extracted set is not a 
trivial one. 

The Singular Spectrum Analysis (SSA) [18], [19] is a 
model-free technique for the analysis of time series, closely 
related to previously discussed multivariate techniques. In the 
recent years, it has been successfully applied to a different 
areas of science, engineering and economy. The name of this 
method implies the use of singular value decomposition 
algorithm; where set of obtained eigenvalues and 
corresponding eigenvectors is added together to either obtain 
suitable decomposition of time series or to extract component 
with particular oscillatory behaviour from time series. Some of 
the tasks SSA is especially well suited in solving include 
finding trends of different resolution, smoothing, extraction of 
seasonality components, simultaneous extraction of cycles 
with small and large periods, extraction of periodicities with 
varying amplitudes, finding structure in short time series and 
change-point detection. Three versions of the SSA algorithm 
will be briefly explained in the following section of this paper; 
the basic, univariate SSA algorithm, multivariate SSA method 
(M-SSA) and a slightly modified version of M-SSA algorithm 
suitable for image analysis and decomposition, known as two-

dimensional SSA (2D-SSA) will be reviewed. 
The rest of the paper is organized in the following way. 

Section 2 provides a brief overview of three SSA algorithms. 
Section 3 describes the measurement setup used to collect the 
experimental GPR data containing strong non-uniform clutter. 
Section 4 presents results achieved with the proposed 
algorithm and the final section summarises the completed 
work and draws some conclusions and recommendations for 
further research into the problems of target characterisation for 
GPR signals. 

 

II. SINGULAR SPECTRUM ANALYSIS ALGORITHMS 

A. One Dimensional SSA 

SSA algorithm consists of two complementary stages – 
decomposition and reconstruction of the given data set with 
each of those two stages again performed through two separate 
steps. Decomposition is implemented via data embedding 
stage followed by the singular value decomposition of the 
embedded data. Reconstruction comprises grouping and 
diagonal averaging stages. Details of those sub-stages are 
described below. 

1) Embedding 
Basic SSA algorithm treats the univariate, i.e. one-

dimensional time series of length L,  1 2, ,...,L LY y y y . 

Embedding stage transforms this series into multi-dimensional 

series, matrix of the form  1 2, ,..., KX X XX  where 

columns of this matrix, i.e. vectors ,  1,...,iX i K  are so 

called lagged vectors,  1 1, ,...,
T

i i i i MX y y y   . Length 

of the lagged vectors is determined by the choice of 
embedding parameter M, which is usually called window 
length, since the process of embedding can be viewed as 
sliding the window of length M along the time series, 
extracting lagged vectors and arranging them into matrix X.  
Matrix X obtained through this process is Henkel type matrix 
and in the context of SSA is usually referred to as trajectory 
matrix. Using an embedding window of size M, will produce 
an M K  size trajectory matrix, where 1K L M    is 
parameter determined by the choice of window length M . 

2) SVD 
Second step of decomposition part of SSA algorithm 

performs SVD on generated trajectory matrix X  to obtain 
three new matrices U , V  and Σ : 

 TX UΣV  (1) 

Alternatively, matrices U , V  and Λ  can be obtained via 

eigendecomposition of matrix products TXX  and TX X  
since : 

  2TT T T T T T  XX UΣV UΣV UΣV VΣU UΣ U (2) 

and 



   2TT T T T T T  X X UΣV UΣV VΣU UΣV VΣ V (3) 

 Elements of matrix Σ  are non-negative values, known as the 
singular values of X, while the columns of matrices U and 

rows of matrix V represent the eigenvectors of matrices TXX  
and TX X  respectively. The diagonal matrix 2Σ , usually 
denoted as Λ  now contains the corresponding eigenvalues 

i  for the eigenvectors in U and V, i.e. 

 2 2 2 2
1 2 1 2 diag{ , , , }  diag{ , , , }n n        Σ  (4) 

Individual matrices iE , corresponding to each ,i iu v  set of 

eigenvectors  from U and V can be obtained using: 

 T
i i iE u v  (5) 

and the SVD of trajectory matrix X  represented as the 
summation of those matrices: 
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3) Grouping 
Grouping stage is the first stage of the reconstruction part 

of SSA and involves grouping of the elementary matrices iE  

into P groups and summing of the matrices from each group. 
This stage basically starts by splitting the set of indices 

1, 2,...,i M  into a number of disjointed sets. Selection and 
number of those is usually done manually, by the user but can 
be difficult and cumbersome for the large data sets. This paper 
proposes grouping technique suitable for GPR image analysis 
and decomposition. Elementary matrices corresponding to 
indices from each set are then added together to form a new 

group of matrices ,  1, 2,...j j PD . 

4) Diagonal Averaging 
Diagonal averaging is the process of turning each grouped 

matrix jD  obtained in the previous, grouping stage back into 

time series. Obtained time series are the additive components 

of the initial time series LY . The k-th element of the time series 

corresponding to matrix D  can be obtained by averaging 

elements ,i jd  of this matrix over all indices i  and j  such that 

2i j k   . This procedure is known as diagonal averaging 

or Hankelisation of a matrix D . Once each jD  matrix is 

turned into time series, those can be added back to recover the 
original time series LY . 

More formally, process of diagonal averaging can be 
described using equation: 
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 (7) 

where 1K N L   ,  * min ,L L K  and 

 * max ,K L K . 

B. Multichannel SSA (M-SSA) 

M-SSA is an extension of SSA algorithm which can be 
applied to multivariate time series, i.e. when more than one 
time series is available for analysis. Algorithm can be 
demonstrated on the simple example where two time series or 
the recordings from two channels are to be analysed together. If 

we denote two data sets as  1 2, ,...,L LY y y y  and 

 1 2, ,...,L LX x x x , than each of those can be embedded to 

create its own trajectory matrix. Individual trajectory matrices 

YT  and XT  corresponding to each channel are therefore 

created as in the SSA algorithm. The total trajectory matrix can 
then be formed as: 

  TY YT T T  (8) 

and further steps, identical to the ones in SSA method 
performed. This idea can then be easily extended to any 
number of channels. If, in more general case Q  channels 

,    1, 2,...,jY j Q , each of length L  are available, and 

stored in matrix Y  with dimensions L Q , trajectory jT  

matrix for each channel jY  from this matrix can be formed and 

combined into a total trajectory matrix T : 

 1 2

T

Q   T T T T  (9) 

It is worth noting that trajectory matrices formed in the first 
stage of M-SSA procedure are not Hankel format matrices any 
more but instead have a so called block-Hankel structure. After 
generation of a total trajectory matrix, M-SSA procedure 
follows the rest of the univariate SSA steps – SVD 
decomposition of trajectory matrix, grouping and diagonal 
averaging. 

C. Two-dimensional SSA (2D-SSA) 

Two dimensional singular spectrum analysis [20] is similar 
to M-SSA algorithm but whilst the M-SSA algorithm usually 
considers one dimension of data matrix Y  to be time, 2D-SSA 
is designed to process more general two-dimensional scalar 
fields. In practice, this involves using a two-dimensional 
instead of one-dimensional data window, moving it along all 
available positions in data matrix Y  and generating a 
trajectory matrix for each position of this window in the matrix. 



Individual trajectory matrices are then combined into total 
trajectory matrix and the standard SSA steps followed. 

If for the embedding purposes we adopt the window of size 

H WM M , where HM  and WM  represent window height 

and width respectively, than placing the top left corner of this 

window in the position of element ,i jy  in data matrix Y  

where: 
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results in the extraction of submatrix ,i jY  such that: 
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Just as in the case of basic, one-dimensional SSA 
algorithm, where embedding stage produces trajectory matrix, 
i.e. given 1D time series gets transformed into 2D data 
structure (matrix), embedding data matrix Y  into equivalent 
trajectory structure would in general case require moving from 
2D data structure to 4D. To avoid this complexity, and keep 

working with 2D matrices, submatrix ,i jY  is flattened, i.e. 

reshaped into column and used as an   1 thWi K j   

column of the total trajectory matrix, providing we move the 
top left corner of our data window left to right and top to 
bottom through the matrix Y . Constant 

  1W WK L M    indicates the number of available 

movements from the left to right of data matrix. Similarly 

constant   1H HK L M    indicates the number of valid 

window positions when the window moves from top to the 
bottom of data matrix. Using this notation, it is easy to see that 
the complete trajectory matrix T  created from data matrix Y  
will have H WK K  columns, with H WM M  elements in 

each column arranged in the following way: 

1,1 1,2 1, 2,1 2, ,C C H CK K K K
   T y y y y y y   (12) 

2D-SSA algorithm further follows the classical SSA steps – 
SVD, grouping of obtained eigenmatrices and Hankelisation of 
each group to obtain corresponding submatrix of the original 
data matrix Y . Due to a different structure of trajectory matrix 
T , diagonal averaging procedure is slightly modified for the 
case of 2D-SSA algorithm.  Dimensions of data matrix Y  
treated in this work are relatively high, thus a large number of 
eigenmatrices is usually produced after SVD. To prevent 
cumbersome manual grouping of those matrices automatic 

grouping technique is proposed and described further in the 
paper. 

It is also worth noting that the 2D-SSA algorithm 
represents more general algorithm in comparison to M-SSA, 
SSA and SVD algorithms. If the 2D embedding window 

becomes one-dimensional, i.e. 1WM  , 2D-SSA in effect 

becomes M-SSA. On the other hand, if both widow dimensions 
become 1, 1H WM M   2D-SSA reduces to SVD. For one-

dimensional set of data, i.e. when 1Q    and 1WM  , 2D-

SSA reduces to classic SSA operation. 

III. GPR MEASUREMENTS AND EXPERIMENTAL DATA 

COLLECTION 

Aim of conducted experiment was to evaluate the 
capabilities of 4 GHz GPR for detecting and characterising 
samples of three PVC pipes of different diameters (11 cm, 4.5 
cm. and 3 cm). To perform the experiment, 12012015 cm 
open-top wooden box was constructed and 4 different sets of 
measurements carried out. GPR measurements included  (i) 
empty box (i.e. no pipes and no other material in the box), (ii) 
box containing each of pipe samples individually and all three 
pipes together but no other material in the box, (iii) empty box 
filled with sand but no pipes in the box and (iv) the box with 
pipes buried in the sand. To scan the content of the constructed 
wooden box, 2 cm thick wooden panel was placed on the top of 
the box and scans along the 10 cm grid drawn on the top panel 
performed. 4 GHz Grandvue 5 GPR device manufactured by 
Utsi Electronics Ltd has been used to perform all 
measurements in this work. Fig 2. shows the setup and GPR 
equipment used in the experiment. 

Obtained results after some basic pre-processing are 
illustrated using the GPR image corresponding to, “left to 
right” scan along line 7 of the measurement grid (i.e. scan 
directly across the centres of all or each pipe sample in the 
box). To reduce the amount of clutter corresponding to air-
wood panel interface and antenna cross talk effects strongly 
present in both raw images, mean trace was calculated and 
removed from all images used in this study before any further 
processing is attempted. No further processing or image 
enhancement has been performed on measured data at this 
stage. GPR images with removed mean trace made on empty 
box, the box containing all three pipes and single pipe in the 
box without sand are shown in Fig 3. 

Whilst the emergence of two hyperbolas corresponding to 
big (11 cm) and medium (4.5 cm) diameter pipes can be 
observed in Fig 3b) the main feature present in both images is 
the clutter - strong signal on the left side of both images 
indicated with black arrows. This is caused by the reflection of 
the EM waves from the left, side of the wooden box. Similar 
feature, corresponding to the reflection from the right side of 
the box (white arrows) can also be observed on the right side of 
the image, although it is slightly weaker due to larger distance 
between the end of the scanned line and right side of the 
wooden box. 



 

 

Fig. 2.  Experimental setup and GPR equipment used in the experiment 
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Fig. 3. GPR images with removed mean trace measured on a) empty box, b) 
box containing three plastic pipes and c) single pipe in the box 

It is however strong enough to completely obscure most of 
the hyperbola feature emanating from the third and smallest, 
right most positioned pipe in the box. Both side reflections are 
evidently the strongest features in the image and as such they 
heavily obscure the hyperbolas corresponding to plastic pipes 
to be detected and characterised. It would therefore be 
beneficial to be able to “blindly” identify those features in the 
image with minimal effects on the content of the rest of the 
image, before attempting to detect and analyse target (i.e. pipe) 
related features in the image. Unlike reflections from the air-
ground or in this case air- wood panel interface, reflections 
from the side of the box are non-uniform and as such present a 
good example of strong clutter, reflection from non-target 
objects in the scanned area. Absence of other material filling 
the box (e.g. sand) makes the presence of unwanted side 
reflections even stronger thus those images were selected to 
test the proposed SSA based techniques and its capabilities in 
separating and eventually removing this type of clutter from the 
measured GPR data. Results are illustrated and discussed in the 
following section. Analysis of decluttered images, i.e. pipe 
detection and characterisation will be tackled in the extension 
of this work and described in the subsequent publication. 

IV. RESULTS 

Due to a space limitation only the results of image 
decomposition using 2D-SSA algorithm are presented in this 
section. Following the 2D-SSA procedure outlined in the 
previous section GPR image measured on the box containing a 
single pipe shown in Fig 3c). has been decomposed and 30 
subimages, corresponding to 30 highest eigenvalues from 
matrix Λ  retained for grouping stage. Manual inspection and 
grouping of those images is a difficult and time-consuming 
task, thus the extracted subimages were classified into four 
groups using the eigenfaces-like, PCA based feature extraction 
and dimensionality reduction algorithm [21] followed by k-
means clustering of a reduced dimensionality data set. Results, 
4 images obtained by adding all images from each cluster are 
shown in Fig 4. Axis labels in this figure have been left out as 
they are identical to the ones shown in Fig 3. It is worth noting 
that the number of classes specified in k-means clustering 
procedure call is not a critical parameter in this process. 



Following the automatic grouping of SSA subimages, further 
merging of some of those images can be easily done manually 
and even smaller number of subimages, representing the clutter 
from various, multiple sources in the surveyed area obtained.  

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 4. Sub-images extracted using 2D-SSA and grouped following 
clustering of all obtained images 

Sub-images shown in Fig 4. indicate potential of 2D-SSA 
algorithm to  separate components of the original image. Fig 
4a) clearly contains clutter mainly corresponding to reflections 
of the radar waves from the right side of the container box, 
whilst the Fig 4d) contains slightly stronger clutter 
corresponding to reflections from the left side of the box. Figs 
4b) and 4c) therefore correspond to target/pipe reflections. 
Those two images can be added together and analysed to 
extract target properties and characterise targets. Alternatively, 
each of those two images could be analysed individually with 
the same aim. 
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