594 research outputs found

    Semismooth Newton Coordinate Descent Algorithm for Elastic-Net Penalized Huber Loss Regression and Quantile Regression

    Full text link
    We propose an algorithm, semismooth Newton coordinate descent (SNCD), for the elastic-net penalized Huber loss regression and quantile regression in high dimensional settings. Unlike existing coordinate descent type algorithms, the SNCD updates each regression coefficient and its corresponding subgradient simultaneously in each iteration. It combines the strengths of the coordinate descent and the semismooth Newton algorithm, and effectively solves the computational challenges posed by dimensionality and nonsmoothness. We establish the convergence properties of the algorithm. In addition, we present an adaptive version of the "strong rule" for screening predictors to gain extra efficiency. Through numerical experiments, we demonstrate that the proposed algorithm is very efficient and scalable to ultra-high dimensions. We illustrate the application via a real data example

    Sparse least trimmed squares regression.

    Get PDF
    Sparse model estimation is a topic of high importance in modern data analysis due to the increasing availability of data sets with a large number of variables. Another common problem in applied statistics is the presence of outliers in the data. This paper combines robust regression and sparse model estimation. A robust and sparse estimator is introduced by adding an L1 penalty on the coefficient estimates to the well known least trimmed squares (LTS) estimator. The breakdown point of this sparse LTS estimator is derived, and a fast algorithm for its computation is proposed. Both the simulation study and the real data example show that the LTS has better prediction performance than its competitors in the presence of leverage points.Breakdown point; Outliers; Penalized regression; Robust regression; Trimming;

    Stability

    Full text link
    Reproducibility is imperative for any scientific discovery. More often than not, modern scientific findings rely on statistical analysis of high-dimensional data. At a minimum, reproducibility manifests itself in stability of statistical results relative to "reasonable" perturbations to data and to the model used. Jacknife, bootstrap, and cross-validation are based on perturbations to data, while robust statistics methods deal with perturbations to models. In this article, a case is made for the importance of stability in statistics. Firstly, we motivate the necessity of stability for interpretable and reliable encoding models from brain fMRI signals. Secondly, we find strong evidence in the literature to demonstrate the central role of stability in statistical inference, such as sensitivity analysis and effect detection. Thirdly, a smoothing parameter selector based on estimation stability (ES), ES-CV, is proposed for Lasso, in order to bring stability to bear on cross-validation (CV). ES-CV is then utilized in the encoding models to reduce the number of predictors by 60% with almost no loss (1.3%) of prediction performance across over 2,000 voxels. Last, a novel "stability" argument is seen to drive new results that shed light on the intriguing interactions between sample to sample variability and heavier tail error distribution (e.g., double-exponential) in high-dimensional regression models with pp predictors and nn independent samples. In particular, when p/nκ(0.3,1)p/n\rightarrow\kappa\in(0.3,1) and the error distribution is double-exponential, the Ordinary Least Squares (OLS) is a better estimator than the Least Absolute Deviation (LAD) estimator.Comment: Published in at http://dx.doi.org/10.3150/13-BEJSP14 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Adaptive estimation with partially overlapping models

    Get PDF
    In many problems, one has several models of interest that capture key parameters describing the distribution of the data. Partially overlapping models are taken as models in which at least one covariate effect is common to the models. A priori knowledge of such structure enables efficient estimation of all model parameters. However, in practice, this structure may be unknown. We propose adaptive composite M-estimation (ACME) for partially overlapping models using a composite loss function, which is a linear combination of loss functions defining the individual models. Penalization is applied to pairwise differences of parameters across models, resulting in data driven identification of the overlap structure. Further penalization is imposed on the individual parameters, enabling sparse estimation in the regression setting. The recovery of the overlap structure enables more efficient parameter estimation. An oracle result is established. Simulation studies illustrate the advantages of ACME over existing methods that fit individual models separately or make strong a priori assumption about the overlap structure
    corecore